# Properties

 Label 483.2.q.c.85.2 Level $483$ Weight $2$ Character 483.85 Analytic conductor $3.857$ Analytic rank $0$ Dimension $20$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$483 = 3 \cdot 7 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 483.q (of order $$11$$, degree $$10$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.85677441763$$ Analytic rank: $$0$$ Dimension: $$20$$ Relative dimension: $$2$$ over $$\Q(\zeta_{11})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{20} - \cdots)$$ Defining polynomial: $$x^{20} - 8 x^{19} + 40 x^{18} - 117 x^{17} + 295 x^{16} - 575 x^{15} + 1777 x^{14} - 1560 x^{13} + 4383 x^{12} - 6446 x^{11} + 7261 x^{10} + 7700 x^{9} + 7852 x^{8} - 39430 x^{7} - 101709 x^{6} + 156742 x^{5} + 999838 x^{4} + 2029154 x^{3} + 3616480 x^{2} + 4299390 x + 2374681$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

## Embedding invariants

 Embedding label 85.2 Root $$1.49752 + 1.72823i$$ of defining polynomial Character $$\chi$$ $$=$$ 483.85 Dual form 483.2.q.c.358.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.544078 + 0.627899i) q^{2} +(0.841254 - 0.540641i) q^{3} +(0.186393 + 1.29639i) q^{4} +(0.405886 + 0.888766i) q^{5} +(-0.118239 + 0.822373i) q^{6} +(-0.959493 + 0.281733i) q^{7} +(-2.31329 - 1.48666i) q^{8} +(0.415415 - 0.909632i) q^{9} +O(q^{10})$$ $$q+(-0.544078 + 0.627899i) q^{2} +(0.841254 - 0.540641i) q^{3} +(0.186393 + 1.29639i) q^{4} +(0.405886 + 0.888766i) q^{5} +(-0.118239 + 0.822373i) q^{6} +(-0.959493 + 0.281733i) q^{7} +(-2.31329 - 1.48666i) q^{8} +(0.415415 - 0.909632i) q^{9} +(-0.778889 - 0.228702i) q^{10} +(3.57214 + 4.12247i) q^{11} +(0.857685 + 0.989821i) q^{12} +(-0.954742 - 0.280337i) q^{13} +(0.345139 - 0.755750i) q^{14} +(0.821956 + 0.528239i) q^{15} +(-0.321251 + 0.0943278i) q^{16} +(-0.595548 + 4.14213i) q^{17} +(0.345139 + 0.755750i) q^{18} +(0.0835672 + 0.581223i) q^{19} +(-1.07653 + 0.691846i) q^{20} +(-0.654861 + 0.755750i) q^{21} -4.53202 q^{22} +(-1.96432 + 4.37509i) q^{23} -2.74982 q^{24} +(2.64914 - 3.05727i) q^{25} +(0.695478 - 0.446956i) q^{26} +(-0.142315 - 0.989821i) q^{27} +(-0.544078 - 1.19136i) q^{28} +(-0.113996 + 0.792858i) q^{29} +(-0.778889 + 0.228702i) q^{30} +(-3.31199 - 2.12849i) q^{31} +(2.40019 - 5.25568i) q^{32} +(5.23385 + 1.53680i) q^{33} +(-2.27682 - 2.62759i) q^{34} +(-0.639839 - 0.738413i) q^{35} +(1.25667 + 0.368991i) q^{36} +(-1.49833 + 3.28089i) q^{37} +(-0.410416 - 0.263759i) q^{38} +(-0.954742 + 0.280337i) q^{39} +(0.382363 - 2.65939i) q^{40} +(4.02324 + 8.80966i) q^{41} +(-0.118239 - 0.822373i) q^{42} +(9.13966 - 5.87370i) q^{43} +(-4.67851 + 5.39929i) q^{44} +0.977061 q^{45} +(-1.67837 - 3.61379i) q^{46} -11.5601 q^{47} +(-0.219256 + 0.253035i) q^{48} +(0.841254 - 0.540641i) q^{49} +(0.478320 + 3.32679i) q^{50} +(1.73840 + 3.80656i) q^{51} +(0.185470 - 1.28997i) q^{52} +(0.848176 - 0.249047i) q^{53} +(0.698939 + 0.449181i) q^{54} +(-2.21403 + 4.84805i) q^{55} +(2.63843 + 0.774713i) q^{56} +(0.384534 + 0.443776i) q^{57} +(-0.435813 - 0.502955i) q^{58} +(6.25110 + 1.83549i) q^{59} +(-0.531597 + 1.16404i) q^{60} +(1.25651 + 0.807508i) q^{61} +(3.13846 - 0.921535i) q^{62} +(-0.142315 + 0.989821i) q^{63} +(1.71597 + 3.75746i) q^{64} +(-0.138362 - 0.962327i) q^{65} +(-3.81258 + 2.45019i) q^{66} +(-0.874085 + 1.00875i) q^{67} -5.48082 q^{68} +(0.712860 + 4.74256i) q^{69} +0.811772 q^{70} +(7.26595 - 8.38535i) q^{71} +(-2.31329 + 1.48666i) q^{72} +(-1.33652 - 9.29567i) q^{73} +(-1.24486 - 2.72586i) q^{74} +(0.575714 - 4.00418i) q^{75} +(-0.737915 + 0.216671i) q^{76} +(-4.58888 - 2.94909i) q^{77} +(0.343430 - 0.752007i) q^{78} +(8.76905 + 2.57482i) q^{79} +(-0.214227 - 0.247231i) q^{80} +(-0.654861 - 0.755750i) q^{81} +(-7.72054 - 2.26695i) q^{82} +(-1.31567 + 2.88091i) q^{83} +(-1.10181 - 0.708089i) q^{84} +(-3.92311 + 1.15193i) q^{85} +(-1.28459 + 8.93454i) q^{86} +(0.332752 + 0.728626i) q^{87} +(-2.13468 - 14.8470i) q^{88} +(3.21116 - 2.06369i) q^{89} +(-0.531597 + 0.613496i) q^{90} +0.995048 q^{91} +(-6.03796 - 1.73104i) q^{92} -3.93697 q^{93} +(6.28960 - 7.25858i) q^{94} +(-0.482652 + 0.310182i) q^{95} +(-0.822267 - 5.71900i) q^{96} +(-7.38495 - 16.1708i) q^{97} +(-0.118239 + 0.822373i) q^{98} +(5.23385 - 1.53680i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + O(q^{10})$$ $$20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + 9q^{10} + 3q^{11} + 18q^{12} - 2q^{13} + 18q^{14} - q^{15} + 8q^{16} + 8q^{17} + 18q^{18} + 6q^{19} - 2q^{20} - 2q^{21} + 6q^{22} + 11q^{23} + 9q^{25} + 7q^{26} - 2q^{27} - 4q^{28} + 23q^{29} + 9q^{30} + q^{31} - 28q^{32} + 14q^{33} - 28q^{34} + 10q^{35} - 4q^{36} - 9q^{37} + 34q^{38} - 2q^{39} - 15q^{41} - 4q^{42} - 23q^{43} - 16q^{44} - 12q^{45} + 11q^{46} - 66q^{47} - 36q^{48} - 2q^{49} - 26q^{50} - 14q^{51} + 7q^{52} + 9q^{53} - 4q^{54} - 62q^{55} + 22q^{56} - 27q^{57} - 20q^{58} + 49q^{59} - 2q^{60} + 46q^{61} - 9q^{62} - 2q^{63} + 16q^{64} + 11q^{65} - 16q^{66} + 14q^{67} + 38q^{68} + 11q^{69} - 2q^{70} + 36q^{71} - q^{73} + 4q^{74} - 2q^{75} + 34q^{76} - 8q^{77} - 15q^{78} - 22q^{79} + 15q^{80} - 2q^{81} - 30q^{82} + 8q^{83} - 4q^{84} - 32q^{85} - 68q^{86} + q^{87} - 11q^{88} - 2q^{89} - 2q^{90} - 24q^{91} + 11q^{92} - 32q^{93} + 33q^{94} - 107q^{95} + 16q^{96} + 18q^{97} - 4q^{98} + 14q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/483\mathbb{Z}\right)^\times$$.

