Properties

Label 483.2.q.c.85.1
Level $483$
Weight $2$
Character 483.85
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 40 x^{18} - 117 x^{17} + 295 x^{16} - 575 x^{15} + 1777 x^{14} - 1560 x^{13} + 4383 x^{12} - 6446 x^{11} + 7261 x^{10} + 7700 x^{9} + 7852 x^{8} - 39430 x^{7} - 101709 x^{6} + 156742 x^{5} + 999838 x^{4} + 2029154 x^{3} + 3616480 x^{2} + 4299390 x + 2374681\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 85.1
Root \(-1.29470 - 1.49416i\) of defining polynomial
Character \(\chi\) \(=\) 483.85
Dual form 483.2.q.c.358.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.544078 + 0.627899i) q^{2} +(0.841254 - 0.540641i) q^{3} +(0.186393 + 1.29639i) q^{4} +(-1.36538 - 2.98976i) q^{5} +(-0.118239 + 0.822373i) q^{6} +(-0.959493 + 0.281733i) q^{7} +(-2.31329 - 1.48666i) q^{8} +(0.415415 - 0.909632i) q^{9} +O(q^{10})\) \(q+(-0.544078 + 0.627899i) q^{2} +(0.841254 - 0.540641i) q^{3} +(0.186393 + 1.29639i) q^{4} +(-1.36538 - 2.98976i) q^{5} +(-0.118239 + 0.822373i) q^{6} +(-0.959493 + 0.281733i) q^{7} +(-2.31329 - 1.48666i) q^{8} +(0.415415 - 0.909632i) q^{9} +(2.62014 + 0.769343i) q^{10} +(-0.745196 - 0.860003i) q^{11} +(0.857685 + 0.989821i) q^{12} +(4.40350 + 1.29298i) q^{13} +(0.345139 - 0.755750i) q^{14} +(-2.76502 - 1.77697i) q^{15} +(-0.321251 + 0.0943278i) q^{16} +(0.756849 - 5.26400i) q^{17} +(0.345139 + 0.755750i) q^{18} +(-1.11011 - 7.72097i) q^{19} +(3.62140 - 2.32733i) q^{20} +(-0.654861 + 0.755750i) q^{21} +0.945440 q^{22} +(1.20850 - 4.64107i) q^{23} -2.74982 q^{24} +(-3.80012 + 4.38557i) q^{25} +(-3.20771 + 2.06147i) q^{26} +(-0.142315 - 0.989821i) q^{27} +(-0.544078 - 1.19136i) q^{28} +(-1.10574 + 7.69057i) q^{29} +(2.62014 - 0.769343i) q^{30} +(-2.20103 - 1.41452i) q^{31} +(2.40019 - 5.25568i) q^{32} +(-1.09185 - 0.320597i) q^{33} +(2.89348 + 3.33925i) q^{34} +(2.15238 + 2.48398i) q^{35} +(1.25667 + 0.368991i) q^{36} +(1.90070 - 4.16195i) q^{37} +(5.45198 + 3.50377i) q^{38} +(4.40350 - 1.29298i) q^{39} +(-1.28625 + 8.94605i) q^{40} +(-0.343258 - 0.751631i) q^{41} +(-0.118239 - 0.822373i) q^{42} +(-2.23375 + 1.43554i) q^{43} +(0.976000 - 1.12636i) q^{44} -3.28678 q^{45} +(2.25661 + 3.28392i) q^{46} +5.46214 q^{47} +(-0.219256 + 0.253035i) q^{48} +(0.841254 - 0.540641i) q^{49} +(-0.686136 - 4.77218i) q^{50} +(-2.20923 - 4.83755i) q^{51} +(-0.855431 + 5.94965i) q^{52} +(-10.0236 + 2.94321i) q^{53} +(0.698939 + 0.449181i) q^{54} +(-1.55373 + 3.40219i) q^{55} +(2.63843 + 0.774713i) q^{56} +(-5.10815 - 5.89512i) q^{57} +(-4.22730 - 4.87856i) q^{58} +(5.91966 + 1.73817i) q^{59} +(1.78827 - 3.91576i) q^{60} +(0.526144 + 0.338132i) q^{61} +(2.08571 - 0.612418i) q^{62} +(-0.142315 + 0.989821i) q^{63} +(1.71597 + 3.75746i) q^{64} +(-2.14673 - 14.9308i) q^{65} +(0.795355 - 0.511144i) q^{66} +(-1.30818 + 1.50972i) q^{67} +6.96528 q^{68} +(-1.49250 - 4.55768i) q^{69} -2.73076 q^{70} +(5.90266 - 6.81203i) q^{71} +(-2.31329 + 1.48666i) q^{72} +(1.55836 + 10.8386i) q^{73} +(1.57916 + 3.45787i) q^{74} +(-0.825844 + 5.74387i) q^{75} +(9.80247 - 2.87827i) q^{76} +(0.957302 + 0.615220i) q^{77} +(-1.58398 + 3.46844i) q^{78} +(4.53700 + 1.33218i) q^{79} +(0.720647 + 0.831671i) q^{80} +(-0.654861 - 0.755750i) q^{81} +(0.658708 + 0.193414i) q^{82} +(2.51274 - 5.50214i) q^{83} +(-1.10181 - 0.708089i) q^{84} +(-16.7715 + 4.92456i) q^{85} +(0.313957 - 2.18362i) q^{86} +(3.22763 + 7.06752i) q^{87} +(0.445324 + 3.09729i) q^{88} +(-11.7309 + 7.53899i) q^{89} +(1.78827 - 2.06377i) q^{90} -4.58940 q^{91} +(6.24189 + 0.701625i) q^{92} -2.61637 q^{93} +(-2.97183 + 3.42967i) q^{94} +(-21.5681 + 13.8610i) q^{95} +(-0.822267 - 5.71900i) q^{96} +(1.80562 + 3.95375i) q^{97} +(-0.118239 + 0.822373i) q^{98} +(-1.09185 + 0.320597i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + O(q^{10}) \) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + 9q^{10} + 3q^{11} + 18q^{12} - 2q^{13} + 18q^{14} - q^{15} + 8q^{16} + 8q^{17} + 18q^{18} + 6q^{19} - 2q^{20} - 2q^{21} + 6q^{22} + 11q^{23} + 9q^{25} + 7q^{26} - 2q^{27} - 4q^{28} + 23q^{29} + 9q^{30} + q^{31} - 28q^{32} + 14q^{33} - 28q^{34} + 10q^{35} - 4q^{36} - 9q^{37} + 34q^{38} - 2q^{39} - 15q^{41} - 4q^{42} - 23q^{43} - 16q^{44} - 12q^{45} + 11q^{46} - 66q^{47} - 36q^{48} - 2q^{49} - 26q^{50} - 14q^{51} + 7q^{52} + 9q^{53} - 4q^{54} - 62q^{55} + 22q^{56} - 27q^{57} - 20q^{58} + 49q^{59} - 2q^{60} + 46q^{61} - 9q^{62} - 2q^{63} + 16q^{64} + 11q^{65} - 16q^{66} + 14q^{67} + 38q^{68} + 11q^{69} - 2q^{70} + 36q^{71} - q^{73} + 4q^{74} - 2q^{75} + 34q^{76} - 8q^{77} - 15q^{78} - 22q^{79} + 15q^{80} - 2q^{81} - 30q^{82} + 8q^{83} - 4q^{84} - 32q^{85} - 68q^{86} + q^{87} - 11q^{88} - 2q^{89} - 2q^{90} - 24q^{91} + 11q^{92} - 32q^{93} + 33q^{94} - 107q^{95} + 16q^{96} + 18q^{97} - 4q^{98} + 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.544078 + 0.627899i −0.384721 + 0.443992i −0.914770 0.403975i \(-0.867628\pi\)
0.530049 + 0.847967i \(0.322174\pi\)
\(3\) 0.841254 0.540641i 0.485698 0.312139i
\(4\) 0.186393 + 1.29639i 0.0931964 + 0.648195i
\(5\) −1.36538 2.98976i −0.610616 1.33706i −0.922152 0.386828i \(-0.873571\pi\)
0.311536 0.950234i \(-0.399157\pi\)
\(6\) −0.118239 + 0.822373i −0.0482710 + 0.335733i
\(7\) −0.959493 + 0.281733i −0.362654 + 0.106485i
\(8\) −2.31329 1.48666i −0.817872 0.525615i
\(9\) 0.415415 0.909632i 0.138472 0.303211i
\(10\) 2.62014 + 0.769343i 0.828562 + 0.243288i
\(11\) −0.745196 0.860003i −0.224685 0.259301i 0.632203 0.774803i \(-0.282151\pi\)
−0.856888 + 0.515502i \(0.827605\pi\)
\(12\) 0.857685 + 0.989821i 0.247592 + 0.285737i
\(13\) 4.40350 + 1.29298i 1.22131 + 0.358609i 0.827964 0.560781i \(-0.189499\pi\)
0.393346 + 0.919390i \(0.371317\pi\)
\(14\) 0.345139 0.755750i 0.0922423 0.201983i
\(15\) −2.76502 1.77697i −0.713924 0.458811i
\(16\) −0.321251 + 0.0943278i −0.0803127 + 0.0235819i
\(17\) 0.756849 5.26400i 0.183563 1.27671i −0.664691 0.747119i \(-0.731437\pi\)
0.848254 0.529590i \(-0.177654\pi\)
\(18\) 0.345139 + 0.755750i 0.0813501 + 0.178132i
\(19\) −1.11011 7.72097i −0.254676 1.77131i −0.569334 0.822106i \(-0.692799\pi\)
0.314658 0.949205i \(-0.398110\pi\)
\(20\) 3.62140 2.32733i 0.809770 0.520408i
\(21\) −0.654861 + 0.755750i −0.142902 + 0.164918i
\(22\) 0.945440 0.201569
\(23\) 1.20850 4.64107i 0.251990 0.967730i
\(24\) −2.74982 −0.561304
