Properties

Label 483.2.q.c.64.1
Level $483$
Weight $2$
Character 483.64
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 40 x^{18} - 117 x^{17} + 295 x^{16} - 575 x^{15} + 1777 x^{14} - 1560 x^{13} + 4383 x^{12} - 6446 x^{11} + 7261 x^{10} + 7700 x^{9} + 7852 x^{8} - 39430 x^{7} - 101709 x^{6} + 156742 x^{5} + 999838 x^{4} + 2029154 x^{3} + 3616480 x^{2} + 4299390 x + 2374681\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 64.1
Root \(2.10485 - 0.618040i\) of defining polynomial
Character \(\chi\) \(=\) 483.64
Dual form 483.2.q.c.400.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.273100 + 0.0801894i) q^{2} +(-0.654861 + 0.755750i) q^{3} +(-1.61435 - 1.03748i) q^{4} +(-0.0390977 + 0.271930i) q^{5} +(-0.239446 + 0.153882i) q^{6} +(0.415415 + 0.909632i) q^{7} +(-0.730471 - 0.843008i) q^{8} +(-0.142315 - 0.989821i) q^{9} +O(q^{10})\) \(q+(0.273100 + 0.0801894i) q^{2} +(-0.654861 + 0.755750i) q^{3} +(-1.61435 - 1.03748i) q^{4} +(-0.0390977 + 0.271930i) q^{5} +(-0.239446 + 0.153882i) q^{6} +(0.415415 + 0.909632i) q^{7} +(-0.730471 - 0.843008i) q^{8} +(-0.142315 - 0.989821i) q^{9} +(-0.0324835 + 0.0711290i) q^{10} +(4.25000 - 1.24791i) q^{11} +(1.84125 - 0.540641i) q^{12} +(0.917944 - 2.01002i) q^{13} +(0.0405070 + 0.281733i) q^{14} +(-0.179908 - 0.207625i) q^{15} +(1.46246 + 3.20234i) q^{16} +(-1.97931 + 1.27203i) q^{17} +(0.0405070 - 0.281733i) q^{18} +(4.49442 + 2.88839i) q^{19} +(0.345241 - 0.398429i) q^{20} +(-0.959493 - 0.281733i) q^{21} +1.26075 q^{22} +(4.62992 + 1.25052i) q^{23} +1.11546 q^{24} +(4.72505 + 1.38740i) q^{25} +(0.411873 - 0.475327i) q^{26} +(0.841254 + 0.540641i) q^{27} +(0.273100 - 1.89945i) q^{28} +(0.958025 - 0.615686i) q^{29} +(-0.0324835 - 0.0711290i) q^{30} +(2.03278 + 2.34596i) q^{31} +(0.460097 + 3.20005i) q^{32} +(-1.84005 + 4.02915i) q^{33} +(-0.642553 + 0.188671i) q^{34} +(-0.263598 + 0.0773995i) q^{35} +(-0.797176 + 1.74557i) q^{36} +(-1.32669 - 9.22735i) q^{37} +(0.995808 + 1.14922i) q^{38} +(0.917944 + 2.01002i) q^{39} +(0.257799 - 0.165678i) q^{40} +(0.524462 - 3.64772i) q^{41} +(-0.239446 - 0.153882i) q^{42} +(6.99339 - 8.07080i) q^{43} +(-8.15569 - 2.39473i) q^{44} +0.274727 q^{45} +(1.16415 + 0.712788i) q^{46} -9.89528 q^{47} +(-3.37787 - 0.991834i) q^{48} +(-0.654861 + 0.755750i) q^{49} +(1.17916 + 0.757798i) q^{50} +(0.334840 - 2.32886i) q^{51} +(-3.56724 + 2.29253i) q^{52} +(5.06860 + 11.0987i) q^{53} +(0.186393 + 0.215109i) q^{54} +(0.173180 + 1.20450i) q^{55} +(0.463379 - 1.01466i) q^{56} +(-5.12611 + 1.50516i) q^{57} +(0.311008 - 0.0913203i) q^{58} +(0.248707 - 0.544593i) q^{59} +(0.0750279 + 0.521831i) q^{60} +(9.18014 + 10.5944i) q^{61} +(0.367033 + 0.803689i) q^{62} +(0.841254 - 0.540641i) q^{63} +(0.871076 - 6.05846i) q^{64} +(0.510695 + 0.328204i) q^{65} +(-0.825613 + 0.952808i) q^{66} +(-5.98771 - 1.75815i) q^{67} +4.51501 q^{68} +(-3.97703 + 2.68015i) q^{69} -0.0781954 q^{70} +(-14.1876 - 4.16585i) q^{71} +(-0.730471 + 0.843008i) q^{72} +(-6.05644 - 3.89224i) q^{73} +(0.377616 - 2.62638i) q^{74} +(-4.14277 + 2.66240i) q^{75} +(-4.25893 - 9.32576i) q^{76} +(2.90066 + 3.34754i) q^{77} +(0.0895085 + 0.622546i) q^{78} +(-0.242409 + 0.530803i) q^{79} +(-0.927993 + 0.272483i) q^{80} +(-0.959493 + 0.281733i) q^{81} +(0.435739 - 0.954135i) q^{82} +(-0.753251 - 5.23898i) q^{83} +(1.25667 + 1.45027i) q^{84} +(-0.268516 - 0.587968i) q^{85} +(2.55709 - 1.64334i) q^{86} +(-0.162069 + 1.12722i) q^{87} +(-4.15650 - 2.67122i) q^{88} +(-9.17509 + 10.5886i) q^{89} +(0.0750279 + 0.0220302i) q^{90} +2.20970 q^{91} +(-6.17695 - 6.82224i) q^{92} -3.10415 q^{93} +(-2.70240 - 0.793497i) q^{94} +(-0.961162 + 1.10924i) q^{95} +(-2.71973 - 1.74787i) q^{96} +(1.84599 - 12.8391i) q^{97} +(-0.239446 + 0.153882i) q^{98} +(-1.84005 - 4.02915i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + O(q^{10}) \) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + 9q^{10} + 3q^{11} + 18q^{12} - 2q^{13} + 18q^{14} - q^{15} + 8q^{16} + 8q^{17} + 18q^{18} + 6q^{19} - 2q^{20} - 2q^{21} + 6q^{22} + 11q^{23} + 9q^{25} + 7q^{26} - 2q^{27} - 4q^{28} + 23q^{29} + 9q^{30} + q^{31} - 28q^{32} + 14q^{33} - 28q^{34} + 10q^{35} - 4q^{36} - 9q^{37} + 34q^{38} - 2q^{39} - 15q^{41} - 4q^{42} - 23q^{43} - 16q^{44} - 12q^{45} + 11q^{46} - 66q^{47} - 36q^{48} - 2q^{49} - 26q^{50} - 14q^{51} + 7q^{52} + 9q^{53} - 4q^{54} - 62q^{55} + 22q^{56} - 27q^{57} - 20q^{58} + 49q^{59} - 2q^{60} + 46q^{61} - 9q^{62} - 2q^{63} + 16q^{64} + 11q^{65} - 16q^{66} + 14q^{67} + 38q^{68} + 11q^{69} - 2q^{70} + 36q^{71} - q^{73} + 4q^{74} - 2q^{75} + 34q^{76} - 8q^{77} - 15q^{78} - 22q^{79} + 15q^{80} - 2q^{81} - 30q^{82} + 8q^{83} - 4q^{84} - 32q^{85} - 68q^{86} + q^{87} - 11q^{88} - 2q^{89} - 2q^{90} - 24q^{91} + 11q^{92} - 32q^{93} + 33q^{94} - 107q^{95} + 16q^{96} + 18q^{97} - 4q^{98} + 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{6}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.273100 + 0.0801894i 0.193111 + 0.0567025i 0.376858 0.926271i \(-0.377005\pi\)
−0.183747 + 0.982974i \(0.558823\pi\)
\(3\) −0.654861 + 0.755750i −0.378084 + 0.436332i
\(4\) −1.61435 1.03748i −0.807177 0.518741i
\(5\) −0.0390977 + 0.271930i −0.0174850 + 0.121611i −0.996695 0.0812406i \(-0.974112\pi\)
0.979210 + 0.202852i \(0.0650209\pi\)
\(6\) −0.239446 + 0.153882i −0.0977533 + 0.0628222i
\(7\) 0.415415 + 0.909632i 0.157012 + 0.343809i
\(8\) −0.730471 0.843008i −0.258260 0.298048i
\(9\) −0.142315 0.989821i −0.0474383 0.329940i
\(10\) −0.0324835 + 0.0711290i −0.0102722 + 0.0224930i
\(11\) 4.25000 1.24791i 1.28142 0.376260i 0.430997 0.902353i \(-0.358162\pi\)
0.850427 + 0.526093i \(0.176344\pi\)
\(12\) 1.84125 0.540641i 0.531524 0.156070i
\(13\) 0.917944 2.01002i 0.254592 0.557479i −0.738576 0.674170i \(-0.764502\pi\)
0.993168 + 0.116691i \(0.0372288\pi\)
\(14\) 0.0405070 + 0.281733i 0.0108260 + 0.0752962i
\(15\) −0.179908 0.207625i −0.0464520 0.0536085i
\(16\) 1.46246 + 3.20234i 0.365615 + 0.800585i
\(17\) −1.97931 + 1.27203i −0.480053 + 0.308512i −0.758194 0.652029i \(-0.773918\pi\)
0.278141 + 0.960540i \(0.410282\pi\)
\(18\) 0.0405070 0.281733i 0.00954760 0.0664050i
\(19\) 4.49442 + 2.88839i 1.03109 + 0.662641i 0.942768 0.333451i \(-0.108213\pi\)
0.0883225 + 0.996092i \(0.471849\pi\)
\(20\) 0.345241 0.398429i 0.0771981 0.0890914i
\(21\) −0.959493 0.281733i −0.209379 0.0614791i
\(22\) 1.26075 0.268792