 $$n$$ $$323$$ $$346$$ $$442$$ $$\chi(n)$$ $$1$$ $$1$$ $$e\left(\frac{4}{11}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.544078 + 0.627899i −0.384721 + 0.443992i −0.914770 0.403975i $$-0.867628\pi$$
0.530049 + 0.847967i $$0.322174\pi$$
$$3$$ 0.841254 0.540641i 0.485698 0.312139i
$$4$$ 0.186393 + 1.29639i 0.0931964 + 0.648195i
$$5$$ 0.405886 + 0.888766i 0.181518 + 0.397468i 0.978416 0.206645i $$-0.0662546\pi$$
−0.796898 + 0.604114i $$0.793527\pi$$
$$6$$ −0.118239 + 0.822373i −0.0482710 + 0.335733i
$$7$$ −0.959493 + 0.281733i −0.362654 + 0.106485i
$$8$$ −2.31329 1.48666i −0.817872 0.525615i
$$9$$ 0.415415 0.909632i 0.138472 0.303211i
$$10$$ −0.778889 0.228702i −0.246306 0.0723221i
$$11$$ 3.57214 + 4.12247i 1.07704 + 1.24297i 0.968535 + 0.248876i $$0.0800611\pi$$
0.108506 + 0.994096i $$0.465393\pi$$
$$12$$ 0.857685 + 0.989821i 0.247592 + 0.285737i
$$13$$ −0.954742 0.280337i −0.264798 0.0777516i 0.146639 0.989190i $$-0.453155\pi$$
−0.411436 + 0.911439i $$0.634973\pi$$
$$14$$ 0.345139 0.755750i 0.0922423 0.201983i
$$15$$ 0.821956 + 0.528239i 0.212228 + 0.136391i
$$16$$ −0.321251 + 0.0943278i −0.0803127 + 0.0235819i
$$17$$ −0.595548 + 4.14213i −0.144442 + 1.00461i 0.780677 + 0.624935i $$0.214875\pi$$
−0.925118 + 0.379679i $$0.876034\pi$$
$$18$$ 0.345139 + 0.755750i 0.0813501 + 0.178132i
$$19$$ 0.0835672 + 0.581223i 0.0191716 + 0.133342i 0.997159 0.0753208i $$-0.0239981\pi$$
−0.977988 + 0.208662i $$0.933089\pi$$
$$20$$ −1.07653 + 0.691846i −0.240720 + 0.154701i
$$21$$ −0.654861 + 0.755750i −0.142902 + 0.164918i
$$22$$ −4.53202 −0.966230
$$23$$ −1.96432 + 4.37509i −0.409590 + 0.912270i
$$24$$ −2.74982 −0.561304
$$25$$ 2.64914 3.05727i 0.529828 0.611455i
$$26$$ 0.695478 0.446956i 0.136394 0.0876553i
$$27$$ −0.142315 0.989821i −0.0273885 0.190491i
$$28$$ −0.544078 1.19136i −0.102821 0.225147i
$$29$$ −0.113996 + 0.792858i −0.0211685 + 0.147230i −0.997664 0.0683056i $$-0.978241\pi$$
0.976496 + 0.215536i $$0.0691498\pi$$
$$30$$ −0.778889 + 0.228702i −0.142205 + 0.0417552i
$$31$$ −3.31199 2.12849i −0.594851 0.382288i 0.208298 0.978065i $$-0.433208\pi$$
−0.803149 + 0.595778i $$0.796844\pi$$
$$32$$ 2.40019 5.25568i 0.424297 0.929081i
$$33$$ 5.23385 + 1.53680i 0.911097 + 0.267522i
$$34$$ −2.27682 2.62759i −0.390471 0.450627i
$$35$$ −0.639839 0.738413i −0.108153 0.124815i
$$36$$ 1.25667 + 0.368991i 0.209445 + 0.0614985i
$$37$$ −1.49833 + 3.28089i −0.246324 + 0.539375i −0.991896 0.127050i $$-0.959449\pi$$
0.745572 + 0.666425i $$0.232176\pi$$
$$38$$ −0.410416 0.263759i −0.0665783 0.0427873i
$$39$$ −0.954742 + 0.280337i −0.152881 + 0.0448899i
$$40$$ 0.382363 2.65939i 0.0604568 0.420487i
$$41$$ 4.02324 + 8.80966i 0.628324 + 1.37584i 0.909307 + 0.416126i $$0.136612\pi$$
−0.280983 + 0.959713i $$0.590660\pi$$
$$42$$ −0.118239 0.822373i −0.0182447 0.126895i
$$43$$ 9.13966 5.87370i 1.39378 0.895731i 0.394057 0.919086i $$-0.371071\pi$$
0.999727 + 0.0233550i $$0.00743479\pi$$
$$44$$ −4.67851 + 5.39929i −0.705312 + 0.813973i
$$45$$ 0.977061 0.145652
$$46$$ −1.67837 3.61379i −0.247463 0.532824i
$$47$$ −11.5601 −1.68621 −0.843107 0.537746i $$-0.819276\pi$$
−0.843107 + 0.537746i $$0.819276\pi$$
$$48$$ −0.219256 + 0.253035i −0.0316469 + 0.0365225i
$$49$$ 0.841254 0.540641i 0.120179 0.0772344i
$$50$$ 0.478320 + 3.32679i 0.0676447 + 0.470479i
$$51$$ 1.73840 + 3.80656i 0.243424 + 0.533025i
$$52$$ 0.185470 1.28997i 0.0257200 0.178887i
$$53$$ 0.848176 0.249047i 0.116506 0.0342092i −0.222960 0.974828i $$-0.571572\pi$$
0.339466 + 0.940618i $$0.389754\pi$$
$$54$$ 0.698939 + 0.449181i 0.0951135 + 0.0611257i
$$55$$ −2.21403 + 4.84805i −0.298540 + 0.653711i
$$56$$ 2.63843 + 0.774713i 0.352575 + 0.103525i
$$57$$ 0.384534 + 0.443776i 0.0509327 + 0.0587795i
$$58$$ −0.435813 0.502955i −0.0572250 0.0660412i
$$59$$ 6.25110 + 1.83549i 0.813824 + 0.238960i 0.662055 0.749456i $$-0.269685\pi$$
0.151770 + 0.988416i $$0.451503\pi$$
$$60$$ −0.531597 + 1.16404i −0.0686289 + 0.150276i
$$61$$ 1.25651 + 0.807508i 0.160879 + 0.103391i 0.618603 0.785703i $$-0.287699\pi$$
−0.457724 + 0.889094i $$0.651335\pi$$
$$62$$ 3.13846 0.921535i 0.398585 0.117035i
$$63$$ −0.142315 + 0.989821i −0.0179300 + 0.124706i
$$64$$ 1.71597 + 3.75746i 0.214497 + 0.469682i
$$65$$ −0.138362 0.962327i −0.0171617 0.119362i
$$66$$ −3.81258 + 2.45019i −0.469296 + 0.301598i
$$67$$ −0.874085 + 1.00875i −0.106786 + 0.123238i −0.806627 0.591061i $$-0.798709\pi$$
0.699840 + 0.714299i $$0.253255\pi$$
$$68$$ −5.48082 −0.664648
$$69$$ 0.712860 + 4.74256i 0.0858182 + 0.570937i
$$70$$ 0.811772 0.0970253
$$71$$ 7.26595 8.38535i 0.862309 0.995158i −0.137680 0.990477i $$-0.543964\pi$$
0.999989 0.00468118i $$-0.00149007\pi$$
$$72$$ −2.31329 + 1.48666i −0.272624 + 0.175205i
$$73$$ −1.33652 9.29567i −0.156427 1.08798i −0.905150 0.425092i $$-0.860242\pi$$
0.748723 0.662883i $$-0.230667\pi$$
$$74$$ −1.24486 2.72586i −0.144712 0.316875i
$$75$$ 0.575714 4.00418i 0.0664777 0.462362i
$$76$$ −0.737915 + 0.216671i −0.0846447 + 0.0248539i
$$77$$ −4.58888 2.94909i −0.522951 0.336080i
$$78$$ 0.343430 0.752007i 0.0388858 0.0851480i
$$79$$ 8.76905 + 2.57482i 0.986595 + 0.289690i 0.734944 0.678128i $$-0.237208\pi$$
0.251651 + 0.967818i $$0.419027\pi$$
$$80$$ −0.214227 0.247231i −0.0239513 0.0276412i
$$81$$ −0.654861 0.755750i −0.0727623 0.0839722i
$$82$$ −7.72054 2.26695i −0.852591 0.250343i
$$83$$ −1.31567 + 2.88091i −0.144413 + 0.316220i −0.967992 0.250981i $$-0.919247\pi$$
0.823579 + 0.567202i $$0.191974\pi$$
$$84$$ −1.10181 0.708089i −0.120217 0.0772588i
$$85$$ −3.92311 + 1.15193i −0.425521 + 0.124944i
$$86$$ −1.28459 + 8.93454i −0.138521 + 0.963436i
$$87$$ 0.332752 + 0.728626i 0.0356748 + 0.0781169i
$$88$$ −2.13468 14.8470i −0.227558 1.58270i
$$89$$ 3.21116 2.06369i 0.340382 0.218750i −0.359270 0.933233i $$-0.616974\pi$$
0.699653 + 0.714483i $$0.253338\pi$$
$$90$$ −0.531597 + 0.613496i −0.0560353 + 0.0646682i
$$91$$ 0.995048 0.104309
$$92$$ −6.03796 1.73104i −0.629501 0.180474i
$$93$$ −3.93697 −0.408245
$$94$$ 6.28960 7.25858i 0.648722 0.748665i
$$95$$ −0.482652 + 0.310182i −0.0495191 + 0.0318240i
$$96$$ −0.822267 5.71900i −0.0839223 0.583692i
$$97$$ −7.38495 16.1708i −0.749828 1.64189i −0.766675 0.642036i $$-0.778090\pi$$
0.0168467 0.999858i $$-0.494637\pi$$
$$98$$ −0.118239 + 0.822373i −0.0119440 + 0.0830723i
$$99$$ 5.23385 1.53680i 0.526022 0.154454i
$$100$$ 4.45720 + 2.86447i 0.445720 + 0.286447i
$$101$$ 3.46645 7.59047i 0.344925 0.755280i −0.655075 0.755564i $$-0.727363\pi$$
1.00000 0.000283479i $$9.02343e-5\pi$$
$$102$$ −3.33596 0.979526i −0.330309 0.0969876i
$$103$$ −0.122213 0.141041i −0.0120420 0.0138972i 0.749697 0.661782i $$-0.230199\pi$$
