# Properties

 Label 483.2.q.c.463.1 Level $483$ Weight $2$ Character 483.463 Analytic conductor $3.857$ Analytic rank $0$ Dimension $20$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$483 = 3 \cdot 7 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 483.q (of order $$11$$, degree $$10$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.85677441763$$ Analytic rank: $$0$$ Dimension: $$20$$ Relative dimension: $$2$$ over $$\Q(\zeta_{11})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{20} - \cdots)$$ Defining polynomial: $$x^{20} - 8 x^{19} + 40 x^{18} - 117 x^{17} + 295 x^{16} - 575 x^{15} + 1777 x^{14} - 1560 x^{13} + 4383 x^{12} - 6446 x^{11} + 7261 x^{10} + 7700 x^{9} + 7852 x^{8} - 39430 x^{7} - 101709 x^{6} + 156742 x^{5} + 999838 x^{4} + 2029154 x^{3} + 3616480 x^{2} + 4299390 x + 2374681$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

## Embedding invariants

 Embedding label 463.1 Root $$0.216617 - 1.50661i$$ of defining polynomial Character $$\chi$$ $$=$$ 483.463 Dual form 483.2.q.c.169.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.186393 + 1.29639i) q^{2} +(0.415415 - 0.909632i) q^{3} +(0.273100 - 0.0801894i) q^{4} +(-0.810370 + 0.935217i) q^{5} +(1.25667 + 0.368991i) q^{6} +(0.841254 - 0.540641i) q^{7} +(1.24302 + 2.72183i) q^{8} +(-0.654861 - 0.755750i) q^{9} +O(q^{10})$$ $$q+(0.186393 + 1.29639i) q^{2} +(0.415415 - 0.909632i) q^{3} +(0.273100 - 0.0801894i) q^{4} +(-0.810370 + 0.935217i) q^{5} +(1.25667 + 0.368991i) q^{6} +(0.841254 - 0.540641i) q^{7} +(1.24302 + 2.72183i) q^{8} +(-0.654861 - 0.755750i) q^{9} +(-1.36345 - 0.876238i) q^{10} +(-0.722222 + 5.02317i) q^{11} +(0.0405070 - 0.281733i) q^{12} +(-1.31805 - 0.847057i) q^{13} +(0.857685 + 0.989821i) q^{14} +(0.514063 + 1.12564i) q^{15} +(-2.81797 + 1.81100i) q^{16} +(5.77863 + 1.69676i) q^{17} +(0.857685 - 0.989821i) q^{18} +(5.51952 - 1.62068i) q^{19} +(-0.146318 + 0.320391i) q^{20} +(-0.142315 - 0.989821i) q^{21} -6.64660 q^{22} +(2.46012 - 4.11677i) q^{23} +2.99223 q^{24} +(0.493643 + 3.43336i) q^{25} +(0.852443 - 1.86659i) q^{26} +(-0.959493 + 0.281733i) q^{27} +(0.186393 - 0.215109i) q^{28} +(-4.19162 - 1.23077i) q^{29} +(-1.36345 + 0.876238i) q^{30} +(1.03303 + 2.26202i) q^{31} +(1.04598 + 1.20712i) q^{32} +(4.26921 + 2.74365i) q^{33} +(-1.12257 + 7.80763i) q^{34} +(-0.176110 + 1.22487i) q^{35} +(-0.239446 - 0.153882i) q^{36} +(-5.56318 - 6.42026i) q^{37} +(3.12983 + 6.85337i) q^{38} +(-1.31805 + 0.847057i) q^{39} +(-3.55280 - 1.04320i) q^{40} +(3.91794 - 4.52155i) q^{41} +(1.25667 - 0.368991i) q^{42} +(-0.842640 + 1.84512i) q^{43} +(0.205566 + 1.42974i) q^{44} +1.23747 q^{45} +(5.79549 + 2.42195i) q^{46} -2.38197 q^{47} +(0.476716 + 3.31563i) q^{48} +(0.415415 - 0.909632i) q^{49} +(-4.35897 + 1.27991i) q^{50} +(3.94396 - 4.55157i) q^{51} +(-0.427884 - 0.125638i) q^{52} +(-5.44615 + 3.50003i) q^{53} +(-0.544078 - 1.19136i) q^{54} +(-4.11248 - 4.74606i) q^{55} +(2.51722 + 1.61772i) q^{56} +(0.818672 - 5.69399i) q^{57} +(0.814272 - 5.66339i) q^{58} +(-10.4019 - 6.68489i) q^{59} +(0.230655 + 0.266190i) q^{60} +(-1.36641 - 2.99203i) q^{61} +(-2.73991 + 1.76083i) q^{62} +(-0.959493 - 0.281733i) q^{63} +(-5.75714 + 6.64410i) q^{64} +(1.86029 - 0.546230i) q^{65} +(-2.76110 + 6.04596i) q^{66} +(-1.72856 - 12.0224i) q^{67} +1.71421 q^{68} +(-2.72277 - 3.94798i) q^{69} -1.62074 q^{70} +(1.16690 + 8.11596i) q^{71} +(1.24302 - 2.72183i) q^{72} +(-4.18826 + 1.22978i) q^{73} +(7.28622 - 8.40875i) q^{74} +(3.32816 + 0.977237i) q^{75} +(1.37742 - 0.885215i) q^{76} +(2.10816 + 4.61622i) q^{77} +(-1.34379 - 1.55082i) q^{78} +(-4.51918 - 2.90430i) q^{79} +(0.589921 - 4.10299i) q^{80} +(-0.142315 + 0.989821i) q^{81} +(6.59197 + 4.23640i) q^{82} +(2.21220 + 2.55301i) q^{83} +(-0.118239 - 0.258908i) q^{84} +(-6.26967 + 4.02927i) q^{85} +(-2.54906 - 0.748472i) q^{86} +(-2.86081 + 3.30155i) q^{87} +(-14.5699 + 