Properties

Label 483.2.q.c.64.2
Level $483$
Weight $2$
Character 483.64
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 40 x^{18} - 117 x^{17} + 295 x^{16} - 575 x^{15} + 1777 x^{14} - 1560 x^{13} + 4383 x^{12} - 6446 x^{11} + 7261 x^{10} + 7700 x^{9} + 7852 x^{8} - 39430 x^{7} - 101709 x^{6} + 156742 x^{5} + 999838 x^{4} + 2029154 x^{3} + 3616480 x^{2} + 4299390 x + 2374681\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 64.2
Root \(-1.22309 + 0.359132i\) of defining polynomial
Character \(\chi\) \(=\) 483.64
Dual form 483.2.q.c.400.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.273100 + 0.0801894i) q^{2} +(-0.654861 + 0.755750i) q^{3} +(-1.61435 - 1.03748i) q^{4} +(0.454513 - 3.16121i) q^{5} +(-0.239446 + 0.153882i) q^{6} +(0.415415 + 0.909632i) q^{7} +(-0.730471 - 0.843008i) q^{8} +(-0.142315 - 0.989821i) q^{9} +O(q^{10})\) \(q+(0.273100 + 0.0801894i) q^{2} +(-0.654861 + 0.755750i) q^{3} +(-1.61435 - 1.03748i) q^{4} +(0.454513 - 3.16121i) q^{5} +(-0.239446 + 0.153882i) q^{6} +(0.415415 + 0.909632i) q^{7} +(-0.730471 - 0.843008i) q^{8} +(-0.142315 - 0.989821i) q^{9} +(0.377623 - 0.826879i) q^{10} +(-3.73000 + 1.09523i) q^{11} +(1.84125 - 0.540641i) q^{12} +(-1.84701 + 4.04439i) q^{13} +(0.0405070 + 0.281733i) q^{14} +(2.09144 + 2.41365i) q^{15} +(1.46246 + 3.20234i) q^{16} +(-2.23654 + 1.43733i) q^{17} +(0.0405070 - 0.281733i) q^{18} +(-4.23642 - 2.72258i) q^{19} +(-4.01344 + 4.63175i) q^{20} +(-0.959493 - 0.281733i) q^{21} -1.10649 q^{22} +(-4.38081 - 1.95154i) q^{23} +1.11546 q^{24} +(-4.98917 - 1.46495i) q^{25} +(-0.828736 + 0.956413i) q^{26} +(0.841254 + 0.540641i) q^{27} +(0.273100 - 1.89945i) q^{28} +(3.44308 - 2.21273i) q^{29} +(0.377623 + 0.826879i) q^{30} +(-0.0545500 - 0.0629540i) q^{31} +(0.460097 + 3.20005i) q^{32} +(1.61491 - 3.53617i) q^{33} +(-0.726057 + 0.213190i) q^{34} +(3.06434 - 0.899773i) q^{35} +(-0.797176 + 1.74557i) q^{36} +(-0.916586 - 6.37500i) q^{37} +(-0.938644 - 1.08325i) q^{38} +(-1.84701 - 4.04439i) q^{39} +(-2.99693 + 1.92601i) q^{40} +(0.804363 - 5.59447i) q^{41} +(-0.239446 - 0.153882i) q^{42} +(-7.78299 + 8.98205i) q^{43} +(7.15782 + 2.10172i) q^{44} -3.19371 q^{45} +(-1.03991 - 0.884260i) q^{46} -4.31364 q^{47} +(-3.37787 - 0.991834i) q^{48} +(-0.654861 + 0.755750i) q^{49} +(-1.24507 - 0.800158i) q^{50} +(0.378355 - 2.63151i) q^{51} +(7.17771 - 4.61284i) q^{52} +(0.873996 + 1.91378i) q^{53} +(0.186393 + 0.215109i) q^{54} +(1.76690 + 12.2891i) q^{55} +(0.463379 - 1.01466i) q^{56} +(4.83185 - 1.41876i) q^{57} +(1.11774 - 0.328199i) q^{58} +(4.32749 - 9.47587i) q^{59} +(-0.872204 - 6.06631i) q^{60} +(-1.07121 - 1.23624i) q^{61} +(-0.00984935 - 0.0215671i) q^{62} +(0.841254 - 0.540641i) q^{63} +(0.871076 - 6.05846i) q^{64} +(11.9457 + 7.67701i) q^{65} +(0.724596 - 0.836229i) q^{66} +(1.83941 + 0.540100i) q^{67} +5.10177 q^{68} +(4.34369 - 2.03281i) q^{69} +0.909025 q^{70} +(6.43184 + 1.88856i) q^{71} +(-0.730471 + 0.843008i) q^{72} +(-6.47684 - 4.16241i) q^{73} +(0.260888 - 1.81451i) q^{74} +(4.37435 - 2.81122i) q^{75} +(4.01445 + 8.79042i) q^{76} +(-2.54575 - 2.93795i) q^{77} +(-0.180102 - 1.25263i) q^{78} +(-7.15552 + 15.6684i) q^{79} +(10.7880 - 3.16763i) q^{80} +(-0.959493 + 0.281733i) q^{81} +(0.668289 - 1.46335i) q^{82} +(-1.19449 - 8.30784i) q^{83} +(1.25667 + 1.45027i) q^{84} +(3.52717 + 7.72344i) q^{85} +(-2.84580 + 1.82889i) q^{86} +(-0.582466 + 4.05114i) q^{87} +(3.64794 + 2.34439i) q^{88} +(4.98867 - 5.75723i) q^{89} +(-0.872204 - 0.256102i) q^{90} -4.44618 q^{91} +(5.04749 + 7.69548i) q^{92} +0.0833001 q^{93} +(-1.17806 - 0.345909i) q^{94} +(-10.5321 + 12.1547i) q^{95} +(-2.71973 - 1.74787i) q^{96} +(0.625311 - 4.34913i) q^{97} +(-0.239446 + 0.153882i) q^{98} +(1.61491 + 3.53617i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + O(q^{10}) \) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + 9q^{10} + 3q^{11} + 18q^{12} - 2q^{13} + 18q^{14} - q^{15} + 8q^{16} + 8q^{17} + 18q^{18} + 6q^{19} - 2q^{20} - 2q^{21} + 6q^{22} + 11q^{23} + 9q^{25} + 7q^{26} - 2q^{27} - 4q^{28} + 23q^{29} + 9q^{30} + q^{31} - 28q^{32} + 14q^{33} - 28q^{34} + 10q^{35} - 4q^{36} - 9q^{37} + 34q^{38} - 2q^{39} - 15q^{41} - 4q^{42} - 23q^{43} - 16q^{44} - 12q^{45} + 11q^{46} - 66q^{47} - 36q^{48} - 2q^{49} - 26q^{50} - 14q^{51} + 7q^{52} + 9q^{53} - 4q^{54} - 62q^{55} + 22q^{56} - 27q^{57} - 20q^{58} + 49q^{59} - 2q^{60} + 46q^{61} - 9q^{62} - 2q^{63} + 16q^{64} + 11q^{65} - 16q^{66} + 14q^{67} + 38q^{68} + 11q^{69} - 2q^{70} + 36q^{71} - q^{73} + 4q^{74} - 2q^{75} + 34q^{76} - 8q^{77} - 15q^{78} - 22q^{79} + 15q^{80} - 2q^{81} - 30q^{82} + 8q^{83} - 4q^{84} - 32q^{85} - 68q^{86} + q^{87} - 11q^{88} - 2q^{89} - 2q^{90} - 24q^{91} + 11q^{92} - 32q^{93} + 33q^{94} - 107q^{95} + 16q^{96} + 18q^{97} - 4q^{98} + 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{6}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.273100 + 0.0801894i 0.193111 + 0.0567025i 0.376858 0.926271i \(-0.377005\pi\)
−0.183747 + 0.982974i \(0.558823\pi\)
\(3\) −0.654861 + 0.755750i −0.378084 + 0.436332i
\(4\) −1.61435 1.03748i −0.807177 0.518741i
\(5\) 0.454513 3.16121i 0.203264 1.41373i −0.591250 0.806488i \(-0.701365\pi\)
0.794514 0.607246i \(-0.207726\pi\)
\(6\) −0.239446 + 0.153882i −0.0977533 + 0.0628222i
\(7\) 0.415415 + 0.909632i 0.157012 + 0.343809i
\(8\) −0.730471 0.843008i −0.258260 0.298048i
\(9\) −0.142315 0.989821i −0.0474383 0.329940i
\(10\) 0.377623 0.826879i 0.119415 0.261482i
\(11\) −3.73000 + 1.09523i −1.12464 + 0.330223i −0.790598 0.612336i \(-0.790230\pi\)
−0.334039 + 0.942559i \(0.608412\pi\)
\(12\) 1.84125 0.540641i 0.531524 0.156070i
\(13\) −1.84701 + 4.04439i −0.512269 + 1.12171i 0.460016 + 0.887911i \(0.347844\pi\)
−0.972284 + 0.233801i \(0.924884\pi\)
\(14\) 0.0405070 + 0.281733i 0.0108260 + 0.0752962i
\(15\) 2.09144 + 2.41365i 0.540007 + 0.623201i
\(16\) 1.46246 + 3.20234i 0.365615 + 0.800585i
\(17\) −2.23654 + 1.43733i −0.542440 + 0.348605i −0.782992 0.622031i \(-0.786308\pi\)
0.240553 + 0.970636i \(0.422671\pi\)
\(18\) 0.0405070 0.281733i 0.00954760 0.0664050i
\(19\) −4.23642 2.72258i −0.971901 0.624603i −0.0446338 0.999003i \(-0.514212\pi\)
−0.927267 + 0.374401i \(0.877848\pi\)
\(20\) −4.01344 + 4.63175i −0.897432 + 1.03569i
\(21\) −0.959493 0.281733i −0.209379 0.0614791i
\(22\) −1.10649 −0.235904