−0.761739 + 0.647884i $$0.775654\pi$$
$$104$$ 1.79183 + 2.06788i 0.175703 + 0.202772i
$$105$$ −0.937483 0.275270i −0.0914890 0.0268636i
$$106$$ −0.305097 + 0.668070i −0.0296337 + 0.0648887i
$$107$$ 3.71790 + 2.38935i 0.359423 + 0.230987i 0.707872 0.706341i $$-0.249655\pi$$
−0.348449 + 0.937328i $$0.613292\pi$$
$$108$$ 1.25667 0.368991i 0.120923 0.0355062i
$$109$$ 2.59868 18.0742i 0.248909 1.73120i −0.355633 0.934626i $$-0.615735\pi$$
0.604542 0.796573i $$-0.293356\pi$$
$$110$$ −1.83948 4.02790i −0.175388 0.384046i
$$111$$ 0.513306 + 3.57012i 0.0487208 + 0.338861i
$$112$$ 0.281663 0.181014i 0.0266146 0.0171042i
$$113$$ 7.02402 8.10616i 0.660765 0.762563i −0.322137 0.946693i $$-0.604401\pi$$
0.982902 + 0.184130i $$0.0589467\pi$$
$$114$$ −0.487863 −0.0456925
$$115$$ −4.68572 + 0.0299643i −0.436946 + 0.00279418i
$$116$$ −1.04910 −0.0974067
$$117$$ −0.651618 + 0.752007i −0.0602421 + 0.0695231i
$$118$$ −4.55359 + 2.92641i −0.419192 + 0.269398i
$$119$$ −0.595548 4.14213i −0.0545938 0.379708i
$$120$$ −1.11611 2.44394i −0.101887 0.223100i
$$121$$ −2.66911 + 18.5641i −0.242646 + 1.68764i
$$122$$ −1.19067 + 0.349613i −0.107798 + 0.0316525i
$$123$$ 8.14743 + 5.23603i 0.734629 + 0.472117i
$$124$$ 2.14202 4.69037i 0.192359 0.421208i
$$125$$ 8.47987 + 2.48991i 0.758462 + 0.222705i
$$126$$ −0.544078 0.627899i −0.0484703 0.0559377i
$$127$$ 11.9843 + 13.8306i 1.06343 + 1.22726i 0.972865 + 0.231374i $$0.0743221\pi$$
0.0905659 + 0.995890i $$0.471132\pi$$
$$128$$ 7.79460 + 2.28870i 0.688951 + 0.202294i
$$129$$ 4.51321 9.88254i 0.397366 0.870109i
$$130$$ 0.679524 + 0.436704i 0.0595982 + 0.0383014i
$$131$$ 16.0496 4.71259i 1.40226 0.411741i 0.508801 0.860884i $$-0.330089\pi$$
0.893460 + 0.449143i $$0.148271\pi$$
$$132$$ −1.01674 + 7.07156i −0.0884956 + 0.615501i
$$133$$ −0.243931 0.534135i −0.0211515 0.0463154i
$$134$$ −0.157822 1.09767i −0.0136337 0.0948246i
$$135$$ 0.821956 0.528239i 0.0707427 0.0454636i
$$136$$ 7.53563 8.69658i 0.646175 0.745726i
$$137$$ 1.31005 0.111925 0.0559627 0.998433i $$-0.482177\pi$$
0.0559627 + 0.998433i $$0.482177\pi$$
$$138$$ −3.36570 2.13272i −0.286507 0.181549i
$$139$$ −11.2805 −0.956802 −0.478401 0.878141i $$-0.658784\pi$$
−0.478401 + 0.878141i $$0.658784\pi$$
$$140$$ 0.838011 0.967116i 0.0708248 0.0817362i
$$141$$ −9.72497 + 6.24986i −0.818991 + 0.526333i
$$142$$ 1.31191 + 9.12457i 0.110093 + 0.765717i
$$143$$ −2.25479 4.93730i −0.188555 0.412878i
$$144$$ −0.0476489 + 0.331405i −0.00397074 + 0.0276171i
$$145$$ −0.750935 + 0.220494i −0.0623617 + 0.0183111i
$$146$$ 6.56391 + 4.21837i 0.543233 + 0.349115i
$$147$$ 0.415415 0.909632i 0.0342629 0.0750252i
$$148$$ −4.53259 1.33089i −0.372577 0.109398i
$$149$$ −1.72101 1.98615i −0.140991 0.162712i 0.680862 0.732411i $$-0.261605\pi$$
−0.821853 + 0.569699i $$0.807060\pi$$
$$150$$ 2.20099 + 2.54007i 0.179710 + 0.207396i
$$151$$ 6.14357 + 1.80392i 0.499957 + 0.146801i 0.521981 0.852957i $$-0.325193\pi$$
−0.0220245 + 0.999757i $$0.507011\pi$$
$$152$$ 0.670767 1.46877i 0.0544064 0.119133i
$$153$$ 3.52041 + 2.26243i 0.284609 + 0.182907i
$$154$$ 4.34844 1.27682i 0.350407 0.102889i
$$155$$ 0.547437 3.80751i 0.0439712 0.305827i
$$156$$ −0.541384 1.18547i −0.0433454 0.0949132i
$$157$$ −2.59139 18.0235i −0.206816 1.43843i −0.783462 0.621440i $$-0.786548\pi$$
0.576646 0.816994i $$-0.304361\pi$$
$$158$$ −6.38778 + 4.10517i −0.508184 + 0.326590i
$$159$$ 0.578886 0.668070i 0.0459087 0.0529814i
$$160$$ 5.64527 0.446298
$$161$$ 0.652148 4.75128i 0.0513965 0.374454i
$$162$$ 0.830830 0.0652762
$$163$$ 2.18363 2.52005i 0.171035 0.197385i −0.663760 0.747945i $$-0.731040\pi$$
0.834795 + 0.550560i $$0.185586\pi$$
$$164$$ −10.6709 + 6.85775i −0.833254 + 0.535500i
$$165$$ 0.758493 + 5.27543i 0.0590486 + 0.410692i
$$166$$ −1.09309 2.39354i −0.0848406 0.185775i
$$167$$ −0.119468 + 0.830921i −0.00924474 + 0.0642986i −0.993922 0.110090i $$-0.964886\pi$$
0.984677 + 0.174389i $$0.0557950\pi$$
$$168$$ 2.63843 0.774713i 0.203559 0.0597704i
$$169$$ −10.1034 6.49303i −0.777181 0.499464i
$$170$$ 1.41118 3.09006i 0.108233 0.236997i
$$171$$ 0.563414 + 0.165433i 0.0430853 + 0.0126510i
$$172$$ 9.31817 + 10.7537i 0.710504 + 0.819966i
$$173$$ −11.5403 13.3183i −0.877395 1.01257i −0.999798 0.0200877i $$-0.993605\pi$$
0.122403 0.992480i $$-0.460940\pi$$
$$174$$ −0.638547 0.187494i −0.0484081 0.0142139i
$$175$$ −1.68050 + 3.67978i −0.127034 + 0.278165i
$$176$$ −1.53642 0.987395i −0.115812 0.0744277i
$$177$$ 6.25110 1.83549i 0.469862 0.137964i
$$178$$ −0.451333 + 3.13909i −0.0338289 + 0.235285i
$$179$$ −5.86921 12.8518i −0.438686 0.960587i −0.991838 0.127507i $$-0.959302\pi$$
0.553152 0.833080i $$-0.313425\pi$$
$$180$$ 0.182117 + 1.26665i 0.0135742 + 0.0944107i
$$181$$ 0.228593 0.146908i 0.0169912 0.0109196i −0.532118 0.846670i $$-0.678604\pi$$
0.549109 + 0.835751i $$0.314967\pi$$
$$182$$ −0.541384 + 0.624790i −0.0401300 + 0.0463125i
$$183$$ 1.49361 0.110411
$$184$$ 11.0483 7.20058i 0.814495 0.530834i
$$185$$ −3.52410 −0.259097
$$186$$ 2.14202 2.47202i 0.157061 0.181258i
$$187$$ −19.2032 + 12.3411i −1.40428 + 0.902474i
$$188$$ −2.15472 14.9864i −0.157149 1.09300i
$$189$$ 0.415415 + 0.909632i 0.0302170 + 0.0661660i
$$190$$ 0.0678375 0.471820i 0.00492145 0.0342294i
$$191$$ −17.7263 + 5.20492i −1.28263 + 0.376615i −0.850872 0.525373i $$-0.823926\pi$$
−0.431761 + 0.901988i $$0.642108\pi$$
$$192$$ 3.47501 + 2.23325i 0.250787 + 0.161171i
$$193$$ −8.52916 + 18.6762i −0.613942 + 1.34435i 0.305902 + 0.952063i $$0.401042\pi$$
−0.919845 + 0.392283i $$0.871685\pi$$
$$194$$ 14.1716 + 4.16116i 1.01746 + 0.298754i
$$195$$ −0.636671 0.734757i −0.0455929 0.0526170i
$$196$$ 0.857685 + 0.989821i 0.0612632 + 0.0707015i
$$197$$ 11.1451 + 3.27250i 0.794057 + 0.233156i 0.653510 0.756918i $$-0.273296\pi$$
0.140547 + 0.990074i $$0.455114\pi$$
$$198$$ −1.88267 + 4.12247i −0.133795 + 0.292971i
$$199$$ 6.89107 + 4.42862i 0.488495 + 0.313937i 0.761600 0.648048i $$-0.224414\pi$$
−0.273105 + 0.961984i $$0.588051\pi$$
$$200$$ −10.6734 + 3.13399i −0.754721 + 0.221606i
$$201$$ −0.189957 + 1.32118i −0.0133985 + 0.0931887i
$$202$$ 2.88003 + 6.30639i 0.202638 + 0.443716i
$$203$$ −0.113996 0.792858i −0.00800094 0.0556478i
$$204$$ −4.61076 + 2.96316i −0.322818 + 0.207463i
$$205$$ −6.19675 + 7.15144i −0.432800 + 0.499478i
$$206$$ 0.155053 0.0108031
$$207$$ 3.16371 + 3.60429i 0.219893 + 0.250516i
$$208$$ 0.333155 0.0231002
$$209$$ −2.09756 + 2.42071i −0.145091 + 0.167444i
$$210$$ 0.682906 0.438877i 0.0471250 0.0302854i
$$211$$ 4.03425 + 28.0588i 0.277729 + 1.93165i 0.355496 + 0.934678i $$0.384312\pi$$