4.27811i) q^{88} +(2.88880 - 6.32558i) q^{89} +(0.230655 + 1.60424i) q^{90} -1.56677 q^{91} +(0.341739 - 1.32157i) q^{92} +2.48674 q^{93} +(-0.443981 - 3.08796i) q^{94} +(-2.95717 + 6.47530i) q^{95} +(1.53255 - 0.449997i) q^{96} +(11.2146 - 12.9424i) q^{97} +(1.25667 + 0.368991i) q^{98} +(4.26921 - 2.74365i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + O(q^{10})$$ $$20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + 9q^{10} + 3q^{11} + 18q^{12} - 2q^{13} + 18q^{14} - q^{15} + 8q^{16} + 8q^{17} + 18q^{18} + 6q^{19} - 2q^{20} - 2q^{21} + 6q^{22} + 11q^{23} + 9q^{25} + 7q^{26} - 2q^{27} - 4q^{28} + 23q^{29} + 9q^{30} + q^{31} - 28q^{32} + 14q^{33} - 28q^{34} + 10q^{35} - 4q^{36} - 9q^{37} + 34q^{38} - 2q^{39} - 15q^{41} - 4q^{42} - 23q^{43} - 16q^{44} - 12q^{45} + 11q^{46} - 66q^{47} - 36q^{48} - 2q^{49} - 26q^{50} - 14q^{51} + 7q^{52} + 9q^{53} - 4q^{54} - 62q^{55} + 22q^{56} - 27q^{57} - 20q^{58} + 49q^{59} - 2q^{60} + 46q^{61} - 9q^{62} - 2q^{63} + 16q^{64} + 11q^{65} - 16q^{66} + 14q^{67} + 38q^{68} + 11q^{69} - 2q^{70} + 36q^{71} - q^{73} + 4q^{74} - 2q^{75} + 34q^{76} - 8q^{77} - 15q^{78} - 22q^{79} + 15q^{80} - 2q^{81} - 30q^{82} + 8q^{83} - 4q^{84} - 32q^{85} - 68q^{86} + q^{87} - 11q^{88} - 2q^{89} - 2q^{90} - 24q^{91} + 11q^{92} - 32q^{93} + 33q^{94} - 107q^{95} + 16q^{96} + 18q^{97} - 4q^{98} + 14q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/483\mathbb{Z}\right)^\times$$.

 $$n$$ $$323$$ $$346$$ $$442$$ $$\chi(n)$$ $$1$$ $$1$$ $$e\left(\frac{8}{11}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.186393 + 1.29639i 0.131800 + 0.916686i 0.943207 + 0.332205i $$0.107793\pi$$
−0.811407 + 0.584481i $$0.801298\pi$$
$$3$$ 0.415415 0.909632i 0.239840 0.525176i
$$4$$ 0.273100 0.0801894i 0.136550 0.0400947i
$$5$$ −0.810370 + 0.935217i −0.362408 + 0.418242i −0.907445 0.420171i $$-0.861970\pi$$
0.545037 + 0.838412i $$0.316516\pi$$
$$6$$ 1.25667 + 0.368991i 0.513033 + 0.150640i
$$7$$ 0.841254 0.540641i 0.317964 0.204343i
$$8$$ 1.24302 + 2.72183i 0.439473 + 0.962311i
$$9$$ −0.654861 0.755750i −0.218287 0.251917i
$$10$$ −1.36345 0.876238i −0.431162 0.277091i
$$11$$ −0.722222 + 5.02317i −0.217758 + 1.51454i 0.528528 + 0.848916i $$0.322744\pi$$
−0.746286 + 0.665625i $$0.768165\pi$$
$$12$$ 0.0405070 0.281733i 0.0116934 0.0813292i
$$13$$ −1.31805 0.847057i −0.365560 0.234931i 0.344945 0.938623i $$-0.387897\pi$$
−0.710506 + 0.703691i $$0.751534\pi$$
$$14$$ 0.857685 + 0.989821i 0.229226 + 0.264541i
$$15$$ 0.514063 + 1.12564i 0.132731 + 0.290639i
$$16$$ −2.81797 + 1.81100i −0.704492 + 0.452750i
$$17$$ 5.77863 + 1.69676i 1.40152 + 0.411525i 0.893207 0.449645i $$-0.148450\pi$$
0.508317 + 0.861170i $$0.330268\pi$$
$$18$$ 0.857685 0.989821i 0.202158 0.233303i
$$19$$ 5.51952 1.62068i 1.26626 0.371809i 0.421442 0.906855i $$-0.361524\pi$$
0.844823 + 0.535046i $$0.179706\pi$$
$$20$$ −0.146318 + 0.320391i −0.0327176 + 0.0716416i
$$21$$ −0.142315 0.989821i −0.0310556 0.215997i
$$22$$ −6.64660 −1.41706
$$23$$ 2.46012 4.11677i 0.512971 0.858406i
$$24$$ 2.99223 0.610786
$$25$$ 0.493643 + 3.43336i 0.0987287 + 0.686673i
$$26$$ 0.852443 1.86659i 0.167178 0.366068i
$$27$$ −0.959493 + 0.281733i −0.184655 + 0.0542195i
$$28$$ 0.186393 0.215109i 0.0352249 0.0406517i
$$29$$ −4.19162 1.23077i −0.778365 0.228548i −0.131666 0.991294i $$-0.542033\pi$$
−0.646699 + 0.762746i $$0.723851\pi$$
$$30$$ −1.36345 + 0.876238i −0.248931 + 0.159978i
$$31$$ 1.03303 + 2.26202i 0.185538 + 0.406271i 0.979429 0.201789i $$-0.0646755\pi$$
−0.793891 + 0.608060i $$0.791948\pi$$
$$32$$ 1.04598 + 1.20712i 0.184904 + 0.213391i
$$33$$ 4.26921 + 2.74365i 0.743174 + 0.477609i
$$34$$ −1.12257 + 7.80763i −0.192519 + 1.33900i
$$35$$ −0.176110 + 1.22487i −0.0297681 + 0.207041i
$$36$$ −0.239446 0.153882i −0.0399076 0.0256471i
$$37$$ −5.56318 6.42026i −0.914582 1.05548i −0.998259 0.0589905i $$-0.981212\pi$$
0.0836769 0.996493i $$-0.473334\pi$$