\(23\) −4.38081 1.95154i −0.913462 0.406924i
\(24\) 1.11546 0.227692
\(25\) −4.98917 1.46495i −0.997835 0.292991i
\(26\) −0.828736 + 0.956413i −0.162529 + 0.187568i
\(27\) 0.841254 + 0.540641i 0.161899 + 0.104046i
\(28\) 0.273100 1.89945i 0.0516111 0.358963i
\(29\) 3.44308 2.21273i 0.639364 0.410894i −0.180402 0.983593i \(-0.557740\pi\)
0.819766 + 0.572699i \(0.194103\pi\)
\(30\) 0.377623 + 0.826879i 0.0689442 + 0.150967i
\(31\) −0.0545500 0.0629540i −0.00979746 0.0113069i 0.750830 0.660496i \(-0.229654\pi\)
−0.760627 + 0.649189i \(0.775108\pi\)
\(32\) 0.460097 + 3.20005i 0.0813344 + 0.565693i
\(33\) 1.61491 3.53617i 0.281120 0.615567i
\(34\) −0.726057 + 0.213190i −0.124518 + 0.0365617i
\(35\) 3.06434 0.899773i 0.517969 0.152089i
\(36\) −0.797176 + 1.74557i −0.132863 + 0.290929i
\(37\) −0.916586 6.37500i −0.150686 1.04804i −0.915074 0.403286i \(-0.867868\pi\)
0.764388 0.644756i \(-0.223041\pi\)
\(38\) −0.938644 1.08325i −0.152268 0.175727i
\(39\) −1.84701 4.04439i −0.295758 0.647621i
\(40\) −2.99693 + 1.92601i −0.473856 + 0.304529i
\(41\) 0.804363 5.59447i 0.125620 0.873709i −0.825393 0.564559i \(-0.809046\pi\)
0.951013 0.309150i \(-0.100045\pi\)
\(42\) −0.239446 0.153882i −0.0369473 0.0237446i
\(43\) −7.78299 + 8.98205i −1.18690 + 1.36975i −0.273911 + 0.961755i \(0.588317\pi\)
−0.912984 + 0.407995i \(0.866228\pi\)
\(44\) 7.15782 + 2.10172i 1.07908 + 0.316847i
\(45\) −3.19371 −0.476091
\(46\) −1.03991 0.884260i −0.153326 0.130377i
\(47\) −4.31364 −0.629209 −0.314605 0.949223i \(-0.601872\pi\)
−0.314605 + 0.949223i \(0.601872\pi\)
\(48\) −3.37787 0.991834i −0.487554 0.143159i
\(49\) −0.654861 + 0.755750i −0.0935515 + 0.107964i
\(50\) −1.24507 0.800158i −0.176080 0.113159i
\(51\) 0.378355 2.63151i 0.0529803 0.368486i
\(52\) 7.17771 4.61284i 0.995370 0.639685i
\(53\) 0.873996 + 1.91378i 0.120053 + 0.262878i 0.960112 0.279616i \(-0.0902072\pi\)
−0.840059 + 0.542495i \(0.817480\pi\)
\(54\) 0.186393 + 0.215109i 0.0253648 + 0.0292726i
\(55\) 1.76690 + 12.2891i 0.238249 + 1.65706i
\(56\) 0.463379 1.01466i 0.0619216 0.135589i
\(57\) 4.83185 1.41876i 0.639995 0.187919i
\(58\) 1.11774 0.328199i 0.146767 0.0430947i
\(59\) 4.32749 9.47587i 0.563391 1.23365i −0.386852 0.922142i \(-0.626437\pi\)
0.950242 0.311512i \(-0.100835\pi\)
\(60\) −0.872204 6.06631i −0.112601 0.783157i
\(61\) −1.07121 1.23624i −0.137154 0.158284i 0.683017 0.730402i \(-0.260667\pi\)
−0.820171 + 0.572118i \(0.806122\pi\)
\(62\) −0.00984935 0.0215671i −0.00125087 0.00273902i
\(63\) 0.841254 0.540641i 0.105988 0.0681143i
\(64\) 0.871076 6.05846i 0.108884 0.757308i
\(65\) 11.9457 + 7.67701i 1.48168 + 0.952216i
\(66\) 0.724596 0.836229i 0.0891916 0.102933i
\(67\) 1.83941 + 0.540100i 0.224720 + 0.0659837i 0.392154 0.919900i \(-0.371730\pi\)
−0.167434 + 0.985883i \(0.553548\pi\)
\(68\) 5.10177 0.618680
\(69\) 4.34369 2.03281i 0.522919 0.244722i
\(70\) 0.909025 0.108649
\(71\) 6.43184 + 1.88856i 0.763319 + 0.224131i 0.640145 0.768254i \(-0.278874\pi\)
0.123174 + 0.992385i \(0.460693\pi\)
\(72\) −0.730471 + 0.843008i −0.0860868 + 0.0993495i
\(73\) −6.47684 4.16241i −0.758056 0.487173i 0.103629 0.994616i \(-0.466955\pi\)
−0.861685 + 0.507443i \(0.830591\pi\)
\(74\) 0.260888 1.81451i 0.0303276 0.210933i
\(75\) 4.37435 2.81122i 0.505107 0.324612i
\(76\) 4.01445 + 8.79042i 0.460489 + 1.00833i
\(77\) −2.54575 2.93795i −0.290115 0.334811i
\(78\) −0.180102 1.25263i −0.0203925 0.141833i
\(79\) −7.15552 + 15.6684i −0.805059 + 1.76283i −0.177729 + 0.984079i \(0.556875\pi\)
−0.627330 + 0.778754i \(0.715852\pi\)
\(80\) 10.7880 3.16763i 1.20613 0.354152i
\(81\) −0.959493 + 0.281733i −0.106610 + 0.0313036i
\(82\) 0.668289 1.46335i 0.0738001 0.161600i
\(83\) −1.19449 8.30784i −0.131112 0.911904i −0.944108 0.329635i \(-0.893074\pi\)
0.812996 0.582269i \(-0.197835\pi\)
\(84\) 1.25667 + 1.45027i 0.137114 + 0.158238i
\(85\) 3.52717 + 7.72344i 0.382576 + 0.837724i
\(86\) −2.84580 + 1.82889i −0.306871 + 0.197214i
\(87\) −0.582466 + 4.05114i −0.0624469 + 0.434328i
\(88\) 3.64794 + 2.34439i 0.388872 + 0.249913i
\(89\) 4.98867 5.75723i 0.528798 0.610266i −0.427014 0.904245i \(-0.640434\pi\)
0.955812 + 0.293980i \(0.0949798\pi\)
\(90\) −0.872204 0.256102i −0.0919383 0.0269955i
\(91\) −4.44618 −0.466087
\(92\) 5.04749 + 7.69548i 0.526237 + 0.802310i
\(93\) 0.0833001 0.00863782
\(94\) −1.17806 0.345909i −0.121507 0.0356777i
\(95\) −10.5321 + 12.1547i −1.08057 + 1.24705i
\(96\) −2.71973 1.74787i −0.277582 0.178391i
\(97\) 0.625311 4.34913i 0.0634907 0.441587i −0.933136 0.359523i \(-0.882940\pi\)
0.996627 0.0820647i \(-0.0261514\pi\)
\(98\) −0.239446 + 0.153882i −0.0241877 + 0.0155445i
\(99\) 1.61491 + 3.53617i 0.162305 + 0.355398i
\(100\) 6.53443 + 7.54113i 0.653443 + 0.754113i
\(101\) −1.02948 7.16017i −0.102437 0.712464i −0.974715 0.223453i \(-0.928267\pi\)
0.872278 0.489011i \(-0.162642\pi\)
\(102\) 0.314348 0.688327i 0.0311251 0.0681545i
\(103\) −15.2106 + 4.46624i −1.49875 + 0.440072i −0.925321 0.379186i \(-0.876204\pi\)
−0.573426 + 0.819257i \(0.694386\pi\)
\(104\) 4.75864 1.39726i 0.466623 0.137013i
\(105\) −1.32672 + 2.90510i −0.129474 + 0.283509i
\(106\) 0.0852231 + 0.592740i 0.00827760 + 0.0575720i
\(107\) 9.12999 + 10.5366i 0.882629 + 1.01861i 0.999675 + 0.0254821i \(0.00811208\pi\)
−0.117046 + 0.993127i \(0.537342\pi\)
\(108\) −0.797176 1.74557i −0.0767083 0.167968i
\(109\) 14.3579 9.22729i 1.37524 0.883814i 0.376155 0.926557i \(-0.377246\pi\)
0.999086 + 0.0427432i \(0.0136097\pi\)
\(110\) −0.502913 + 3.49784i −0.0479509 + 0.333506i
\(111\) 5.41814 + 3.48202i 0.514267 + 0.330499i
\(112\) −2.30542 + 2.66060i −0.217842 + 0.251403i
\(113\) 0.815872 + 0.239562i 0.0767508 + 0.0225361i 0.319883 0.947457i \(-0.396357\pi\)
−0.243132 + 0.969993i \(0.578175\pi\)
\(114\) 1.43335 0.134245
\(115\) −8.16034 + 12.9616i −0.760956 + 1.20868i
\(116\) −7.85402 −0.729228
\(117\) 4.26608 + 1.25263i 0.394399 + 0.115806i
\(118\) 1.94170 2.24084i 0.178748 0.206286i
\(119\) −2.23654 1.43733i −0.205023 0.131760i
\(120\) 0.506991 3.52620i 0.0462817 0.321896i
\(121\) 3.45958 2.22334i 0.314507 0.202122i
\(122\) −0.193414 0.423517i −0.0175108 0.0383434i
\(123\) 3.70127 + 4.27149i 0.333732 + 0.385148i
\(124\) 0.0227493 + 0.158225i 0.00204294 + 0.0142090i
\(125\) −0.265079 + 0.580443i −0.0237094 + 0.0519164i
\(126\) 0.273100 0.0801894i 0.0243297 0.00714384i