\(23\) 4.62992 + 1.25052i 0.965406 + 0.260751i
\(24\) 1.11546 0.227692
\(25\) 4.72505 + 1.38740i 0.945009 + 0.277480i
\(26\) 0.411873 0.475327i 0.0807749 0.0932192i
\(27\) 0.841254 + 0.540641i 0.161899 + 0.104046i
\(28\) 0.273100 1.89945i 0.0516111 0.358963i
\(29\) 0.958025 0.615686i 0.177901 0.114330i −0.448660 0.893703i \(-0.648098\pi\)
0.626561 + 0.779373i \(0.284462\pi\)
\(30\) −0.0324835 0.0711290i −0.00593066 0.0129863i
\(31\) 2.03278 + 2.34596i 0.365099 + 0.421346i 0.908342 0.418229i \(-0.137349\pi\)
−0.543243 + 0.839576i \(0.682804\pi\)
\(32\) 0.460097 + 3.20005i 0.0813344 + 0.565693i
\(33\) −1.84005 + 4.02915i −0.320311 + 0.701384i
\(34\) −0.642553 + 0.188671i −0.110197 + 0.0323568i
\(35\) −0.263598 + 0.0773995i −0.0445563 + 0.0130829i
\(36\) −0.797176 + 1.74557i −0.132863 + 0.290929i
\(37\) −1.32669 9.22735i −0.218107 1.51697i −0.745017 0.667046i \(-0.767559\pi\)
0.526910 0.849921i \(-0.323350\pi\)
\(38\) 0.995808 + 1.14922i 0.161541 + 0.186429i
\(39\) 0.917944 + 2.01002i 0.146989 + 0.321860i
\(40\) 0.257799 0.165678i 0.0407617 0.0261959i
\(41\) 0.524462 3.64772i 0.0819072 0.569677i −0.906999 0.421134i \(-0.861632\pi\)
0.988906 0.148544i \(-0.0474586\pi\)
\(42\) −0.239446 0.153882i −0.0369473 0.0237446i
\(43\) 6.99339 8.07080i 1.06648 1.23079i 0.0945510 0.995520i \(-0.469858\pi\)
0.971931 0.235266i \(-0.0755961\pi\)
\(44\) −8.15569 2.39473i −1.22952 0.361019i
\(45\) 0.274727 0.0409539
\(46\) 1.16415 + 0.712788i 0.171645 + 0.105095i
\(47\) −9.89528 −1.44337 −0.721687 0.692219i \(-0.756633\pi\)
−0.721687 + 0.692219i \(0.756633\pi\)
\(48\) −3.37787 0.991834i −0.487554 0.143159i
\(49\) −0.654861 + 0.755750i −0.0935515 + 0.107964i
\(50\) 1.17916 + 0.757798i 0.166758 + 0.107169i
\(51\) 0.334840 2.32886i 0.0468870 0.326106i
\(52\) −3.56724 + 2.29253i −0.494688 + 0.317916i
\(53\) 5.06860 + 11.0987i 0.696225 + 1.52452i 0.844489 + 0.535573i \(0.179904\pi\)
−0.148264 + 0.988948i \(0.547369\pi\)
\(54\) 0.186393 + 0.215109i 0.0253648 + 0.0292726i
\(55\) 0.173180 + 1.20450i 0.0233516 + 0.162414i
\(56\) 0.463379 1.01466i 0.0619216 0.135589i
\(57\) −5.12611 + 1.50516i −0.678970 + 0.199364i
\(58\) 0.311008 0.0913203i 0.0408374 0.0119909i
\(59\) 0.248707 0.544593i 0.0323789 0.0709000i −0.892751 0.450549i \(-0.851228\pi\)
0.925130 + 0.379649i \(0.123955\pi\)
\(60\) 0.0750279 + 0.521831i 0.00968606 + 0.0673681i
\(61\) 9.18014 + 10.5944i 1.17540 + 1.35648i 0.921087 + 0.389356i \(0.127303\pi\)
0.254309 + 0.967123i \(0.418152\pi\)
\(62\) 0.367033 + 0.803689i 0.0466132 + 0.102069i
\(63\) 0.841254 0.540641i 0.105988 0.0681143i
\(64\) 0.871076 6.05846i 0.108884 0.757308i
\(65\) 0.510695 + 0.328204i 0.0633440 + 0.0407087i
\(66\) −0.825613 + 0.952808i −0.101626 + 0.117283i
\(67\) −5.98771 1.75815i −0.731515 0.214792i −0.105298 0.994441i \(-0.533580\pi\)
−0.626217 + 0.779649i \(0.715398\pi\)
\(68\) 4.51501 0.547526
\(69\) −3.97703 + 2.68015i −0.478779 + 0.322652i
\(70\) −0.0781954 −0.00934614
\(71\) −14.1876 4.16585i −1.68376 0.494395i −0.706724 0.707489i \(-0.749828\pi\)
−0.977032 + 0.213094i \(0.931646\pi\)
\(72\) −0.730471 + 0.843008i −0.0860868 + 0.0993495i
\(73\) −6.05644 3.89224i −0.708853 0.455552i 0.135891 0.990724i \(-0.456610\pi\)
−0.844743 + 0.535172i \(0.820247\pi\)
\(74\) 0.377616 2.62638i 0.0438970 0.305310i
\(75\) −4.14277 + 2.66240i −0.478366 + 0.307427i
\(76\) −4.25893 9.32576i −0.488533 1.06974i
\(77\) 2.90066 + 3.34754i 0.330560 + 0.381487i
\(78\) 0.0895085 + 0.622546i 0.0101348 + 0.0704894i
\(79\) −0.242409 + 0.530803i −0.0272732 + 0.0597200i −0.922778 0.385331i \(-0.874087\pi\)
0.895505 + 0.445051i \(0.146814\pi\)
\(80\) −0.927993 + 0.272483i −0.103753 + 0.0304646i
\(81\) −0.959493 + 0.281733i −0.106610 + 0.0313036i
\(82\) 0.435739 0.954135i 0.0481193 0.105367i
\(83\) −0.753251 5.23898i −0.0826801 0.575053i −0.988481 0.151348i \(-0.951639\pi\)
0.905800 0.423705i \(-0.139271\pi\)
\(84\) 1.25667 + 1.45027i 0.137114 + 0.158238i
\(85\) −0.268516 0.587968i −0.0291247 0.0637741i
\(86\) 2.55709 1.64334i 0.275738 0.177206i
\(87\) −0.162069 + 1.12722i −0.0173756 + 0.120850i
\(88\) −4.15650 2.67122i −0.443085 0.284753i
\(89\) −9.17509 + 10.5886i −0.972558 + 1.12239i 0.0198996 + 0.999802i \(0.493665\pi\)
−0.992457 + 0.122590i \(0.960880\pi\)
\(90\) 0.0750279 + 0.0220302i 0.00790864 + 0.00232219i
\(91\) 2.20970 0.231640
\(92\) −6.17695 6.82224i −0.643991 0.711268i
\(93\) −3.10415 −0.321885
\(94\) −2.70240 0.793497i −0.278732 0.0818430i
\(95\) −0.961162 + 1.10924i −0.0986131 + 0.113806i
\(96\) −2.71973 1.74787i −0.277582 0.178391i
\(97\) 1.84599 12.8391i 0.187432 1.30362i −0.651195 0.758910i \(-0.725732\pi\)
0.838627 0.544706i \(-0.183359\pi\)
\(98\) −0.239446 + 0.153882i −0.0241877 + 0.0155445i
\(99\) −1.84005 4.02915i −0.184932 0.404944i
\(100\) −6.18850 7.14191i −0.618850 0.714191i
\(101\) 2.42758 + 16.8842i 0.241553 + 1.68004i 0.644335 + 0.764744i \(0.277134\pi\)
−0.402782 + 0.915296i \(0.631957\pi\)
\(102\) 0.278195 0.609162i 0.0275454 0.0603161i
\(103\) 18.6491 5.47587i 1.83755 0.539554i 0.837574 0.546324i \(-0.183973\pi\)
0.999977 + 0.00677092i \(0.00215527\pi\)
\(104\) −2.36499 + 0.694424i −0.231907 + 0.0680939i
\(105\) 0.114126 0.249900i 0.0111375 0.0243878i
\(106\) 0.494238 + 3.43750i 0.0480046 + 0.333879i
\(107\) −8.51186 9.82321i −0.822872 0.949645i 0.176527 0.984296i \(-0.443514\pi\)
−0.999399 + 0.0346506i \(0.988968\pi\)
\(108\) −0.797176 1.74557i −0.0767083 0.167968i
\(109\) −1.65587 + 1.06416i −0.158603 + 0.101928i −0.617535 0.786543i \(-0.711869\pi\)
0.458932 + 0.888472i \(0.348232\pi\)
\(110\) −0.0492922 + 0.342835i −0.00469983 + 0.0326880i
\(111\) 7.84236 + 5.03998i 0.744364 + 0.478374i
\(112\) −2.30542 + 2.66060i −0.217842 + 0.251403i
\(113\) 4.68706 + 1.37624i 0.440921 + 0.129466i 0.494656 0.869089i \(-0.335294\pi\)
−0.0537343 + 0.998555i \(0.517112\pi\)
\(114\) −1.52064 −0.142421
\(115\) −0.521073 + 1.21013i −0.0485903 + 0.112845i
\(116\) −2.18535 −0.202905
\(117\) −2.12020 0.622546i −0.196012 0.0575544i
\(118\) 0.111593 0.128785i 0.0102729 0.0118556i
\(119\) −1.97931 1.27203i −0.181443 0.116606i
\(120\) −0.0436119 + 0.303327i −0.00398120 + 0.0276899i
\(121\) 7.25144 4.66021i 0.659221 0.423656i
\(122\) 1.65753 + 3.62949i 0.150066 + 0.328599i
\(123\) 2.41331 + 2.78511i 0.217601 + 0.251125i
\(124\) −0.847743 5.89618i −0.0761296 0.529493i
\(125\) −1.13264 + 2.48014i −0.101307 + 0.221831i
\(126\) 0.273100 0.0801894i 0.0243297 0.00714384i