$$38$$ 3.12983 + 6.85337i 0.507725 + 1.11176i
$$39$$ −1.31805 + 0.847057i −0.211056 + 0.135638i
$$40$$ −3.55280 1.04320i −0.561747 0.164944i
$$41$$ 3.91794 4.52155i 0.611880 0.706147i −0.362264 0.932075i $$-0.617996\pi$$
0.974144 + 0.225929i $$0.0725416\pi$$
$$42$$ 1.25667 0.368991i 0.193908 0.0569366i
$$43$$ −0.842640 + 1.84512i −0.128501 + 0.281379i −0.962937 0.269727i $$-0.913067\pi$$
0.834435 + 0.551106i $$0.185794\pi$$
$$44$$ 0.205566 + 1.42974i 0.0309902 + 0.215542i
$$45$$ 1.23747 0.184471
$$46$$ 5.79549 + 2.42195i 0.854498 + 0.357096i
$$47$$ −2.38197 −0.347446 −0.173723 0.984795i $$-0.555580\pi$$
−0.173723 + 0.984795i $$0.555580\pi$$
$$48$$ 0.476716 + 3.31563i 0.0688080 + 0.478570i
$$49$$ 0.415415 0.909632i 0.0593450 0.129947i
$$50$$ −4.35897 + 1.27991i −0.616451 + 0.181006i
$$51$$ 3.94396 4.55157i 0.552265 0.637347i
$$52$$ −0.427884 0.125638i −0.0593368 0.0174229i
$$53$$ −5.44615 + 3.50003i −0.748086 + 0.480766i −0.858304 0.513142i $$-0.828482\pi$$
0.110218 + 0.993907i $$0.464845\pi$$
$$54$$ −0.544078 1.19136i −0.0740396 0.162124i
$$55$$ −4.11248 4.74606i −0.554527 0.639958i
$$56$$ 2.51722 + 1.61772i 0.336378 + 0.216177i
$$57$$ 0.818672 5.69399i 0.108436 0.754187i
$$58$$ 0.814272 5.66339i 0.106919 0.743639i
$$59$$ −10.4019 6.68489i −1.35421 0.870299i −0.356267 0.934384i $$-0.615951\pi$$
−0.997944 + 0.0640850i $$0.979587\pi$$
$$60$$ 0.230655 + 0.266190i 0.0297775 + 0.0343650i
$$61$$ −1.36641 2.99203i −0.174951 0.383090i 0.801760 0.597645i $$-0.203897\pi$$
−0.976712 + 0.214556i $$0.931170\pi$$
$$62$$ −2.73991 + 1.76083i −0.347969 + 0.223626i
$$63$$ −0.959493 0.281733i −0.120885 0.0354950i
$$64$$ −5.75714 + 6.64410i −0.719643 + 0.830512i
$$65$$ 1.86029 0.546230i 0.230740 0.0677515i
$$66$$ −2.76110 + 6.04596i −0.339868 + 0.744206i
$$67$$ −1.72856 12.0224i −0.211178 1.46877i −0.769232 0.638969i $$-0.779361\pi$$
0.558055 0.829804i $$-0.311548\pi$$
$$68$$ 1.71421 0.207878
$$69$$ −2.72277 3.94798i −0.327783 0.475280i
$$70$$ −1.62074 −0.193715
$$71$$ 1.16690 + 8.11596i 0.138485 + 0.963187i 0.934005 + 0.357260i $$0.116289\pi$$
−0.795520 + 0.605928i $$0.792802\pi$$
$$72$$ 1.24302 2.72183i 0.146491 0.320770i
$$73$$ −4.18826 + 1.22978i −0.490199 + 0.143935i −0.517485 0.855692i $$-0.673132\pi$$
0.0272863 + 0.999628i $$0.491313\pi$$
$$74$$ 7.28622 8.40875i 0.847006 0.977497i
$$75$$ 3.32816 + 0.977237i 0.384303 + 0.112842i
$$76$$ 1.37742 0.885215i 0.158001 0.101541i
$$77$$ 2.10816 + 4.61622i 0.240247 + 0.526067i
$$78$$ −1.34379 1.55082i −0.152154 0.175596i
$$79$$ −4.51918 2.90430i −0.508447 0.326759i 0.261140 0.965301i $$-0.415902\pi$$
−0.769587 + 0.638542i $$0.779538\pi$$
$$80$$ 0.589921 4.10299i 0.0659552 0.458728i
$$81$$ −0.142315 + 0.989821i −0.0158128 + 0.109980i
$$82$$ 6.59197 + 4.23640i 0.727961 + 0.467832i
$$83$$ 2.21220 + 2.55301i 0.242820 + 0.280229i 0.864058 0.503393i $$-0.167915\pi$$
−0.621237 + 0.783622i $$0.713370\pi$$
$$84$$ −0.118239 0.258908i −0.0129010 0.0282492i
$$85$$ −6.26967 + 4.02927i −0.680041 + 0.437036i
$$86$$ −2.54906 0.748472i −0.274873 0.0807099i
$$87$$ −2.86081 + 3.30155i −0.306711 + 0.353964i
$$88$$ −14.5699 + 4.27811i −1.55316 + 0.456049i
$$89$$ 2.88880 6.32558i 0.306212 0.670510i −0.692491 0.721426i $$-0.743487\pi$$
0.998703 + 0.0509161i $$0.0162141\pi$$
$$90$$ 0.230655 + 1.60424i 0.0243132 + 0.169102i
$$91$$ −1.56677 −0.164242
$$92$$ 0.341739 1.32157i 0.0356288 0.137783i
$$93$$ 2.48674 0.257863
$$94$$ −0.443981 3.08796i −0.0457932 0.318499i
$$95$$ −2.95717 + 6.47530i −0.303399 + 0.664351i
$$96$$ 1.53255 0.449997i 0.156415 0.0459276i
$$97$$ 11.2146 12.9424i 1.13867 1.31410i 0.195916 0.980621i $$-0.437232\pi$$
0.942758 0.333479i $$-0.108223\pi$$
$$98$$ 1.25667 + 0.368991i 0.126943 + 0.0372737i
$$99$$ 4.26921 2.74365i 0.429072 0.275748i
$$100$$ 0.410134 + 0.898067i 0.0410134 + 0.0898067i
$$101$$ −3.26390 3.76674i −0.324770 0.374805i 0.569761 0.821810i $$-0.307036\pi$$
−0.894531 + 0.447006i $$0.852490\pi$$