−0.0777665 + 0.996972i $$0.524779\pi$$
$$212$$ 0.480956 + 1.05315i 0.0330322 + 0.0723304i
$$213$$ 1.57904 10.9825i 0.108194 0.752507i
$$214$$ −3.52310 + 1.03447i −0.240834 + 0.0707152i
$$215$$ 8.93000 + 5.73896i 0.609021 + 0.391394i
$$216$$ −1.14231 + 2.50132i −0.0777247 + 0.170193i
$$217$$ 3.77750 + 1.10917i 0.256433 + 0.0752956i
$$218$$ 9.93492 + 11.4655i 0.672878 + 0.776542i
$$219$$ −6.14997 7.09744i −0.415576 0.479600i
$$220$$ −6.69764 1.96661i −0.451555 0.132589i
$$221$$ 1.72979 3.78771i 0.116358 0.254789i
$$222$$ −2.52095 1.62012i −0.169195 0.108735i
$$223$$ −13.5714 + 3.98493i −0.908811 + 0.266851i −0.702540 0.711644i $$-0.747951\pi$$
−0.206271 + 0.978495i $$0.566133\pi$$
$$224$$ −0.822267 + 5.71900i −0.0549400 + 0.382116i
$$225$$ −1.68050 3.67978i −0.112033 0.245319i
$$226$$ 1.26823 + 8.82076i 0.0843617 + 0.586748i
$$227$$ 9.79284 6.29348i 0.649974 0.417713i −0.173683 0.984802i $$-0.555567\pi$$
0.823657 + 0.567089i $$0.191930\pi$$
$$228$$ −0.503632 + 0.581223i −0.0333539 + 0.0384924i
$$229$$ 18.7885 1.24158 0.620788 0.783979i $$-0.286813\pi$$
0.620788 + 0.783979i $$0.286813\pi$$
$$230$$ 2.53058 2.95847i 0.166862 0.195076i
$$231$$ −5.45481 −0.358900
$$232$$ 1.44242 1.66464i 0.0946994 0.109289i
$$233$$ −16.5140 + 10.6129i −1.08187 + 0.695272i −0.954988 0.296646i $$-0.904132\pi$$
−0.126878 + 0.991918i $$0.540496\pi$$
$$234$$ −0.117654 0.818301i −0.00769128 0.0534940i
$$235$$ −4.69208 10.2742i −0.306078 0.670216i
$$236$$ −1.21435 + 8.44599i −0.0790475 + 0.549787i
$$237$$ 8.76905 2.57482i 0.569611 0.167253i
$$238$$ 2.92487 + 1.87970i 0.189591 + 0.121843i
$$239$$ −2.60622 + 5.70683i −0.168582 + 0.369144i −0.975001 0.222201i $$-0.928676\pi$$
0.806418 + 0.591345i $$0.201403\pi$$
$$240$$ −0.313882 0.0921640i −0.0202610 0.00594916i
$$241$$ 2.46709 + 2.84717i 0.158919 + 0.183403i 0.829625 0.558321i $$-0.188554\pi$$
−0.670706 + 0.741723i $$0.734009\pi$$
$$242$$ −10.2042 11.7762i −0.655948 0.757004i
$$243$$ −0.959493 0.281733i −0.0615515 0.0180732i
$$244$$ −0.812642 + 1.77944i −0.0520241 + 0.113917i
$$245$$ 0.821956 + 0.528239i 0.0525128 + 0.0337480i
$$246$$ −7.72054 + 2.26695i −0.492244 + 0.144536i
$$247$$ 0.0831534 0.578344i 0.00529092 0.0367992i
$$248$$ 4.49726 + 9.84763i 0.285576 + 0.625325i
$$249$$ 0.450727 + 3.13487i 0.0285637 + 0.198665i
$$250$$ −6.17712 + 3.96980i −0.390676 + 0.251072i
$$251$$ −16.6792 + 19.2488i −1.05278 + 1.21497i −0.0768135 + 0.997045i $$0.524475\pi$$
−0.975965 + 0.217926i $$0.930071\pi$$
$$252$$ −1.30972 −0.0825047
$$253$$ −25.0530 + 7.53058i −1.57507 + 0.473444i
$$254$$ −15.2046 −0.954020
$$255$$ −2.67755 + 3.09006i −0.167675 + 0.193507i
$$256$$ −12.6280 + 8.11549i −0.789247 + 0.507218i
$$257$$ 0.541552 + 3.76658i 0.0337811 + 0.234953i 0.999716 0.0238326i $$-0.00758686\pi$$
−0.965935 + 0.258785i $$0.916678\pi$$
$$258$$ 3.74971 + 8.21071i 0.233447 + 0.511177i
$$259$$ 0.513306 3.57012i 0.0318953 0.221836i
$$260$$ 1.22176 0.358742i 0.0757704 0.0222482i
$$261$$ 0.673854 + 0.433060i 0.0417105 + 0.0268057i
$$262$$ −5.77321 + 12.6416i −0.356670 + 0.780998i
$$263$$ −0.728046 0.213774i −0.0448932 0.0131818i 0.259209 0.965821i $$-0.416538\pi$$
−0.304102 + 0.952639i $$0.598356\pi$$
$$264$$ −9.82273 11.3360i −0.604547 0.697685i
$$265$$ 0.565607 + 0.652745i 0.0347450 + 0.0400978i
$$266$$ 0.468101 + 0.137447i 0.0287011 + 0.00842741i
$$267$$ 1.58569 3.47217i 0.0970424 0.212493i
$$268$$ −1.47065 0.945132i −0.0898345 0.0577331i
$$269$$ −13.8147 + 4.05636i −0.842296 + 0.247320i −0.674291 0.738466i $$-0.735551\pi$$
−0.168005 + 0.985786i $$0.553733\pi$$
$$270$$ −0.115527 + 0.803509i −0.00703076 + 0.0489000i
$$271$$ −2.46886 5.40605i −0.149973 0.328394i 0.819703 0.572788i $$-0.194138\pi$$
−0.969676 + 0.244394i $$0.921411\pi$$
$$272$$ −0.199398 1.38684i −0.0120903 0.0840895i
$$273$$ 0.837088 0.537964i 0.0506629 0.0325590i
$$274$$ −0.712771 + 0.822581i −0.0430601 + 0.0496940i
$$275$$ 22.0666 1.33067
$$276$$ −6.01533 + 1.80812i −0.362080 + 0.108836i
$$277$$ −15.6271 −0.938942 −0.469471 0.882948i $$-0.655555\pi$$
−0.469471 + 0.882948i $$0.655555\pi$$
$$278$$ 6.13749 7.08304i 0.368102 0.424813i
$$279$$ −3.31199 + 2.12849i −0.198284 + 0.127429i
$$280$$ 0.382363 + 2.65939i 0.0228505 + 0.158929i
$$281$$ −2.16236 4.73490i −0.128995 0.282461i 0.834104 0.551608i $$-0.185985\pi$$
−0.963099 + 0.269147i $$0.913258\pi$$
$$282$$ 1.36686 9.50672i 0.0813953 0.566117i
$$283$$ 24.8798 7.30537i 1.47895 0.434259i 0.559954 0.828524i $$-0.310819\pi$$
0.918997 + 0.394265i $$0.129001\pi$$
$$284$$ 12.2250 + 7.85654i 0.725421 + 0.466200i
$$285$$ −0.238336 + 0.521883i −0.0141178 + 0.0309137i
$$286$$ 4.32691 + 1.27049i 0.255855 + 0.0751259i
$$287$$ −6.34224 7.31933i −0.374371 0.432047i
$$288$$ −3.78366 4.36657i −0.222954 0.257303i
$$289$$ −0.491187 0.144226i −0.0288934 0.00848386i
$$290$$ 0.270119 0.591478i 0.0158619 0.0347328i
$$291$$ −14.9552 9.61112i −0.876689 0.563414i
$$292$$ 11.8017 3.46529i 0.690642 0.202791i
$$293$$ −0.0489996 + 0.340800i −0.00286259 + 0.0199097i −0.991203 0.132353i $$-0.957747\pi$$
0.988340 + 0.152263i $$0.0486559\pi$$
$$294$$ 0.345139 + 0.755750i 0.0201289 + 0.0440762i
$$295$$ 0.905913 + 6.30077i 0.0527443 + 0.366845i
$$296$$ 8.34366 5.36214i 0.484965 0.311668i
$$297$$ 3.57214 4.12247i 0.207277 0.239210i
$$298$$ 2.18347 0.126485
$$299$$ 3.10192 3.62641i 0.179389 0.209721i
$$300$$ 5.29828 0.305897
$$301$$ −7.11462 + 8.21071i −0.410080 + 0.473258i
$$302$$ −4.47526 + 2.87608i −0.257522 + 0.165500i
$$303$$ −1.18755 8.25962i −0.0682232 0.474503i
$$304$$ −0.0816715 0.178836i −0.00468418 0.0102569i
$$305$$ −0.207687 + 1.44450i −0.0118921 + 0.0827117i
$$306$$ −3.33596 + 0.979526i −0.190704 + 0.0559958i
$$307$$ 18.3931 + 11.8206i 1.04975 + 0.674635i 0.947380 0.320112i $$-0.103720\pi$$
0.102372 + 0.994746i $$0.467357\pi$$
$$308$$ 2.96784 6.49867i 0.169108 0.370296i
$$309$$ −0.179065 0.0525782i −0.0101866 0.00299107i
$$310$$ 2.09288 + 2.41532i 0.118868 + 0.137181i
$$311$$ 14.7275 + 16.9965i 0.835122 + 0.963782i 0.999745 0.0225746i $$-0.00718634\pi$$
−0.164623 + 0.986356i $$0.552641\pi$$
$$312$$ 2.62536 + 0.770876i 0.148632 + 0.0436423i
$$313$$ 0.932104 2.04102i 0.0526856 0.115365i −0.881458 0.472262i $$-0.843438\pi$$
0.934144 + 0.356896i $$0.116165\pi$$
$$314$$ 12.7269 + 8.17907i 0.718220 + 0.461572i
$$315$$ −0.937483 + 0.275270i −0.0528212 + 0.0155097i
$$316$$ −1.70349 + 11.8480i −0.0958288 + 0.666504i
$$317$$ 2.11610 + 4.63361i 0.118852 + 0.260249i 0.959703 0.281018i $$-0.0906720\pi$$
−0.840851 + 0.541267i $$0.817945\pi$$
$$318$$ 0.104522 + 0.726965i 0.00586129 + 0.0407662i
$$319$$ −3.67574 + 2.36226i −0.205802 + 0.132261i