\(127\) 4.95527 1.45500i 0.439709 0.129110i −0.0543824 0.998520i \(-0.517319\pi\)
0.494091 + 0.869410i \(0.335501\pi\)
\(128\) 3.40975 7.46631i 0.301382 0.659935i
\(129\) 1.51981 + 10.5705i 0.133812 + 0.930681i
\(130\) 0.113153 + 0.130585i 0.00992413 + 0.0114531i
\(131\) 4.95882 + 10.8583i 0.433254 + 0.948694i 0.992788 + 0.119886i \(0.0382529\pi\)
−0.559534 + 0.828808i \(0.689020\pi\)
\(132\) 7.15066 4.59545i 0.622385 0.399982i
\(133\) −0.760320 + 5.28815i −0.0659281 + 0.458540i
\(134\) −1.49426 0.960302i −0.129084 0.0829575i
\(135\) −0.179908 + 0.207625i −0.0154840 + 0.0178695i
\(136\) 2.51816 + 0.739398i 0.215930 + 0.0634028i
\(137\) −4.09263 −0.349657 −0.174829 0.984599i \(-0.555937\pi\)
−0.174829 + 0.984599i \(0.555937\pi\)
\(138\) −1.30105 + 0.413033i −0.110753 + 0.0351597i
\(139\) −11.0090 −0.933767 −0.466884 0.884319i \(-0.654623\pi\)
−0.466884 + 0.884319i \(0.654623\pi\)
\(140\) 0.505842 + 0.148529i 0.0427514 + 0.0125530i
\(141\) 6.48003 7.47835i 0.545717 0.629791i
\(142\) −3.54057 2.27539i −0.297118 0.190946i
\(143\) 1.39294 9.68809i 0.116483 0.810159i
\(144\) 2.96162 1.90331i 0.246801 0.158610i
\(145\) 0.129967 + 0.284588i 0.0107932 + 0.0236338i
\(146\) −1.34190 1.54863i −0.111056 0.128166i
\(147\) −0.142315 0.989821i −0.0117379 0.0816391i
\(148\) −7.43146 + 16.2726i −0.610862 + 1.33760i
\(149\) −15.4098 + 4.52474i −1.26242 + 0.370681i −0.843396 0.537293i \(-0.819447\pi\)
−0.419027 + 0.907974i \(0.637629\pi\)
\(150\) −1.34489 + 0.394895i −0.109810 + 0.0322430i
\(151\) 4.00277 8.76484i 0.325741 0.713273i −0.673934 0.738792i \(-0.735397\pi\)
0.999674 + 0.0255193i \(0.00812391\pi\)
\(152\) −0.848107 5.89871i −0.0687905 0.478449i
\(153\) 1.54076 + 1.77814i 0.124563 + 0.143754i
\(154\) 0.523733 + 1.14681i 0.0422036 + 0.0924129i
\(155\) −0.717415 + 0.461054i −0.0576241 + 0.0370328i
\(156\) 0.603471 4.19723i 0.0483163 0.336047i
\(157\) 10.0517 + 6.45981i 0.802210 + 0.515549i 0.876336 0.481700i \(-0.159981\pi\)
−0.0741265 + 0.997249i \(0.523617\pi\)
\(158\) −0.108767 + 0.125524i −0.00865303 + 0.00998612i
\(159\) −11.7070 3.43750i −0.928429 0.272611i
\(160\) −0.888179 −0.0702167
\(161\) 0.785829 + 4.73101i 0.0619320 + 0.372856i
\(162\) −0.284630 −0.0223626
\(163\) 6.00584 + 1.76347i 0.470414 + 0.138126i 0.508343 0.861154i \(-0.330258\pi\)
−0.0379295 + 0.999280i \(0.512076\pi\)
\(164\) −4.63111 + 5.34458i −0.361629 + 0.417342i
\(165\) −1.02371 0.657896i −0.0796954 0.0512171i
\(166\) 0.214398 1.49117i 0.0166405 0.115737i
\(167\) 4.32773 2.78126i 0.334890 0.215220i −0.362378 0.932031i \(-0.618035\pi\)
0.697268 + 0.716811i \(0.254399\pi\)
\(168\) 0.463379 + 1.01466i 0.0357504 + 0.0782826i
\(169\) 5.31564 + 6.13458i 0.408895 + 0.471891i
\(170\) −0.0261829 0.182106i −0.00200814 0.0139669i
\(171\) 2.21936 4.85973i 0.169719 0.371633i
\(172\) −19.6631 + 5.77361i −1.49930 + 0.440234i
\(173\) −5.58819 + 1.64084i −0.424862 + 0.124751i −0.487172 0.873306i \(-0.661971\pi\)
0.0623098 + 0.998057i \(0.480153\pi\)
\(174\) −0.134652 + 0.294847i −0.0102079 + 0.0223523i
\(175\) 0.700833 + 4.87440i 0.0529780 + 0.368470i
\(176\) 10.2117 + 11.7849i 0.769736 + 0.888322i
\(177\) 0.248707 + 0.544593i 0.0186940 + 0.0409341i
\(178\) −3.35481 + 2.15601i −0.251454 + 0.161600i
\(179\) 1.82673 12.7052i 0.136536 0.949632i −0.800234 0.599688i \(-0.795291\pi\)
0.936770 0.349944i \(-0.113800\pi\)
\(180\) −0.443506 0.285024i −0.0330570 0.0212444i
\(181\) −12.8280 + 14.8043i −0.953494 + 1.10039i 0.0413668 + 0.999144i \(0.486829\pi\)
−0.994861 + 0.101247i \(0.967717\pi\)
\(182\) 0.603471 + 0.177195i 0.0447322 + 0.0131346i
\(183\) −14.0185 −1.03627
\(184\) −2.32783 4.81653i −0.171610 0.355079i
\(185\) 2.56107 0.188293
\(186\) −0.847743 0.248920i −0.0621595 0.0182517i
\(187\) −6.82470 + 7.87612i −0.499071 + 0.575959i
\(188\) 15.9745 + 10.2662i 1.16506 + 0.748738i
\(189\) −0.142315 + 0.989821i −0.0103519 + 0.0719989i
\(190\) −0.351443 + 0.225859i −0.0254963 + 0.0163855i
\(191\) −7.83831 17.1635i −0.567160 1.24191i −0.948296 0.317388i \(-0.897194\pi\)
0.381135 0.924519i \(-0.375533\pi\)
\(192\) 4.00825 + 4.62576i 0.289270 + 0.333836i
\(193\) 1.98983 + 13.8396i 0.143231 + 0.996196i 0.926978 + 0.375115i \(0.122397\pi\)
−0.783747 + 0.621080i \(0.786694\pi\)
\(194\) 1.53370 3.35834i 0.110113 0.241115i
\(195\) −0.582474 + 0.171030i −0.0417119 + 0.0122477i
\(196\) 1.84125 0.540641i 0.131518 0.0386172i
\(197\) 8.97867 19.6605i 0.639704 1.40076i −0.260580 0.965452i \(-0.583914\pi\)
0.900284 0.435303i \(-0.143359\pi\)
\(198\) −0.179423 1.24791i −0.0127510 0.0886853i
\(199\) 11.4900 + 13.2602i 0.814506 + 0.939990i 0.999082 0.0428284i \(-0.0136369\pi\)
−0.184577 + 0.982818i \(0.559091\pi\)
\(200\) −2.28192 4.99671i −0.161356 0.353321i
\(201\) 5.24984 3.37386i 0.370295 0.237974i
\(202\) −0.690961 + 4.80574i −0.0486159 + 0.338131i
\(203\) 0.958025 + 0.615686i 0.0672402 + 0.0432127i
\(204\) −2.95670 + 3.41222i −0.207011 + 0.238903i
\(205\) 0.971420 + 0.285235i 0.0678469 + 0.0199216i
\(206\) 5.53218 0.385445
\(207\) 0.578882 4.76077i 0.0402351 0.330896i
\(208\) 7.77922 0.539392
\(209\) 22.7057 + 6.66701i 1.57059 + 0.461166i
\(210\) 0.0512071 0.0590961i 0.00353363 0.00407802i
\(211\) −3.56659 2.29211i −0.245534 0.157795i 0.412086 0.911145i \(-0.364800\pi\)
−0.657620 + 0.753350i \(0.728437\pi\)
\(212\) 3.33217 23.1758i 0.228855 1.59172i
\(213\) 12.4392 7.99421i 0.852322 0.547754i
\(214\) −1.53687 3.36528i −0.105058 0.230046i
\(215\) 1.92127 + 2.21727i 0.131030 + 0.151216i
\(216\) −0.158746 1.10411i −0.0108013 0.0751249i
\(217\) −1.28951 + 2.82363i −0.0875376 + 0.191681i
\(218\) −0.537553 + 0.157840i −0.0364077 + 0.0106903i
\(219\) 6.90768 2.02828i 0.466778 0.137058i
\(220\) 0.970068 2.12415i 0.0654020 0.143210i
\(221\) 0.739897 + 5.14610i 0.0497709 + 0.346164i
\(222\) 1.73760 + 2.00529i 0.116620 + 0.134587i
\(223\) −3.93611 8.61887i −0.263581 0.577162i 0.730851 0.682537i \(-0.239123\pi\)
−0.994433 + 0.105374i \(0.966396\pi\)
\(224\) −2.71973 + 1.74787i −0.181720 + 0.116784i
\(225\) 0.700833 4.87440i 0.0467222 0.324960i
\(226\) 1.16968 + 0.751705i 0.0778057 + 0.0500027i
\(227\) −2.52601 + 2.91517i −0.167657 + 0.193487i −0.833361 0.552730i \(-0.813586\pi\)
0.665703 + 0.746216i \(0.268132\pi\)
\(228\) 9.83694 + 2.88839i 0.651467 + 0.191288i
\(229\) −13.6964 −0.905080 −0.452540 0.891744i \(-0.649482\pi\)
−0.452540 + 0.891744i \(0.649482\pi\)