\(25\) −3.80012 + 4.38557i −0.760023 + 0.877114i
\(26\) −3.20771 + 2.06147i −0.629083 + 0.404287i
\(27\) −0.142315 0.989821i −0.0273885 0.190491i
\(28\) −0.544078 1.19136i −0.102821 0.225147i
\(29\) −1.10574 + 7.69057i −0.205330 + 1.42810i 0.582811 + 0.812608i \(0.301953\pi\)
−0.788141 + 0.615495i \(0.788956\pi\)
\(30\) 2.62014 0.769343i 0.478370 0.140462i
\(31\) −2.20103 1.41452i −0.395317 0.254055i 0.327848 0.944731i \(-0.393677\pi\)
−0.723164 + 0.690676i \(0.757313\pi\)
\(32\) 2.40019 5.25568i 0.424297 0.929081i
\(33\) −1.09185 0.320597i −0.190067 0.0558087i
\(34\) 2.89348 + 3.33925i 0.496228 + 0.572677i
\(35\) 2.15238 + 2.48398i 0.363819 + 0.419870i
\(36\) 1.25667 + 0.368991i 0.209445 + 0.0614985i
\(37\) 1.90070 4.16195i 0.312473 0.684221i −0.686610 0.727026i \(-0.740902\pi\)
0.999083 + 0.0428050i \(0.0136294\pi\)
\(38\) 5.45198 + 3.50377i 0.884427 + 0.568387i
\(39\) 4.40350 1.29298i 0.705124 0.207043i
\(40\) −1.28625 + 8.94605i −0.203374 + 1.41450i
\(41\) −0.343258 0.751631i −0.0536080 0.117385i 0.880933 0.473242i \(-0.156916\pi\)
−0.934540 + 0.355857i \(0.884189\pi\)
\(42\) −0.118239 0.822373i −0.0182447 0.126895i
\(43\) −2.23375 + 1.43554i −0.340643 + 0.218918i −0.699766 0.714372i \(-0.746712\pi\)
0.359123 + 0.933290i \(0.383076\pi\)
\(44\) 0.976000 1.12636i 0.147138 0.169806i
\(45\) −3.28678 −0.489965
\(46\) 2.25661 + 3.28392i 0.332719 + 0.484188i
\(47\) 5.46214 0.796735 0.398367 0.917226i \(-0.369577\pi\)
0.398367 + 0.917226i \(0.369577\pi\)
\(48\) −0.219256 + 0.253035i −0.0316469 + 0.0365225i
\(49\) 0.841254 0.540641i 0.120179 0.0772344i
\(50\) −0.686136 4.77218i −0.0970343 0.674889i
\(51\) −2.20923 4.83755i −0.309354 0.677392i
\(52\) −0.855431 + 5.94965i −0.118627 + 0.825068i
\(53\) −10.0236 + 2.94321i −1.37685 + 0.404281i −0.884673 0.466212i \(-0.845618\pi\)
−0.492181 + 0.870493i \(0.663800\pi\)
\(54\) 0.698939 + 0.449181i 0.0951135 + 0.0611257i
\(55\) −1.55373 + 3.40219i −0.209505 + 0.458751i
\(56\) 2.63843 + 0.774713i 0.352575 + 0.103525i
\(57\) −5.10815 5.89512i −0.676591 0.780828i
\(58\) −4.22730 4.87856i −0.555071 0.640586i
\(59\) 5.91966 + 1.73817i 0.770674 + 0.226290i 0.643352 0.765571i \(-0.277543\pi\)
0.127323 + 0.991861i \(0.459362\pi\)
\(60\) 1.78827 3.91576i 0.230864 0.505522i
\(61\) 0.526144 + 0.338132i 0.0673658 + 0.0432934i 0.573890 0.818932i \(-0.305434\pi\)
−0.506524 + 0.862226i \(0.669070\pi\)
\(62\) 2.08571 0.612418i 0.264885 0.0777772i
\(63\) −0.142315 + 0.989821i −0.0179300 + 0.124706i
\(64\) 1.71597 + 3.75746i 0.214497 + 0.469682i
\(65\) −2.14673 14.9308i −0.266269 1.85194i
\(66\) 0.795355 0.511144i 0.0979014 0.0629174i
\(67\) −1.30818 + 1.50972i −0.159819 + 0.184441i −0.830011 0.557746i \(-0.811666\pi\)
0.670192 + 0.742188i \(0.266212\pi\)
\(68\) 6.96528 0.844664
\(69\) −1.49250 4.55768i −0.179676 0.548680i
\(70\) −2.73076 −0.326388
\(71\) 5.90266 6.81203i 0.700517 0.808439i −0.288306 0.957538i \(-0.593092\pi\)
0.988822 + 0.149099i \(0.0476374\pi\)
\(72\) −2.31329 + 1.48666i −0.272624 + 0.175205i
\(73\) 1.55836 + 10.8386i 0.182392 + 1.26857i 0.851085 + 0.525028i \(0.175945\pi\)
−0.668692 + 0.743539i \(0.733146\pi\)
\(74\) 1.57916 + 3.45787i 0.183573 + 0.401970i
\(75\) −0.825844 + 5.74387i −0.0953603 + 0.663245i
\(76\) 9.80247 2.87827i 1.12442 0.330160i
\(77\) 0.957302 + 0.615220i 0.109095 + 0.0701109i
\(78\) −1.58398 + 3.46844i −0.179351 + 0.392723i
\(79\) 4.53700 + 1.33218i 0.510452 + 0.149882i 0.526809 0.849984i \(-0.323388\pi\)
−0.0163564 + 0.999866i \(0.505207\pi\)
\(80\) 0.720647 + 0.831671i 0.0805708 + 0.0929836i
\(81\) −0.654861 0.755750i −0.0727623 0.0839722i
\(82\) 0.658708 + 0.193414i 0.0727422 + 0.0213590i
\(83\) 2.51274 5.50214i 0.275809 0.603938i −0.720142 0.693826i \(-0.755924\pi\)
0.995952 + 0.0898878i \(0.0286509\pi\)
\(84\) −1.10181 0.708089i −0.120217 0.0772588i
\(85\) −16.7715 + 4.92456i −1.81913 + 0.534143i
\(86\) 0.313957 2.18362i 0.0338548 0.235465i
\(87\) 3.22763 + 7.06752i 0.346038 + 0.757718i
\(88\) 0.445324 + 3.09729i 0.0474716 + 0.330173i
\(89\) −11.7309 + 7.53899i −1.24347 + 0.799131i −0.985934 0.167137i \(-0.946548\pi\)
−0.257538 + 0.966268i \(0.582911\pi\)
\(90\) 1.78827 2.06377i 0.188500 0.217540i
\(91\) −4.58940 −0.481100
\(92\) 6.24189 + 0.701625i 0.650762 + 0.0731494i
\(93\) −2.61637 −0.271305
\(94\) −2.97183 + 3.42967i −0.306521 + 0.353744i
\(95\) −21.5681 + 13.8610i −2.21284 + 1.42211i
\(96\) −0.822267 5.71900i −0.0839223 0.583692i
\(97\) 1.80562 + 3.95375i 0.183333 + 0.401442i 0.978876 0.204454i \(-0.0655419\pi\)
−0.795544 + 0.605896i \(0.792815\pi\)
\(98\) −0.118239 + 0.822373i −0.0119440 + 0.0830723i
\(99\) −1.09185 + 0.320597i −0.109735 + 0.0322212i
\(100\) −6.39372 4.10900i −0.639372 0.410900i
\(101\) 0.218438 0.478311i 0.0217353 0.0475938i −0.898453 0.439070i \(-0.855308\pi\)
0.920188 + 0.391476i \(0.128035\pi\)
\(102\) 4.23949 + 1.24483i 0.419772 + 0.123256i
\(103\) 9.56763 + 11.0416i 0.942726 + 1.08796i 0.995997 + 0.0893842i \(0.0284899\pi\)
−0.0532708 + 0.998580i \(0.516965\pi\)
\(104\) −8.26434 9.53756i −0.810386 0.935235i
\(105\) 3.15364 + 0.925994i 0.307764 + 0.0903677i
\(106\) 3.60561 7.89518i 0.350208 0.766848i
\(107\) 12.4273 + 7.98657i 1.20140 + 0.772091i 0.979197 0.202910i \(-0.0650399\pi\)
0.222200 + 0.975001i \(0.428676\pi\)
\(108\) 1.25667 0.368991i 0.120923 0.0355062i
\(109\) 0.991819 6.89825i 0.0949990 0.660733i −0.885562 0.464520i \(-0.846227\pi\)
0.980561 0.196212i \(-0.0628642\pi\)
\(110\) −1.29088 2.82664i −0.123081 0.269510i
\(111\) −0.651151 4.52885i −0.0618045 0.429860i
\(112\) 0.281663 0.181014i 0.0266146 0.0171042i
\(113\) −12.1619 + 14.0356i −1.14410 + 1.32036i −0.204190 + 0.978931i \(0.565456\pi\)
−0.939908 + 0.341428i \(0.889089\pi\)
\(114\) 6.48078 0.606980
\(115\) −15.5258 + 2.72369i −1.44778 + 0.253986i
\(116\) −10.1761 −0.944825
\(117\) 3.00542 3.46844i 0.277851 0.320657i
\(118\) −4.31215 + 2.77125i −0.396966 + 0.255115i
\(119\) 0.756849 + 5.26400i 0.0693803 + 0.482550i
\(120\) 3.75454 + 8.22130i 0.342741 + 0.750498i
\(121\) 1.38118 9.60629i 0.125562 0.873299i
\(122\) −0.498576 + 0.146395i −0.0451390 + 0.0132540i
\(123\) −0.695130 0.446733i −0.0626778 0.0402805i
\(124\) 1.42351 3.11705i 0.127835 0.279919i
\(125\) 2.53218 + 0.743517i 0.226486 + 0.0665021i
\(126\) −0.544078 0.627899i −0.0484703 0.0559377i