$$320$$ −2.64301 + 3.05020i −0.147749 + 0.170511i
$$321$$ 4.41947 0.246671
$$322$$ 2.62851 + 2.99455i 0.146481 + 0.166880i
$$323$$ −2.45727 −0.136726
$$324$$ 0.857685 0.989821i 0.0476492 0.0549901i
$$325$$ −3.38631 + 2.17625i −0.187839 + 0.120717i
$$326$$ 0.394269 + 2.74220i 0.0218365 + 0.151877i
$$327$$ −7.58552 16.6100i −0.419480 0.918534i
$$328$$ 3.79007 26.3605i 0.209272 1.45552i
$$329$$ 11.0918 3.25686i 0.611513 0.179556i
$$330$$ −3.72512 2.39399i −0.205061 0.131785i
$$331$$ −11.9717 + 26.2144i −0.658025 + 1.44087i 0.226326 + 0.974052i $$0.427328\pi$$
−0.884351 + 0.466822i $$0.845399\pi$$
$$332$$ −3.98001 1.16864i −0.218431 0.0641372i
$$333$$ 2.36197 + 2.72586i 0.129435 + 0.149376i
$$334$$ −0.456735 0.527100i −0.0249914 0.0288416i
$$335$$ −1.25132 0.367420i −0.0683669 0.0200743i
$$336$$ 0.139086 0.304557i 0.00758779 0.0166149i
$$337$$ 23.1837 + 14.8993i 1.26290 + 0.811614i 0.988678 0.150053i $$-0.0479445\pi$$
0.274219 + 0.961667i $$0.411581\pi$$
$$338$$ 9.57398 2.81117i 0.520756 0.152908i
$$339$$ 1.52647 10.6168i 0.0829063 0.576626i
$$340$$ −2.22459 4.87117i −0.120645 0.264176i
$$341$$ −3.05627 21.2569i −0.165506 1.15112i
$$342$$ −0.410416 + 0.263759i −0.0221928 + 0.0142624i
$$343$$ −0.654861 + 0.755750i −0.0353592 + 0.0408066i
$$344$$ −29.8749 −1.61075
$$345$$ −3.92568 + 2.55850i −0.211352 + 0.137745i
$$346$$ 14.6414 0.787125
$$347$$ 5.67518 6.54951i 0.304660 0.351596i −0.582689 0.812695i $$-0.697999\pi$$
0.887349 + 0.461099i $$0.152545\pi$$
$$348$$ −0.882561 + 0.567187i −0.0473102 + 0.0304044i
$$349$$ −1.54134 10.7202i −0.0825059 0.573841i −0.988577 0.150716i $$-0.951842\pi$$
0.906071 0.423125i $$-0.139067\pi$$
$$350$$ −1.39621 3.05727i −0.0746305 0.163418i
$$351$$ −0.141610 + 0.984920i −0.00755859 + 0.0525711i
$$352$$ 30.2402 8.87932i 1.61181 0.473269i
$$353$$ −19.0965 12.2726i −1.01640 0.653203i −0.0773612 0.997003i $$-0.524649\pi$$
−0.939043 + 0.343800i $$0.888286\pi$$
$$354$$ −2.24858 + 4.92371i −0.119511 + 0.261692i
$$355$$ 10.4018 + 3.05423i 0.552068 + 0.162102i
$$356$$ 3.27388 + 3.77826i 0.173515 + 0.200247i
$$357$$ −2.74041 3.16260i −0.145038 0.167383i
$$358$$ 11.2629 + 3.30710i 0.595265 + 0.174785i
$$359$$ −3.68521 + 8.06949i −0.194498 + 0.425891i −0.981604 0.190926i $$-0.938851\pi$$
0.787106 + 0.616817i $$0.211578\pi$$
$$360$$ −2.26023 1.45256i −0.119124 0.0765566i
$$361$$ 17.8995 5.25578i 0.942081 0.276620i
$$362$$ −0.0321291 + 0.223463i −0.00168867 + 0.0117450i
$$363$$ 7.79109 + 17.0601i 0.408926 + 0.895423i
$$364$$ 0.185470 + 1.28997i 0.00972126 + 0.0676128i
$$365$$ 7.71920 4.96083i 0.404041 0.259662i
$$366$$ −0.812642 + 0.937839i −0.0424775 + 0.0490216i
$$367$$ −32.6808 −1.70592 −0.852961 0.521974i $$-0.825196\pi$$
−0.852961 + 0.521974i $$0.825196\pi$$
$$368$$ 0.218348 1.59079i 0.0113822 0.0829258i
$$369$$ 9.68487 0.504174
$$370$$ 1.91738 2.21278i 0.0996800 0.115037i
$$371$$ −0.743654 + 0.477918i −0.0386086 + 0.0248122i
$$372$$ −0.733823 5.10385i −0.0380470 0.264623i
$$373$$ 2.52094 + 5.52009i 0.130529 + 0.285820i 0.963600 0.267346i $$-0.0861468\pi$$
−0.833071 + 0.553166i $$0.813420\pi$$
$$374$$ 2.69904 18.7722i 0.139564 0.970688i
$$375$$ 8.47987 2.48991i 0.437898 0.128579i
$$376$$ 26.7419 + 17.1860i 1.37911 + 0.886299i
$$377$$ 0.331104 0.725018i 0.0170527 0.0373403i
$$378$$ −0.797176 0.234072i −0.0410023 0.0120394i
$$379$$ 1.68937 + 1.94963i 0.0867769 + 0.100146i 0.797477 0.603349i $$-0.206167\pi$$
−0.710700 + 0.703495i $$0.751622\pi$$
$$380$$ −0.492079 0.567890i −0.0252431 0.0291321i
$$381$$ 17.5592 + 5.15584i 0.899583 + 0.264142i
$$382$$ 6.37634 13.9622i 0.326242 0.714371i
$$383$$ −29.8421 19.1784i −1.52486 0.979968i −0.990921 0.134446i $$-0.957075\pi$$
−0.533940 0.845523i $$-0.679289\pi$$
$$384$$ 7.79460 2.28870i 0.397766 0.116795i
$$385$$ 0.758493 5.27543i 0.0386564 0.268861i
$$386$$ −7.08628 15.5168i −0.360682 0.789784i
$$387$$ −1.54616 10.7537i −0.0785955 0.546644i
$$388$$ 19.5871 12.5879i 0.994387 0.639053i
$$389$$ 10.8315 12.5002i 0.549180 0.633788i −0.411512 0.911404i $$-0.634999\pi$$
0.960692 + 0.277617i $$0.0895446\pi$$
$$390$$ 0.807752 0.0409021
$$391$$ −16.9524 10.7421i −0.857317 0.543249i
$$392$$ −2.74982 −0.138887
$$393$$ 10.9540 12.6416i 0.552555 0.637682i
$$394$$ −8.11862 + 5.21752i −0.409010 + 0.262855i
$$395$$ 1.27082 + 8.83872i 0.0639417 + 0.444724i
$$396$$ 2.96784 + 6.49867i 0.149140 + 0.326570i
$$397$$ −1.77731 + 12.3615i −0.0892006 + 0.620404i 0.895358 + 0.445348i $$0.146920\pi$$
−0.984558 + 0.175056i $$0.943989\pi$$
$$398$$ −6.53001 + 1.91738i −0.327320 + 0.0961097i
$$399$$ −0.493984 0.317464i −0.0247301 0.0158931i
$$400$$ −0.562654 + 1.23204i −0.0281327 + 0.0616020i
$$401$$ 8.64913 + 2.53961i 0.431917 + 0.126822i 0.490462 0.871462i $$-0.336828\pi$$
−0.0585451 + 0.998285i $$0.518646\pi$$
$$402$$ −0.726216 0.838098i −0.0362204 0.0418005i
$$403$$ 2.56540 + 2.96063i 0.127792 + 0.147480i
$$404$$ 10.4863 + 3.07907i 0.521715 + 0.153189i
$$405$$ 0.405886 0.888766i 0.0201686 0.0441631i
$$406$$ 0.559858 + 0.359799i 0.0277853 + 0.0178565i
$$407$$ −18.8776 + 5.54297i −0.935729 + 0.274755i
$$408$$ 1.63765 11.3901i 0.0810757 0.563894i
$$409$$ −10.3139 22.5844i −0.509992 1.11673i −0.973091 0.230420i $$-0.925990\pi$$
0.463099 0.886306i $$-0.346737\pi$$
$$410$$ −1.11886 7.78188i −0.0552568 0.384320i
$$411$$ 1.10209 0.708268i 0.0543619 0.0349363i
$$412$$ 0.160065 0.184725i 0.00788583 0.00910074i
$$413$$ −6.51501 −0.320582
$$414$$ −3.98444 + 0.0254797i −0.195825 + 0.00125226i
$$415$$ −3.09446 −0.151901
$$416$$ −3.76492 + 4.34495i −0.184590 + 0.213029i
$$417$$ −9.48979 + 6.09872i −0.464717 + 0.298655i
$$418$$ −0.378728 2.63411i −0.0185242 0.128839i
$$419$$ −2.30313 5.04314i −0.112515 0.246374i 0.844995 0.534775i $$-0.179604\pi$$
−0.957510 + 0.288401i $$0.906876\pi$$
$$420$$ 0.182117 1.26665i 0.00888641 0.0618063i
$$421$$ 20.7815 6.10200i 1.01283 0.297393i 0.267118 0.963664i $$-0.413929\pi$$
0.745710 + 0.666271i $$0.232110\pi$$
$$422$$ −19.8131 12.7331i −0.964485 0.619837i
$$423$$ −4.80224 + 10.5154i −0.233493 + 0.511278i
$$424$$ −2.33233 0.684833i −0.113268 0.0332584i
$$425$$ 11.0859 + 12.7938i 0.537747 + 0.620593i
$$426$$ 6.03677 + 6.96680i 0.292482 + 0.337543i
$$427$$ −1.43311 0.420800i −0.0693531 0.0203639i
$$428$$ −2.40454 + 5.26520i −0.116228 + 0.254503i
$$429$$ −4.56615 2.93449i −0.220456 0.141678i
$$430$$ −8.46211 + 2.48470i −0.408079 + 0.119823i
$$431$$ −5.22203 + 36.3200i −0.251536 + 1.74947i 0.337461 + 0.941340i $$0.390432\pi$$
−0.588997 + 0.808135i $$0.700477\pi$$
$$432$$ 0.139086 + 0.304557i 0.00669180 + 0.0146530i