$$102$$ 6.63574 + 4.26453i 0.657036 + 0.422251i
$$103$$ −0.861017 + 5.98851i −0.0848385 + 0.590065i 0.902410 + 0.430878i $$0.141796\pi$$
−0.987249 + 0.159187i $$0.949113\pi$$
$$104$$ 0.667189 4.64040i 0.0654233 0.455029i
$$105$$ 1.04103 + 0.669026i 0.101594 + 0.0652903i
$$106$$ −5.55253 6.40796i −0.539309 0.622396i
$$107$$ −7.01150 15.3531i −0.677828 1.48424i −0.864929 0.501895i $$-0.832636\pi$$
0.187101 0.982341i $$-0.440091\pi$$
$$108$$ −0.239446 + 0.153882i −0.0230407 + 0.0148073i
$$109$$ 8.59687 + 2.52427i 0.823430 + 0.241781i 0.666193 0.745780i $$-0.267923\pi$$
0.157238 + 0.987561i $$0.449741\pi$$
$$110$$ 5.38620 6.21601i 0.513554 0.592673i
$$111$$ −8.15110 + 2.39338i −0.773668 + 0.227169i
$$112$$ −1.39153 + 3.04702i −0.131487 + 0.287916i
$$113$$ 2.43496 + 16.9355i 0.229062 + 1.59316i 0.702074 + 0.712104i $$0.252258\pi$$
−0.473012 + 0.881056i $$0.656833\pi$$
$$114$$ 7.53422 0.705645
$$115$$ 1.85646 + 5.63686i 0.173116 + 0.525639i
$$116$$ −1.24343 −0.115449
$$117$$ 0.222974 + 1.55082i 0.0206140 + 0.143373i
$$118$$ 6.72739 14.7309i 0.619307 1.35609i
$$119$$ 5.77863 1.69676i 0.529727 0.155542i
$$120$$ −2.42481 + 2.79838i −0.221354 + 0.255456i
$$121$$ −14.1562 4.15662i −1.28692 0.377875i
$$122$$ 3.62415 2.32910i 0.328115 0.210867i
$$123$$ −2.48537 5.44220i −0.224098 0.490707i
$$124$$ 0.463511 + 0.534920i 0.0416245 + 0.0480372i
$$125$$ −8.81610 5.66576i −0.788536 0.506761i
$$126$$ 0.186393 1.29639i 0.0166052 0.115492i
$$127$$ 0.941452 6.54794i 0.0835404 0.581036i −0.904457 0.426565i $$-0.859724\pi$$
0.987997 0.154471i $$-0.0493673\pi$$
$$128$$ −6.99906 4.49802i −0.618635 0.397573i
$$129$$ 1.32834 + 1.53298i 0.116954 + 0.134972i
$$130$$ 1.05487 + 2.30985i 0.0925183 + 0.202587i
$$131$$ 2.84475 1.82821i 0.248547 0.159731i −0.410436 0.911890i $$-0.634623\pi$$
0.658983 + 0.752158i $$0.270987\pi$$
$$132$$ 1.38593 + 0.406947i 0.120630 + 0.0354202i
$$133$$ 3.76711 4.34748i 0.326650 0.376974i
$$134$$ 15.2636 4.48179i 1.31857 0.387168i
$$135$$ 0.514063 1.12564i 0.0442435 0.0968798i
$$136$$ 2.56465 + 17.8375i 0.219917 + 1.52956i
$$137$$ 13.7505 1.17478 0.587392 0.809302i $$-0.300155\pi$$
0.587392 + 0.809302i $$0.300155\pi$$
$$138$$ 4.61061 4.26565i 0.392481 0.363116i
$$139$$ 3.33313 0.282712 0.141356 0.989959i $$-0.454854\pi$$
0.141356 + 0.989959i $$0.454854\pi$$
$$140$$ 0.0501262 + 0.348635i 0.00423644 + 0.0294651i
$$141$$ −0.989505 + 2.16671i −0.0833313 + 0.182470i
$$142$$ −10.3040 + 3.02551i −0.864688 + 0.253895i
$$143$$ 5.20683 6.00900i 0.435417 0.502498i
$$144$$ 3.21404 + 0.943727i 0.267837 + 0.0786439i
$$145$$ 4.54780 2.92270i 0.377674 0.242717i
$$146$$ −2.37494 5.20039i −0.196551 0.430388i
$$147$$ −0.654861 0.755750i −0.0540120 0.0623332i
$$148$$ −2.03414 1.30726i −0.167206 0.107456i
$$149$$ 2.40658 16.7381i 0.197154 1.37124i −0.615337 0.788265i $$-0.710980\pi$$
0.812491 0.582974i $$-0.198111\pi$$
$$150$$ −0.646535 + 4.49675i −0.0527894 + 0.367158i
$$151$$ −10.3876 6.67573i −0.845334 0.543263i 0.0447823 0.998997i $$-0.485741\pi$$
−0.890116 + 0.455734i $$0.849377\pi$$
$$152$$ 11.2721 + 13.0086i 0.914285 + 1.05514i
$$153$$ −2.50188 5.47834i −0.202265 0.442898i
$$154$$ −5.59148 + 3.59342i −0.450574 + 0.289566i
$$155$$ −2.95261 0.866966i −0.237160 0.0696364i
$$156$$ −0.292034 + 0.337025i −0.0233814 + 0.0269836i
$$157$$ 19.5221 5.73221i 1.55803 0.457480i 0.614545 0.788882i $$-0.289340\pi$$
0.943490 + 0.331402i $$0.107522\pi$$
$$158$$ 2.92276 6.39996i 0.232522 0.509153i
$$159$$ 0.921325 + 6.40796i 0.0730658 + 0.508184i
$$160$$ −1.97655 −0.156260
$$161$$ −0.156105 4.79329i −0.0123028 0.377764i
$$162$$ −1.30972 −0.102901
$$163$$ 1.11633 + 7.76423i 0.0874376 + 0.608142i 0.985678 + 0.168638i $$0.0539367\pi$$
−0.898241 + 0.439504i $$0.855154\pi$$
$$164$$ 0.707410 1.54901i 0.0552395 0.120958i
$$165$$ −6.02555 + 1.76926i −0.469089 + 0.137737i
$$166$$ −2.89736 + 3.34373i −0.224879 + 0.259524i