\(230\) −0.239344 + 0.288701i −0.0157819 + 0.0190364i
\(231\) −4.42942 −0.291435
\(232\) −1.21884 0.357883i −0.0800206 0.0234962i
\(233\) −1.41769 + 1.63610i −0.0928761 + 0.107185i −0.800285 0.599620i \(-0.795318\pi\)
0.707409 + 0.706804i \(0.249864\pi\)
\(234\) −0.529104 0.340035i −0.0345886 0.0222288i
\(235\) 0.386883 2.69083i 0.0252374 0.175530i
\(236\) −0.966507 + 0.621136i −0.0629142 + 0.0404325i
\(237\) −0.242409 0.530803i −0.0157462 0.0344793i
\(238\) −0.438547 0.506110i −0.0284268 0.0328063i
\(239\) 4.29919 + 29.9015i 0.278091 + 1.93417i 0.349983 + 0.936756i \(0.386187\pi\)
−0.0718918 + 0.997412i \(0.522904\pi\)
\(240\) 0.401777 0.879769i 0.0259346 0.0567888i
\(241\) 0.590606 0.173418i 0.0380443 0.0111708i −0.262655 0.964890i \(-0.584598\pi\)
0.300699 + 0.953719i \(0.402780\pi\)
\(242\) 2.35407 0.691217i 0.151325 0.0444331i
\(243\) 0.415415 0.909632i 0.0266489 0.0583529i
\(244\) −3.82844 26.6274i −0.245091 1.70465i
\(245\) −0.179908 0.207625i −0.0114939 0.0132647i
\(246\) 0.435739 + 0.954135i 0.0277817 + 0.0608334i
\(247\) 9.93133 6.38248i 0.631916 0.406107i
\(248\) 0.492772 3.42731i 0.0312911 0.217634i
\(249\) 4.45263 + 2.86153i 0.282174 + 0.181342i
\(250\) −0.508206 + 0.586501i −0.0321418 + 0.0370936i
\(251\) −9.86939 2.89791i −0.622950 0.182915i −0.0450004 0.998987i \(-0.514329\pi\)
−0.577950 + 0.816072i \(0.696147\pi\)
\(252\) −1.91899 −0.120885
\(253\) 21.2377 0.463041i 1.33520 0.0291112i
\(254\) 1.46996 0.0922335
\(255\) 0.620197 + 0.182106i 0.0388383 + 0.0114039i
\(256\) −6.48657 + 7.48590i −0.405411 + 0.467869i
\(257\) 13.2739 + 8.53059i 0.828000 + 0.532123i 0.884642 0.466271i \(-0.154403\pi\)
−0.0566418 + 0.998395i \(0.518039\pi\)
\(258\) −0.432583 + 3.00868i −0.0269314 + 0.187312i
\(259\) 7.84236 5.03998i 0.487301 0.313169i
\(260\) −0.483937 1.05967i −0.0300125 0.0657182i
\(261\) −0.745760 0.860653i −0.0461614 0.0532731i
\(262\) 0.483533 + 3.36305i 0.0298728 + 0.207770i
\(263\) 0.663850 1.45363i 0.0409347 0.0896346i −0.888060 0.459728i \(-0.847947\pi\)
0.928995 + 0.370093i \(0.120674\pi\)
\(264\) 4.74071 1.39200i 0.291770 0.0856715i
\(265\) −3.21624 + 0.944373i −0.197572 + 0.0580124i
\(266\) −0.631697 + 1.38322i −0.0387318 + 0.0848109i
\(267\) −1.99394 13.8681i −0.122027 0.848717i
\(268\) 7.84223 + 9.05042i 0.479040 + 0.552842i
\(269\) −6.63310 14.5245i −0.404427 0.885572i −0.996802 0.0799094i \(-0.974537\pi\)
0.592375 0.805662i \(-0.298190\pi\)
\(270\) −0.0657822 + 0.0422756i −0.00400337 + 0.00257281i
\(271\) −1.80538 + 12.5567i −0.109669 + 0.762764i 0.858563 + 0.512709i \(0.171358\pi\)
−0.968232 + 0.250055i \(0.919551\pi\)
\(272\) −6.96812 4.47814i −0.422505 0.271527i
\(273\) −1.44705 + 1.66998i −0.0875793 + 0.101072i
\(274\) −1.11770 0.328186i −0.0675227 0.0198264i
\(275\) 21.8128 1.31536
\(276\) 9.20095 0.200606i 0.553832 0.0120751i
\(277\) −18.3178 −1.10061 −0.550305 0.834964i \(-0.685488\pi\)
−0.550305 + 0.834964i \(0.685488\pi\)
\(278\) −3.00655 0.882802i −0.180321 0.0529469i
\(279\) 2.03278 2.34596i 0.121700 0.140449i
\(280\) 0.257799 + 0.165678i 0.0154065 + 0.00990113i
\(281\) 2.11038 14.6780i 0.125895 0.875618i −0.824786 0.565446i \(-0.808704\pi\)
0.950680 0.310172i \(-0.100387\pi\)
\(282\) 2.36938 1.52271i 0.141095 0.0906760i
\(283\) −7.11331 15.5760i −0.422843 0.925896i −0.994434 0.105358i \(-0.966401\pi\)
0.571592 0.820538i \(-0.306326\pi\)
\(284\) 18.5818 + 21.4445i 1.10263 + 1.27250i
\(285\) −0.208880 1.45280i −0.0123730 0.0860562i
\(286\) 1.15729 2.53412i 0.0684322 0.149846i
\(287\) 3.53595 1.03825i 0.208720 0.0612858i
\(288\) 3.10199 0.910828i 0.182787 0.0536710i
\(289\) −4.76243 + 10.4283i −0.280143 + 0.613428i
\(290\) 0.0126731 + 0.0881431i 0.000744188 + 0.00517594i
\(291\) 8.49430 + 9.80295i 0.497945 + 0.574659i
\(292\) 5.73911 + 12.5669i 0.335856 + 0.735422i
\(293\) −14.2017 + 9.12685i −0.829670 + 0.533196i −0.885173 0.465262i \(-0.845960\pi\)
0.0555032 + 0.998459i \(0.482324\pi\)
\(294\) 0.0405070 0.281733i 0.00236242 0.0164310i
\(295\) 0.138368 + 0.0889234i 0.00805607 + 0.00517732i
\(296\) −6.80962 + 7.85872i −0.395801 + 0.456779i
\(297\) 4.25000 + 1.24791i 0.246610 + 0.0724113i
\(298\) −4.57127 −0.264806
\(299\) 6.76358 8.15832i 0.391148 0.471808i
\(300\) 9.45009 0.545601
\(301\) 10.2466 + 3.00868i 0.590605 + 0.173417i
\(302\) 1.79600 2.07270i 0.103348 0.119270i
\(303\) −14.3499 9.22215i −0.824383 0.529799i
\(304\) −2.67669 + 18.6168i −0.153519 + 1.06775i
\(305\) −3.23987 + 2.08214i −0.185515 + 0.119223i
\(306\) 0.278195 + 0.609162i 0.0159034 + 0.0348235i
\(307\) −1.96760 2.27073i −0.112297 0.129597i 0.696818 0.717248i \(-0.254598\pi\)
−0.809115 + 0.587651i \(0.800053\pi\)
\(308\) −1.20968 8.41348i −0.0689277 0.479403i
\(309\) −8.07418 + 17.6800i −0.459324 + 1.00578i
\(310\) −0.232898 + 0.0683849i −0.0132277 + 0.00388400i
\(311\) 20.0987 5.90152i 1.13969 0.334644i 0.343183 0.939268i \(-0.388495\pi\)
0.796511 + 0.604624i \(0.206677\pi\)
\(312\) 1.02393 2.24209i 0.0579686 0.126934i
\(313\) −0.837199 5.82285i −0.0473213 0.329127i −0.999706 0.0242292i \(-0.992287\pi\)
0.952385 0.304898i \(-0.0986222\pi\)
\(314\) 2.22710 + 2.57021i 0.125683 + 0.145045i
\(315\) 0.114126 + 0.249900i 0.00643025 + 0.0140803i
\(316\) 0.942033 0.605408i 0.0529935 0.0340568i
\(317\) −0.0933044 + 0.648946i −0.00524050 + 0.0364485i −0.992274 0.124066i \(-0.960406\pi\)
0.987033 + 0.160515i \(0.0513155\pi\)
\(318\) −2.92154 1.87756i −0.163832 0.105288i
\(319\) 3.30329 3.81220i 0.184949 0.213442i
\(320\) 1.61342 + 0.473744i 0.0901931 + 0.0264831i
\(321\) 12.9980 0.725476
\(322\) −0.164767 + 1.35506i −0.00918211 + 0.0755143i
\(323\) −12.5700 −0.699411
\(324\) 1.84125 + 0.540641i 0.102292 + 0.0300356i
\(325\) 7.12603 8.22387i 0.395281 0.456178i
\(326\) 1.49878 + 0.963211i 0.0830100 + 0.0533473i
\(327\) 0.280123 1.94830i 0.0154909 0.107741i
\(328\) −3.45816 + 2.22242i −0.190945 + 0.122713i
\(329\) −4.11065 9.00106i −0.226627 0.496245i
\(330\) −0.226818 0.261762i −0.0124859 0.0144095i
\(331\) −1.25598 8.73555i −0.0690351 0.480149i −0.994783 0.102009i \(-0.967473\pi\)
0.925748 0.378140i \(-0.123436\pi\)
\(332\) −4.21933 + 9.23905i −0.231566 + 0.507059i
\(333\) −8.94462 + 2.62638i −0.490162 + 0.143925i
\(334\) 1.40493 0.412525i 0.0768744 0.0225724i
\(335\) 0.712200 1.55950i 0.0389116 0.0852046i
\(336\) −0.501016 3.48465i −0.0273327 0.190103i
\(337\) 3.34724 + 3.86292i 0.182336 + 0.210426i 0.839558 0.543270i \(-0.182814\pi\)