\(127\) −4.37471 + 1.28453i −0.388193 + 0.113984i −0.470004 0.882664i \(-0.655748\pi\)
0.0818116 + 0.996648i \(0.473929\pi\)
\(128\) 3.40975 7.46631i 0.301382 0.659935i
\(129\) −1.69141 11.7640i −0.148920 1.03576i
\(130\) 2.64675 + 3.05451i 0.232135 + 0.267898i
\(131\) −6.88944 15.0858i −0.601933 1.31805i −0.927957 0.372688i \(-0.878436\pi\)
0.326024 0.945362i \(-0.394291\pi\)
\(132\) −6.27575 + 4.03318i −0.546234 + 0.351043i
\(133\) 0.716675 4.98458i 0.0621436 0.432218i
\(134\) 0.459033 + 0.295003i 0.0396544 + 0.0254843i
\(135\) 2.09144 2.41365i 0.180002 0.207734i
\(136\) 2.84541 + 0.835487i 0.243992 + 0.0716424i
\(137\) 5.91771 0.505584 0.252792 0.967521i \(-0.418651\pi\)
0.252792 + 0.967521i \(0.418651\pi\)
\(138\) 1.34927 0.206842i 0.114858 0.0176076i
\(139\) 15.0236 1.27429 0.637144 0.770744i \(-0.280115\pi\)
0.637144 + 0.770744i \(0.280115\pi\)
\(140\) −5.88043 1.72665i −0.496987 0.145929i
\(141\) 2.82483 3.26003i 0.237894 0.274544i
\(142\) 1.60509 + 1.03153i 0.134696 + 0.0865642i
\(143\) 2.45983 17.1085i 0.205701 1.43068i
\(144\) 2.96162 1.90331i 0.246801 0.158610i
\(145\) −5.42998 11.8900i −0.450935 0.987411i
\(146\) −1.43504 1.65613i −0.118765 0.137062i
\(147\) −0.142315 0.989821i −0.0117379 0.0816391i
\(148\) −5.13425 + 11.2424i −0.422033 + 0.924123i
\(149\) −22.3665 + 6.56739i −1.83233 + 0.538021i −0.999871 0.0160618i \(-0.994887\pi\)
−0.832461 + 0.554083i \(0.813069\pi\)
\(150\) 1.42007 0.416969i 0.115948 0.0340454i
\(151\) 7.34419 16.0815i 0.597662 1.30870i −0.333038 0.942913i \(-0.608074\pi\)
0.930700 0.365783i \(-0.119199\pi\)
\(152\) 0.799422 + 5.56010i 0.0648417 + 0.450984i
\(153\) 1.74100 + 2.00922i 0.140751 + 0.162436i
\(154\) −0.459652 1.00650i −0.0370398 0.0811059i
\(155\) −0.223804 + 0.143830i −0.0179764 + 0.0115527i
\(156\) −1.21425 + 8.44532i −0.0972181 + 0.676167i
\(157\) −4.71970 3.03317i −0.376673 0.242073i 0.338581 0.940937i \(-0.390053\pi\)
−0.715255 + 0.698864i \(0.753689\pi\)
\(158\) −3.21061 + 3.70525i −0.255423 + 0.294774i
\(159\) −2.01869 0.592740i −0.160092 0.0470073i
\(160\) 10.3251 0.816272
\(161\) −0.0446736 4.79562i −0.00352077 0.377948i
\(162\) −0.284630 −0.0223626
\(163\) −5.76985 1.69418i −0.451929 0.132698i 0.0478437 0.998855i \(-0.484765\pi\)
−0.499773 + 0.866156i \(0.666583\pi\)
\(164\) −7.10268 + 8.19693i −0.554626 + 0.640073i
\(165\) −10.4445 6.71230i −0.813107 0.522552i
\(166\) 0.339986 2.36466i 0.0263881 0.183533i
\(167\) −0.554261 + 0.356202i −0.0428900 + 0.0275637i −0.561910 0.827198i \(-0.689933\pi\)
0.519020 + 0.854762i \(0.326297\pi\)
\(168\) 0.463379 + 1.01466i 0.0357504 + 0.0782826i
\(169\) −4.43245 5.11532i −0.340958 0.393486i
\(170\) 0.343934 + 2.39211i 0.0263785 + 0.183467i
\(171\) −2.09196 + 4.58076i −0.159976 + 0.350300i
\(172\) 21.8832 6.42549i 1.66858 0.489939i
\(173\) 9.37221 2.75193i 0.712556 0.209225i 0.0946876 0.995507i \(-0.469815\pi\)
0.617868 + 0.786282i \(0.287997\pi\)
\(174\) −0.483930 + 1.05966i −0.0366866 + 0.0803325i
\(175\) −0.740009 5.14687i −0.0559394 0.389067i
\(176\) −8.96226 10.3430i −0.675556 0.779633i
\(177\) 4.32749 + 9.47587i 0.325274 + 0.712250i
\(178\) 1.82408 1.17226i 0.136720 0.0878648i
\(179\) 3.12141 21.7099i 0.233305 1.62267i −0.450341 0.892857i \(-0.648697\pi\)
0.683646 0.729814i \(-0.260393\pi\)
\(180\) 5.15578 + 3.31342i 0.384289 + 0.246968i
\(181\) 0.254978 0.294260i 0.0189523 0.0218722i −0.746194 0.665728i \(-0.768121\pi\)
0.765147 + 0.643856i \(0.222666\pi\)
\(182\) −1.21425 0.356537i −0.0900064 0.0264283i
\(183\) 1.63578 0.120920
\(184\) 1.55489 + 5.11860i 0.114628 + 0.377348i
\(185\) −20.5693 −1.51228
\(186\) 0.0227493 + 0.00667979i 0.00166806 + 0.000489786i
\(187\) 6.76807 7.81077i 0.494930 0.571180i
\(188\) 6.96374 + 4.47533i 0.507883 + 0.326397i
\(189\) −0.142315 + 0.989821i −0.0103519 + 0.0719989i
\(190\) −3.85101 + 2.47489i −0.279382 + 0.179548i
\(191\) 9.26532 + 20.2882i 0.670415 + 1.46800i 0.872489 + 0.488634i \(0.162504\pi\)
−0.202074 + 0.979370i \(0.564768\pi\)
\(192\) 4.00825 + 4.62576i 0.289270 + 0.333836i
\(193\) 0.700781 + 4.87404i 0.0504433 + 0.350841i 0.999375 + 0.0353585i \(0.0112573\pi\)
−0.948931 + 0.315483i \(0.897834\pi\)
\(194\) 0.519527 1.13761i 0.0372999 0.0816753i
\(195\) −13.6246 + 4.00055i −0.975681 + 0.286486i
\(196\) 1.84125 0.540641i 0.131518 0.0386172i
\(197\) 0.400714 0.877441i 0.0285497 0.0625151i −0.894820 0.446427i \(-0.852696\pi\)
0.923370 + 0.383912i \(0.125423\pi\)
\(198\) 0.157470 + 1.09523i 0.0111909 + 0.0778344i
\(199\) 14.2238 + 16.4152i 1.00830 + 1.16364i 0.986480 + 0.163880i \(0.0524010\pi\)
0.0218213 + 0.999762i \(0.493054\pi\)
\(200\) 2.40948 + 5.27602i 0.170376 + 0.373071i
\(201\) −1.61274 + 1.03644i −0.113754 + 0.0731051i
\(202\) 0.293020 2.03800i 0.0206168 0.143393i
\(203\) 3.44308 + 2.21273i 0.241657 + 0.155303i
\(204\) −3.34095 + 3.85566i −0.233913 + 0.269950i
\(205\) −17.3197 5.08551i −1.20966 0.355188i
\(206\) −4.51217 −0.314378
\(207\) −1.30822 + 4.61395i −0.0909275 + 0.320692i
\(208\) −15.6527 −1.08532
\(209\) 18.7837 + 5.51538i 1.29929 + 0.381507i
\(210\) −0.595285 + 0.686996i −0.0410786 + 0.0474072i
\(211\) −21.0679 13.5395i −1.45038 0.932100i −0.999213 0.0396590i \(-0.987373\pi\)
−0.451163 0.892441i \(-0.648991\pi\)
\(212\) 0.574578 3.99628i 0.0394622 0.274466i
\(213\) −5.63924 + 3.62412i −0.386394 + 0.248320i
\(214\) 1.64848 + 3.60967i 0.112688 + 0.246752i
\(215\) 24.8566 + 28.6861i 1.69521 + 1.95638i
\(216\) −0.158746 1.10411i −0.0108013 0.0751249i
\(217\) 0.0346041 0.0757724i 0.00234908 0.00514377i
\(218\) 4.66109 1.36862i 0.315689 0.0926945i
\(219\) 7.38717 2.16907i 0.499178 0.146572i
\(220\) 9.89730 21.6721i 0.667276 1.46113i
\(221\) −1.68223 11.7002i −0.113159 0.787040i
\(222\) 1.20047 + 1.38542i 0.0805704 + 0.0929832i
\(223\) −3.48666 7.63472i −0.233484 0.511259i 0.756232 0.654303i \(-0.227038\pi\)
−0.989716 + 0.143045i \(0.954311\pi\)
\(224\) −2.71973 + 1.74787i −0.181720 + 0.116784i
\(225\) −0.740009 + 5.14687i −0.0493339 + 0.343125i
\(226\) 0.203605 + 0.130849i 0.0135436 + 0.00870392i
\(227\) −1.25427 + 1.44751i −0.0832489 + 0.0960744i −0.795846 0.605499i \(-0.792973\pi\)
0.712597 + 0.701574i \(0.247519\pi\)
\(228\) −9.27226 2.72258i −0.614070 0.180307i
\(229\) −18.2491 −1.20593 −0.602967 0.797766i \(-0.706015\pi\)
−0.602967 + 0.797766i \(0.706015\pi\)
\(230\) −3.26798 + 2.88545i −0.215484 + 0.190261i