\(127\) −4.93533 5.69567i −0.437940 0.505409i 0.493279 0.869871i \(-0.335798\pi\)
−0.931218 + 0.364462i \(0.881253\pi\)
\(128\) 7.79460 + 2.28870i 0.688951 + 0.202294i
\(129\) −1.10304 + 2.41531i −0.0971169 + 0.212656i
\(130\) 10.5430 + 6.77560i 0.924686 + 0.594260i
\(131\) −2.22451 + 0.653175i −0.194356 + 0.0570682i −0.377462 0.926025i \(-0.623203\pi\)
0.183106 + 0.983093i \(0.441385\pi\)
\(132\) 0.212105 1.47522i 0.0184614 0.128402i
\(133\) 3.24039 + 7.09546i 0.280977 + 0.615254i
\(134\) −0.236200 1.64281i −0.0204046 0.141917i
\(135\) −2.76502 + 1.77697i −0.237975 + 0.152937i
\(136\) −9.57661 + 11.0520i −0.821188 + 0.947701i
\(137\) −2.12549 −0.181593 −0.0907964 0.995869i \(-0.528941\pi\)
−0.0907964 + 0.995869i \(0.528941\pi\)
\(138\) 3.67380 + 1.54260i 0.312735 + 0.131314i
\(139\) −20.5363 −1.74186 −0.870932 0.491403i \(-0.836484\pi\)
−0.870932 + 0.491403i \(0.836484\pi\)
\(140\) −2.81902 + 3.25333i −0.238251 + 0.274956i
\(141\) 4.59504 2.95306i 0.386972 0.248692i
\(142\) 1.06576 + 7.41255i 0.0894369 + 0.622047i
\(143\) −2.16950 4.75054i −0.181423 0.397261i
\(144\) −0.0476489 + 0.331405i −0.00397074 + 0.0276171i
\(145\) 24.5027 7.19465i 2.03484 0.597483i
\(146\) −7.65345 4.91857i −0.633404 0.407064i
\(147\) 0.415415 0.909632i 0.0342629 0.0750252i
\(148\) 5.74979 + 1.68829i 0.472630 + 0.138777i
\(149\) −2.00543 2.31439i −0.164291 0.189602i 0.667634 0.744489i \(-0.267307\pi\)
−0.831926 + 0.554887i \(0.812761\pi\)
\(150\) −3.15725 3.64366i −0.257788 0.297504i
\(151\) 19.5253 + 5.73316i 1.58895 + 0.466558i 0.952444 0.304714i \(-0.0985608\pi\)
0.636506 + 0.771272i \(0.280379\pi\)
\(152\) −8.91047 + 19.5112i −0.722735 + 1.58257i
\(153\) −4.47390 2.87520i −0.361693 0.232446i
\(154\) −0.907143 + 0.266361i −0.0730997 + 0.0214640i
\(155\) −1.22383 + 8.51191i −0.0983002 + 0.683693i
\(156\) 2.49699 + 5.46765i 0.199919 + 0.437762i
\(157\) 0.838091 + 5.82905i 0.0668869 + 0.465209i 0.995546 + 0.0942749i \(0.0300533\pi\)
−0.928659 + 0.370934i \(0.879038\pi\)
\(158\) −3.30496 + 2.12397i −0.262928 + 0.168974i
\(159\) −6.84121 + 7.89518i −0.542543 + 0.626128i
\(160\) −18.9904 −1.50132
\(161\) 0.147994 + 4.79355i 0.0116636 + 0.377784i
\(162\) 0.830830 0.0652762
\(163\) 10.7147 12.3654i 0.839239 0.968534i −0.160590 0.987021i \(-0.551340\pi\)
0.999829 + 0.0184873i \(0.00588503\pi\)
\(164\) 0.910427 0.585096i 0.0710924 0.0456883i
\(165\) 0.532283 + 3.70211i 0.0414382 + 0.288209i
\(166\) 2.08766 + 4.57134i 0.162034 + 0.354805i
\(167\) 1.27849 8.89209i 0.0989324 0.688090i −0.878639 0.477487i \(-0.841548\pi\)
0.977572 0.210604i \(-0.0675430\pi\)
\(168\) 2.63843 0.774713i 0.203559 0.0597704i
\(169\) 6.78268 + 4.35896i 0.521745 + 0.335305i
\(170\) 6.03288 13.2102i 0.462701 1.01317i
\(171\) −7.48439 2.19762i −0.572346 0.168056i
\(172\) −2.27738 2.62823i −0.173648 0.200401i
\(173\) −2.64294 3.05011i −0.200939 0.231896i 0.646333 0.763056i \(-0.276302\pi\)
−0.847272 + 0.531160i \(0.821756\pi\)
\(174\) −6.19378 1.81866i −0.469549 0.137872i
\(175\) 2.41063 5.27854i 0.182226 0.399020i
\(176\) 0.320517 + 0.205984i 0.0241599 + 0.0155266i
\(177\) 5.91966 1.73817i 0.444949 0.130649i
\(178\) 1.64879 11.4676i 0.123582 0.859534i
\(179\) −0.553279 1.21151i −0.0413540 0.0905526i 0.887828 0.460176i \(-0.152214\pi\)
−0.929181 + 0.369624i \(0.879487\pi\)
\(180\) −0.612633 4.26095i −0.0456629 0.317593i
\(181\) 21.6303 13.9009i 1.60777 1.03325i 0.644537 0.764573i \(-0.277050\pi\)
0.963231 0.268676i \(-0.0865860\pi\)
\(182\) 2.49699 2.88168i 0.185089 0.213604i
\(183\) 0.625428 0.0462330
\(184\) −9.69532 + 8.93952i −0.714748 + 0.659030i
\(185\) −15.0384 −1.10565
\(186\) 1.42351 1.64282i 0.104377 0.120457i
\(187\) −5.09106 + 3.27182i −0.372295 + 0.239260i
\(188\) 1.01810 + 7.08106i 0.0742528 + 0.516440i
\(189\) 0.415415 + 0.909632i 0.0302170 + 0.0661660i
\(190\) 3.03143 21.0841i 0.219923 1.52960i
\(191\) −10.6077 + 3.11471i −0.767549 + 0.225373i −0.641989 0.766714i \(-0.721891\pi\)
−0.125559 + 0.992086i \(0.540073\pi\)
\(192\) 3.47501 + 2.23325i 0.250787 + 0.161171i
\(193\) −6.99634 + 15.3198i −0.503607 + 1.10275i 0.471673 + 0.881774i \(0.343650\pi\)
−0.975280 + 0.220972i \(0.929077\pi\)
\(194\) −3.46495 1.01740i −0.248769 0.0730452i
\(195\) −9.87815 11.4000i −0.707389 0.816371i
\(196\) 0.857685 + 0.989821i 0.0612632 + 0.0707015i
\(197\) 14.7029 + 4.31715i 1.04754 + 0.307584i 0.759822 0.650132i \(-0.225286\pi\)
0.287715 + 0.957716i \(0.407104\pi\)
\(198\) 0.392750 0.860003i 0.0279115 0.0611177i
\(199\) 8.76027 + 5.62989i 0.620999 + 0.399092i 0.812967 0.582309i \(-0.197851\pi\)
−0.191968 + 0.981401i \(0.561487\pi\)
\(200\) 15.3106 4.49561i 1.08263 0.317888i
\(201\) −0.284294 + 1.97731i −0.0200526 + 0.139469i
\(202\) 0.181484 + 0.397396i 0.0127692 + 0.0279607i
\(203\) −1.10574 7.69057i −0.0776075 0.539772i
\(204\) 5.85956 3.76571i 0.410251 0.263653i
\(205\) −1.77852 + 2.05252i −0.124217 + 0.143354i
\(206\) −12.1386 −0.845734
\(207\) −3.71964 3.02726i −0.258533 0.210409i
\(208\) −1.53659 −0.106543
\(209\) −5.81280 + 6.70833i −0.402080 + 0.464025i
\(210\) −2.29726 + 1.47636i −0.158526 + 0.101878i
\(211\) −3.20358 22.2814i −0.220544 1.53391i −0.735990 0.676993i \(-0.763283\pi\)
0.515446 0.856922i \(-0.327626\pi\)
\(212\) −5.68388 12.4460i −0.390371 0.854793i
\(213\) 1.28277 8.92186i 0.0878940 0.611316i
\(214\) −11.7762 + 3.45781i −0.805005 + 0.236371i
\(215\) 7.34184 + 4.71832i 0.500710 + 0.321787i
\(216\) −1.14231 + 2.50132i −0.0777247 + 0.170193i
\(217\) 2.51039 + 0.737116i 0.170416 + 0.0500387i
\(218\) 3.79178 + 4.37595i 0.256812 + 0.296377i
\(219\) 7.17079 + 8.27554i 0.484557 + 0.559209i
\(220\) −4.70017 1.38009i −0.316885 0.0930459i
\(221\) 10.1391 22.2014i 0.682026 1.49343i
\(222\) 3.19794 + 2.05519i 0.214632 + 0.137935i
\(223\) 14.2865 4.19489i 0.956695 0.280911i 0.234123 0.972207i \(-0.424778\pi\)
0.722572 + 0.691296i \(0.242960\pi\)
\(224\) −0.822267 + 5.71900i −0.0549400 + 0.382116i
\(225\) 2.41063 + 5.27854i 0.160709 + 0.351903i
\(226\) −2.19592 15.2729i −0.146070 1.01594i
\(227\) 6.46859 4.15711i 0.429335 0.275917i −0.308075 0.951362i \(-0.599685\pi\)
0.737410 + 0.675445i \(0.236048\pi\)
\(228\) 6.69026 7.72097i 0.443073 0.511334i
\(229\) −3.64338 −0.240761 −0.120381 0.992728i \(-0.538412\pi\)
−0.120381 + 0.992728i \(0.538412\pi\)
\(230\) 6.73702 11.2305i 0.444226 0.740518i
\(231\) 1.13795 0.0748714