$$167$$ −1.92671 0.565732i −0.149093 0.0437777i 0.206334 0.978482i $$-0.433847\pi$$
−0.355427 + 0.934704i $$0.615665\pi$$
$$168$$ 2.51722 1.61772i 0.194208 0.124810i
$$169$$ −4.38065 9.59229i −0.336973 0.737869i
$$170$$ −6.39213 7.37691i −0.490254 0.565783i
$$171$$ −4.83934 3.11006i −0.370074 0.237832i
$$172$$ −0.0821656 + 0.571475i −0.00626507 + 0.0435745i
$$173$$ 0.342875 2.38475i 0.0260683 0.181309i −0.972627 0.232371i $$-0.925352\pi$$
0.998695 + 0.0510621i $$0.0162607\pi$$
$$174$$ −4.81334 3.09334i −0.364898 0.234506i
$$175$$ 2.27150 + 2.62145i 0.171709 + 0.198163i
$$176$$ −7.06175 15.4631i −0.532299 1.16557i
$$177$$ −10.4019 + 6.68489i −0.781855 + 0.502467i
$$178$$ 8.73887 + 2.56596i 0.655006 + 0.192327i
$$179$$ −16.8898 + 19.4919i −1.26240 + 1.45689i −0.429892 + 0.902880i $$0.641448\pi$$
−0.832510 + 0.554010i $$0.813097\pi$$
$$180$$ 0.337953 0.0992320i 0.0251895 0.00739631i
$$181$$ 4.56559 9.99726i 0.339358 0.743090i −0.660613 0.750727i $$-0.729704\pi$$
0.999971 + 0.00763653i $$0.00243081\pi$$
$$182$$ −0.292034 2.03114i −0.0216470 0.150558i
$$183$$ −3.28927 −0.243150
$$184$$ 14.2631 + 1.57882i 1.05149 + 0.116392i
$$185$$ 10.5126 0.772899
$$186$$ 0.463511 + 3.22379i 0.0339863 + 0.236380i
$$187$$ −12.6966 + 27.8016i −0.928465 + 2.03305i
$$188$$ −0.650516 + 0.191009i −0.0474437 + 0.0139307i
$$189$$ −0.654861 + 0.755750i −0.0476341 + 0.0549727i
$$190$$ −8.94571 2.62670i −0.648990 0.190561i
$$191$$ −9.28500 + 5.96711i −0.671839 + 0.431765i −0.831588 0.555393i $$-0.812568\pi$$
0.159749 + 0.987158i $$0.448931\pi$$
$$192$$ 3.65208 + 7.99694i 0.263566 + 0.577130i
$$193$$ 12.4297 + 14.3446i 0.894706 + 1.03255i 0.999277 + 0.0380285i $$0.0121078\pi$$
−0.104570 + 0.994517i $$0.533347\pi$$
$$194$$ 18.8687 + 12.1262i 1.35469 + 0.870609i
$$195$$ 0.275923 1.91909i 0.0197593 0.137429i
$$196$$ 0.0405070 0.281733i 0.00289336 0.0201238i
$$197$$ 10.7634 + 6.91721i 0.766859 + 0.492830i 0.864649 0.502377i $$-0.167541\pi$$
−0.0977897 + 0.995207i $$0.531177\pi$$
$$198$$ 4.35260 + 5.02317i 0.309326 + 0.356981i
$$199$$ −0.519802 1.13821i −0.0368478 0.0806854i 0.890313 0.455349i $$-0.150486\pi$$
−0.927161 + 0.374664i $$0.877758\pi$$
$$200$$ −8.73142 + 5.61134i −0.617404 + 0.396782i
$$201$$ −11.6541 3.42194i −0.822014 0.241365i
$$202$$ 4.27480 4.93338i 0.300774 0.347111i
$$203$$ −4.19162 + 1.23077i −0.294194 + 0.0863832i
$$204$$ 0.712108 1.55930i 0.0498575 0.109173i
$$205$$ 1.05364 + 7.32825i 0.0735896 + 0.511827i
$$206$$ −7.92393 −0.552086
$$207$$ −4.72229 + 0.836672i −0.328222 + 0.0581528i
$$208$$ 5.24824 0.363900
$$209$$ 4.15461 + 28.8960i 0.287380 + 1.99877i
$$210$$ −0.673280 + 1.47428i −0.0464607 + 0.101735i
$$211$$ −2.23052 + 0.654941i −0.153556 + 0.0450880i −0.357607 0.933872i $$-0.616407\pi$$
0.204051 + 0.978960i $$0.434589\pi$$
$$212$$ −1.20668 + 1.39258i −0.0828751 + 0.0956429i
$$213$$ 7.86728 + 2.31004i 0.539057 + 0.158282i
$$214$$ 18.5967 11.9513i 1.27124 0.816977i
$$215$$ −1.04274 2.28328i −0.0711143 0.155719i
$$216$$ −1.95949 2.26138i −0.133327 0.153867i
$$217$$ 2.09198 + 1.34443i 0.142013 + 0.0912661i
$$218$$ −1.67004 + 11.6154i −0.113110 + 0.786694i
$$219$$ −0.621215 + 4.32064i −0.0419778 + 0.291962i
$$220$$ −1.50370 0.966371i −0.101380 0.0651527i
$$221$$ −6.17926 7.13124i −0.415662 0.479699i
$$222$$ −4.62206 10.1209i −0.310212 0.679270i
$$223$$ −16.7091 + 10.7383i −1.11893 + 0.719090i −0.963220 0.268713i $$-0.913402\pi$$
−0.155706 + 0.987803i $$0.549765\pi$$
$$224$$ 1.53255 + 0.449997i 0.102398 + 0.0300667i
$$225$$ 2.27150 2.62145i 0.151433 0.174763i
$$226$$ −21.5012 + 6.31332i −1.43024 + 0.419956i
$$227$$ 6.45719 14.1393i 0.428579 0.938457i −0.564976 0.825107i $$-0.691115\pi$$
0.993555 0.113350i $$-0.0361581\pi$$
$$228$$ −0.233018 1.62068i −0.0154320 0.107332i
$$229$$ −4.10506 −0.271270 −0.135635 0.990759i $$-0.543307\pi$$
−0.135635 + 0.990759i $$0.543307\pi$$
$$230$$ −6.96153 + 3.45737i −0.459030 + 0.227972i
$$231$$ 5.07482 0.333899