−0.657222 + 0.753697i \(0.728269\pi\)
\(338\) 0.959774 + 2.10161i 0.0522048 + 0.114313i
\(339\) −4.10947 + 2.64099i −0.223196 + 0.143439i
\(340\) −0.176527 + 1.22777i −0.00957350 + 0.0665851i
\(341\) 11.5669 + 7.43359i 0.626382 + 0.402551i
\(342\) 0.995808 1.14922i 0.0538471 0.0621429i
\(343\) −0.959493 0.281733i −0.0518078 0.0152121i
\(344\) −11.9122 −0.642264
\(345\) −0.573321 1.18626i −0.0308666 0.0638663i
\(346\) −1.65771 −0.0891192
\(347\) 10.9500 + 3.21520i 0.587825 + 0.172601i 0.562102 0.827068i \(-0.309993\pi\)
0.0257231 + 0.999669i \(0.491811\pi\)
\(348\) 1.43110 1.65158i 0.0767152 0.0885340i
\(349\) −11.0800 7.12066i −0.593097 0.381160i 0.209388 0.977833i \(-0.432853\pi\)
−0.802485 + 0.596672i \(0.796489\pi\)
\(350\) −0.199478 + 1.38740i −0.0106625 + 0.0741596i
\(351\) 1.85892 1.19466i 0.0992219 0.0637660i
\(352\) 5.94879 + 13.0260i 0.317072 + 0.694290i
\(353\) −2.87567 3.31870i −0.153056 0.176637i 0.674043 0.738692i \(-0.264556\pi\)
−0.827100 + 0.562055i \(0.810011\pi\)
\(354\) 0.0242514 + 0.168672i 0.00128895 + 0.00896482i
\(355\) 1.68752 3.69516i 0.0895644 0.196119i
\(356\) 25.7973 7.57479i 1.36726 0.401463i
\(357\) 2.25751 0.662864i 0.119480 0.0350825i
\(358\) 1.51771 3.32331i 0.0802132 0.175642i
\(359\) −1.31568 9.15076i −0.0694390 0.482959i −0.994633 0.103465i \(-0.967007\pi\)
0.925194 0.379494i \(-0.123902\pi\)
\(360\) −0.200680 0.231597i −0.0105768 0.0122062i
\(361\) 3.96413 + 8.68022i 0.208638 + 0.456854i
\(362\) −4.69046 + 3.01438i −0.246525 + 0.158432i
\(363\) −1.22673 + 8.53206i −0.0643864 + 0.447817i
\(364\) −3.56724 2.29253i −0.186974 0.120161i
\(365\) 1.29521 1.49475i 0.0677944 0.0782389i
\(366\) −3.82844 1.12413i −0.200116 0.0587593i
\(367\) −27.8744 −1.45503 −0.727515 0.686092i \(-0.759325\pi\)
−0.727515 + 0.686092i \(0.759325\pi\)
\(368\) 2.76650 + 16.6554i 0.144214 + 0.868224i
\(369\) −3.68523 −0.191845
\(370\) 0.699428 + 0.205371i 0.0363615 + 0.0106767i
\(371\) −7.99014 + 9.22111i −0.414827 + 0.478736i
\(372\) 5.01119 + 3.22050i 0.259818 + 0.166975i
\(373\) −0.0679100 + 0.472324i −0.00351625 + 0.0244560i −0.991504 0.130076i \(-0.958478\pi\)
0.987988 + 0.154532i \(0.0493870\pi\)
\(374\) −2.49541 + 1.60370i −0.129034 + 0.0829254i
\(375\) −1.13264 2.48014i −0.0584894 0.128074i
\(376\) 7.22821 + 8.34180i 0.372767 + 0.430196i
\(377\) −0.358125 2.49081i −0.0184444 0.128283i
\(378\) −0.118239 + 0.258908i −0.00608158 + 0.0133168i
\(379\) −20.0092 + 5.87523i −1.02780 + 0.301790i −0.751817 0.659372i \(-0.770822\pi\)
−0.275986 + 0.961162i \(0.589004\pi\)
\(380\) 2.70247 0.793517i 0.138634 0.0407066i
\(381\) −2.14540 + 4.69776i −0.109912 + 0.240674i
\(382\) −0.764312 5.31591i −0.0391056 0.271985i
\(383\) −15.0166 17.3301i −0.767314 0.885528i 0.228812 0.973471i \(-0.426516\pi\)
−0.996125 + 0.0879432i \(0.971971\pi\)
\(384\) 3.40975 + 7.46631i 0.174003 + 0.381014i
\(385\) −1.02371 + 0.657896i −0.0521729 + 0.0335295i
\(386\) −0.566366 + 3.93916i −0.0288273 + 0.200498i
\(387\) −8.98392 5.77361i −0.456678 0.293489i
\(388\) −16.3004 + 18.8117i −0.827530 + 0.955020i
\(389\) −12.0315 3.53276i −0.610020 0.179118i −0.0378911 0.999282i \(-0.512064\pi\)
−0.572129 + 0.820164i \(0.693882\pi\)
\(390\) −0.172789 −0.00874949
\(391\) −10.7548 + 3.41422i −0.543891 + 0.172665i
\(392\) 1.11546 0.0563392
\(393\) −11.4535 3.36305i −0.577752 0.169643i
\(394\) 4.02864 4.64930i 0.202960 0.234228i
\(395\) −0.134864 0.0866717i −0.00678573 0.00436093i
\(396\) −1.20968 + 8.41348i −0.0607885 + 0.422794i
\(397\) −18.3137 + 11.7695i −0.919137 + 0.590694i −0.912407 0.409284i \(-0.865779\pi\)
−0.00673020 + 0.999977i \(0.502142\pi\)
\(398\) 2.07460 + 4.54274i 0.103990 + 0.227707i
\(399\) −3.49861 4.03761i −0.175150 0.202133i
\(400\) 2.46727 + 17.1602i 0.123363 + 0.858011i
\(401\) −0.267373 + 0.585465i −0.0133520 + 0.0292367i −0.916191 0.400743i \(-0.868752\pi\)
0.902839 + 0.429980i \(0.141479\pi\)
\(402\) 1.70428 0.500422i 0.0850017 0.0249588i
\(403\) 6.58140 1.93247i 0.327843 0.0962633i
\(404\) 13.5981 29.7756i 0.676529 1.48139i
\(405\) −0.0390977 0.271930i −0.00194278 0.0135123i
\(406\) 0.212265 + 0.244967i 0.0105346 + 0.0121575i
\(407\) −17.1534 37.5606i −0.850261 1.86181i
\(408\) −2.20784 + 1.41889i −0.109304 + 0.0702457i
\(409\) 5.38390 37.4459i 0.266217 1.85158i −0.217121 0.976145i \(-0.569667\pi\)
0.483338 0.875434i \(-0.339424\pi\)
\(410\) 0.242422 + 0.155795i 0.0119724 + 0.00769418i
\(411\) 2.68010 3.09301i 0.132200 0.152567i
\(412\) −35.7874 10.5081i −1.76312 0.517698i
\(413\) 0.598696 0.0294599
\(414\) 0.539856 1.25375i 0.0265325 0.0616182i
\(415\) 1.45409 0.0713784
\(416\) 6.85449 + 2.01266i 0.336069 + 0.0986788i
\(417\) 7.20933 8.32001i 0.353043 0.407433i
\(418\) 5.66632 + 3.64152i 0.277149 + 0.178113i
\(419\) −0.731076 + 5.08475i −0.0357154 + 0.248406i −0.999856 0.0169869i \(-0.994593\pi\)
0.964140 + 0.265393i \(0.0855017\pi\)
\(420\) −0.443506 + 0.285024i −0.0216409 + 0.0139078i
\(421\) 5.76077 + 12.6143i 0.280763 + 0.614784i 0.996501 0.0835846i \(-0.0266369\pi\)
−0.715738 + 0.698369i \(0.753910\pi\)
\(422\) −0.790233 0.911977i −0.0384679 0.0443944i
\(423\) 1.40824 + 9.79456i 0.0684712 + 0.476228i
\(424\) 5.65381 12.3801i 0.274573 0.601232i
\(425\) −11.1171 + 3.26429i −0.539261 + 0.158341i
\(426\) 4.03821 1.18572i 0.195652 0.0574485i
\(427\) −5.82348 + 12.7516i −0.281818 + 0.617095i
\(428\) 3.54975 + 24.6890i 0.171583 + 1.19339i
\(429\) 6.40959 + 7.39706i 0.309458 + 0.357134i
\(430\) 0.346898 + 0.759601i 0.0167289 + 0.0366312i
\(431\) −2.41661 + 1.55306i −0.116404 + 0.0748083i −0.597547 0.801834i \(-0.703858\pi\)
0.481143 + 0.876642i \(0.340222\pi\)
\(432\) −0.501016 + 3.48465i −0.0241052 + 0.167655i
\(433\) −16.8115 10.8041i −0.807911 0.519213i 0.0702774 0.997527i \(-0.477612\pi\)
−0.878189 + 0.478314i \(0.841248\pi\)
\(434\) −0.578591 + 0.667729i −0.0277732 + 0.0320520i
\(435\) −0.300188 0.0881431i −0.0143929 0.00422614i
\(436\) 3.77721 0.180895
\(437\) 17.1968 + 18.9934i 0.822636 + 0.908576i
\(438\) 2.04914 0.0979115
\(439\) 16.2967 + 4.78513i 0.777797 + 0.228382i 0.646452 0.762955i \(-0.276252\pi\)
0.131346 + 0.991337i \(0.458070\pi\)
\(440\) 0.888896 1.02584i 0.0423765 0.0489051i
\(441\) 0.841254 + 0.540641i 0.0400597 + 0.0257448i
\(442\) −0.210597 + 1.46473i −0.0100171 + 0.0696702i
\(443\) −33.3437 + 21.4287i −1.58421 + 1.01811i −0.610013 + 0.792392i \(0.708836\pi\)