\(231\) 3.88747 0.255777
\(232\) −4.38042 1.28621i −0.287589 0.0844437i
\(233\) −11.8123 + 13.6321i −0.773848 + 0.893068i −0.996649 0.0817957i \(-0.973934\pi\)
0.222801 + 0.974864i \(0.428480\pi\)
\(234\) 1.06462 + 0.684189i 0.0695964 + 0.0447269i
\(235\) −1.96060 + 13.6363i −0.127896 + 0.889535i
\(236\) −16.8171 + 10.8077i −1.09470 + 0.703523i
\(237\) −7.15552 15.6684i −0.464801 1.01777i
\(238\) −0.495539 0.571883i −0.0321210 0.0370697i
\(239\) 3.40140 + 23.6573i 0.220019 + 1.53026i 0.737959 + 0.674846i \(0.235790\pi\)
−0.517940 + 0.855417i \(0.673301\pi\)
\(240\) −4.67068 + 10.2274i −0.301491 + 0.660173i
\(241\) −15.9833 + 4.69311i −1.02957 + 0.302310i −0.752537 0.658550i \(-0.771170\pi\)
−0.277035 + 0.960860i \(0.589352\pi\)
\(242\) 1.12310 0.329772i 0.0721956 0.0211985i
\(243\) 0.415415 0.909632i 0.0266489 0.0583529i
\(244\) 0.446732 + 3.10709i 0.0285991 + 0.198911i
\(245\) 2.09144 + 2.41365i 0.133617 + 0.154202i
\(246\) 0.668289 + 1.46335i 0.0426085 + 0.0932997i
\(247\) 18.8359 12.1051i 1.19850 0.770228i
\(248\) −0.0132236 + 0.0919721i −0.000839699 + 0.00584023i
\(249\) 7.06087 + 4.53774i 0.447464 + 0.287568i
\(250\) −0.118939 + 0.137262i −0.00752233 + 0.00868124i
\(251\) −26.0546 7.65033i −1.64455 0.482885i −0.677091 0.735899i \(-0.736760\pi\)
−0.967463 + 0.253014i \(0.918578\pi\)
\(252\) −1.91899 −0.120885
\(253\) 18.4778 + 2.48125i 1.16169 + 0.155995i
\(254\) −1.29774 −0.0814274
\(255\) −8.14679 2.39211i −0.510172 0.149800i
\(256\) −6.48657 + 7.48590i −0.405411 + 0.467869i
\(257\) −0.328114 0.210866i −0.0204672 0.0131535i 0.530367 0.847768i \(-0.322054\pi\)
−0.550834 + 0.834615i \(0.685690\pi\)
\(258\) 0.481424 3.34838i 0.0299722 0.208461i
\(259\) 5.41814 3.48202i 0.336667 0.216362i
\(260\) −11.3198 24.7868i −0.702022 1.53721i
\(261\) −2.68021 3.09313i −0.165901 0.191460i
\(262\) −0.671788 4.67239i −0.0415032 0.288661i
\(263\) −1.93475 + 4.23650i −0.119302 + 0.261234i −0.959856 0.280493i \(-0.909502\pi\)
0.840555 + 0.541727i \(0.182229\pi\)
\(264\) −4.16066 + 1.22168i −0.256071 + 0.0751893i
\(265\) 6.44711 1.89304i 0.396043 0.116289i
\(266\) 0.595435 1.30382i 0.0365085 0.0799424i
\(267\) 1.08414 + 7.54037i 0.0663484 + 0.461463i
\(268\) −2.40912 2.78027i −0.147160 0.169832i
\(269\) −1.85501 4.06190i −0.113102 0.247659i 0.844613 0.535377i \(-0.179830\pi\)
−0.957715 + 0.287719i \(0.907103\pi\)
\(270\) 0.764721 0.491456i 0.0465394 0.0299091i
\(271\) 2.34636 16.3193i 0.142531 0.991325i −0.785511 0.618848i \(-0.787600\pi\)
0.928042 0.372477i \(-0.121491\pi\)
\(272\) −7.87368 5.06010i −0.477412 0.306814i
\(273\) 2.91163 3.36020i 0.176220 0.203369i
\(274\) 1.61613 + 0.474538i 0.0976338 + 0.0286679i
\(275\) 20.2141 1.21895
\(276\) −9.12126 1.22483i −0.549036 0.0737261i
\(277\) −1.49772 −0.0899892 −0.0449946 0.998987i \(-0.514327\pi\)
−0.0449946 + 0.998987i \(0.514327\pi\)
\(278\) 4.10296 + 1.20474i 0.246079 + 0.0722554i
\(279\) −0.0545500 + 0.0629540i −0.00326582 + 0.00376896i
\(280\) −2.99693 1.92601i −0.179101 0.115101i
\(281\) −0.791233 + 5.50315i −0.0472010 + 0.328290i 0.952516 + 0.304489i \(0.0984858\pi\)
−0.999717 + 0.0238008i \(0.992423\pi\)
\(282\) 1.03288 0.663794i 0.0615073 0.0395283i
\(283\) 1.81392 + 3.97193i 0.107826 + 0.236106i 0.955852 0.293848i \(-0.0949361\pi\)
−0.848026 + 0.529955i \(0.822209\pi\)
\(284\) −8.42392 9.72172i −0.499868 0.576878i
\(285\) −2.28885 15.9193i −0.135580 0.942979i
\(286\) 2.04370 4.47507i 0.120846 0.264617i
\(287\) 5.42305 1.59235i 0.320112 0.0939935i
\(288\) 3.10199 0.910828i 0.182787 0.0536710i
\(289\) −4.12589 + 9.03445i −0.242700 + 0.531438i
\(290\) −0.529476 3.68259i −0.0310919 0.216249i
\(291\) 2.87736 + 3.32065i 0.168674 + 0.194660i
\(292\) 6.13748 + 13.4392i 0.359169 + 0.786470i
\(293\) −24.5886 + 15.8021i −1.43648 + 0.923169i −0.436758 + 0.899579i \(0.643873\pi\)
−0.999722 + 0.0235904i \(0.992490\pi\)
\(294\) 0.0405070 0.281733i 0.00236242 0.0164310i
\(295\) −27.9883 17.9870i −1.62954 1.04724i
\(296\) −4.70463 + 5.42944i −0.273451 + 0.315580i
\(297\) −3.73000 1.09523i −0.216436 0.0635515i
\(298\) −6.63492 −0.384351
\(299\) 15.9842 14.1132i 0.924389 0.816187i
\(300\) −9.97835 −0.576100
\(301\) −11.4035 3.34838i −0.657289 0.192997i
\(302\) 3.29527 3.80294i 0.189621 0.218835i
\(303\) 6.08546 + 3.91089i 0.349601 + 0.224675i
\(304\) 2.52304 17.5481i 0.144706 1.00645i
\(305\) −4.39488 + 2.82442i −0.251650 + 0.161726i
\(306\) 0.314348 + 0.688327i 0.0179701 + 0.0393490i
\(307\) 10.0926 + 11.6475i 0.576016 + 0.664758i 0.966743 0.255749i \(-0.0823220\pi\)
−0.390728 + 0.920506i \(0.627777\pi\)
\(308\) 1.06167 + 7.38407i 0.0604942 + 0.420746i
\(309\) 6.58548 14.4202i 0.374635 0.820335i
\(310\) −0.0726546 + 0.0213333i −0.00412651 + 0.00121165i
\(311\) −13.8562 + 4.06856i −0.785715 + 0.230707i −0.649892 0.760027i \(-0.725186\pi\)
−0.135823 + 0.990733i \(0.543368\pi\)
\(312\) −2.06027 + 4.51135i −0.116640 + 0.255405i
\(313\) 0.601548 + 4.18386i 0.0340015 + 0.236486i 0.999734 0.0230530i \(-0.00733865\pi\)
−0.965733 + 0.259538i \(0.916430\pi\)
\(314\) −1.04572 1.20683i −0.0590136 0.0681053i
\(315\) −1.32672 2.90510i −0.0747520 0.163684i
\(316\) 27.8072 17.8706i 1.56428 1.00530i
\(317\) 0.319731 2.22378i 0.0179579 0.124900i −0.978870 0.204481i \(-0.934449\pi\)
0.996828 + 0.0795814i \(0.0253584\pi\)
\(318\) −0.503772 0.323755i −0.0282501 0.0181553i
\(319\) −10.4192 + 12.0244i −0.583366 + 0.673240i
\(320\) −18.7561 5.50730i −1.04850 0.307867i
\(321\) −13.9419 −0.778160
\(322\) 0.372358 1.31327i 0.0207507 0.0731856i
\(323\) 13.3882 0.744937
\(324\) 1.84125 + 0.540641i 0.102292 + 0.0300356i
\(325\) 15.1399 17.4724i 0.839811 0.969193i
\(326\) −1.43989 0.925362i −0.0797482 0.0512510i
\(327\) −2.42893 + 16.8936i −0.134320 + 0.934218i
\(328\) −5.30374 + 3.40851i −0.292850 + 0.188203i
\(329\) −1.79195 3.92383i −0.0987935 0.216328i
\(330\) −2.31415 2.67067i −0.127390 0.147016i
\(331\) 4.08365 + 28.4024i 0.224458 + 1.56114i 0.720883 + 0.693057i \(0.243737\pi\)
−0.496425 + 0.868079i \(0.665354\pi\)
\(332\) −6.69091 + 14.6510i −0.367211 + 0.804081i
\(333\) −6.17966 + 1.81451i −0.338643 + 0.0994347i
\(334\) −0.179932 + 0.0528329i −0.00984547 + 0.00289089i
\(335\) 2.54340 5.56927i 0.138961 0.304282i
\(336\) −0.501016 3.48465i −0.0273327 0.190103i
\(337\) 22.7044 + 26.2022i 1.23679 + 1.42733i 0.867074 + 0.498179i \(0.165998\pi\)
0.369711 + 0.929147i \(0.379457\pi\)