\(232\) 13.9912 16.1467i 0.918565 1.06008i
\(233\) −2.60809 + 1.67612i −0.170861 + 0.109806i −0.623277 0.782001i \(-0.714199\pi\)
0.452415 + 0.891807i \(0.350563\pi\)
\(234\) 0.542648 + 3.77420i 0.0354740 + 0.246727i
\(235\) −7.45789 16.3305i −0.486499 1.06528i
\(236\) −1.14996 + 7.99818i −0.0748563 + 0.520637i
\(237\) 4.53700 1.33218i 0.294710 0.0865346i
\(238\) −3.71705 2.38880i −0.240941 0.154843i
\(239\) −3.45838 + 7.57280i −0.223704 + 0.489844i −0.987891 0.155152i \(-0.950413\pi\)
0.764187 + 0.644995i \(0.223141\pi\)
\(240\) 1.05588 + 0.310035i 0.0681569 + 0.0200127i
\(241\) 1.15266 + 1.33024i 0.0742495 + 0.0856885i 0.791659 0.610963i \(-0.209218\pi\)
−0.717409 + 0.696652i \(0.754672\pi\)
\(242\) 5.28032 + 6.09381i 0.339432 + 0.391725i
\(243\) −0.959493 0.281733i −0.0615515 0.0180732i
\(244\) −0.340282 + 0.745113i −0.0217843 + 0.0477010i
\(245\) −2.76502 1.77697i −0.176650 0.113526i
\(246\) 0.658708 0.193414i 0.0419977 0.0123316i
\(247\) 5.09473 35.4346i 0.324170 2.25465i
\(248\) 2.98872 + 6.54438i 0.189784 + 0.415568i
\(249\) −0.860827 5.98719i −0.0545527 0.379423i
\(250\) −1.84456 + 1.18543i −0.116660 + 0.0749730i
\(251\) 12.0206 13.8725i 0.758731 0.875622i −0.236653 0.971594i \(-0.576051\pi\)
0.995384 + 0.0959724i \(0.0305961\pi\)
\(252\) −1.30972 −0.0825047
\(253\) −4.89190 + 2.41920i −0.307551 + 0.152094i
\(254\) 6.26151 0.392882
\(255\) −11.4467 + 13.2102i −0.716818 + 0.827253i
\(256\) −12.6280 + 8.11549i −0.789247 + 0.507218i
\(257\) 0.0330642 + 0.229966i 0.00206249 + 0.0143449i 0.990827 0.135139i \(-0.0431480\pi\)
−0.988764 + 0.149484i \(0.952239\pi\)
\(258\) −0.916435 2.00671i −0.0570548 0.124932i
\(259\) −0.651151 + 4.52885i −0.0404605 + 0.281409i
\(260\) 18.9560 5.56599i 1.17560 0.345188i
\(261\) 6.53625 + 4.20059i 0.404583 + 0.260010i
\(262\) 0.800179 1.75215i 0.0494352 0.108248i
\(263\) 19.9712 + 5.86406i 1.23148 + 0.361594i 0.831806 0.555066i \(-0.187307\pi\)
0.399669 + 0.916660i \(0.369125\pi\)
\(264\) 2.04915 + 2.36485i 0.126117 + 0.145546i
\(265\) 22.4856 + 25.9497i 1.38128 + 1.59408i
\(266\) −6.21826 1.82585i −0.381266 0.111950i
\(267\) −5.79277 + 12.6844i −0.354512 + 0.776273i
\(268\) −2.20102 1.41451i −0.134449 0.0864048i
\(269\) 23.8825 7.01253i 1.45614 0.427562i 0.544574 0.838713i \(-0.316691\pi\)
0.911567 + 0.411151i \(0.134873\pi\)
\(270\) 0.388627 2.70296i 0.0236511 0.164497i
\(271\) −13.3310 29.1908i −0.809799 1.77321i −0.608271 0.793730i \(-0.708136\pi\)
−0.201528 0.979483i \(-0.564591\pi\)
\(272\) 0.253403 + 1.76246i 0.0153648 + 0.106865i
\(273\) −3.86085 + 2.48122i −0.233669 + 0.150170i
\(274\) 1.15643 1.33459i 0.0698626 0.0806257i
\(275\) 6.60343 0.398202
\(276\) 5.63034 2.78438i 0.338907 0.167600i
\(277\) 25.9931 1.56178 0.780888 0.624671i \(-0.214767\pi\)
0.780888 + 0.624671i \(0.214767\pi\)
\(278\) 11.1733 12.8947i 0.670132 0.773374i
\(279\) −2.20103 + 1.41452i −0.131772 + 0.0846849i
\(280\) −1.28625 8.94605i −0.0768680 0.534629i
\(281\) −7.07385 15.4896i −0.421991 0.924031i −0.994559 0.104174i \(-0.966780\pi\)
0.572568 0.819857i \(-0.305947\pi\)
\(282\) −0.645840 + 4.49192i −0.0384592 + 0.267490i
\(283\) 26.8773 7.89188i 1.59769 0.469124i 0.642786 0.766046i \(-0.277778\pi\)
0.954902 + 0.296922i \(0.0959602\pi\)
\(284\) 9.93126 + 6.38243i 0.589312 + 0.378728i
\(285\) −10.6505 + 23.3212i −0.630878 + 1.38143i
\(286\) 4.16324 + 1.22244i 0.246178 + 0.0722843i
\(287\) 0.541113 + 0.624478i 0.0319409 + 0.0368618i
\(288\) −3.78366 4.36657i −0.222954 0.257303i
\(289\) −10.8255 3.17866i −0.636796 0.186980i
\(290\) −8.81387 + 19.2997i −0.517569 + 1.13332i
\(291\) 3.65654 + 2.34992i 0.214350 + 0.137754i
\(292\) −13.7607 + 4.04049i −0.805281 + 0.236452i
\(293\) −3.73936 + 26.0078i −0.218456 + 1.51939i 0.525286 + 0.850926i \(0.323958\pi\)
−0.743742 + 0.668467i \(0.766951\pi\)
\(294\) 0.345139 + 0.755750i 0.0201289 + 0.0440762i
\(295\) −2.88587 20.0716i −0.168022 1.16862i
\(296\) −10.5843 + 6.80211i −0.615199 + 0.395365i
\(297\) −0.745196 + 0.860003i −0.0432407 + 0.0499024i
\(298\) 2.54431 0.147388
\(299\) 11.3224 18.8744i 0.654794 1.09153i
\(300\) −7.60023 −0.438800
\(301\) 1.73883 2.00671i 0.100224 0.115665i
\(302\) −14.2232 + 9.14067i −0.818451 + 0.525986i
\(303\) −0.0748334 0.520477i −0.00429906 0.0299006i
\(304\) 1.08492 + 2.37565i 0.0622247 + 0.136253i
\(305\) 0.292549 2.03472i 0.0167513 0.116508i
\(306\) 4.23949 1.24483i 0.242355 0.0711619i
\(307\) 10.0804 + 6.47825i 0.575316 + 0.369733i 0.795710 0.605678i \(-0.207098\pi\)
−0.220394 + 0.975411i \(0.570734\pi\)
\(308\) −0.619132 + 1.35571i −0.0352783 + 0.0772487i
\(309\) 14.0184 + 4.11616i 0.797476 + 0.234160i
\(310\) −4.67876 5.39958i −0.265736 0.306676i
\(311\) 0.626290 + 0.722777i 0.0355136 + 0.0409849i 0.773229 0.634127i \(-0.218641\pi\)
−0.737715 + 0.675112i \(0.764095\pi\)
\(312\) −12.1088 3.55547i −0.685526 0.201289i
\(313\) −12.7327 + 27.8808i −0.719697 + 1.57592i 0.0946310 + 0.995512i \(0.469833\pi\)
−0.814328 + 0.580405i \(0.802894\pi\)
\(314\) −4.11604 2.64522i −0.232282 0.149278i
\(315\) 3.15364 0.925994i 0.177688 0.0521738i
\(316\) −0.881365 + 6.13003i −0.0495807 + 0.344841i
\(317\) 10.7443 + 23.5267i 0.603460 + 1.32139i 0.926958 + 0.375164i \(0.122414\pi\)
−0.323498 + 0.946229i \(0.604859\pi\)
\(318\) −1.23523 8.59119i −0.0692680 0.481770i
\(319\) 7.43790 4.78005i 0.416442 0.267631i
\(320\) 8.89096 10.2607i 0.497020 0.573591i
\(321\) 14.7724 0.824516
\(322\) −3.09039 2.51514i −0.172220 0.140163i
\(323\) −41.4834 −2.30820
\(324\) 0.857685 0.989821i 0.0476492 0.0549901i
\(325\) −22.4043 + 14.3983i −1.24277 + 0.798677i
\(326\) 1.93461 + 13.4555i 0.107148 + 0.745231i
\(327\) −2.89511 6.33940i −0.160100 0.350569i
\(328\) −0.323365 + 2.24905i −0.0178548 + 0.124183i
\(329\) −5.24088 + 1.53886i −0.288939 + 0.0848402i
\(330\) −2.61416 1.68002i −0.143905 0.0924819i
\(331\) −1.37936 + 3.02039i −0.0758167 + 0.166015i −0.943745 0.330674i \(-0.892724\pi\)
0.867928 + 0.496689i \(0.165451\pi\)
\(332\) 7.60128 + 2.23194i 0.417174 + 0.122493i
\(333\) −2.99627 3.45787i −0.164194 0.189490i
\(334\) 4.88774 + 5.64075i 0.267445 + 0.308648i
\(335\) 6.29985 + 1.84980i 0.344198 + 0.101066i
\(336\) 0.139086 0.304557i 0.00758779 0.0166149i
\(337\) −24.3587 15.6544i −1.32690 0.852748i −0.331038 0.943617i \(-0.607399\pi\)
−0.995863 + 0.0908696i \(0.971035\pi\)