−0.974193 + 0.225716i \(0.927528\pi\)
\(444\) −7.43146 16.2726i −0.352681 0.772264i
\(445\) −2.52064 2.90898i −0.119490 0.137899i
\(446\) −0.383809 2.66945i −0.0181739 0.126402i
\(447\) 6.67173 14.6091i 0.315562 0.690985i
\(448\) 5.87283 1.72442i 0.277465 0.0814711i
\(449\) 16.1942 4.75505i 0.764252 0.224405i 0.123700 0.992320i \(-0.460524\pi\)
0.640552 + 0.767915i \(0.278706\pi\)
\(450\) 0.582273 1.27500i 0.0274486 0.0601041i
\(451\) −2.32307 16.1573i −0.109389 0.760816i
\(452\) −6.13874 7.08448i −0.288742 0.333226i
\(453\) 4.00277 + 8.76484i 0.188066 + 0.411808i
\(454\) −0.923620 + 0.593574i −0.0433476 + 0.0278578i
\(455\) −0.0863943 + 0.600886i −0.00405023 + 0.0281700i
\(456\) 5.01334 + 3.22188i 0.234771 + 0.150878i
\(457\) −14.8487 + 17.1363i −0.694593 + 0.801603i −0.988011 0.154381i \(-0.950662\pi\)
0.293418 + 0.955984i \(0.405207\pi\)
\(458\) −3.74048 1.09830i −0.174781 0.0513203i
\(459\) −2.35281 −0.109820
\(460\) 2.09668 1.41297i 0.0977582 0.0658799i
\(461\) −7.65994 −0.356759 −0.178380 0.983962i \(-0.557085\pi\)
−0.178380 + 0.983962i \(0.557085\pi\)
\(462\) −1.20968 0.355193i −0.0562792 0.0165251i
\(463\) 20.4704 23.6241i 0.951339 1.09790i −0.0437617 0.999042i \(-0.513934\pi\)
0.995101 0.0988623i \(-0.0315203\pi\)
\(464\) 3.37271 + 2.16751i 0.156574 + 0.100624i
\(465\) 0.121365 0.844112i 0.00562817 0.0391448i
\(466\) −0.518370 + 0.333136i −0.0240130 + 0.0154322i
\(467\) −10.3306 22.6209i −0.478044 1.04677i −0.982997 0.183623i \(-0.941217\pi\)
0.504953 0.863147i \(-0.331510\pi\)
\(468\) 2.77687 + 3.20467i 0.128361 + 0.148136i
\(469\) −0.888115 6.17697i −0.0410093 0.285226i
\(470\) 0.321434 0.703842i 0.0148266 0.0324658i
\(471\) −11.4644 + 3.36626i −0.528253 + 0.155109i
\(472\) −0.640770 + 0.188147i −0.0294938 + 0.00866017i
\(473\) 19.6503 43.0281i 0.903520 1.97843i
\(474\) −0.0236373 0.164401i −0.00108570 0.00755119i
\(475\) 17.2290 + 19.8833i 0.790520 + 0.912309i
\(476\) 1.87560 + 4.10700i 0.0859682 + 0.188244i
\(477\) 10.2644 6.59651i 0.469973 0.302033i
\(478\) −1.22368 + 8.51086i −0.0559697 + 0.389278i
\(479\) −17.0530 10.9593i −0.779172 0.500743i 0.0895870 0.995979i \(-0.471445\pi\)
−0.868759 + 0.495236i \(0.835082\pi\)
\(480\) 0.581633 0.671241i 0.0265478 0.0306378i
\(481\) −19.7650 5.80352i −0.901205 0.264618i
\(482\) 0.175201 0.00798019
\(483\) −4.09007 2.50426i −0.186105 0.113948i
\(484\) −16.5413 −0.751876
\(485\) 3.41918 + 1.00396i 0.155257 + 0.0455875i
\(486\) 0.186393 0.215109i 0.00845495 0.00975753i
\(487\) −10.9183 7.01678i −0.494756 0.317960i 0.269360 0.963040i \(-0.413188\pi\)
−0.764116 + 0.645079i \(0.776824\pi\)
\(488\) 2.22538 15.4779i 0.100738 0.700650i
\(489\) −5.26574 + 3.38408i −0.238125 + 0.153034i
\(490\) −0.0324835 0.0711290i −0.00146746 0.00321328i
\(491\) 1.78049 + 2.05479i 0.0803523 + 0.0927315i 0.794502 0.607261i \(-0.207732\pi\)
−0.714150 + 0.699993i \(0.753186\pi\)
\(492\) −1.00644 6.99991i −0.0453736 0.315580i
\(493\) −1.11306 + 2.43727i −0.0501298 + 0.109769i
\(494\) 3.22406 0.946668i 0.145057 0.0425926i
\(495\) 1.16759 0.342835i 0.0524792 0.0154093i
\(496\) −4.53969 + 9.94054i −0.203838 + 0.446343i
\(497\) −2.10434 14.6360i −0.0943927 0.656516i
\(498\) 0.986550 + 1.13854i 0.0442083 + 0.0510191i
\(499\) 7.03931 + 15.4139i 0.315123 + 0.690022i 0.999225 0.0393638i \(-0.0125331\pi\)
−0.684102 + 0.729386i \(0.739806\pi\)
\(500\) 4.40159 2.82873i 0.196845 0.126505i
\(501\) −0.732121 + 5.09202i −0.0327088 + 0.227495i
\(502\) −2.46295 1.58284i −0.109927 0.0706457i
\(503\) −4.08797 + 4.71777i −0.182274 + 0.210355i −0.839532 0.543310i \(-0.817171\pi\)
0.657258 + 0.753666i \(0.271716\pi\)
\(504\) −1.07028 0.314261i −0.0476739 0.0139983i
\(505\) −4.68624 −0.208535
\(506\) 5.83716 + 1.57658i 0.259493 + 0.0700877i
\(507\) −8.11721 −0.360498
\(508\) −9.50909 2.79212i −0.421898 0.123880i
\(509\) −26.3337 + 30.3907i −1.16722 + 1.34704i −0.240791 + 0.970577i \(0.577407\pi\)
−0.926430 + 0.376468i \(0.877139\pi\)
\(510\) 0.154773 + 0.0994666i 0.00685346 + 0.00440445i
\(511\) 1.02457 7.12603i 0.0453242 0.315237i
\(512\) −16.1819 + 10.3995i −0.715145 + 0.459596i
\(513\) 2.21936 + 4.85973i 0.0979873 + 0.214562i
\(514\) 2.94103 + 3.39413i 0.129723 + 0.149709i
\(515\) 0.759919 + 5.28535i 0.0334860 + 0.232900i
\(516\) 8.51320 18.6413i 0.374773 0.820638i
\(517\) −42.0549 + 12.3484i −1.84957 + 0.543084i
\(518\) 2.54590 0.747545i 0.111861 0.0328452i
\(519\) 2.41942 5.29779i 0.106201 0.232547i
\(520\) −0.0963694 0.670264i −0.00422608 0.0293930i
\(521\) −7.54390 8.70612i −0.330504 0.381422i 0.566039 0.824378i \(-0.308475\pi\)
−0.896543 + 0.442956i \(0.853930\pi\)
\(522\) −0.134652 0.294847i −0.00589355 0.0129051i
\(523\) 5.81239 3.73540i 0.254158 0.163337i −0.407358 0.913269i \(-0.633550\pi\)
0.661516 + 0.749931i \(0.269913\pi\)
\(524\) 3.26000 22.6738i 0.142414 0.990510i
\(525\) −4.14277 2.66240i −0.180805 0.116197i
\(526\) 0.297863 0.343752i 0.0129875 0.0149883i
\(527\) −7.00763 2.05763i −0.305257 0.0896316i
\(528\) −15.5937 −0.678628
\(529\) 19.8724 + 11.5796i 0.864018 + 0.503461i
\(530\) −0.954084 −0.0414428
\(531\) −0.574445 0.168672i −0.0249288 0.00731975i
\(532\) 6.71378 7.74812i 0.291079 0.335924i
\(533\) −6.85054 4.40258i −0.296730 0.190697i
\(534\) 0.567534 3.94729i 0.0245596 0.170816i
\(535\) 3.00402 1.93057i 0.129875 0.0834657i
\(536\) 2.89171 + 6.33196i 0.124903 + 0.273499i
\(537\) 8.40570 + 9.70070i 0.362733 + 0.418616i
\(538\) −0.646792 4.49854i −0.0278852 0.193946i
\(539\) −1.84005 + 4.02915i −0.0792565 + 0.173548i
\(540\) 0.505842 0.148529i 0.0217680 0.00639165i
\(541\) 37.0975 10.8928i 1.59495 0.468319i 0.640813 0.767697i \(-0.278597\pi\)
0.954135 + 0.299378i \(0.0967790\pi\)
\(542\) −1.49996 + 3.28446i −0.0644289 + 0.141080i
\(543\) −2.78778 19.3894i −0.119635 0.832081i
\(544\) −4.98122 5.74863i −0.213568 0.246470i
\(545\) −0.224638 0.491888i −0.00962241 0.0210701i
\(546\) −0.529104 + 0.340035i −0.0226436 + 0.0145521i
\(547\) 1.03922 7.22795i 0.0444340 0.309045i −0.955469 0.295092i \(-0.904650\pi\)
0.999903 0.0139525i \(-0.00444136\pi\)
\(548\) 6.60696 + 4.24603i 0.282235 + 0.181382i
\(549\) 9.18014 10.5944i 0.391799 0.452160i
\(550\) 5.95708 + 1.74916i 0.254011 + 0.0745843i
\(551\) 6.08410 0.259192
\(552\) 5.16449 + 1.39490i 0.219815 + 0.0593710i
\(553\) −0.583536 −0.0248145
\(554\) −5.00259 1.46889i −0.212540 0.0624073i
\(555\) −1.67714 + 1.93553i −0.0711907 + 0.0821585i