$$232$$ −1.86031 12.9387i −0.122135 0.849470i
$$233$$ −6.40472 + 14.0244i −0.419587 + 0.918768i 0.575316 + 0.817931i $$0.304879\pi$$
−0.994903 + 0.100837i $$0.967848\pi$$
$$234$$ −1.96890 + 0.578123i −0.128711 + 0.0377931i
$$235$$ 1.93027 2.22766i 0.125917 0.145316i
$$236$$ −3.37682 0.991523i −0.219812 0.0645427i
$$237$$ −4.51918 + 2.90430i −0.293552 + 0.188654i
$$238$$ 3.27676 + 7.17510i 0.212401 + 0.465093i
$$239$$ −13.6319 15.7321i −0.881775 1.01762i −0.999697 0.0245994i $$-0.992169\pi$$
0.117923 0.993023i $$-0.462376\pi$$
$$240$$ −3.48715 2.24106i −0.225095 0.144659i
$$241$$ −3.99284 + 27.7708i −0.257202 + 1.78888i 0.295341 + 0.955392i $$0.404567\pi$$
−0.552543 + 0.833485i $$0.686342\pi$$
$$242$$ 2.75000 19.1267i 0.176777 1.22951i
$$243$$ 0.841254 + 0.540641i 0.0539664 + 0.0346821i
$$244$$ −0.613097 0.707551i −0.0392495 0.0452963i
$$245$$ 0.514063 + 1.12564i 0.0328423 + 0.0719146i
$$246$$ 6.59197 4.23640i 0.420288 0.270103i
$$247$$ −8.64779 2.53922i −0.550246 0.161567i
$$248$$ −4.87275 + 5.62346i −0.309420 + 0.357090i
$$249$$ 3.24128 0.951726i 0.205408 0.0603132i
$$250$$ 5.70178 12.4852i 0.360612 0.789631i
$$251$$ 0.502591 + 3.49560i 0.0317233 + 0.220640i 0.999516 0.0311081i $$-0.00990360\pi$$
−0.967793 + 0.251748i $$0.918995\pi$$
$$252$$ −0.284630 −0.0179300
$$253$$ 18.9025 + 15.3308i 1.18839 + 0.963841i
$$254$$ 8.66417 0.543638
$$255$$ 1.06064 + 7.37691i 0.0664198 + 0.461960i
$$256$$ −2.77755 + 6.08198i −0.173597 + 0.380124i
$$257$$ −20.2053 + 5.93280i −1.26037 + 0.370078i −0.842632 0.538490i $$-0.818995\pi$$
−0.417737 + 0.908568i $$0.637177\pi$$
$$258$$ −1.73975 + 2.00778i −0.108312 + 0.124999i
$$259$$ −8.15110 2.39338i −0.506485 0.148717i
$$260$$ 0.464243 0.298351i 0.0287911 0.0185029i
$$261$$ 1.81477 + 3.97380i 0.112332 + 0.245972i
$$262$$ 2.90031 + 3.34714i 0.179182 + 0.206787i
$$263$$ 20.8890 + 13.4245i 1.28807 + 0.827793i 0.991860 0.127329i $$-0.0406405\pi$$
0.296211 + 0.955123i $$0.404277\pi$$
$$264$$ −2.16105 + 15.0305i −0.133004 + 0.925061i
$$265$$ 1.14011 7.92965i 0.0700365 0.487115i
$$266$$ 6.33819 + 4.07331i 0.388619 + 0.249751i
$$267$$ −4.55390 5.25548i −0.278694 0.321630i
$$268$$ −1.43614 3.14471i −0.0877264 0.192094i
$$269$$ −21.5571 + 13.8539i −1.31436 + 0.844687i −0.994697 0.102844i $$-0.967206\pi$$
−0.319662 + 0.947532i $$0.603569\pi$$
$$270$$ 1.55509 + 0.456615i 0.0946397 + 0.0277887i
$$271$$ 2.53472 2.92523i 0.153973 0.177695i −0.673522 0.739167i $$-0.735219\pi$$
0.827496 + 0.561472i $$0.189765\pi$$
$$272$$ −19.3568 + 5.68368i −1.17368 + 0.344624i
$$273$$ −0.650858 + 1.42518i −0.0393917 + 0.0862558i
$$274$$ 2.56299 + 17.8260i 0.154836 + 1.07691i
$$275$$ −17.6029 −1.06149
$$276$$ −1.06018 0.859855i −0.0638151 0.0517572i
$$277$$ 22.2525 1.33702 0.668512 0.743701i $$-0.266931\pi$$
0.668512 + 0.743701i $$0.266931\pi$$
$$278$$ 0.621271 + 4.32103i 0.0372614 + 0.259158i
$$279$$ 1.03303 2.26202i 0.0618459 0.135424i
$$280$$ −3.55280 + 1.04320i −0.212320 + 0.0623429i
$$281$$ −5.21094 + 6.01375i −0.310859 + 0.358750i −0.889583 0.456773i $$-0.849005\pi$$
0.578725 + 0.815523i $$0.303551\pi$$
$$282$$ −2.99334 0.878925i −0.178251 0.0523392i
$$283$$ 18.1352 11.6548i 1.07803 0.692807i 0.123927 0.992291i $$-0.460451\pi$$
0.954101 + 0.299485i $$0.0968148\pi$$
$$284$$ 0.969495 + 2.12290i 0.0575289 + 0.125971i
$$285$$ 4.66168 + 5.37987i 0.276134 + 0.318676i
$$286$$ 8.76053 + 5.63005i 0.518021 + 0.332912i
$$287$$ 0.851450 5.92197i 0.0502595 0.349563i
$$288$$ 0.227312 1.58099i 0.0133945 0.0931608i
$$289$$ 16.2123 + 10.4190i 0.953665 + 0.612884i
$$290$$ 4.63663 + 5.35096i 0.272272 + 0.314219i
$$291$$ −7.11408 15.5777i −0.417034 0.913178i
$$292$$ −1.04520 + 0.671708i −0.0611656 + 0.0393087i
$$293$$ −27.7947 8.16126i −1.62378 0.476786i −0.661752 0.749723i $$-0.730187\pi$$
−0.962032 + 0.272937i $$0.912005\pi$$
$$294$$ 0.857685 0.989821i 0.0500212 0.0577276i
$$295$$ 14.6812 4.31079i 0.854773 0.250984i