$$433$$ −4.84971 33.7305i −0.233062 1.62098i −0.684730 0.728797i $$-0.740080\pi$$
0.451668 0.892186i $$-0.350829\pi$$
$$434$$ −2.75170 + 1.76841i −0.132086 + 0.0848865i
$$435$$ −0.512518 + 0.591478i −0.0245734 + 0.0283592i
$$436$$ 23.9157 1.14535
$$437$$ −2.70706 0.776095i −0.129496 0.0371257i
$$438$$ 7.80254 0.372820
$$439$$ 2.93626 3.38863i 0.140140 0.161730i −0.681341 0.731966i $$-0.738603\pi$$
0.821481 + 0.570236i $$0.193148\pi$$
$$440$$ 12.3291 7.92344i 0.587767 0.377735i
$$441$$ −0.142315 0.989821i −0.00677690 0.0471344i
$$442$$ 1.43716 + 3.14694i 0.0683588 + 0.149685i
$$443$$ 2.38442 16.5840i 0.113287 0.787928i −0.851398 0.524521i $$-0.824245\pi$$
0.964685 0.263408i $$-0.0848464\pi$$
$$444$$ −4.53259 + 1.33089i −0.215107 + 0.0631612i
$$445$$ 3.13750 + 2.01635i 0.148732 + 0.0955841i
$$446$$ 4.88178 10.6896i 0.231159 0.506168i
$$447$$ −2.52160 0.740409i −0.119268 0.0350202i
$$448$$ −2.70506 3.12181i −0.127802 0.147492i
$$449$$ −18.2753 21.0909i −0.862466 0.995339i −0.999988 0.00484064i $$-0.998459\pi$$
0.137522 0.990499i $$-0.456086\pi$$
$$450$$ 3.22486 + 0.946903i 0.152021 + 0.0446374i
$$451$$ −21.9460 + 48.0550i −1.03340 + 2.26282i
$$452$$ 11.8180 + 7.59495i 0.555871 + 0.357236i
$$453$$ 6.14357 1.80392i 0.288650 0.0847554i
$$454$$ −1.37640 + 9.57306i −0.0645976 + 0.449286i
$$455$$ 0.403876 + 0.884365i 0.0189340 + 0.0414597i
$$456$$ −0.229794 1.59826i −0.0107611 0.0748451i
$$457$$ 5.43474 3.49270i 0.254226 0.163381i −0.407320 0.913285i $$-0.633537\pi$$
0.661547 + 0.749904i $$0.269900\pi$$
$$458$$ −10.2224 + 11.7973i −0.477661 + 0.551250i
$$459$$ 4.18473 0.195326
$$460$$ −0.912231 6.06894i −0.0425330 0.282966i
$$461$$ −28.4302 −1.32413 −0.662063 0.749448i $$-0.730319\pi$$
−0.662063 + 0.749448i $$0.730319\pi$$
$$462$$ 2.96784 3.42507i 0.138076 0.159349i
$$463$$ 14.7028 9.44892i 0.683297 0.439128i −0.152400 0.988319i $$-0.548700\pi$$
0.835697 + 0.549190i $$0.185064\pi$$
$$464$$ −0.0381673 0.265460i −0.00177187 0.0123236i
$$465$$ −1.59796 3.49905i −0.0741037 0.162264i
$$466$$ 2.32106 16.1433i 0.107521 0.747825i
$$467$$ −26.7994 + 7.86900i −1.24013 + 0.364134i −0.835063 0.550155i $$-0.814569\pi$$
−0.405063 + 0.914289i $$0.632751\pi$$
$$468$$ −1.09635 0.704583i −0.0506789 0.0325693i
$$469$$ 0.554481 1.21414i 0.0256036 0.0560640i
$$470$$ 9.00404 + 2.64382i 0.415325 + 0.121950i
$$471$$ −11.9243 13.7613i −0.549442 0.634089i
$$472$$ −11.7319 13.5393i −0.540003 0.623197i
$$473$$ 56.8623 + 16.6963i 2.61453 + 0.767696i
$$474$$ −3.15431 + 6.90699i −0.144882 + 0.317248i
$$475$$ 1.99834 + 1.28425i 0.0916900 + 0.0589256i
$$476$$ 5.25881 1.54413i 0.241037 0.0707749i
$$477$$ 0.125804 0.874986i 0.00576017 0.0400629i
$$478$$ −2.16533 4.74140i −0.0990397 0.216867i
$$479$$ −2.68712 18.6893i −0.122777 0.853936i −0.954386 0.298574i $$-0.903489\pi$$
0.831609 0.555362i $$-0.187420\pi$$
$$480$$ 4.74910 3.05206i 0.216766 0.139307i
$$481$$ 2.35028 2.71236i 0.107163 0.123673i
$$482$$ −3.13003 −0.142569
$$483$$ −2.02012 4.34961i −0.0919185 0.197914i
$$484$$ −24.5638 −1.11653
$$485$$ 11.3746 13.1270i 0.516494 0.596066i
$$486$$ 0.698939 0.449181i 0.0317045 0.0203752i
$$487$$ 1.70271 + 11.8426i 0.0771570 + 0.536638i 0.991338 + 0.131333i $$0.0419257\pi$$
−0.914181 + 0.405305i $$0.867165\pi$$
$$488$$ −1.70618 3.73601i −0.0772350 0.169121i
$$489$$ 0.474548 3.30056i 0.0214598 0.149256i
$$490$$ −0.778889 + 0.228702i −0.0351866 + 0.0103317i
$$491$$ −14.1174 9.07267i −0.637107 0.409444i 0.181828 0.983330i $$-0.441799\pi$$
−0.818935 + 0.573886i $$0.805435\pi$$
$$492$$ −5.26932 + 11.5382i −0.237559 + 0.520183i
$$493$$ −3.21623 0.944371i −0.144852 0.0425323i
$$494$$ 0.317900 + 0.366876i 0.0143030 + 0.0165065i
$$495$$ 3.49020 + 4.02790i 0.156873 + 0.181041i
$$496$$ 1.26476 + 0.371366i 0.0567892 + 0.0166748i
$$497$$ −4.60920 + 10.0927i −0.206751 + 0.452721i
$$498$$ −2.21362 1.42260i −0.0991945 0.0637484i
$$499$$ −13.4829 + 3.95895i −0.603579 + 0.177227i −0.569224 0.822183i $$-0.692756\pi$$
−0.0343558 + 0.999410i $$0.510938\pi$$
$$500$$ −1.64731 + 11.4573i −0.0736701 + 0.512387i
$$501$$ 0.348726 + 0.763604i 0.0155799 + 0.0341153i
$$502$$ −3.01153 20.9457i −0.134411 0.934851i
$$503$$ 22.6777 14.5741i 1.01115 0.649825i 0.0734579 0.997298i $$-0.476597\pi$$
0.937690 + 0.347473i $$0.112960\pi$$
$$504$$ 1.80075 2.07817i 0.0802116 0.0925691i
$$505$$ 8.15314 0.362810
$$506$$ 8.90235 19.8280i 0.395758 0.881462i
$$507$$ −12.0099 −0.533377
$$508$$ −15.6960 + 18.1142i −0.696399 + 0.803687i
$$509$$ −19.5733 + 12.5790i −0.867569 + 0.557553i −0.897008 0.442014i $$-0.854264\pi$$
0.0294389 + 0.999567i $$0.490628\pi$$
$$510$$ −0.483449 3.36246i −0.0214075 0.148892i
$$511$$ 3.90127 + 8.54259i 0.172582 + 0.377902i
$$512$$ −0.537357 + 3.73740i −0.0237481 + 0.165171i
$$513$$ 0.563414 0.165433i 0.0248753 0.00730405i
$$514$$ −2.65968 1.70927i −0.117313 0.0753928i
$$515$$ 0.0757482 0.165865i 0.00333786 0.00730890i
$$516$$ 13.6529 + 4.00884i 0.601034 + 0.176479i
$$517$$ −41.2943 47.6562i −1.81612 2.09592i
$$518$$ 1.96240 + 2.26473i 0.0862228 + 0.0995064i
$$519$$ −16.9087 4.96485i −0.742211 0.217933i
$$520$$ −1.11058 + 2.43184i −0.0487024 + 0.106643i
$$521$$ 21.8830 + 14.0634i 0.958713 + 0.616127i 0.923642 0.383257i $$-0.125198\pi$$
0.0350714 + 0.999385i $$0.488834\pi$$
$$522$$ −0.638547 + 0.187494i −0.0279484 + 0.00820640i
$$523$$ −4.53565 + 31.5461i −0.198330 + 1.37941i 0.610800 + 0.791785i $$0.290848\pi$$
−0.809130 + 0.587630i $$0.800061\pi$$
$$524$$ 9.10089 + 19.9282i 0.397574 + 0.870566i
$$525$$ 0.575714 + 4.00418i 0.0251262 + 0.174757i
$$526$$ 0.530342 0.340830i 0.0231240 0.0148609i
$$527$$ 10.7889 12.4511i 0.469973 0.542378i
$$528$$ −1.82634 −0.0794814
$$529$$ −15.2829 17.1882i −0.664473 0.747313i
$$530$$ −0.717593 −0.0311702
$$531$$ 4.26642 4.92371i 0.185147 0.213671i
$$532$$ 0.646981 0.415789i 0.0280502 0.0180268i
$$533$$ −1.37147 9.53882i −0.0594052 0.413172i
$$534$$ 1.31744 + 2.88478i 0.0570110 + 0.124837i
$$535$$ −0.614529 + 4.27414i −0.0265684 + 0.184787i
$$536$$ 3.52168 1.03406i 0.152113 0.0446645i
$$537$$ −11.8857 7.63847i −0.512906 0.329624i
$$538$$ 4.96928 10.8812i 0.214241 0.469122i
$$539$$ 5.23385 + 1.53680i 0.225438 + 0.0661946i
$$540$$ 0.838011 + 0.967116i 0.0360622 + 0.0416180i
$$541$$ −13.1146 15.1351i −0.563842 0.650709i 0.400209 0.916424i $$-0.368937\pi$$
−0.964052 + 0.265715i $$0.914392\pi$$
$$542$$ 4.73771 + 1.39112i 0.203502 + 0.0597536i
$$543$$ 0.112880 0.247174i 0.00484416 0.0106072i
$$544$$ 20.3403 + 13.0719i 0.872082 + 0.560453i
$$545$$ 17.1185 5.02646i 0.733278 0.215310i
$$546$$ −0.117654 + 0.818301i −0.00503512 + 0.0350201i