\(338\) −0.800309 1.75243i −0.0435310 0.0953197i
\(339\) −0.715331 + 0.459715i −0.0388515 + 0.0249683i
\(340\) 2.31882 16.1277i 0.125756 0.874649i
\(341\) 0.272420 + 0.175074i 0.0147524 + 0.00948078i
\(342\) −0.938644 + 1.08325i −0.0507561 + 0.0585756i
\(343\) −0.959493 0.281733i −0.0518078 0.0152121i
\(344\) 13.2572 0.714780
\(345\) −4.45187 14.6552i −0.239680 0.789012i
\(346\) 2.78023 0.149466
\(347\) 17.0429 + 5.00423i 0.914909 + 0.268641i 0.705106 0.709102i \(-0.250900\pi\)
0.209803 + 0.977744i \(0.432718\pi\)
\(348\) 5.14329 5.93567i 0.275709 0.318185i
\(349\) 19.2913 + 12.3977i 1.03264 + 0.663636i 0.943155 0.332353i \(-0.107842\pi\)
0.0894822 + 0.995988i \(0.471479\pi\)
\(350\) 0.210628 1.46495i 0.0112586 0.0783050i
\(351\) −3.74037 + 2.40379i −0.199646 + 0.128305i
\(352\) −5.22094 11.4323i −0.278277 0.609341i
\(353\) 4.96886 + 5.73437i 0.264466 + 0.305210i 0.872415 0.488766i \(-0.162553\pi\)
−0.607949 + 0.793976i \(0.708008\pi\)
\(354\) 0.421972 + 2.93488i 0.0224276 + 0.155987i
\(355\) 8.89347 19.4740i 0.472017 1.03357i
\(356\) −14.0265 + 4.11855i −0.743403 + 0.218283i
\(357\) 2.55088 0.749007i 0.135007 0.0396417i
\(358\) 2.59336 5.67866i 0.137063 0.300127i
\(359\) −0.881807 6.13310i −0.0465400 0.323693i −0.999770 0.0214468i \(-0.993173\pi\)
0.953230 0.302246i \(-0.0977363\pi\)
\(360\) 2.33291 + 2.69233i 0.122955 + 0.141898i
\(361\) 2.64191 + 5.78497i 0.139048 + 0.304472i
\(362\) 0.0932310 0.0599159i 0.00490011 0.00314911i
\(363\) −0.585257 + 4.07055i −0.0307180 + 0.213649i
\(364\) 7.17771 + 4.61284i 0.376214 + 0.241778i
\(365\) −16.1020 + 18.5827i −0.842819 + 0.972665i
\(366\) 0.446732 + 0.131172i 0.0233510 + 0.00685648i
\(367\) −7.72041 −0.403002 −0.201501 0.979488i \(-0.564582\pi\)
−0.201501 + 0.979488i \(0.564582\pi\)
\(368\) −0.157272 16.8829i −0.00819839 0.880082i
\(369\) −5.65199 −0.294231
\(370\) −5.61747 1.64944i −0.292038 0.0857502i
\(371\) −1.37777 + 1.59003i −0.0715301 + 0.0825502i
\(372\) −0.134476 0.0864223i −0.00697225 0.00448079i
\(373\) 2.85969 19.8896i 0.148069 1.02985i −0.771306 0.636464i \(-0.780396\pi\)
0.919376 0.393381i \(-0.128695\pi\)
\(374\) 2.47470 1.59039i 0.127964 0.0822373i
\(375\) −0.265079 0.580443i −0.0136886 0.0299739i
\(376\) 3.15099 + 3.63644i 0.162500 + 0.187535i
\(377\) 2.58975 + 18.0121i 0.133379 + 0.927670i
\(378\) −0.118239 + 0.258908i −0.00608158 + 0.0133168i
\(379\) −1.66847 + 0.489908i −0.0857037 + 0.0251649i −0.324303 0.945953i \(-0.605130\pi\)
0.238600 + 0.971118i \(0.423312\pi\)
\(380\) 29.6129 8.69514i 1.51911 0.446051i
\(381\) 1.89404 4.14737i 0.0970347 0.212476i
\(382\) 0.903459 + 6.28370i 0.0462250 + 0.321502i
\(383\) −18.2093 21.0147i −0.930454 1.07380i −0.997106 0.0760249i \(-0.975777\pi\)
0.0666519 0.997776i \(-0.478768\pi\)
\(384\) 3.40975 + 7.46631i 0.174003 + 0.381014i
\(385\) −10.4445 + 6.71230i −0.532303 + 0.342091i
\(386\) −0.199463 + 1.38730i −0.0101524 + 0.0706115i
\(387\) 9.99826 + 6.42549i 0.508240 + 0.326626i
\(388\) −5.52162 + 6.37229i −0.280318 + 0.323504i
\(389\) −30.7299 9.02312i −1.55807 0.457490i −0.614569 0.788863i \(-0.710670\pi\)
−0.943500 + 0.331373i \(0.892488\pi\)
\(390\) −4.04169 −0.204659
\(391\) 12.6029 1.93201i 0.637354 0.0977057i
\(392\) 1.11546 0.0563392
\(393\) 15.9127 + 4.67239i 0.802689 + 0.235691i
\(394\) 0.179797 0.207496i 0.00905802 0.0104535i
\(395\) 46.2788 + 29.7416i 2.32854 + 1.49646i
\(396\) 1.06167 7.38407i 0.0533508 0.371063i
\(397\) −12.3537 + 7.93926i −0.620016 + 0.398460i −0.812601 0.582820i \(-0.801949\pi\)
0.192585 + 0.981280i \(0.438313\pi\)
\(398\) 2.56821 + 5.62359i 0.128733 + 0.281885i
\(399\) 3.29777 + 3.80583i 0.165095 + 0.190530i
\(400\) −2.60519 18.1195i −0.130259 0.905973i
\(401\) 8.89415 19.4755i 0.444153 0.972559i −0.546665 0.837352i \(-0.684103\pi\)
0.990817 0.135207i \(-0.0431699\pi\)
\(402\) −0.523551 + 0.153728i −0.0261123 + 0.00766728i
\(403\) 0.355365 0.104345i 0.0177020 0.00519777i
\(404\) −5.76661 + 12.6271i −0.286900 + 0.628222i
\(405\) 0.454513 + 3.16121i 0.0225849 + 0.157082i
\(406\) 0.762868 + 0.880397i 0.0378605 + 0.0436933i
\(407\) 10.4009 + 22.7749i 0.515555 + 1.12891i
\(408\) −2.49477 + 1.60329i −0.123509 + 0.0793746i
\(409\) 0.589011 4.09666i 0.0291247 0.202567i −0.970064 0.242851i \(-0.921917\pi\)
0.999188 + 0.0402844i \(0.0128264\pi\)
\(410\) −4.32220 2.77771i −0.213458 0.137181i
\(411\) −3.87528 + 4.47231i −0.191153 + 0.220603i
\(412\) 29.1890 + 8.57065i 1.43804 + 0.422246i
\(413\) 10.4173 0.512600
\(414\) −0.727265 + 1.15517i −0.0357431 + 0.0567733i
\(415\) −26.8057 −1.31584
\(416\) −13.7920 4.04971i −0.676210 0.198553i
\(417\) −9.83840 + 11.3541i −0.481788 + 0.556013i
\(418\) 4.68755 + 3.01250i 0.229276 + 0.147346i
\(419\) −0.233941 + 1.62709i −0.0114287 + 0.0794887i −0.994738 0.102456i \(-0.967330\pi\)
0.983309 + 0.181944i \(0.0582391\pi\)
\(420\) 5.15578 3.31342i 0.251576 0.161678i
\(421\) −10.8057 23.6613i −0.526639 1.15318i −0.966864 0.255292i \(-0.917828\pi\)
0.440225 0.897888i \(-0.354899\pi\)
\(422\) −4.66793 5.38708i −0.227231 0.262239i
\(423\) 0.613895 + 4.26973i 0.0298486 + 0.207602i
\(424\) 0.974907 2.13475i 0.0473457 0.103673i
\(425\) 13.2641 3.89469i 0.643403 0.188920i
\(426\) −1.83069 + 0.537540i −0.0886973 + 0.0260439i
\(427\) 0.679527 1.48796i 0.0328846 0.0720073i
\(428\) −3.80753 26.4820i −0.184044 1.28005i
\(429\) 11.3189 + 13.0627i 0.546480 + 0.630672i
\(430\) 4.48803 + 9.82742i 0.216432 + 0.473920i
\(431\) −6.62350 + 4.25666i −0.319043 + 0.205036i −0.690353 0.723472i \(-0.742545\pi\)
0.371311 + 0.928509i \(0.378909\pi\)
\(432\) −0.501016 + 3.48465i −0.0241052 + 0.167655i
\(433\) 20.7339 + 13.3249i 0.996410 + 0.640354i 0.933842 0.357687i \(-0.116434\pi\)
0.0625683 + 0.998041i \(0.480071\pi\)
\(434\) 0.0155265 0.0179186i 0.000745298 0.000860119i
\(435\) 12.5417 + 3.68259i 0.601331 + 0.176567i
\(436\) −32.7519 −1.56853
\(437\) 13.2457 + 20.1946i 0.633629 + 0.966040i
\(438\) 2.19137 0.104708
\(439\) 37.6970 + 11.0688i 1.79918 + 0.528286i 0.997577 0.0695734i \(-0.0221638\pi\)
0.801601 + 0.597860i \(0.203982\pi\)
\(440\) 9.06913 10.4663i 0.432354 0.498963i
\(441\) 0.841254 + 0.540641i 0.0400597 + 0.0257448i
\(442\) 0.478814 3.33022i 0.0227748 0.158403i
\(443\) 5.38533 3.46094i 0.255865 0.164434i −0.406420 0.913686i \(-0.633223\pi\)
0.662285 + 0.749252i \(0.269587\pi\)
\(444\) −5.13425 11.2424i −0.243661 0.533543i