$$296$$ 10.5597 23.1225i 0.613770 1.34397i
$$297$$ −0.722222 5.02317i −0.0419076 0.291474i
$$298$$ 22.1477 1.28298
$$299$$ −6.72970 + 3.34223i −0.389189 + 0.193286i
$$300$$ 0.987287 0.0570010
$$301$$ 0.288676 + 2.00778i 0.0166390 + 0.115727i
$$302$$ 6.71817 14.7107i 0.386587 0.846508i
$$303$$ −4.78222 + 1.40419i −0.274731 + 0.0806684i
$$304$$ −12.6188 + 14.5629i −0.723738 + 0.835238i
$$305$$ 3.90549 + 1.14676i 0.223628 + 0.0656631i
$$306$$ 6.63574 4.26453i 0.379340 0.243787i
$$307$$ −5.49019 12.0218i −0.313342 0.686123i 0.685789 0.727800i $$-0.259457\pi$$
−0.999131 + 0.0416775i $$0.986730\pi$$
$$308$$ 0.945910 + 1.09164i 0.0538982 + 0.0622019i
$$309$$ 5.08966 + 3.27092i 0.289540 + 0.186076i
$$310$$ 0.573580 3.98934i 0.0325772 0.226579i
$$311$$ 2.29477 15.9605i 0.130124 0.905034i −0.815264 0.579089i $$-0.803408\pi$$
0.945389 0.325945i $$-0.105683\pi$$
$$312$$ −3.94390 2.53459i −0.223279 0.143493i
$$313$$ 4.28466 + 4.94476i 0.242183 + 0.279495i 0.863808 0.503820i $$-0.168073\pi$$
−0.621625 + 0.783315i $$0.713527\pi$$
$$314$$ 11.0700 + 24.2398i 0.624714 + 1.36793i
$$315$$ 1.04103 0.669026i 0.0586551 0.0376954i
$$316$$ −1.46708 0.430774i −0.0825298 0.0242329i
$$317$$ 10.5478 12.1728i 0.592424 0.683694i −0.377804 0.925885i $$-0.623321\pi$$
0.970228 + 0.242192i $$0.0778663\pi$$
$$318$$ −8.13549 + 2.38879i −0.456215 + 0.133957i
$$319$$ 9.20965 20.1663i 0.515641 1.12910i
$$320$$ −1.54826 10.7684i −0.0865501 0.601969i
$$321$$ −16.8783 −0.942055
$$322$$ 6.18488 1.09581i 0.344670 0.0610670i
$$323$$ 34.6452 1.92771
$$324$$ 0.0405070 + 0.281733i 0.00225039 + 0.0156518i
$$325$$ 2.25761 4.94348i 0.125230 0.274215i
$$326$$ −9.85740 + 2.89439i −0.545951 + 0.160306i
$$327$$ 5.86742 6.77137i 0.324469 0.374457i
$$328$$ 17.1769 + 5.04360i 0.948438 + 0.278486i
$$329$$ −2.00384 + 1.28779i −0.110475 + 0.0709981i
$$330$$ −3.41677 7.48169i −0.188087 0.411853i
$$331$$ −6.68170 7.71110i −0.367260 0.423840i 0.541799 0.840508i $$-0.317743\pi$$
−0.909059 + 0.416668i $$0.863198\pi$$
$$332$$ 0.808876 + 0.519833i 0.0443928 + 0.0285295i
$$333$$ −1.20900 + 8.40875i −0.0662525 + 0.460796i
$$334$$ 0.374285 2.60321i 0.0204800 0.142441i
$$335$$ 12.6444 + 8.12603i 0.690835 + 0.443973i
$$336$$ 2.19360 + 2.53155i 0.119671 + 0.138108i
$$337$$ 10.0645 + 22.0381i 0.548246 + 1.20049i 0.957596 + 0.288113i $$0.0930280\pi$$
−0.409351 + 0.912377i $$0.634245\pi$$
$$338$$ 11.6188 7.46697i 0.631981 0.406150i
$$339$$ 16.4166 + 4.82035i 0.891628 + 0.261806i
$$340$$ −1.38914 + 1.60316i −0.0753368 + 0.0869434i
$$341$$ −12.1086 + 3.55540i −0.655716 + 0.192536i
$$342$$ 3.12983 6.85337i 0.169242 0.370588i
$$343$$ −0.142315 0.989821i −0.00768428 0.0534453i
$$344$$ −6.06952 −0.327247
$$345$$ 5.89867 + 0.652938i 0.317573 + 0.0351530i
$$346$$ 3.15548 0.169639
$$347$$ 0.640065 + 4.45175i 0.0343605 + 0.238983i 0.999763 0.0217828i $$-0.00693422\pi$$
−0.965402 + 0.260765i $$0.916025\pi$$
$$348$$ −0.516538 + 1.13106i −0.0276894 + 0.0606313i
$$349$$ 20.2000 5.93127i 1.08128 0.317493i 0.307891 0.951422i $$-0.400377\pi$$
0.773392 + 0.633928i $$0.218558\pi$$
$$350$$ −2.97503 + 3.43336i −0.159022 + 0.183521i
$$351$$ 1.50330 + 0.441409i 0.0802402 + 0.0235607i
$$352$$ −6.81899 + 4.38230i −0.363453 + 0.233577i
$$353$$ 12.7699 + 27.9622i 0.679675 + 1.48828i 0.862987 + 0.505225i $$0.168591\pi$$
−0.183313 + 0.983055i $$0.558682\pi$$
$$354$$ −10.6051 12.2389i −0.563653 0.650490i
$$355$$ −8.53580 5.48563i −0.453033 0.291147i
$$356$$ 0.281686 1.95917i 0.0149293 0.103836i
$$357$$ 0.857104 5.96129i 0.0453628 0.315505i
$$358$$ −28.4172 18.2626i −1.50190 0.965210i
$$359$$ −8.50587 9.81630i −0.448923 0.518084i 0.485507 0.874233i $$-0.338635\pi$$
−0.934429 + 0.356149i $$0.884090\pi$$
$$360$$ 1.53819 + 3.36818i 0.0810700 + 0.177518i
$$361$$ 11.8547 7.61855i 0.623931 0.400976i
$$362$$ 13.8113 + 4.05538i 0.725908 + 0.213146i
$$363$$ −9.66168 + 11.1502i −0.507107 + 0.585232i