\(556\) 17.7723 + 11.4216i 0.753715 + 0.484383i
\(557\) −3.85157 + 26.7883i −0.163196 + 1.13505i 0.729364 + 0.684126i \(0.239816\pi\)
−0.892560 + 0.450929i \(0.851093\pi\)
\(558\) 0.743275 0.477674i 0.0314653 0.0202215i
\(559\) −9.80291 21.4654i −0.414619 0.907889i
\(560\) −0.633362 0.730938i −0.0267644 0.0308878i
\(561\) −1.48315 10.3155i −0.0626186 0.435522i
\(562\) 1.75337 3.83934i 0.0739614 0.161953i
\(563\) −43.0339 + 12.6359i −1.81366 + 0.532540i −0.998884 0.0472294i \(-0.984961\pi\)
−0.814781 + 0.579769i \(0.803143\pi\)
\(564\) −18.2197 + 5.34979i −0.767188 + 0.225267i
\(565\) −0.557496 + 1.22075i −0.0234540 + 0.0513571i
\(566\) −0.693618 4.82422i −0.0291549 0.202777i
\(567\) −0.654861 0.755750i −0.0275016 0.0317385i
\(568\) 6.85177 + 15.0033i 0.287494 + 0.629524i
\(569\) −4.22722 + 2.71667i −0.177214 + 0.113889i −0.626241 0.779630i \(-0.715407\pi\)
0.449026 + 0.893518i \(0.351771\pi\)
\(570\) 0.0594536 0.413509i 0.00249024 0.0173200i
\(571\) 8.37221 + 5.38049i 0.350366 + 0.225167i 0.703972 0.710228i \(-0.251408\pi\)
−0.353606 + 0.935395i \(0.615044\pi\)
\(572\) −12.2999 + 14.1949i −0.514285 + 0.593517i
\(573\) 18.1043 + 5.31591i 0.756319 + 0.222075i
\(574\) 1.04892 0.0437813
\(575\) 20.1416 + 12.3323i 0.839965 + 0.514293i
\(576\) −6.12076 −0.255032
\(577\) −42.3727 12.4418i −1.76400 0.517957i −0.771079 0.636740i \(-0.780283\pi\)
−0.992920 + 0.118783i \(0.962101\pi\)
\(578\) −2.13686 + 2.46607i −0.0888816 + 0.102575i
\(579\) −11.7623 7.55919i −0.488826 0.314149i
\(580\) 0.0854423 0.594265i 0.00354780 0.0246755i
\(581\) 4.45263 2.86153i 0.184726 0.118716i
\(582\) 1.53370 + 3.35834i 0.0635740 + 0.139208i
\(583\) 35.3917 + 40.8442i 1.46578 + 1.69159i
\(584\) 1.14286 + 7.94879i 0.0472921 + 0.328923i
\(585\) 0.252184 0.552206i 0.0104265 0.0228309i
\(586\) −4.61035 + 1.35372i −0.190452 + 0.0559217i
\(587\) 14.7127 4.32004i 0.607258 0.178307i 0.0363749 0.999338i \(-0.488419\pi\)
0.570884 + 0.821031i \(0.306601\pi\)
\(588\) −0.797176 + 1.74557i −0.0328750 + 0.0719861i
\(589\) 2.36015 + 16.4152i 0.0972481 + 0.676376i
\(590\) 0.0306575 + 0.0353806i 0.00126215 + 0.00145660i
\(591\) 8.97867 + 19.6605i 0.369333 + 0.808727i
\(592\) 27.6089 17.7431i 1.13472 0.729239i
\(593\) 1.45833 10.1429i 0.0598863 0.416518i −0.937721 0.347388i \(-0.887069\pi\)
0.997608 0.0691300i \(-0.0220223\pi\)
\(594\) 1.06061 + 0.681611i 0.0435172 + 0.0279668i
\(595\) 0.423289 0.488502i 0.0173532 0.0200266i
\(596\) 29.5713 + 8.68291i 1.21129 + 0.355666i
\(597\) −17.5457 −0.718099
\(598\) 2.50135 1.68567i 0.102288 0.0689323i
\(599\) 3.61642 0.147763 0.0738815 0.997267i \(-0.476461\pi\)
0.0738815 + 0.997267i \(0.476461\pi\)
\(600\) 5.27060 + 1.54759i 0.215171 + 0.0631800i
\(601\) 4.97233 5.73838i 0.202826 0.234073i −0.645219 0.763997i \(-0.723234\pi\)
0.848045 + 0.529924i \(0.177780\pi\)
\(602\) 2.55709 + 1.64334i 0.104219 + 0.0669776i
\(603\) −0.888115 + 6.17697i −0.0361668 + 0.251546i
\(604\) −15.5553 + 9.99675i −0.632934 + 0.406762i
\(605\) 0.983740 + 2.15409i 0.0399947 + 0.0875762i
\(606\) −3.17945 3.66929i −0.129156 0.149055i
\(607\) 0.366196 + 2.54695i 0.0148634 + 0.103377i 0.995903 0.0904319i \(-0.0288248\pi\)
−0.981039 + 0.193809i \(0.937916\pi\)
\(608\) −7.17510 + 15.7113i −0.290989 + 0.637176i
\(609\) −1.09268 + 0.320839i −0.0442775 + 0.0130011i
\(610\) −1.05178 + 0.308829i −0.0425852 + 0.0125041i
\(611\) −9.08331 + 19.8897i −0.367472 + 0.804650i
\(612\) −0.642553 4.46906i −0.0259737 0.180651i
\(613\) −22.2711 25.7022i −0.899520 1.03810i −0.999072 0.0430694i \(-0.986286\pi\)
0.0995517 0.995032i \(-0.468259\pi\)
\(614\) −0.355263 0.777917i −0.0143372 0.0313942i
\(615\) −0.851710 + 0.547361i −0.0343443 + 0.0220717i
\(616\) 0.703155 4.89055i 0.0283309 0.197046i
\(617\) −30.9049 19.8613i −1.24418 0.799588i −0.258144 0.966106i \(-0.583111\pi\)
−0.986038 + 0.166519i \(0.946747\pi\)
\(618\) −3.62281 + 4.18094i −0.145731 + 0.168182i
\(619\) 6.71964 + 1.97306i 0.270085 + 0.0793042i 0.413971 0.910290i \(-0.364142\pi\)
−0.143886 + 0.989594i \(0.545960\pi\)
\(620\) 1.63650 0.0657233
\(621\) 3.21886 + 3.55513i 0.129168 + 0.142662i
\(622\) 5.96221 0.239063
\(623\) −13.4432 3.94729i −0.538591 0.158145i
\(624\) −5.09430 + 5.87914i −0.203935 + 0.235354i
\(625\) 20.0837 + 12.9070i 0.803349 + 0.516281i
\(626\) 0.238292 1.65735i 0.00952405 0.0662412i
\(627\) −19.9077 + 12.7939i −0.795036 + 0.510939i
\(628\) −9.52500 20.8568i −0.380089 0.832278i
\(629\) 14.3634 + 16.5762i 0.572705 + 0.660937i
\(630\) 0.0111284 + 0.0773995i 0.000443365 + 0.00308367i
\(631\) −2.95260 + 6.46530i −0.117541 + 0.257380i −0.959253 0.282547i \(-0.908821\pi\)
0.841712 + 0.539926i \(0.181548\pi\)
\(632\) 0.624544 0.183383i 0.0248430 0.00729457i
\(633\) 4.06788 1.19444i 0.161684 0.0474746i
\(634\) −0.0775201 + 0.169745i −0.00307872 + 0.00674145i
\(635\) 0.201919 + 1.40438i 0.00801290 + 0.0557309i
\(636\) 15.3330 + 17.6952i 0.607992 + 0.701660i
\(637\) 0.917944 + 2.01002i 0.0363703 + 0.0796398i
\(638\) 1.20783 0.776223i 0.0478183 0.0307310i
\(639\) −2.10434 + 14.6360i −0.0832466 + 0.578992i
\(640\) 1.89700 + 1.21913i 0.0749857 + 0.0481904i
\(641\) 0.692460 0.799141i 0.0273505 0.0315642i −0.741910 0.670500i \(-0.766080\pi\)
0.769260 + 0.638936i \(0.220625\pi\)
\(642\) 3.54975 + 1.04230i 0.140097 + 0.0411363i
\(643\) 11.9177 0.469987 0.234994 0.971997i \(-0.424493\pi\)
0.234994 + 0.971997i \(0.424493\pi\)
\(644\) 3.63973 8.45281i 0.143426 0.333087i
\(645\) −2.93386 −0.115521
\(646\) −3.43286 1.00798i −0.135064 0.0396583i
\(647\) 24.2952 28.0382i 0.955145 1.10230i −0.0395286 0.999218i \(-0.512586\pi\)
0.994673 0.103077i \(-0.0328689\pi\)
\(648\) 0.938384 + 0.603063i 0.0368632 + 0.0236906i
\(649\) 0.377402 2.62489i 0.0148143 0.103036i
\(650\) 2.60559 1.67451i 0.102200 0.0656796i
\(651\) −1.28951 2.82363i −0.0505399 0.110667i
\(652\) −7.86598 9.07783i −0.308056 0.355515i
\(653\) 5.04277 + 35.0733i 0.197339 + 1.37252i 0.811966 + 0.583705i \(0.198397\pi\)
−0.614627 + 0.788818i \(0.710693\pi\)
\(654\) 0.232735 0.509618i 0.00910065 0.0199277i
\(655\) −3.14658 + 0.923919i −0.122947 + 0.0361005i
\(656\) 12.4482 3.65513i 0.486022 0.142709i
\(657\) −2.99070 + 6.54872i −0.116678 + 0.255490i
\(658\) −0.400828 2.78782i −0.0156259 0.108681i
\(659\) −10.4940 12.1107i −0.408789 0.471768i 0.513600 0.858030i \(-0.328312\pi\)
−0.922389 + 0.386262i \(0.873766\pi\)
\(660\) 0.970068 + 2.12415i 0.0377599 + 0.0826825i