$$547$$ 1.01148 + 2.21483i 0.0432477 + 0.0946993i 0.930023 0.367502i $$-0.119787\pi$$
−0.886775 + 0.462202i $$0.847060\pi$$
$$548$$ 0.244184 + 1.69834i 0.0104310 + 0.0725495i
$$549$$ 1.25651 0.807508i 0.0536264 0.0344636i
$$550$$ −12.0060 + 13.8556i −0.511936 + 0.590806i
$$551$$ −0.470354 −0.0200377
$$552$$ 5.40153 12.0307i 0.229904 0.512061i
$$553$$ −9.13925 −0.388641
$$554$$ 8.50236 9.81225i 0.361231 0.416883i
$$555$$ −2.96466 + 1.90527i −0.125843 + 0.0808742i
$$556$$ −2.10261 14.6240i −0.0891705 0.620195i
$$557$$ −5.34713 11.7086i −0.226565 0.496108i 0.761874 0.647725i $$-0.224279\pi$$
−0.988439 + 0.151617i $$0.951552\pi$$
$$558$$ 0.465505 3.23766i 0.0197064 0.137061i
$$559$$ −10.3726 + 3.04568i −0.438715 + 0.128818i
$$560$$ 0.275202 + 0.176861i 0.0116294 + 0.00747376i
$$561$$ −9.48263 + 20.7641i −0.400357 + 0.876659i
$$562$$ 4.14953 + 1.21841i 0.175037 + 0.0513956i
$$563$$ 23.2511 + 26.8332i 0.979915 + 1.13088i 0.991389 + 0.130949i $$0.0418023\pi$$
−0.0114737 + 0.999934i $$0.503652\pi$$
$$564$$ −9.91493 11.4424i −0.417494 0.481813i
$$565$$ 10.0554 + 2.95254i 0.423035 + 0.124214i
$$566$$ −8.94951 + 19.5967i −0.376176 + 0.823711i
$$567$$ 0.841254 + 0.540641i 0.0353293 + 0.0227048i
$$568$$ −29.2744 + 8.59575i −1.22833 + 0.360670i
$$569$$ 1.28009 8.90324i 0.0536643 0.373243i −0.945237 0.326384i $$-0.894170\pi$$
0.998902 0.0468591i $$-0.0149212\pi$$
$$570$$ −0.198017 0.433596i −0.00829400 0.0181613i
$$571$$ −0.826589 5.74905i −0.0345917 0.240590i 0.965189 0.261555i $$-0.0842353\pi$$
−0.999780 + 0.0209647i $$0.993326\pi$$
$$572$$ 5.98039 3.84336i 0.250053 0.160699i
$$573$$ −12.0984 + 13.9622i −0.505416 + 0.583281i
$$574$$ 8.04648 0.335853
$$575$$ 8.17208 + 17.5957i 0.340799 + 0.733792i
$$576$$ 4.13075 0.172114
$$577$$ −7.56986 + 8.73608i −0.315137 + 0.363688i −0.891115 0.453778i $$-0.850076\pi$$
0.575978 + 0.817465i $$0.304622\pi$$
$$578$$ 0.357803 0.229946i 0.0148827 0.00956450i
$$579$$ 2.92196 + 20.3227i 0.121432 + 0.844581i
$$580$$ −0.425816 0.932406i −0.0176810 0.0387161i
$$581$$ 0.450727 3.13487i 0.0186993 0.130057i
$$582$$ 14.1716 4.16116i 0.587432 0.172486i
$$583$$ 4.05649 + 2.60695i 0.168003 + 0.107969i
$$584$$ −10.7278 + 23.4905i −0.443918 + 0.972046i
$$585$$ −0.932841 0.273907i −0.0385682 0.0113247i
$$586$$ −0.187328 0.216188i −0.00773846 0.00893066i
$$587$$ −5.48041 6.32473i −0.226201 0.261049i 0.631293 0.775545i $$-0.282525\pi$$
−0.857493 + 0.514495i $$0.827979\pi$$
$$588$$ 1.25667 + 0.368991i 0.0518241 + 0.0152169i
$$589$$ 0.960352 2.10288i 0.0395706 0.0866475i
$$590$$ −4.44913 2.85929i −0.183168 0.117715i
$$591$$ 11.1451 3.27250i 0.458449 0.134613i
$$592$$ 0.171862 1.19532i 0.00706347 0.0491275i
$$593$$ 12.5434 + 27.4663i 0.515097 + 1.12791i 0.971263 + 0.238010i $$0.0764952\pi$$
−0.456166 + 0.889895i $$0.650778\pi$$
$$594$$ 0.644974 + 4.48589i 0.0264636 + 0.184058i
$$595$$ 3.43966 2.21054i 0.141012 0.0906231i
$$596$$ 2.25405 2.60131i 0.0923293 0.106554i
$$597$$ 8.19143 0.335253
$$598$$ 0.589332 + 3.92075i 0.0240996 + 0.160331i
$$599$$ 28.8614 1.17925 0.589623 0.807678i $$-0.299276\pi$$
0.589623 + 0.807678i $$0.299276\pi$$
$$600$$ −7.28465 + 8.40694i −0.297395 + 0.343212i
$$601$$ 27.4921 17.6681i 1.12143 0.720697i 0.157673 0.987491i $$-0.449601\pi$$
0.963754 + 0.266794i $$0.0859643\pi$$
$$602$$ −1.28459 8.93454i −0.0523561 0.364144i
$$603$$ 0.554481 + 1.21414i 0.0225802 + 0.0494438i
$$604$$ −1.19346 + 8.30071i −0.0485613 + 0.337751i
$$605$$ −17.5825 + 5.16267i −0.714828 + 0.209893i
$$606$$ 5.83233 + 3.74821i 0.236922 + 0.152261i
$$607$$ 13.9159 30.4717i 0.564831 1.23681i −0.384673 0.923053i $$-0.625686\pi$$
0.949504 0.313754i $$-0.101587\pi$$
$$608$$ 3.25529 + 0.955841i 0.132020 + 0.0387645i
$$609$$ −0.524551 0.605364i −0.0212559 0.0245306i
$$610$$ −0.794001 0.916326i −0.0321482 0.0371010i
$$611$$ 11.0369 + 3.24073i 0.446506 + 0.131106i
$$612$$ −2.27682 + 4.98553i −0.0920349 + 0.201528i
$$613$$ −32.2776 20.7435i −1.30368 0.837824i −0.310072 0.950713i $$-0.600353\pi$$
−0.993608 + 0.112889i $$0.963990\pi$$
$$614$$ −17.4294 + 5.11774i −0.703394 + 0.206535i
$$615$$ −1.34668 + 9.36639i −0.0543035 + 0.377689i
$$616$$ 6.23111 + 13.6442i 0.251059 + 0.549742i
$$617$$ −2.70392 18.8061i −0.108856 0.757107i −0.969001 0.247058i $$-0.920536\pi$$
0.860145 0.510049i $$-0.170373\pi$$
$$618$$ 0.130439 0.0838280i 0.00524703 0.00337206i
$$619$$ 2.56152 2.95615i 0.102956 0.118818i −0.701933 0.712243i $$-0.747679\pi$$
0.804889 + 0.593425i $$0.202225\pi$$
$$620$$ 5.03806 0.202333
$$621$$ 4.61011 + 1.32169i 0.184997 + 0.0530375i
$$622$$ −18.6850 −0.749200
$$623$$ −2.49968 + 2.88478i −0.100147 + 0.115576i
$$624$$ 0.280268 0.180117i 0.0112197 0.00721046i
$$625$$ −1.64966 11.4736i −0.0659864 0.458946i
$$626$$ 0.774420 + 1.69574i 0.0309520 + 0.0677755i
$$627$$ −0.455843 + 3.17046i −0.0182046 + 0.126616i
$$628$$ 22.8825 6.71891i 0.913112 0.268114i
$$629$$ −12.6975 8.16022i −0.506284 0.325369i
$$630$$ 0.337222 0.738413i 0.0134353 0.0294191i
$$631$$ 30.6237 + 8.99192i 1.21911 + 0.357963i 0.827130 0.562011i $$-0.189972\pi$$
0.391979 + 0.919974i $$0.371790\pi$$
$$632$$ −16.4575 18.9929i −0.654643 0.755499i
$$633$$ 18.5636 + 21.4235i 0.737836 + 0.851508i
$$634$$ −4.06076 1.19235i −0.161274 0.0473542i
$$635$$ −7.42790 + 16.2648i −0.294767 + 0.645450i
$$636$$ 0.973980 + 0.625939i 0.0386208 + 0.0248201i
$$637$$ −0.954742 + 0.280337i −0.0378282 + 0.0111074i
$$638$$ 0.516631 3.59325i 0.0204536 0.142258i
$$639$$ −4.60920 10.0927i −0.182337 0.399263i
$$640$$ 1.12960 + 7.85652i 0.0446513 + 0.310556i
$$641$$ −14.4921 + 9.31350i −0.572403 + 0.367861i −0.794593 0.607142i $$-0.792316\pi$$
0.222190 + 0.975003i $$0.428679\pi$$
$$642$$ −2.40454 + 2.77498i −0.0948995 + 0.109520i
$$643$$ −13.2525 −0.522626 −0.261313 0.965254i $$-0.584156\pi$$
−0.261313 + 0.965254i $$0.584156\pi$$
$$644$$ 6.28108 0.0401662i 0.247509 0.00158277i
$$645$$ 10.6151 0.417970
$$646$$ 1.33695 1.54292i 0.0526014 0.0607053i
$$647$$ 13.8571 8.90539i 0.544777 0.350107i −0.239128 0.970988i $$-0.576861\pi$$
0.783905 + 0.620881i $$0.213225\pi$$
$$648$$ 0.391340 + 2.72183i 0.0153733 + 0.106923i
$$649$$ 14.7631 + 32.3266i 0.579501 + 1.26893i
$$650$$ 0.475952 3.31032i 0.0186684 0.129841i
$$651$$ 3.77750 1.10917i 0.148052 0.0434719i
$$652$$ 3.67398 + 2.36112i 0.143884 + 0.0924686i
$$653$$ 8.79647 19.2616i 0.344232 0.753764i −0.655767 0.754963i $$-0.727655\pi$$
0.999999 + 0.00119955i $$0.000381828\pi$$
$$654$$ 14.5565 + 4.27418i 0.569205 + 0.167134i
$$655$$ 10.7027 + 12.3516i 0.418189 + 0.482616i
$$656$$ −2.12347 2.45061i −0.0829074 0.0956802i
$$657$$ −9.01085 2.64582i −0.351547 0.103223i
$$658$$ −3.98984 + 8.73654i −0.155540 + 0.340586i