\(445\) −15.9324 18.3870i −0.755267 0.871625i
\(446\) −0.339983 2.36464i −0.0160987 0.111969i
\(447\) 9.68362 21.2042i 0.458020 1.00292i
\(448\) 5.87283 1.72442i 0.277465 0.0814711i
\(449\) −22.9856 + 6.74917i −1.08476 + 0.318513i −0.774779 0.632232i \(-0.782139\pi\)
−0.309976 + 0.950744i \(0.600321\pi\)
\(450\) −0.614822 + 1.34627i −0.0289830 + 0.0634638i
\(451\) 3.12693 + 21.7483i 0.147242 + 1.02409i
\(452\) −1.06857 1.23319i −0.0502611 0.0580044i
\(453\) 7.34419 + 16.0815i 0.345060 + 0.755576i
\(454\) −0.458617 + 0.294735i −0.0215239 + 0.0138326i
\(455\) −2.02085 + 14.0553i −0.0947387 + 0.658922i
\(456\) −4.72555 3.03693i −0.221294 0.142217i
\(457\) 15.3668 17.7342i 0.718828 0.829571i −0.272338 0.962202i \(-0.587797\pi\)
0.991166 + 0.132630i \(0.0423423\pi\)
\(458\) −4.98383 1.46338i −0.232879 0.0683795i
\(459\) −2.65858 −0.124092
\(460\) 26.6212 12.4585i 1.24122 0.580879i
\(461\) −17.1359 −0.798100 −0.399050 0.916929i \(-0.630660\pi\)
−0.399050 + 0.916929i \(0.630660\pi\)
\(462\) 1.06167 + 0.311734i 0.0493933 + 0.0145032i
\(463\) 18.0539 20.8353i 0.839037 0.968300i −0.160788 0.986989i \(-0.551404\pi\)
0.999825 + 0.0186885i \(0.00594907\pi\)
\(464\) 12.1213 + 7.78988i 0.562717 + 0.361636i
\(465\) 0.0378609 0.263329i 0.00175576 0.0122116i
\(466\) −4.31909 + 2.77571i −0.200078 + 0.128582i
\(467\) −13.9519 30.5505i −0.645619 1.41371i −0.895337 0.445389i \(-0.853065\pi\)
0.249718 0.968319i \(-0.419662\pi\)
\(468\) −5.58738 6.44818i −0.258277 0.298067i
\(469\) 0.272827 + 1.89755i 0.0125980 + 0.0876208i
\(470\) −1.62893 + 3.56686i −0.0751369 + 0.164527i
\(471\) 5.38306 1.58061i 0.248038 0.0728306i
\(472\) −11.1493 + 3.27374i −0.513190 + 0.150686i
\(473\) 19.1932 42.0272i 0.882503 1.93241i
\(474\) −0.697733 4.85284i −0.0320479 0.222898i
\(475\) 17.1478 + 19.7896i 0.786793 + 0.908008i
\(476\) 2.11935 + 4.64073i 0.0971403 + 0.212708i
\(477\) 1.76992 1.13746i 0.0810391 0.0520807i
\(478\) −0.968140 + 6.73356i −0.0442817 + 0.307986i
\(479\) −7.16123 4.60224i −0.327205 0.210282i 0.366716 0.930333i \(-0.380482\pi\)
−0.693921 + 0.720051i \(0.744118\pi\)
\(480\) −6.76152 + 7.80321i −0.308620 + 0.356166i
\(481\) 27.4759 + 8.06766i 1.25279 + 0.367853i
\(482\) −4.74137 −0.215963
\(483\) 3.65355 + 3.10670i 0.166242 + 0.141360i
\(484\) −7.89166 −0.358712
\(485\) −13.4643 3.95347i −0.611382 0.179518i
\(486\) 0.186393 0.215109i 0.00845495 0.00975753i
\(487\) 1.53818 + 0.988531i 0.0697018 + 0.0447946i 0.575028 0.818134i \(-0.304991\pi\)
−0.505326 + 0.862929i \(0.668628\pi\)
\(488\) −0.259674 + 1.80607i −0.0117549 + 0.0817571i
\(489\) 5.05882 3.25111i 0.228768 0.147020i
\(490\) 0.377623 + 0.826879i 0.0170593 + 0.0373546i
\(491\) 4.58896 + 5.29594i 0.207097 + 0.239002i 0.849790 0.527121i \(-0.176729\pi\)
−0.642693 + 0.766123i \(0.722183\pi\)
\(492\) −1.54356 10.7357i −0.0695891 0.484003i
\(493\) −4.52013 + 9.89771i −0.203577 + 0.445771i
\(494\) 6.11478 1.79546i 0.275117 0.0807817i
\(495\) 11.9125 3.49784i 0.535429 0.157216i
\(496\) 0.121823 0.266755i 0.00547002 0.0119777i
\(497\) 0.953989 + 6.63514i 0.0427923 + 0.297627i
\(498\) 1.56445 + 1.80547i 0.0701045 + 0.0809049i
\(499\) −5.66094 12.3957i −0.253418 0.554909i 0.739576 0.673074i \(-0.235026\pi\)
−0.992994 + 0.118164i \(0.962299\pi\)
\(500\) 1.03013 0.662025i 0.0460688 0.0296066i
\(501\) 0.0937644 0.652145i 0.00418908 0.0291357i
\(502\) −6.50205 4.17861i −0.290201 0.186501i
\(503\) −10.8709 + 12.5457i −0.484709 + 0.559384i −0.944444 0.328672i \(-0.893399\pi\)
0.459735 + 0.888056i \(0.347944\pi\)
\(504\) −1.07028 0.314261i −0.0476739 0.0139983i
\(505\) −23.1027 −1.02806
\(506\) 4.84732 + 2.15935i 0.215490 + 0.0959950i
\(507\) 6.76854 0.300601
\(508\) 8.39500 + 2.46500i 0.372468 + 0.109366i
\(509\) 25.1476 29.0218i 1.11465 1.28637i 0.160498 0.987036i \(-0.448690\pi\)
0.954148 0.299334i \(-0.0967645\pi\)
\(510\) −2.03307 1.30657i −0.0900258 0.0578560i
\(511\) 1.09569 7.62067i 0.0484703 0.337118i
\(512\) −16.1819 + 10.3995i −0.715145 + 0.459596i
\(513\) −2.09196 4.58076i −0.0923624 0.202246i
\(514\) −0.0726987 0.0838988i −0.00320660 0.00370062i
\(515\) 7.20528 + 50.1138i 0.317503 + 2.20828i
\(516\) −9.47440 + 20.7460i −0.417087 + 0.913293i
\(517\) 16.0899 4.72441i 0.707632 0.207780i
\(518\) 1.75892 0.516464i 0.0772823 0.0226921i
\(519\) −4.05772 + 8.88517i −0.178114 + 0.390016i
\(520\) −2.25417 15.6781i −0.0988520 0.687531i
\(521\) 10.4888 + 12.1047i 0.459521 + 0.530316i 0.937467 0.348073i \(-0.113164\pi\)
−0.477946 + 0.878389i \(0.658619\pi\)
\(522\) −0.483930 1.05966i −0.0211810 0.0463800i
\(523\) −33.5373 + 21.5531i −1.46649 + 0.942453i −0.468218 + 0.883613i \(0.655104\pi\)
−0.998267 + 0.0588404i \(0.981260\pi\)
\(524\) −4.52922 + 31.5014i −0.197860 + 1.37615i
\(525\) 4.37435 + 2.81122i 0.190912 + 0.122692i
\(526\) −0.868102 + 1.00184i −0.0378511 + 0.0436825i
\(527\) 0.212489 + 0.0623924i 0.00925616 + 0.00271785i
\(528\) 13.6858 0.595596
\(529\) 15.3830 + 17.0986i 0.668826 + 0.743419i
\(530\) 1.91251 0.0830740
\(531\) −9.99529 2.93488i −0.433758 0.127363i
\(532\) −6.32838 + 7.30334i −0.274370 + 0.316640i
\(533\) 21.1405 + 13.5862i 0.915698 + 0.588484i
\(534\) −0.308579 + 2.14621i −0.0133535 + 0.0928758i
\(535\) 37.4580 24.0728i 1.61945 1.04076i
\(536\) −0.888327 1.94517i −0.0383699 0.0840183i
\(537\) 14.3631 + 16.5759i 0.619815 + 0.715304i
\(538\) −0.180881 1.25806i −0.00779835 0.0542387i
\(539\) 1.61491 3.53617i 0.0695592 0.152313i
\(540\) −5.88043 + 1.72665i −0.253054 + 0.0743032i
\(541\) 1.91162 0.561303i 0.0821870 0.0241323i −0.240381 0.970679i \(-0.577272\pi\)
0.322568 + 0.946546i \(0.395454\pi\)
\(542\) 1.94942 4.26864i 0.0837349 0.183354i
\(543\) 0.0554120 + 0.385399i 0.00237795 + 0.0165390i
\(544\) −5.62856 6.49570i −0.241322 0.278501i
\(545\) −22.6435 49.5823i −0.969940 2.12387i
\(546\) 1.06462 0.684189i 0.0455615 0.0292806i
\(547\) −2.40345 + 16.7164i −0.102764 + 0.714740i 0.871674 + 0.490085i \(0.163034\pi\)
−0.974438 + 0.224655i \(0.927875\pi\)
\(548\) −9.55328 6.13952i −0.408096 0.262267i
\(549\) −1.07121 + 1.23624i −0.0457180 + 0.0527614i
\(550\) 5.52046 + 1.62095i 0.235393 + 0.0691177i
\(551\) −20.6107 −0.878044
\(552\) −4.88662 2.17686i −0.207988 0.0926534i
\(553\) −17.2250 −0.732481
\(554\) −0.409027 0.120101i −0.0173779 0.00510261i
\(555\) 13.4700 15.5452i 0.571770 0.659858i
\(556\) −24.2535 15.5868i −1.02858 0.661026i