\(338\) −6.42730 + 1.88722i −0.349599 + 0.102651i
\(339\) −2.64304 + 18.3827i −0.143550 + 0.998414i
\(340\) −9.51024 20.8245i −0.515765 1.12937i
\(341\) 0.423712 + 2.94698i 0.0229453 + 0.159588i
\(342\) 5.45198 3.50377i 0.294809 0.189462i
\(343\) −0.654861 + 0.755750i −0.0353592 + 0.0408066i
\(344\) 7.30148 0.393669
\(345\) −11.5886 + 10.6852i −0.623907 + 0.575270i
\(346\) 3.35313 0.180265
\(347\) 3.10917 3.58817i 0.166909 0.192623i −0.666133 0.745833i \(-0.732052\pi\)
0.833042 + 0.553210i \(0.186597\pi\)
\(348\) −8.56066 + 5.50160i −0.458900 + 0.294917i
\(349\) −1.17860 8.19737i −0.0630892 0.438795i −0.996745 0.0806228i \(-0.974309\pi\)
0.933655 0.358172i \(-0.116600\pi\)
\(350\) 2.00282 + 4.38557i 0.107055 + 0.234419i
\(351\) 0.653140 4.54269i 0.0348620 0.242471i
\(352\) −6.30851 + 1.85234i −0.336244 + 0.0987303i
\(353\) −1.44789 0.930505i −0.0770636 0.0495258i 0.501542 0.865134i \(-0.332766\pi\)
−0.578605 + 0.815608i \(0.696403\pi\)
\(354\) −2.12936 + 4.66265i −0.113174 + 0.247817i
\(355\) −28.4257 8.34654i −1.50868 0.442988i
\(356\) −11.9600 13.8026i −0.633880 0.731536i
\(357\) 3.48264 + 4.01918i 0.184321 + 0.212717i
\(358\) 1.06173 + 0.311753i 0.0561144 + 0.0164767i
\(359\) 4.00946 8.77949i 0.211611 0.463364i −0.773827 0.633397i \(-0.781660\pi\)
0.985438 + 0.170033i \(0.0543874\pi\)
\(360\) 7.60329 + 4.88634i 0.400729 + 0.257533i
\(361\) −40.1506 + 11.7893i −2.11319 + 0.620489i
\(362\) −3.04017 + 21.1448i −0.159788 + 1.11135i
\(363\) −4.03163 8.82805i −0.211606 0.463352i
\(364\) −0.855431 5.94965i −0.0448368 0.311847i
\(365\) 30.2772 19.4580i 1.58478 1.01848i
\(366\) −0.340282 + 0.392706i −0.0177868 + 0.0205271i
\(367\) 12.5073 0.652875 0.326438 0.945219i \(-0.394152\pi\)
0.326438 + 0.945219i \(0.394152\pi\)
\(368\) 0.0495503 + 1.60494i 0.00258299 + 0.0836635i
\(369\) −0.826303 −0.0430156
\(370\) 8.18207 9.44262i 0.425366 0.490898i
\(371\) 8.78842 5.64798i 0.456272 0.293228i
\(372\) −0.487672 3.39184i −0.0252846 0.175858i
\(373\) −6.10837 13.3755i −0.316280 0.692556i 0.683003 0.730415i \(-0.260673\pi\)
−0.999283 + 0.0378594i \(0.987946\pi\)
\(374\) 0.715556 4.97680i 0.0370005 0.257344i
\(375\) 2.53218 0.743517i 0.130761 0.0383950i
\(376\) −12.6355 8.12036i −0.651627 0.418776i
\(377\) −14.8129 + 32.4357i −0.762902 + 1.67052i
\(378\) −0.797176 0.234072i −0.0410023 0.0120394i
\(379\) 15.4361 + 17.8142i 0.792901 + 0.915056i 0.997970 0.0636914i \(-0.0202873\pi\)
−0.205069 + 0.978748i \(0.565742\pi\)
\(380\) −21.9894 25.3771i −1.12803 1.30182i
\(381\) −7.23117 2.12326i −0.370464 0.108778i
\(382\) 3.81571 8.35524i 0.195229 0.427491i
\(383\) −10.0659 6.46897i −0.514344 0.330549i 0.257587 0.966255i \(-0.417073\pi\)
−0.771931 + 0.635706i \(0.780709\pi\)
\(384\) 7.79460 2.28870i 0.397766 0.116795i
\(385\) 0.532283 3.70211i 0.0271277 0.188677i
\(386\) −5.81277 12.7282i −0.295862 0.647847i
\(387\) 0.377883 + 2.62823i 0.0192089 + 0.133601i
\(388\) −4.78905 + 3.07773i −0.243127 + 0.156248i
\(389\) −4.25713 + 4.91298i −0.215845 + 0.249098i −0.853338 0.521358i \(-0.825426\pi\)
0.637494 + 0.770456i \(0.279971\pi\)
\(390\) 12.5325 0.634610
\(391\) −23.5160 9.87414i −1.18925 0.499357i
\(392\) −2.74982 −0.138887
\(393\) −1.51824 + 1.75215i −0.0765853 + 0.0883841i
\(394\) −10.7102 + 6.88306i −0.539575 + 0.346764i
\(395\) −2.21181 15.3835i −0.111288 0.774027i
\(396\) −0.619132 1.35571i −0.0311125 0.0681269i
\(397\) 3.99900 27.8136i 0.200704 1.39593i −0.601498 0.798874i \(-0.705429\pi\)
0.802202 0.597052i \(-0.203662\pi\)
\(398\) −8.30127 + 2.43747i −0.416105 + 0.122180i
\(399\) 6.56208 + 4.21720i 0.328515 + 0.211124i
\(400\) 0.807110 1.76732i 0.0403555 0.0883662i
\(401\) 0.654021 + 0.192038i 0.0326602 + 0.00958991i 0.298022 0.954559i \(-0.403673\pi\)
−0.265362 + 0.964149i \(0.585491\pi\)
\(402\) −1.08687 1.25432i −0.0542083 0.0625597i
\(403\) −7.86328 9.07471i −0.391698 0.452044i
\(404\) 0.660794 + 0.194026i 0.0328757 + 0.00965318i
\(405\) −1.36538 + 2.98976i −0.0678462 + 0.148562i
\(406\) 5.43051 + 3.48998i 0.269512 + 0.173205i
\(407\) −4.99568 + 1.46687i −0.247627 + 0.0727098i
\(408\) −2.08120 + 14.4750i −0.103035 + 0.716621i
\(409\) 13.0153 + 28.4995i 0.643564 + 1.40921i 0.897076 + 0.441877i \(0.145687\pi\)
−0.253511 + 0.967332i \(0.581585\pi\)
\(410\) −0.321124 2.23346i −0.0158592 0.110303i
\(411\) −1.78808 + 1.14913i −0.0881992 + 0.0566822i
\(412\) −12.5309 + 14.4615i −0.617355 + 0.712465i
\(413\) −6.16957 −0.303585
\(414\) 3.92459 0.688493i 0.192883 0.0338376i
\(415\) −19.8809 −0.975917
\(416\) 17.3647 20.0399i 0.851375 0.982539i
\(417\) −17.2762 + 11.1028i −0.846020 + 0.543704i
\(418\) −1.04954 7.29971i −0.0513347 0.357041i
\(419\) −6.79935 14.8885i −0.332170 0.727351i 0.667684 0.744445i \(-0.267286\pi\)
−0.999854 + 0.0170938i \(0.994559\pi\)
\(420\) −0.612633 + 4.26095i −0.0298934 + 0.207913i
\(421\) 7.94399 2.33257i 0.387167 0.113682i −0.0823557 0.996603i \(-0.526244\pi\)
0.469522 + 0.882921i \(0.344426\pi\)
\(422\) 15.7335 + 10.1113i 0.765894 + 0.492210i
\(423\) 2.26905 4.96854i 0.110325 0.241578i
\(424\) 27.5632 + 8.09328i 1.33859 + 0.393045i
\(425\) 20.2095 + 23.3230i 0.980306 + 1.13133i
\(426\) 4.90410 + 5.65964i 0.237605 + 0.274210i
\(427\) −0.600094 0.176204i −0.0290406 0.00852709i
\(428\) −8.03735 + 17.5993i −0.388500 + 0.850696i
\(429\) −4.39344 2.82349i −0.212117 0.136319i
\(430\) −6.95716 + 2.04281i −0.335504 + 0.0985129i
\(431\) −3.08240 + 21.4386i −0.148474 + 1.03266i 0.770245 + 0.637748i \(0.220134\pi\)
−0.918719 + 0.394912i \(0.870775\pi\)
\(432\) 0.139086 + 0.304557i 0.00669180 + 0.0146530i
\(433\) 5.88583 + 40.9368i 0.282855 + 1.96730i 0.251796 + 0.967780i \(0.418979\pi\)
0.0310585 + 0.999518i \(0.490112\pi\)
\(434\) −1.82868 + 1.17522i −0.0877795 + 0.0564125i
\(435\) 16.7233 19.2997i 0.801820 0.925349i
\(436\) 9.12770 0.437137
\(437\) −37.1751 4.17870i −1.77833 0.199894i
\(438\) −9.09767 −0.434704
\(439\) −16.0879 + 18.5664i −0.767832 + 0.886125i −0.996168 0.0874569i \(-0.972126\pi\)
0.228336 + 0.973582i \(0.426671\pi\)
\(440\) 8.65214 5.56039i 0.412474 0.265081i
\(441\) −0.142315 0.989821i −0.00677690 0.0471344i
\(442\) 8.42383 + 18.4456i 0.400681 + 0.877368i
\(443\) −5.91004 + 41.1053i −0.280795 + 1.95297i 0.0215398 + 0.999768i \(0.493143\pi\)
−0.302334 + 0.953202i \(0.597766\pi\)
\(444\) 5.74979 1.68829i 0.272873 0.0801227i