$$659$$ −4.12553 2.65132i −0.160708 0.103281i 0.457815 0.889047i $$-0.348632\pi$$
−0.618523 + 0.785767i $$0.712269\pi$$
$$660$$ −6.69764 + 1.96661i −0.260705 + 0.0765500i
$$661$$ −3.10237 + 21.5774i −0.120668 + 0.839265i 0.836134 + 0.548525i $$0.184811\pi$$
−0.956802 + 0.290740i $$0.906099\pi$$
$$662$$ −9.94646 21.7797i −0.386580 0.846492i
$$663$$ −0.592599 4.12162i −0.0230147 0.160070i
$$664$$ 7.32645 4.70843i 0.284322 0.182722i
$$665$$ 0.375713 0.433596i 0.0145695 0.0168141i
$$666$$ −2.99666 −0.116118
$$667$$ −3.24490 2.05617i −0.125643 0.0796153i
$$668$$ −1.09947 −0.0425396
$$669$$ −9.26260 + 10.6896i −0.358113 + 0.413284i
$$670$$ 0.911518 0.585797i 0.0352150 0.0226313i
$$671$$ 1.15949 + 8.06445i 0.0447617 + 0.311325i
$$672$$ 2.40019 + 5.25568i 0.0925892 + 0.202742i
$$673$$ 6.81275 47.3837i 0.262612 1.82651i −0.250417 0.968138i $$-0.580568\pi$$
0.513029 0.858371i $$-0.328523\pi$$
$$674$$ −21.9690 + 6.45067i −0.846213 + 0.248471i
$$675$$ −3.40317 2.18708i −0.130988 0.0841808i
$$676$$ 6.53431 14.3081i 0.251320 0.550313i
$$677$$ −17.0216 4.99799i −0.654193 0.192088i −0.0622403 0.998061i $$-0.519825\pi$$
−0.591952 + 0.805973i $$0.701643\pi$$
$$678$$ 5.83577 + 6.73484i 0.224121 + 0.258650i
$$679$$ 11.6416 + 13.4352i 0.446765 + 0.515595i
$$680$$ 10.7878 + 3.16759i 0.413694 + 0.121472i
$$681$$ 4.83575 10.5888i 0.185306 0.405765i
$$682$$ 15.0100 + 9.64635i 0.574763 + 0.369378i
$$683$$ −10.9840 + 3.22518i −0.420289 + 0.123408i −0.485037 0.874494i $$-0.661194\pi$$
0.0647478 + 0.997902i $$0.479376\pi$$
$$684$$ −0.109450 + 0.761240i −0.00418492 + 0.0291067i
$$685$$ 0.531732 + 1.16433i 0.0203164 + 0.0444868i
$$686$$ −0.118239 0.822373i −0.00451440 0.0313984i
$$687$$ 15.8059 10.1578i 0.603031 0.387544i
$$688$$ −2.38207 + 2.74906i −0.0908156 + 0.104807i
$$689$$ −0.879606 −0.0335103
$$690$$ 0.529396 3.85696i 0.0201537 0.146832i
$$691$$ −27.0982 −1.03086 −0.515432 0.856931i $$-0.672368\pi$$
−0.515432 + 0.856931i $$0.672368\pi$$
$$692$$ 15.1146 17.4432i 0.574572 0.663091i
$$693$$ −4.58888 + 2.94909i −0.174317 + 0.112027i
$$694$$ 1.02469 + 7.12689i 0.0388968 + 0.270533i
$$695$$ −4.57861 10.0258i −0.173677 0.380299i
$$696$$ 0.313468 2.18021i 0.0118820 0.0826408i
$$697$$ −38.8868 + 11.4182i −1.47294 + 0.432495i
$$698$$ 7.56983 + 4.86484i 0.286522 + 0.184137i
$$699$$ −8.15467 + 17.8562i −0.308438 + 0.675385i
$$700$$ −5.08367 1.49270i −0.192145 0.0564187i
$$701$$ 9.91493 + 11.4424i 0.374482 + 0.432175i 0.911439 0.411434i $$-0.134972\pi$$
−0.536958 + 0.843609i $$0.680427\pi$$
$$702$$ −0.541384 0.624790i −0.0204332 0.0235812i
$$703$$ −2.03214 0.596690i −0.0766436 0.0225046i
$$704$$ −9.36031 + 20.4962i −0.352780 + 0.772481i
$$705$$ −9.50189 6.10650i −0.357862 0.229984i
$$706$$ 18.0959 5.31344i 0.681049 0.199974i
$$707$$ −1.18755 + 8.25962i −0.0446626 + 0.310635i
$$708$$ 3.54467 + 7.76175i 0.133217 + 0.291704i
$$709$$ −4.26764 29.6821i −0.160275 1.11473i −0.898116 0.439760i $$-0.855064\pi$$
0.737841 0.674975i $$-0.235845\pi$$
$$710$$ −7.57712 + 4.86952i −0.284364 + 0.182750i
$$711$$ 5.98494 6.90699i 0.224453 0.259032i
$$712$$ −10.4964 −0.393368
$$713$$ 15.8182 10.3092i 0.592395 0.386084i
$$714$$ 3.47680 0.130116
$$715$$ 3.47292 4.00796i 0.129880 0.149889i
$$716$$ 15.5669 10.0043i 0.581764 0.373877i
$$717$$ 0.892851 + 6.20992i 0.0333441 + 0.231914i
$$718$$ −3.06178 6.70437i −0.114265 0.250205i
$$719$$ −4.83385 + 33.6202i −0.180272 + 1.25382i 0.675847 + 0.737042i $$0.263778\pi$$
−0.856119 + 0.516779i $$0.827131\pi$$
$$720$$ −0.313882 + 0.0921640i −0.0116977 + 0.00343475i
$$721$$ 0.156998 + 0.100897i 0.00584693 + 0.00375759i
$$722$$ −6.43864 + 14.0987i −0.239621 + 0.524698i
$$723$$ 3.61475 + 1.06139i 0.134434 + 0.0394733i
$$724$$ 0.233058 + 0.268964i 0.00866154 + 0.00999595i
$$725$$ 2.12199 + 2.44891i 0.0788089 + 0.0909503i
$$726$$ −14.9510 4.39001i −0.554883 0.162928i
$$727$$ −2.85047 + 6.24166i −0.105718 + 0.231490i −0.955097 0.296293i $$-0.904249\pi$$
0.849379 + 0.527783i $$0.176977\pi$$
$$728$$ −2.30184 1.47930i −0.0853118 0.0548265i
$$729$$ −0.959493 + 0.281733i −0.0355368 + 0.0104345i
$$730$$ −1.08495 + 7.54596i −0.0401556 + 0.279288i
$$731$$ 18.8865 + 41.3557i 0.698543 + 1.52960i
$$732$$ 0.278399 + 1.93631i 0.0102899 + 0.0715679i
$$733$$ −34.5672 + 22.2150i −1.27677 + 0.820529i −0.990486 0.137616i $$-0.956056\pi$$
−0.286283 + 0.958145i $$0.592420\pi$$
$$734$$ 17.7809 20.5202i 0.656305 0.757416i
$$735$$ 0.977061 0.0360394
$$736$$ 18.2793 + 20.8249i 0.673785 + 0.767616i
$$737$$ −7.28089 −0.268195
$$738$$ −5.26932 + 6.08112i −0.193966 + 0.223849i
$$739$$ −4.60423 + 2.95896i −0.169369 + 0.108847i −0.622579 0.782557i $$-0.713915\pi$$
0.453210 + 0.891404i $$0.350279\pi$$
$$740$$ −0.656866 4.56860i −0.0241469 0.167945i
$$741$$ −0.242724 0.531490i −0.00891667 0.0195248i
$$742$$ 0.104522 0.726965i 0.00383711 0.0266877i
$$743$$ 9.59119 2.81623i 0.351867 0.103317i −0.101023 0.994884i $$-0.532211\pi$$
0.452889 + 0.891567i $$0.350393\pi$$
$$744$$ 9.10737 + 5.85295i 0.333892 + 0.214580i
$$745$$ 1.06669 2.33573i 0.0390805 0.0855744i
$$746$$ −4.83765 1.42046i −0.177119 0.0520068i
$$747$$ 2.07402 + 2.39354i 0.0758843 + 0.0875751i
$$748$$ −19.5783 22.5945i −0.715853 0.826138i
$$749$$ −4.24045 1.24511i −0.154943 0.0454953i
$$750$$ −3.05029 + 6.67921i −0.111381 + 0.243890i
$$751$$ 7.98488 + 5.13157i 0.291372 + 0.187254i 0.678158 0.734916i $$-0.262778\pi$$
−0.386786 + 0.922170i $$0.626415\pi$$
$$752$$ 3.71369 1.09044i 0.135424 0.0397642i
$$753$$ −3.62473 + 25.2105i −0.132092 + 0.918723i
$$754$$ 0.275092 + 0.602366i 0.0100182 + 0.0219369i
$$755$$ 0.890330 + 6.19238i 0.0324024 + 0.225364i
$$756$$ −1.10181 + 0.708089i −0.0400724 + 0.0257529i
$$757$$ 12.9474 14.9421i 0.470583 0.543082i −0.469991 0.882671i $$-0.655743\pi$$
0.940574 + 0.339590i $$0.110288\pi$$
$$758$$ −2.14332 −0.0778489
$$759$$ −17.0046 + 19.8798i −0.617228 + 0.721592i
$$760$$ 1.57765 0.0572274
$$761$$ −21.6529 + 24.9888i −0.784916 + 0.905842i −0.997454 0.0713111i $$-0.977282\pi$$
0.212538 + 0.977153i $$0.431827\pi$$
$$762$$ −12.7909 + 8.22021i −0.463366 + 0.297787i
$$763$$ 2.59868 + 18.0742i 0.0940787 + 0.654332i
$$764$$ −10.0517 22.0101i −0.363657 0.796298i
$$765$$ −0.581887 + 4.04711i −0.0210382 + 0.146324i
$$766$$ 28.2785 8.30332i 1.02174 0.300011i
$$767$$ −5.45363 3.50484i −0.196919 0.126552i
$$768$$ −6.23574 + 13.6544i −0.225013 + 0.492710i
$$769$$ −20.3346 5.97079i −0.733285 0.215312i −0.106290 0.994335i $$-0.533897\pi$$
−0.626995 + 0.779023i $$0.715715\pi$$
$$770$$ 2.89976 + 3.34650i 0.104500 + 0.120600i
$$771$$ 2.49195 + 2.87586i 0.0897454 + 0.103572i