\(557\) 2.55245 17.7527i 0.108151 0.752204i −0.861508 0.507743i \(-0.830480\pi\)
0.969659 0.244461i \(-0.0786111\pi\)
\(558\) −0.0199458 + 0.0128184i −0.000844375 + 0.000542647i
\(559\) −21.9516 48.0674i −0.928456 2.03303i
\(560\) 7.36286 + 8.49719i 0.311138 + 0.359072i
\(561\) 1.47084 + 10.2299i 0.0620990 + 0.431908i
\(562\) −0.657380 + 1.43946i −0.0277299 + 0.0607200i
\(563\) 14.9096 4.37786i 0.628365 0.184505i 0.0479819 0.998848i \(-0.484721\pi\)
0.580383 + 0.814344i \(0.302903\pi\)
\(564\) −7.94251 + 2.33213i −0.334440 + 0.0982004i
\(565\) 1.12813 2.47026i 0.0474607 0.103924i
\(566\) 0.176875 + 1.23019i 0.00743460 + 0.0517088i
\(567\) −0.654861 0.755750i −0.0275016 0.0317385i
\(568\) −3.10620 6.80163i −0.130333 0.285390i
\(569\) −1.19265 + 0.766472i −0.0499986 + 0.0321322i −0.565401 0.824816i \(-0.691279\pi\)
0.515403 + 0.856948i \(0.327642\pi\)
\(570\) 0.651475 4.53111i 0.0272873 0.189787i
\(571\) 16.1529 + 10.3808i 0.675977 + 0.434424i 0.833076 0.553159i \(-0.186578\pi\)
−0.157099 + 0.987583i \(0.550214\pi\)
\(572\) −21.7208 + 25.0671i −0.908190 + 1.04811i
\(573\) −21.4003 6.28370i −0.894010 0.262505i
\(574\) 1.60873 0.0671469
\(575\) 18.9977 + 16.1542i 0.792259 + 0.673678i
\(576\) −6.12076 −0.255032
\(577\) 36.9537 + 10.8506i 1.53840 + 0.451715i 0.937609 0.347690i \(-0.113034\pi\)
0.600792 + 0.799406i \(0.294852\pi\)
\(578\) −1.85125 + 2.13646i −0.0770018 + 0.0888648i
\(579\) −4.14247 2.66220i −0.172155 0.110637i
\(580\) −3.56975 + 24.8282i −0.148226 + 1.03093i
\(581\) 7.06087 4.53774i 0.292934 0.188257i
\(582\) 0.519527 + 1.13761i 0.0215351 + 0.0471553i
\(583\) −5.35603 6.18119i −0.221824 0.255999i
\(584\) 1.22219 + 8.50054i 0.0505747 + 0.351755i
\(585\) 5.89882 12.9166i 0.243886 0.534037i
\(586\) −7.98231 + 2.34382i −0.329746 + 0.0968222i
\(587\) 36.0186 10.5760i 1.48665 0.436519i 0.565177 0.824969i \(-0.308808\pi\)
0.921470 + 0.388450i \(0.126990\pi\)
\(588\) −0.797176 + 1.74557i −0.0328750 + 0.0719861i
\(589\) 0.0596991 + 0.415216i 0.00245986 + 0.0171087i
\(590\) −6.20124 7.15661i −0.255301 0.294633i
\(591\) 0.400714 + 0.877441i 0.0164832 + 0.0360931i
\(592\) 19.0744 12.2584i 0.783954 0.503817i
\(593\) −6.12907 + 42.6286i −0.251691 + 1.75055i 0.336371 + 0.941730i \(0.390801\pi\)
−0.588061 + 0.808817i \(0.700109\pi\)
\(594\) −0.930838 0.598213i −0.0381927 0.0245450i
\(595\) −5.56024 + 6.41686i −0.227948 + 0.263066i
\(596\) 42.9209 + 12.6027i 1.75811 + 0.516228i
\(597\) −21.7204 −0.888957
\(598\) 5.49701 2.57255i 0.224790 0.105200i
\(599\) −4.96388 −0.202819 −0.101409 0.994845i \(-0.532335\pi\)
−0.101409 + 0.994845i \(0.532335\pi\)
\(600\) −5.56522 1.63410i −0.227199 0.0667117i
\(601\) 24.1674 27.8906i 0.985808 1.13768i −0.00466714 0.999989i \(-0.501486\pi\)
0.990475 0.137694i \(-0.0439689\pi\)
\(602\) −2.84580 1.82889i −0.115986 0.0745398i
\(603\) 0.272827 1.89755i 0.0111104 0.0772743i
\(604\) −28.5404 + 18.3418i −1.16129 + 0.746318i
\(605\) −5.45600 11.9470i −0.221818 0.485714i
\(606\) 1.34833 + 1.55605i 0.0547721 + 0.0632104i
\(607\) −1.54711 10.7604i −0.0627951 0.436750i −0.996830 0.0795667i \(-0.974646\pi\)
0.934034 0.357183i \(-0.116263\pi\)
\(608\) 6.76322 14.8094i 0.274285 0.600600i
\(609\) −3.92701 + 1.15307i −0.159130 + 0.0467249i
\(610\) −1.42673 + 0.418926i −0.0577667 + 0.0169618i
\(611\) 7.96734 17.4460i 0.322324 0.705792i
\(612\) −0.726057 5.04984i −0.0293491 0.204128i
\(613\) 12.6414 + 14.5890i 0.510581 + 0.589242i 0.951247 0.308429i \(-0.0998031\pi\)
−0.440666 + 0.897671i \(0.645258\pi\)
\(614\) 1.82229 + 3.99025i 0.0735415 + 0.161034i
\(615\) 15.1853 9.75903i 0.612332 0.393522i
\(616\) −0.617122 + 4.29218i −0.0248645 + 0.172937i
\(617\) −31.1639 20.0278i −1.25461 0.806290i −0.267075 0.963676i \(-0.586057\pi\)
−0.987537 + 0.157386i \(0.949693\pi\)
\(618\) 2.95484 3.41007i 0.118861 0.137173i
\(619\) −11.5570 3.39343i −0.464513 0.136393i 0.0410973 0.999155i \(-0.486915\pi\)
−0.505611 + 0.862762i \(0.668733\pi\)
\(620\) 0.510520 0.0205030
\(621\) −2.63029 4.01018i −0.105550 0.160923i
\(622\) −4.11039 −0.164812
\(623\) 7.30933 + 2.14621i 0.292842 + 0.0859862i
\(624\) 10.2503 11.8295i 0.410342 0.473560i
\(625\) −20.1573 12.9543i −0.806294 0.518173i
\(626\) −0.171218 + 1.19085i −0.00684326 + 0.0475959i
\(627\) −16.4689 + 10.5839i −0.657706 + 0.422682i
\(628\) 4.47241 + 9.79321i 0.178469 + 0.390792i
\(629\) 11.2130 + 12.9405i 0.447091 + 0.515970i
\(630\) −0.129368 0.899773i −0.00515414 0.0358478i
\(631\) −16.2840 + 35.6569i −0.648255 + 1.41948i 0.244819 + 0.969569i \(0.421271\pi\)
−0.893074 + 0.449911i \(0.851456\pi\)
\(632\) 18.4355 5.41315i 0.733325 0.215324i
\(633\) 24.0291 7.05557i 0.955070 0.280434i
\(634\) 0.265642 0.581675i 0.0105500 0.0231013i
\(635\) 2.07230 + 14.4132i 0.0822368 + 0.571970i
\(636\) 2.64392 + 3.05124i 0.104838 + 0.120990i
\(637\) −1.84701 4.04439i −0.0731812 0.160245i
\(638\) −3.80973 + 2.44836i −0.150829 + 0.0969317i
\(639\) 0.953989 6.63514i 0.0377392 0.262482i
\(640\) −22.0528 14.1725i −0.871712 0.560215i
\(641\) 28.1560 32.4938i 1.11210 1.28343i 0.156847 0.987623i \(-0.449867\pi\)
0.955249 0.295804i \(-0.0955876\pi\)
\(642\) −3.80753 1.11799i −0.150271 0.0441236i
\(643\) 13.2336 0.521883 0.260941 0.965355i \(-0.415967\pi\)
0.260941 + 0.965355i \(0.415967\pi\)
\(644\) −4.90325 + 7.78818i −0.193215 + 0.306897i
\(645\) −37.9571 −1.49456
\(646\) 3.65631 + 1.07359i 0.143856 + 0.0422398i
\(647\) 0.175072 0.202044i 0.00688280 0.00794318i −0.752298 0.658823i \(-0.771054\pi\)
0.759181 + 0.650880i \(0.225600\pi\)
\(648\) 0.938384 + 0.603063i 0.0368632 + 0.0236906i
\(649\) −5.76329 + 40.0846i −0.226229 + 1.57346i
\(650\) 5.53581 3.55765i 0.217132 0.139542i
\(651\) 0.0346041 + 0.0757724i 0.00135624 + 0.00296976i
\(652\) 7.55689 + 8.72112i 0.295951 + 0.341545i
\(653\) −3.23763 22.5182i −0.126698 0.881205i −0.949699 0.313165i \(-0.898611\pi\)
0.823001 0.568040i \(-0.192298\pi\)
\(654\) −2.01803 + 4.41887i −0.0789112 + 0.172791i
\(655\) −50.8205 + 14.9223i −1.98572 + 0.583061i
\(656\) 19.0917 5.60584i 0.745407 0.218871i
\(657\) −3.19829 + 7.00328i −0.124777 + 0.273224i
\(658\) −0.174733 1.21529i −0.00681179 0.0473771i
\(659\) −23.5585 27.1879i −0.917707 1.05909i −0.998056 0.0623236i \(-0.980149\pi\)
0.0803489 0.996767i \(-0.474397\pi\)
\(660\) 9.89730 + 21.6721i 0.385252 + 0.843584i