\(445\) 38.5569 + 24.7790i 1.82777 + 1.17464i
\(446\) −5.13900 + 11.2528i −0.243339 + 0.532837i
\(447\) −2.93833 0.862771i −0.138978 0.0408077i
\(448\) −2.70506 3.12181i −0.127802 0.147492i
\(449\) 13.5243 + 15.6079i 0.638252 + 0.736583i 0.979065 0.203549i \(-0.0652475\pi\)
−0.340812 + 0.940131i \(0.610702\pi\)
\(450\) −4.62596 1.35830i −0.218070 0.0640311i
\(451\) −0.390610 + 0.855316i −0.0183931 + 0.0402753i
\(452\) −20.4625 13.1505i −0.962477 0.618546i
\(453\) 19.5253 5.73316i 0.917381 0.269367i
\(454\) −0.909170 + 6.32342i −0.0426695 + 0.296773i
\(455\) 6.26627 + 13.7212i 0.293767 + 0.643260i
\(456\) 3.05259 + 21.2312i 0.142951 + 0.994244i
\(457\) 25.6434 16.4800i 1.19955 0.770903i 0.220670 0.975348i \(-0.429176\pi\)
0.978878 + 0.204446i \(0.0655392\pi\)
\(458\) 1.98228 2.28768i 0.0926260 0.106896i
\(459\) −5.31813 −0.248229
\(460\) −6.42486 19.6198i −0.299561 0.914776i
\(461\) −1.07044 −0.0498553 −0.0249277 0.999689i \(-0.507936\pi\)
−0.0249277 + 0.999689i \(0.507936\pi\)
\(462\) −0.619132 + 0.714516i −0.0288046 + 0.0332423i
\(463\) 12.2334 7.86192i 0.568534 0.365374i −0.224573 0.974457i \(-0.572099\pi\)
0.793107 + 0.609083i \(0.208462\pi\)
\(464\) −0.370215 2.57490i −0.0171868 0.119537i
\(465\) 3.57233 + 7.82232i 0.165663 + 0.362752i
\(466\) 0.366571 2.54955i 0.0169811 0.118106i
\(467\) −35.8146 + 10.5161i −1.65730 + 0.486628i −0.970678 0.240383i \(-0.922727\pi\)
−0.686625 + 0.727012i \(0.740909\pi\)
\(468\) 5.05664 + 3.24970i 0.233743 + 0.150218i
\(469\) 0.829850 1.81712i 0.0383189 0.0839068i
\(470\) 14.3116 + 4.20226i 0.660144 + 0.193836i
\(471\) 3.85647 + 4.45060i 0.177697 + 0.205073i
\(472\) −11.1098 12.8214i −0.511372 0.590155i
\(473\) 2.89915 + 0.851268i 0.133303 + 0.0391413i
\(474\) −1.63200 + 3.57359i −0.0749604 + 0.164140i
\(475\) 38.0794 + 24.4721i 1.74720 + 1.12286i
\(476\) −6.68313 + 1.96234i −0.306321 + 0.0899439i
\(477\) −1.48674 + 10.3405i −0.0680730 + 0.473458i
\(478\) −2.87333 6.29171i −0.131423 0.287776i
\(479\) −1.21807 8.47187i −0.0556551 0.387090i −0.998542 0.0539772i \(-0.982810\pi\)
0.942887 0.333113i \(-0.108099\pi\)
\(480\) −15.9757 + 10.2670i −0.729189 + 0.468621i
\(481\) 13.7511 15.8696i 0.626994 0.723590i
\(482\) −1.46240 −0.0666104
\(483\) 2.71609 + 3.95258i 0.123586 + 0.179848i
\(484\) 12.7109 0.577770
\(485\) 9.35542 10.7967i 0.424808 0.490254i
\(486\) 0.698939 0.449181i 0.0317045 0.0203752i
\(487\) 5.80783 + 40.3943i 0.263178 + 1.83044i 0.508574 + 0.861018i \(0.330173\pi\)
−0.245396 + 0.969423i \(0.578918\pi\)
\(488\) −0.714436 1.56440i −0.0323410 0.0708169i
\(489\) 2.32853 16.1952i 0.105300 0.732374i
\(490\) 2.62014 0.769343i 0.118366 0.0347554i
\(491\) −23.4232 15.0532i −1.05708 0.679341i −0.107923 0.994159i \(-0.534420\pi\)
−0.949152 + 0.314818i \(0.898056\pi\)
\(492\) 0.449573 0.984428i 0.0202683 0.0443814i
\(493\) 39.6463 + 11.6412i 1.78558 + 0.524293i
\(494\) 19.4774 + 22.4782i 0.876331 + 1.01134i
\(495\) 2.44930 + 2.82664i 0.110088 + 0.127048i
\(496\) 0.840511 + 0.246796i 0.0377401 + 0.0110815i
\(497\) −3.74439 + 8.19907i −0.167959 + 0.367778i
\(498\) 4.22771 + 2.71698i 0.189448 + 0.121751i
\(499\) −5.64612 + 1.65785i −0.252755 + 0.0742156i −0.405656 0.914026i \(-0.632957\pi\)
0.152901 + 0.988242i \(0.451139\pi\)
\(500\) −0.491907 + 3.42129i −0.0219987 + 0.153005i
\(501\) −3.73189 8.17170i −0.166729 0.365085i
\(502\) 2.17039 + 15.0954i 0.0968693 + 0.673741i
\(503\) 26.2112 16.8449i 1.16870 0.751077i 0.195423 0.980719i \(-0.437392\pi\)
0.973275 + 0.229642i \(0.0737557\pi\)
\(504\) 1.80075 2.07817i 0.0802116 0.0925691i
\(505\) −1.72829 −0.0769078
\(506\) 1.14256 4.38785i 0.0507932 0.195064i
\(507\) 8.06259 0.358072
\(508\) 6.46390 7.45974i 0.286789 0.330973i
\(509\) 29.6625 19.0629i 1.31477 0.844948i 0.320028 0.947408i \(-0.396308\pi\)
0.994737 + 0.102460i \(0.0326713\pi\)
\(510\) −2.06677 14.3747i −0.0915182 0.636523i
\(511\) −4.54884 9.96056i −0.201229 0.440629i
\(512\) −0.537357 + 3.73740i −0.0237481 + 0.165171i
\(513\) −7.48439 + 2.19762i −0.330444 + 0.0970271i
\(514\) −0.162385 0.104359i −0.00716251 0.00460306i
\(515\) 19.9484 43.6809i 0.879032 1.92481i
\(516\) −3.33678 0.979768i −0.146894 0.0431319i
\(517\) −4.07037 4.69745i −0.179015 0.206594i
\(518\) −2.48939 2.87291i −0.109377 0.126228i
\(519\) −3.87240 1.13704i −0.169979 0.0499105i
\(520\) −17.2311 + 37.7308i −0.755633 + 1.65461i
\(521\) −4.78381 3.07437i −0.209582 0.134690i 0.431639 0.902047i \(-0.357936\pi\)
−0.641221 + 0.767356i \(0.721572\pi\)
\(522\) −6.19378 + 1.81866i −0.271094 + 0.0796004i
\(523\) −1.64326 + 11.4291i −0.0718547 + 0.499760i 0.921834 + 0.387585i \(0.126691\pi\)
−0.993688 + 0.112175i \(0.964218\pi\)
\(524\) −1.26140 2.76209i −0.0551046 0.120662i
\(525\) −0.825844 5.74387i −0.0360428 0.250683i
\(526\) −14.5479 + 9.34938i −0.634319 + 0.407652i
\(527\) −9.11187 + 10.5157i −0.396919 + 0.458069i
\(528\) 0.381000 0.0165809
\(529\) −20.0791 11.2175i −0.873003 0.487716i
\(530\) −28.5277 −1.23917
\(531\) 4.04021 4.66265i 0.175330 0.202342i
\(532\) −8.59450 + 5.52335i −0.372619 + 0.239468i
\(533\) −0.539691 3.75363i −0.0233766 0.162588i
\(534\) −4.81281 10.5386i −0.208271 0.456049i
\(535\) 6.90992 48.0595i 0.298742 2.07779i
\(536\) 5.27064 1.54760i 0.227657 0.0668461i
\(537\) −1.12044 0.720063i −0.0483506 0.0310730i
\(538\) −8.59077 + 18.8112i −0.370375 + 0.811007i
\(539\) −1.09185 0.320597i −0.0470294 0.0138091i
\(540\) −2.81902 3.25333i −0.121312 0.140001i
\(541\) −11.7314 13.5388i −0.504372 0.582077i 0.445276 0.895393i \(-0.353105\pi\)
−0.949649 + 0.313316i \(0.898560\pi\)
\(542\) 25.5820 + 7.51154i 1.09884 + 0.322648i
\(543\) 10.6811 23.3884i 0.458372 1.00369i
\(544\) −25.8493 16.6123i −1.10828 0.712249i
\(545\) −21.9783 + 6.45343i −0.941449 + 0.276434i
\(546\) 0.542648 3.77420i 0.0232232 0.161521i
\(547\) −5.67427 12.4249i −0.242614 0.531251i 0.748678 0.662934i \(-0.230689\pi\)
−0.991292 + 0.131683i \(0.957962\pi\)
\(548\) −0.396176 2.75546i −0.0169238 0.117708i
\(549\) 0.526144 0.338132i 0.0224553 0.0144311i
\(550\) −3.59278 + 4.14629i −0.153197 + 0.176799i
\(551\) 60.6061 2.58191
\(552\) −3.32315 + 12.7621i −0.141443 + 0.543191i
\(553\) −4.72854 −0.201078
\(554\) −14.1423 + 16.3211i −0.600848 + 0.693416i
\(555\) −12.6511 + 8.13038i −0.537010 + 0.345116i
\(556\) −3.82782 26.6230i −0.162336 1.12907i