\(661\) −3.05667 + 1.96440i −0.118891 + 0.0764063i −0.598735 0.800947i \(-0.704330\pi\)
0.479844 + 0.877354i \(0.340693\pi\)
\(662\) 0.357490 2.48640i 0.0138942 0.0966366i
\(663\) −4.37369 2.81080i −0.169860 0.109162i
\(664\) −3.86627 + 4.46192i −0.150041 + 0.173156i
\(665\) −1.40828 0.413509i −0.0546108 0.0160352i
\(666\) −2.65338 −0.102817
\(667\) 5.20551 1.65255i 0.201558 0.0639870i
\(668\) −9.87199 −0.381959
\(669\) 9.09131 + 2.66945i 0.351490 + 0.103207i
\(670\) 0.319557 0.368789i 0.0123456 0.0142476i
\(671\) 52.2365 + 33.5704i 2.01657 + 1.29597i
\(672\) 0.460097 3.20005i 0.0177486 0.123444i
\(673\) 30.0386 19.3046i 1.15790 0.744139i 0.186705 0.982416i \(-0.440219\pi\)
0.971197 + 0.238277i \(0.0765827\pi\)
\(674\) 0.604366 + 1.32338i 0.0232793 + 0.0509745i
\(675\) 3.22488 + 3.72171i 0.124126 + 0.143249i
\(676\) −2.21681 15.4183i −0.0852620 0.593010i
\(677\) 0.800595 1.75306i 0.0307694 0.0673755i −0.893623 0.448818i \(-0.851845\pi\)
0.924393 + 0.381442i \(0.124572\pi\)
\(678\) −1.33408 + 0.391720i −0.0512349 + 0.0150439i
\(679\) 12.4457 3.65440i 0.477624 0.140243i
\(680\) −0.299519 + 0.655855i −0.0114860 + 0.0251509i
\(681\) −0.548954 3.81806i −0.0210360 0.146308i
\(682\) 2.56282 + 2.95766i 0.0981356 + 0.113254i
\(683\) 0.628845 + 1.37698i 0.0240621 + 0.0526886i 0.921281 0.388896i \(-0.127144\pi\)
−0.897219 + 0.441585i \(0.854416\pi\)
\(684\) −8.62472 + 5.54277i −0.329775 + 0.211933i
\(685\) 0.160013 1.11291i 0.00611376 0.0425222i
\(686\) −0.239446 0.153882i −0.00914208 0.00587526i
\(687\) 8.96920 10.3510i 0.342196 0.394916i
\(688\) 36.0730 + 10.5920i 1.37527 + 0.403816i
\(689\) 26.9612 1.02714
\(690\) −0.0614482 0.369943i −0.00233929 0.0140835i
\(691\) −35.0152 −1.33204 −0.666020 0.745934i \(-0.732003\pi\)
−0.666020 + 0.745934i \(0.732003\pi\)
\(692\) 10.7237 + 3.14875i 0.407652 + 0.119697i
\(693\) 2.90066 3.34754i 0.110187 0.127162i
\(694\) 2.73261 + 1.75614i 0.103728 + 0.0666623i
\(695\) 0.430425 2.99367i 0.0163269 0.113556i
\(696\) 1.06864 0.686772i 0.0405067 0.0260320i
\(697\) 3.60191 + 7.88709i 0.136432 + 0.298745i
\(698\) −2.45494 2.83315i −0.0929208 0.107236i
\(699\) −0.308094 2.14284i −0.0116532 0.0810496i
\(700\) 3.92571 8.59611i 0.148378 0.324902i
\(701\) 23.6848 6.95448i 0.894562 0.262667i 0.198033 0.980195i \(-0.436545\pi\)
0.696529 + 0.717528i \(0.254727\pi\)
\(702\) 0.603471 0.177195i 0.0227765 0.00668779i
\(703\) 20.6894 45.3036i 0.780317 1.70866i
\(704\) −3.85836 26.8355i −0.145418 1.01140i
\(705\) 1.78024 + 2.05450i 0.0670476 + 0.0773771i
\(706\) −0.519221 1.13694i −0.0195411 0.0427891i
\(707\) −14.3499 + 9.22215i −0.539685 + 0.346835i
\(708\) 0.163504 1.13720i 0.00614486 0.0427384i
\(709\) 5.00027 + 3.21348i 0.187789 + 0.120685i 0.631157 0.775655i \(-0.282580\pi\)
−0.443368 + 0.896340i \(0.646217\pi\)
\(710\) 0.757176 0.873827i 0.0284163 0.0327942i
\(711\) 0.559898 + 0.164401i 0.0209978 + 0.00616552i
\(712\) 15.6284 0.585700
\(713\) 6.47798 + 13.4036i 0.242602 + 0.501970i
\(714\) 0.669680 0.0250621
\(715\) 2.58003 + 0.757564i 0.0964875 + 0.0283313i
\(716\) −16.1304 + 18.6155i −0.602822 + 0.695694i
\(717\) −25.4134 16.3322i −0.949082 0.609938i
\(718\) 0.374482 2.60458i 0.0139755 0.0972020i
\(719\) 22.7816 14.6408i 0.849609 0.546010i −0.0418441 0.999124i \(-0.513323\pi\)
0.891453 + 0.453114i \(0.149687\pi\)
\(720\) 0.401777 + 0.879769i 0.0149733 + 0.0327870i
\(721\) 12.7281 + 14.6891i 0.474021 + 0.547049i
\(722\) 0.386541 + 2.68845i 0.0143856 + 0.100054i
\(723\) −0.255705 + 0.559915i −0.00950976 + 0.0208235i
\(724\) 36.0680 10.5905i 1.34046 0.393594i
\(725\) 5.38092 1.57998i 0.199842 0.0586790i
\(726\) −1.01920 + 2.23174i −0.0378261 + 0.0828275i
\(727\) 2.28766 + 15.9111i 0.0848448 + 0.590108i 0.987245 + 0.159209i \(0.0508945\pi\)
−0.902400 + 0.430899i \(0.858196\pi\)
\(728\) −1.61412 1.86280i −0.0598234 0.0690399i
\(729\) 0.415415 + 0.909632i 0.0153857 + 0.0336901i
\(730\) 0.473586 0.304355i 0.0175282 0.0112647i
\(731\) −3.57582 + 24.8704i −0.132257 + 0.919865i
\(732\) 22.6307 + 14.5439i 0.836457 + 0.537558i
\(733\) 9.24541 10.6698i 0.341487 0.394097i −0.558865 0.829258i \(-0.688763\pi\)
0.900353 + 0.435161i \(0.143309\pi\)
\(734\) −7.61249 2.23523i −0.280982 0.0825038i
\(735\) 0.274727 0.0101335
\(736\) −1.87150 + 15.3913i −0.0689844 + 0.567332i
\(737\) −27.6418 −1.01820
\(738\) −1.00644 0.295516i −0.0370474 0.0108781i
\(739\) 14.9197 17.2183i 0.548830 0.633384i −0.411780 0.911283i \(-0.635093\pi\)
0.960610 + 0.277899i \(0.0896382\pi\)
\(740\) −4.13447 2.65706i −0.151986 0.0976755i
\(741\) −1.68008 + 11.6852i −0.0617194 + 0.429268i
\(742\) −2.92154 + 1.87756i −0.107253 + 0.0689275i
\(743\) −13.4190 29.3835i −0.492295 1.07798i −0.978897 0.204352i \(-0.934491\pi\)
0.486602 0.873624i \(-0.338236\pi\)
\(744\) 2.26749 + 2.61682i 0.0831302 + 0.0959373i
\(745\) −0.627925 4.36731i −0.0230054 0.160006i
\(746\) −0.0564217 + 0.123546i −0.00206574 + 0.00452335i
\(747\) −5.07845 + 1.49117i −0.185811 + 0.0545590i
\(748\) 19.1888 5.63434i 0.701612 0.206012i
\(749\) 5.39955 11.8234i 0.197295 0.432016i
\(750\) −0.110444 0.768153i −0.00403284 0.0280490i
\(751\) 6.30631 + 7.27787i 0.230121 + 0.265573i 0.859053 0.511887i \(-0.171053\pi\)
−0.628932 + 0.777460i \(0.716508\pi\)
\(752\) −14.4714 31.6880i −0.527719 1.15554i
\(753\) 8.65317 5.56106i 0.315339 0.202656i
\(754\) 0.101933 0.708959i 0.00371218 0.0258188i
\(755\) 2.22693 + 1.43116i 0.0810462 + 0.0520852i
\(756\) 1.25667 1.45027i 0.0457046 0.0527459i
\(757\) 39.9287 + 11.7241i 1.45123 + 0.426120i 0.909949 0.414720i \(-0.136121\pi\)
0.541283 + 0.840840i \(0.317939\pi\)
\(758\) −5.93564 −0.215592
\(759\) −13.5578 + 16.3536i −0.492117 + 0.593599i
\(760\) 1.63720 0.0593874
\(761\) 49.2248 + 14.4537i 1.78440 + 0.523946i 0.995849 0.0910257i \(-0.0290145\pi\)
0.788549 + 0.614972i \(0.210833\pi\)
\(762\) −0.962619 + 1.11092i −0.0348720 + 0.0402445i
\(763\) −1.65587 1.06416i −0.0599465 0.0385253i
\(764\) −5.15303 + 35.8401i −0.186430 + 1.29665i
\(765\) −0.543770 + 0.349460i −0.0196600 + 0.0126347i
\(766\) −2.71135 5.93703i −0.0979651 0.214514i
\(767\) −0.866342 0.999812i −0.0312818 0.0361011i
\(768\) −1.40967 9.80445i −0.0508670 0.353788i
\(769\) 17.4960 38.3108i 0.630921 1.38152i −0.276383 0.961048i \(-0.589136\pi\)
0.907303 0.420476i \(-0.138137\pi\)
\(770\) −0.332331 + 0.0975810i −0.0119764 + 0.00351658i
\(771\) −15.1395 + 4.44536i −0.545236 + 0.160096i