\(661\) 6.95477 4.46956i 0.270509 0.173846i −0.398353 0.917232i \(-0.630418\pi\)
0.668862 + 0.743387i \(0.266782\pi\)
\(662\) −1.16233 + 8.08416i −0.0451751 + 0.314200i
\(663\) 9.94405 + 6.39065i 0.386195 + 0.248192i
\(664\) −6.13104 + 7.07560i −0.237930 + 0.274586i
\(665\) −15.4315 4.53111i −0.598410 0.175709i
\(666\) −1.83317 −0.0710340
\(667\) −19.4017 + 2.97427i −0.751237 + 0.115164i
\(668\) 1.26433 0.0489183
\(669\) 8.05321 + 2.36464i 0.311355 + 0.0914221i
\(670\) 1.14120 1.31702i 0.0440884 0.0508807i
\(671\) 5.34957 + 3.43796i 0.206518 + 0.132721i
\(672\) 0.460097 3.20005i 0.0177486 0.123444i
\(673\) −41.4957 + 26.6677i −1.59954 + 1.02796i −0.632096 + 0.774890i \(0.717805\pi\)
−0.967447 + 0.253074i \(0.918558\pi\)
\(674\) 4.09942 + 8.97648i 0.157904 + 0.345761i
\(675\) −3.40515 3.92975i −0.131064 0.151256i
\(676\) 1.84849 + 12.8565i 0.0710958 + 0.494482i
\(677\) 10.4386 22.8574i 0.401189 0.878480i −0.595960 0.803014i \(-0.703228\pi\)
0.997148 0.0754662i \(-0.0240445\pi\)
\(678\) −0.232221 + 0.0681864i −0.00891841 + 0.00261868i
\(679\) 4.21587 1.23789i 0.161790 0.0475059i
\(680\) 3.93442 8.61518i 0.150878 0.330377i
\(681\) −0.272579 1.89583i −0.0104453 0.0726484i
\(682\) 0.0603589 + 0.0696579i 0.00231126 + 0.00266734i
\(683\) 0.490628 + 1.07433i 0.0187734 + 0.0411080i 0.918786 0.394755i \(-0.129171\pi\)
−0.900013 + 0.435863i \(0.856443\pi\)
\(684\) 8.12963 5.22459i 0.310844 0.199767i
\(685\) 2.68967 18.7071i 0.102767 0.714761i
\(686\) −0.239446 0.153882i −0.00914208 0.00587526i
\(687\) 11.9506 13.7917i 0.455944 0.526188i
\(688\) −40.1459 11.7879i −1.53055 0.449409i
\(689\) −9.35437 −0.356373
\(690\) −0.0406094 4.35934i −0.00154597 0.165957i
\(691\) −41.4241 −1.57585 −0.787923 0.615774i \(-0.788843\pi\)
−0.787923 + 0.615774i \(0.788843\pi\)
\(692\) −17.9851 5.28091i −0.683692 0.200750i
\(693\) −2.54575 + 2.93795i −0.0967051 + 0.111604i
\(694\) 4.25312 + 2.73331i 0.161446 + 0.103755i
\(695\) 6.82844 47.4928i 0.259017 1.80151i
\(696\) 3.84062 2.46821i 0.145578 0.0935574i
\(697\) 6.24213 + 13.6684i 0.236438 + 0.517726i
\(698\) 4.27428 + 4.93278i 0.161784 + 0.186708i
\(699\) −2.56705 17.8542i −0.0970949 0.675310i
\(700\) −4.14515 + 9.07662i −0.156672 + 0.343064i
\(701\) −21.9506 + 6.44528i −0.829064 + 0.243435i −0.668615 0.743609i \(-0.733112\pi\)
−0.160449 + 0.987044i \(0.551294\pi\)
\(702\) −1.21425 + 0.356537i −0.0458290 + 0.0134566i
\(703\) −13.4734 + 29.5026i −0.508159 + 1.11271i
\(704\) 3.38628 + 23.5521i 0.127625 + 0.887653i
\(705\) −9.02171 10.4116i −0.339777 0.392124i
\(706\) 0.897160 + 1.96451i 0.0337651 + 0.0739352i
\(707\) 6.08546 3.91089i 0.228867 0.147084i
\(708\) 2.84496 19.7871i 0.106920 0.743645i
\(709\) −5.56451 3.57609i −0.208980 0.134303i 0.431964 0.901891i \(-0.357821\pi\)
−0.640944 + 0.767588i \(0.721457\pi\)
\(710\) 3.99042 4.60519i 0.149758 0.172830i
\(711\) 16.5273 + 4.85284i 0.619821 + 0.181996i
\(712\) −8.49747 −0.318456
\(713\) 0.116116 + 0.382246i 0.00434858 + 0.0143152i
\(714\) 0.756709 0.0283191
\(715\) −52.9654 15.5520i −1.98079 0.581613i
\(716\) −27.5626 + 31.8090i −1.03006 + 1.18876i
\(717\) −20.1064 12.9216i −0.750888 0.482567i
\(718\) 0.250988 1.74566i 0.00936680 0.0651475i
\(719\) −36.8973 + 23.7125i −1.37604 + 0.884326i −0.999121 0.0419215i \(-0.986652\pi\)
−0.376917 + 0.926247i \(0.623016\pi\)
\(720\) −4.67068 10.2274i −0.174066 0.381151i
\(721\) −10.3814 11.9807i −0.386622 0.446185i
\(722\) 0.257612 + 1.79173i 0.00958731 + 0.0666812i
\(723\) 6.91999 15.1527i 0.257357 0.563534i
\(724\) −0.716914 + 0.210505i −0.0266439 + 0.00782335i
\(725\) −20.4197 + 5.99576i −0.758368 + 0.222677i
\(726\) −0.486249 + 1.06474i −0.0180464 + 0.0395161i
\(727\) −7.60997 52.9285i −0.282238 1.96301i −0.269162 0.963095i \(-0.586747\pi\)
−0.0130762 0.999915i \(-0.504162\pi\)
\(728\) 3.24781 + 3.74817i 0.120372 + 0.138916i
\(729\) 0.415415 + 0.909632i 0.0153857 + 0.0336901i
\(730\) −5.88761 + 3.78374i −0.217910 + 0.140042i
\(731\) 4.49673 31.2754i 0.166318 1.15676i
\(732\) −2.64073 1.69709i −0.0976040 0.0627263i
\(733\) 9.09097 10.4915i 0.335783 0.387514i −0.562599 0.826730i \(-0.690198\pi\)
0.898381 + 0.439216i \(0.144744\pi\)
\(734\) −2.10845 0.619095i −0.0778241 0.0228512i
\(735\) −3.19371 −0.117802
\(736\) 4.22941 14.9167i 0.155898 0.549836i
\(737\) −7.45253 −0.274517
\(738\) −1.54356 0.453230i −0.0568193 0.0166836i
\(739\) −18.6155 + 21.4834i −0.684782 + 0.790281i −0.986613 0.163081i \(-0.947857\pi\)
0.301830 + 0.953362i \(0.402402\pi\)
\(740\) 33.2061 + 21.3402i 1.22068 + 0.784483i
\(741\) −3.18647 + 22.1624i −0.117058 + 0.814155i
\(742\) −0.503772 + 0.323755i −0.0184941 + 0.0118854i
\(743\) −9.84020 21.5470i −0.361002 0.790484i −0.999778 0.0210907i \(-0.993286\pi\)
0.638776 0.769393i \(-0.279441\pi\)
\(744\) −0.0608483 0.0702227i −0.00223081 0.00257449i
\(745\) 10.5950 + 73.6900i 0.388171 + 2.69979i
\(746\) 2.37592 5.20254i 0.0869886 0.190478i
\(747\) −8.05328 + 2.36466i −0.294654 + 0.0865183i
\(748\) −19.0296 + 5.58759i −0.695791 + 0.204303i
\(749\) −5.79167 + 12.6820i −0.211623 + 0.463389i
\(750\) −0.0258478 0.179776i −0.000943829 0.00656447i
\(751\) −13.3089 15.3593i −0.485648 0.560468i 0.459049 0.888411i \(-0.348190\pi\)
−0.944698 + 0.327943i \(0.893645\pi\)
\(752\) −6.30853 13.8137i −0.230048 0.503736i
\(753\) 22.8439 14.6809i 0.832478 0.535001i
\(754\) −0.737120 + 5.12678i −0.0268443 + 0.186706i
\(755\) −47.4990 30.5258i −1.72867 1.11095i
\(756\) 1.25667 1.45027i 0.0457046 0.0527459i
\(757\) 35.5486 + 10.4380i 1.29204 + 0.379376i 0.854325 0.519740i \(-0.173971\pi\)
0.437711 + 0.899116i \(0.355789\pi\)
\(758\) −0.494946 −0.0179772
\(759\) −13.9756 + 12.3397i −0.507282 + 0.447903i
\(760\) 17.9400 0.650751
\(761\) 13.9451 + 4.09464i 0.505509 + 0.148431i 0.524536 0.851388i \(-0.324239\pi\)
−0.0190275 + 0.999819i \(0.506057\pi\)
\(762\) 0.849838 0.980766i 0.0307864 0.0355294i
\(763\) 14.3579 + 9.22729i 0.519792 + 0.334050i
\(764\) 6.09116 42.3650i 0.220370 1.53271i
\(765\) 7.14285 4.59043i 0.258250 0.165967i
\(766\) −3.28782 7.19932i −0.118794 0.260122i
\(767\) 30.3312 + 35.0041i 1.09520 + 1.26392i
\(768\) −1.40967 9.80445i −0.0508670 0.353788i
\(769\) −3.35253 + 7.34101i −0.120895 + 0.264724i −0.960398 0.278632i \(-0.910119\pi\)
0.839503 + 0.543355i \(0.182846\pi\)
\(770\) −3.39066 + 0.995589i −0.122191 + 0.0358785i
\(771\) 0.374231 0.109884i 0.0134776 0.00395738i