\(557\) −14.4613 31.6659i −0.612746 1.34173i −0.920680 0.390319i \(-0.872365\pi\)
0.307934 0.951408i \(-0.400362\pi\)
\(558\) 0.309358 2.15163i 0.0130962 0.0910859i
\(559\) −11.6924 + 3.43321i −0.494537 + 0.145209i
\(560\) −0.925764 0.594953i −0.0391207 0.0251413i
\(561\) −2.51399 + 5.50487i −0.106141 + 0.232416i
\(562\) 13.5746 + 3.98587i 0.572611 + 0.168134i
\(563\) 3.92287 + 4.52723i 0.165329 + 0.190800i 0.832369 0.554222i \(-0.186984\pi\)
−0.667040 + 0.745022i \(0.732439\pi\)
\(564\) 4.68480 + 5.40654i 0.197265 + 0.227656i
\(565\) 58.5688 + 17.1974i 2.46401 + 0.723498i
\(566\) −9.66802 + 21.1700i −0.406377 + 0.889842i
\(567\) 0.841254 + 0.540641i 0.0353293 + 0.0227048i
\(568\) −23.7818 + 6.98296i −0.997861 + 0.292998i
\(569\) −2.15073 + 14.9587i −0.0901634 + 0.627101i 0.893765 + 0.448536i \(0.148054\pi\)
−0.983928 + 0.178565i \(0.942855\pi\)
\(570\) −8.84871 19.3760i −0.370632 0.811571i
\(571\) −2.54222 17.6815i −0.106389 0.739949i −0.971271 0.237975i \(-0.923516\pi\)
0.864883 0.501974i \(-0.167393\pi\)
\(572\) 5.75418 3.69799i 0.240594 0.154621i
\(573\) −7.23985 + 8.35524i −0.302449 + 0.349045i
\(574\) −0.686517 −0.0286547
\(575\) 15.7613 + 22.9366i 0.657291 + 0.956521i
\(576\) 4.13075 0.172114
\(577\) −6.76818 + 7.81089i −0.281763 + 0.325172i −0.878935 0.476941i \(-0.841745\pi\)
0.597172 + 0.802113i \(0.296291\pi\)
\(578\) 7.88582 5.06791i 0.328007 0.210797i
\(579\) 2.39684 + 16.6704i 0.0996092 + 0.692797i
\(580\) 13.8942 + 30.4241i 0.576925 + 1.26329i
\(581\) −0.860827 + 5.98719i −0.0357131 + 0.248390i
\(582\) −3.46495 + 1.01740i −0.143627 + 0.0421727i
\(583\) 10.0008 + 6.42710i 0.414189 + 0.266183i
\(584\) 12.5085 27.3897i 0.517604 1.13339i
\(585\) −14.4733 4.24975i −0.598399 0.175706i
\(586\) −14.2958 16.4982i −0.590554 0.681535i
\(587\) −5.08620 5.86978i −0.209930 0.242272i 0.641013 0.767530i \(-0.278514\pi\)
−0.850943 + 0.525258i \(0.823969\pi\)
\(588\) 1.25667 + 0.368991i 0.0518241 + 0.0152169i
\(589\) −8.47805 + 18.5643i −0.349332 + 0.764930i
\(590\) 14.1731 + 9.10851i 0.583498 + 0.374991i
\(591\) 14.7029 4.31715i 0.604796 0.177584i
\(592\) −0.218014 + 1.51632i −0.00896031 + 0.0623204i
\(593\) −11.5033 25.1888i −0.472385 1.03438i −0.984488 0.175455i \(-0.943860\pi\)
0.512103 0.858924i \(-0.328867\pi\)
\(594\) −0.134550 0.935817i −0.00552066 0.0383970i
\(595\) 14.7047 9.45016i 0.602835 0.387419i
\(596\) 2.62656 3.03121i 0.107588 0.124163i
\(597\) 10.4134 0.426190
\(598\) 5.69091 + 17.3785i 0.232719 + 0.710659i
\(599\) −28.3181 −1.15705 −0.578523 0.815666i \(-0.696371\pi\)
−0.578523 + 0.815666i \(0.696371\pi\)
\(600\) 10.4496 12.0595i 0.426604 0.492327i
\(601\) −11.1980 + 7.19654i −0.456777 + 0.293553i −0.748724 0.662882i \(-0.769333\pi\)
0.291947 + 0.956434i \(0.405697\pi\)
\(602\) 0.313957 + 2.18362i 0.0127959 + 0.0889976i
\(603\) 0.829850 + 1.81712i 0.0337941 + 0.0739988i
\(604\) −3.79303 + 26.3811i −0.154336 + 1.07343i
\(605\) −30.6064 + 8.98684i −1.24433 + 0.365367i
\(606\) 0.367523 + 0.236192i 0.0149296 + 0.00959466i
\(607\) 12.7717 27.9660i 0.518386 1.13511i −0.451662 0.892189i \(-0.649169\pi\)
0.970047 0.242917i \(-0.0781042\pi\)
\(608\) −43.2434 12.6974i −1.75375 0.514948i
\(609\) −5.08804 5.87191i −0.206178 0.237942i
\(610\) 1.11843 + 1.29074i 0.0452840 + 0.0522605i
\(611\) 24.0525 + 7.06245i 0.973060 + 0.285716i
\(612\) 2.89348 6.33584i 0.116962 0.256111i
\(613\) −26.7901 17.2170i −1.08204 0.695387i −0.127014 0.991901i \(-0.540539\pi\)
−0.955028 + 0.296514i \(0.904176\pi\)
\(614\) −9.55219 + 2.80478i −0.385495 + 0.113192i
\(615\) −0.386510 + 2.68823i −0.0155856 + 0.108400i
\(616\) −1.29989 2.84637i −0.0523742 0.114683i
\(617\) 0.729051 + 5.07066i 0.0293505 + 0.204137i 0.999220 0.0394876i \(-0.0125726\pi\)
−0.969870 + 0.243625i \(0.921663\pi\)
\(618\) −10.2116 + 6.56261i −0.410771 + 0.263987i
\(619\) 19.8333 22.8888i 0.797167 0.919979i −0.201056 0.979580i \(-0.564437\pi\)
0.998222 + 0.0596004i \(0.0189826\pi\)
\(620\) −11.2629 −0.452328
\(621\) −4.76582 0.535705i −0.191246 0.0214971i
\(622\) −0.794582 −0.0318598
\(623\) 9.13173 10.5386i 0.365855 0.422219i
\(624\) −1.29266 + 0.830744i −0.0517479 + 0.0332564i
\(625\) 2.89477 + 20.1336i 0.115791 + 0.805342i
\(626\) −10.5787 23.1642i −0.422812 0.925829i
\(627\) −1.26324 + 8.78605i −0.0504491 + 0.350881i
\(628\) −7.40051 + 2.17299i −0.295313 + 0.0867116i
\(629\) −20.4700 13.1553i −0.816192 0.524535i
\(630\) −1.13440 + 2.48398i −0.0451955 + 0.0989643i
\(631\) −13.2474 3.88979i −0.527371 0.154850i 0.00719952 0.999974i \(-0.497708\pi\)
−0.534570 + 0.845124i \(0.679526\pi\)
\(632\) −8.51490 9.82672i −0.338704 0.390886i
\(633\) −14.7413 17.0123i −0.585912 0.676179i
\(634\) −20.6182 6.05404i −0.818852 0.240437i
\(635\) −10.2901 + 22.5322i −0.408351 + 0.894163i
\(636\) −11.5104 7.39728i −0.456417 0.293321i
\(637\) 4.40350 1.29298i 0.174473 0.0512299i
\(638\) −1.04541 + 7.27097i −0.0413881 + 0.287860i
\(639\) −3.74439 8.19907i −0.148126 0.324350i
\(640\) −3.79991 26.4289i −0.150205 1.04470i
\(641\) −11.3269 + 7.27938i −0.447387 + 0.287518i −0.744871 0.667209i \(-0.767489\pi\)
0.297484 + 0.954727i \(0.403853\pi\)
\(642\) −8.03735 + 9.27559i −0.317209 + 0.366078i
\(643\) 27.3221 1.07748 0.538738 0.842473i \(-0.318901\pi\)
0.538738 + 0.842473i \(0.318901\pi\)
\(644\) −6.18672 + 1.08534i −0.243791 + 0.0427684i
\(645\) 8.72727 0.343636
\(646\) 22.5702 26.0474i 0.888012 1.02482i
\(647\) −5.41706 + 3.48133i −0.212966 + 0.136865i −0.642776 0.766055i \(-0.722217\pi\)
0.429809 + 0.902920i \(0.358581\pi\)
\(648\) 0.391340 + 2.72183i 0.0153733 + 0.106923i
\(649\) −2.91648 6.38620i −0.114482 0.250680i
\(650\) 3.14895 21.9015i 0.123512 0.859046i
\(651\) 2.51039 0.737116i 0.0983899 0.0288899i
\(652\) 18.0275 + 11.5856i 0.706013 + 0.453727i
\(653\) −9.82926 + 21.5231i −0.384649 + 0.842263i 0.613950 + 0.789345i \(0.289580\pi\)
−0.998599 + 0.0529183i \(0.983148\pi\)
\(654\) 5.55567 + 1.63129i 0.217244 + 0.0637885i
\(655\) 4.99014 + 5.75893i 0.194981 + 0.225020i
\(656\) 0.181172 + 0.209083i 0.00707357 + 0.00816334i
\(657\) 10.5065 + 3.08500i 0.409899 + 0.120357i
\(658\) 1.88520 4.12801i 0.0734927 0.160927i
\(659\) −0.134797 0.0866291i −0.00525096 0.00337459i 0.538013 0.842937i \(-0.319175\pi\)
−0.543264 + 0.839562i \(0.682812\pi\)
\(660\) −4.70017 + 1.38009i −0.182954 + 0.0537201i
\(661\) 0.771828 5.36818i 0.0300206 0.208798i −0.969290 0.245920i \(-0.920910\pi\)
0.999311 + 0.0371220i \(0.0118190\pi\)
\(662\) −1.14602 2.50943i −0.0445412 0.0975316i
\(663\) −3.47348 24.1586i −0.134899 0.938243i
\(664\) −13.9925 + 8.99246i −0.543016 + 0.348975i
\(665\) 16.7894 19.3760i 0.651064 0.751368i
\(666\) 3.80140 0.147301
\(667\) 34.3562 + 14.4258i 1.33028 + 0.558571i
\(668\) 11.7659 0.455237
\(669\) 9.75064 11.2528i 0.376981 0.435060i
\(670\) −4.58910 + 2.94924i −0.177292 + 0.113939i
\(671\) −0.101286 0.704460i −0.00391010 0.0271954i
\(672\) 2.40019 + 5.25568i 0.0925892 + 0.202742i
\(673\) 5.31127 36.9407i 0.204734 1.42396i −0.585261 0.810845i \(-0.699008\pi\)
0.789995 0.613113i \(-0.210083\pi\)
\(674\) 23.0824 6.77760i 0.889100 0.261063i
\(675\) 4.88174 + 3.13731i 0.187898 + 0.120755i
\(676\) −4.38668 + 9.60548i −0.168718 + 0.369441i
\(677\) 40.3116 + 11.8366i 1.54930 + 0.454916i 0.940892 0.338708i \(-0.109990\pi\)
0.608409 + 0.793624i \(0.291808\pi\)
\(678\) −10.1045 11.6612i −0.388061 0.447846i
\(679\) −2.84638 3.28489i −0.109234 0.126063i
\(680\) 46.1186 + 13.5416i 1.76857 + 0.519298i
\(681\) 3.19422 6.99437i 0.122403 0.268025i
\(682\) −2.08094 1.33734i −0.0796834 0.0512094i
\(683\) 18.4552 5.41893i 0.706167 0.207349i 0.0911203 0.995840i \(-0.470955\pi\)
0.615047 + 0.788490i \(0.289137\pi\)
\(684\) 1.45393 10.1123i 0.0555925 0.386654i
\(685\) 2.90210 + 6.35471i 0.110883 + 0.242801i
\(686\) −0.118239 0.822373i −0.00451440 0.0313984i
\(687\) −3.06501 + 1.96976i −0.116937 + 0.0751510i
\(688\) 0.582182 0.671874i 0.0221955 0.0256150i
\(689\) −47.9446 −1.82654
\(690\) −0.404136 13.0900i −0.0153852 0.498328i
\(691\) −45.4686 −1.72971 −0.864853 0.502025i \(-0.832588\pi\)
−0.864853 + 0.502025i \(0.832588\pi\)
\(692\) 3.46151 3.99480i 0.131587 0.151860i
\(693\) 0.957302 0.615220i 0.0363649 0.0233703i
\(694\) 0.561381 + 3.90449i 0.0213097 + 0.148212i
\(695\) 28.0398 + 61.3986i 1.06361 + 2.32898i
\(696\) 3.04057 21.1476i 0.115253 0.801599i
\(697\) −4.21638 + 1.23804i −0.159707 + 0.0468942i
\(698\) 5.78838 + 3.71996i 0.219093 + 0.140803i
\(699\) −1.28789 + 2.82008i −0.0487123 + 0.106665i
\(700\) 7.29237 + 2.14123i 0.275626 + 0.0809310i
\(701\) 28.1358 + 32.4705i 1.06268 + 1.22639i 0.973093 + 0.230414i \(0.0740080\pi\)
0.0895830 + 0.995979i \(0.471447\pi\)
\(702\) 2.49699 + 2.88168i 0.0942429 + 0.108762i
\(703\) −34.2443 10.0550i −1.29155 0.379232i
\(704\) 1.95269 4.27579i 0.0735947 0.161150i
\(705\) −15.1029 9.70605i −0.568808 0.365551i
\(706\) 1.37203 0.402865i 0.0516371 0.0151620i
\(707\) −0.0748334 + 0.520477i −0.00281440 + 0.0195746i
\(708\) 3.35673 + 7.35021i 0.126154 + 0.276238i
\(709\) 3.09536 + 21.5287i 0.116249 + 0.808528i 0.961627 + 0.274360i \(0.0884660\pi\)
−0.845378 + 0.534168i \(0.820625\pi\)
\(710\) 20.7066 13.3073i 0.777105 0.499415i
\(711\) 3.09653 3.57359i 0.116129 0.134020i
\(712\) 38.3449 1.43704
\(713\) −9.22481 + 8.50569i −0.345472 + 0.318541i
\(714\) −4.41847 −0.165357
\(715\) −11.2408 + 12.9726i −0.420382 + 0.485147i
\(716\) 1.46746 0.943082i 0.0548417 0.0352446i
\(717\) 1.18479 + 8.24039i 0.0442467 + 0.307743i
\(718\) 3.33118 + 7.29426i 0.124318 + 0.272219i
\(719\) 5.05268 35.1422i 0.188433 1.31058i −0.647632 0.761953i \(-0.724241\pi\)
0.836066 0.548630i \(-0.184850\pi\)
\(720\) 1.05588 0.310035i 0.0393504 0.0115543i
\(721\) −12.2909 7.89886i −0.457736 0.294169i
\(722\) 14.4426 31.6249i 0.537497 1.17696i
\(723\) 1.68886 + 0.495896i 0.0628096 + 0.0184426i
\(724\) 22.0528 + 25.4503i 0.819585 + 0.945852i
\(725\) −29.5256 34.0743i −1.09655 1.26549i
\(726\) 7.73665 + 2.27169i 0.287134 + 0.0843102i
\(727\) −14.7779 + 32.3590i −0.548080 + 1.20013i 0.409592 + 0.912269i \(0.365671\pi\)
−0.957673 + 0.287860i \(0.907056\pi\)
\(728\) 10.6166 + 6.82289i 0.393478 + 0.252873i
\(729\) −0.959493 + 0.281733i −0.0355368 + 0.0104345i
\(730\) −4.25551 + 29.5977i −0.157503 + 1.09546i
\(731\) 5.86609 + 12.8449i 0.216965 + 0.475088i
\(732\) 0.116575 + 0.810799i 0.00430875 + 0.0299680i
\(733\) 0.390227 0.250784i 0.0144134 0.00926290i −0.533414 0.845854i \(-0.679091\pi\)
0.547828 + 0.836591i \(0.315455\pi\)
\(734\) −6.80494 + 7.85332i −0.251175 + 0.289871i
\(735\) −3.28678 −0.121235
\(736\) −21.4913 17.4909i −0.792181 0.644724i
\(737\) 2.27321 0.0837348
\(738\) 0.449573 0.518835i 0.0165490 0.0190986i
\(739\) 4.08122 2.62284i 0.150130 0.0964828i −0.463419 0.886139i \(-0.653378\pi\)
0.613549 + 0.789656i \(0.289741\pi\)
\(740\) −2.80305 19.4957i −0.103042 0.716675i
\(741\) −14.8714 32.5639i −0.546316 1.19626i
\(742\) −1.23523 + 8.59119i −0.0453466 + 0.315392i
\(743\) −22.7359 + 6.67586i −0.834099 + 0.244914i −0.670777 0.741659i \(-0.734039\pi\)
−0.163322 + 0.986573i \(0.552221\pi\)
\(744\) 6.05243 + 3.88966i 0.221893 + 0.142602i
\(745\) −4.18130 + 9.15578i −0.153191 + 0.335442i
\(746\) 11.7219 + 3.44186i 0.429169 + 0.126015i
\(747\) −3.96109 4.57134i −0.144929 0.167257i
\(748\) −5.19050 5.99015i −0.189783 0.219022i
\(749\) −14.1740 4.16187i −0.517908 0.152071i
\(750\) −0.910852 + 1.99449i −0.0332596 + 0.0728284i
\(751\) 13.6702 + 8.78532i 0.498834 + 0.320581i 0.765750 0.643139i \(-0.222368\pi\)
−0.266916 + 0.963720i \(0.586005\pi\)
\(752\) −1.75472 + 0.515232i −0.0639880 + 0.0187886i
\(753\) 2.61232 18.1691i 0.0951981 0.662117i
\(754\) −12.3070 26.9485i −0.448194 0.981408i
\(755\) −9.51871 66.2041i −0.346421 2.40941i
\(756\) −1.10181 + 0.708089i −0.0400724 + 0.0257529i
\(757\) −30.7037 + 35.4339i −1.11594 + 1.28787i −0.162362 + 0.986731i \(0.551911\pi\)
−0.953581 + 0.301136i \(0.902634\pi\)
\(758\) −19.5840 −0.711323
\(759\) −2.80741 + 4.67992i −0.101903 + 0.169870i
\(760\) 70.5001 2.55731
\(761\) −8.80544 + 10.1620i −0.319197 + 0.368373i −0.892560 0.450928i \(-0.851093\pi\)
0.573363 + 0.819301i \(0.305638\pi\)
\(762\) 5.26752 3.38523i 0.190822 0.122634i
\(763\) 0.991819 + 6.89825i 0.0359063 + 0.249734i
\(764\) −6.01509 13.1712i −0.217618 0.476517i
\(765\) −2.48760 + 17.3016i −0.0899394 + 0.625542i
\(766\) 9.53851 2.80076i 0.344640 0.101196i
\(767\) 23.8198 + 15.3080i 0.860083 + 0.552742i
\(768\) −6.23574 + 13.6544i −0.225013 + 0.492710i
\(769\) 27.1612 + 7.97523i 0.979456 + 0.287594i 0.732000 0.681305i \(-0.238587\pi\)
0.247456 + 0.968899i \(0.420405\pi\)
\(770\) 2.03495 + 2.34846i 0.0733345 + 0.0846326i
\(771\) 0.152145 + 0.175584i 0.00547935 + 0.00632351i
\(772\) −21.1646