$$364$$ −0.427884 + 0.125638i −0.0224272 + 0.00658522i
$$365$$ 2.24392 4.91351i 0.117452 0.257185i
$$366$$ −0.613097 4.26418i −0.0320471 0.222892i
$$367$$ −5.19518 −0.271186 −0.135593 0.990765i $$-0.543294\pi$$
−0.135593 + 0.990765i $$0.543294\pi$$
$$368$$ 0.522909 + 16.0562i 0.0272585 + 0.836988i
$$369$$ −5.98286 −0.311455
$$370$$ 1.95947 + 13.6284i 0.101868 + 0.708506i
$$371$$ −2.68934 + 5.88882i −0.139623 + 0.305732i
$$372$$ 0.679130 0.199410i 0.0352112 0.0103389i
$$373$$ −7.20454 + 8.31448i −0.373037 + 0.430507i −0.910965 0.412483i $$-0.864662\pi$$
0.537928 + 0.842991i $$0.319207\pi$$
$$374$$ −38.4083 11.2777i −1.98604 0.583155i
$$375$$ −8.81610 + 5.66576i −0.455261 + 0.292579i
$$376$$ −2.96082 6.48330i −0.152693 0.334351i
$$377$$ 4.48222 + 5.17276i 0.230846 + 0.266411i
$$378$$ −1.10181 0.708089i −0.0566709 0.0364202i
$$379$$ 3.36674 23.4162i 0.172938 1.20281i −0.699698 0.714438i $$-0.746682\pi$$
0.872636 0.488371i $$-0.162409\pi$$
$$380$$ −0.288353 + 2.00554i −0.0147922 + 0.102882i
$$381$$ −5.56512 3.57649i −0.285110 0.183229i
$$382$$ −9.46636 10.9248i −0.484341 0.558959i
$$383$$ −8.94526 19.5874i −0.457081 1.00087i −0.988143 0.153536i $$-0.950934\pi$$
0.531062 0.847333i $$-0.321793\pi$$
$$384$$ −6.99906 + 4.49802i −0.357169 + 0.229539i
$$385$$ −6.02555 1.76926i −0.307091 0.0901699i
$$386$$ −16.2794 + 18.7874i −0.828599 + 0.956254i
$$387$$ 1.94626 0.571475i 0.0989341 0.0290497i
$$388$$ 2.02488 4.43386i 0.102798 0.225095i
$$389$$ 4.91397 + 34.1774i 0.249148 + 1.73286i 0.603158 + 0.797621i $$0.293909\pi$$
−0.354010 + 0.935242i $$0.615182\pi$$
$$390$$ 2.53932 0.128583
$$391$$ 21.2013 19.6151i 1.07220 0.991976i
$$392$$ 2.99223 0.151130
$$393$$ −0.481246 3.34714i −0.0242757 0.168841i
$$394$$ −6.96118 + 15.2429i −0.350699 + 0.767924i
$$395$$ 6.37835 1.87285i 0.320930 0.0942335i
$$396$$ 0.945910 1.09164i 0.0475338 0.0548569i
$$397$$ 16.4741 + 4.83725i 0.826814 + 0.242774i 0.667648 0.744477i $$-0.267301\pi$$
0.159166 + 0.987252i $$0.449119\pi$$
$$398$$ 1.37867 0.886021i 0.0691067 0.0444122i
$$399$$ −2.38969 5.23269i −0.119634 0.261962i
$$400$$ −7.60889 8.78113i −0.380445 0.439056i
$$401$$ 8.84134 + 5.68199i 0.441516 + 0.283745i 0.742452 0.669899i $$-0.233663\pi$$
−0.300936 + 0.953644i $$0.597299\pi$$
$$402$$ 2.26394 15.7460i 0.112915 0.785341i
$$403$$ 0.554479 3.85648i 0.0276206 0.192105i
$$404$$ −1.19342 0.766967i −0.0593751 0.0381580i
$$405$$ −0.810370 0.935217i −0.0402676 0.0464713i
$$406$$ −2.37685 5.20457i −0.117961 0.258299i
$$407$$ 36.2679 23.3079i 1.79773 1.15533i
$$408$$ 17.2910 + 5.07709i 0.856032 + 0.251354i
$$409$$ 20.8200 24.0276i 1.02948 1.18809i 0.0475471 0.998869i $$-0.484860\pi$$
0.981935 0.189217i $$-0.0605950\pi$$
$$410$$ −9.30388 + 2.73187i −0.459486 + 0.134917i
$$411$$ 5.71216 12.5079i 0.281760 0.616969i
$$412$$ 0.245071 + 1.70451i 0.0120738 + 0.0839750i
$$413$$ −12.3648 −0.608430
$$414$$ −1.96485 5.96598i −0.0965673 0.293212i
$$415$$ −4.18032 −0.205204
$$416$$ −0.356145 2.47704i −0.0174614 0.121447i
$$417$$ 1.38463 3.03192i 0.0678057 0.148474i
$$418$$ −36.6860 + 10.7720i −1.79437 + 0.526876i
$$419$$ −9.00481 + 10.3921i −0.439914 + 0.507687i −0.931800 0.362972i $$-0.881762\pi$$
0.491886 + 0.870659i $$0.336308\pi$$
$$420$$ 0.337953 + 0.0992320i 0.0164904 + 0.00484202i
$$421$$ 9.14507 5.87718i 0.445704 0.286436i −0.298474 0.954418i $$-0.596478\pi$$
0.744178 + 0.667981i $$0.232841\pi$$
$$422$$ −1.26481 2.76955i −0.0615701 0.134820i
$$423$$ 1.55986 + 1.80017i 0.0758428 + 0.0875273i
$$424$$ −16.2961 10.4729i −0.791410 0.508608i
$$425$$ −2.97301 + 20.6778i −0.144212 + 1.00302i
$$426$$ −1.52831 + 10.6296i −0.0740470 + 0.515008i
$$427$$ −2.76711 1.77832i −0.133910 0.0860587i
$$428$$ −3.14600 3.63067i −0.152067 0.175495i
$$429$$ −3.30299 7.23253i −0.159470 0.349190i
$$430$$ 2.76567 1.77739i 0.133372 0.0857132i
$$431$$ −7.39486 2.17133i −0.356198 0.104589i 0.0987377 0.995113i $$-0.468520\pi$$
−0.454935 + 0.890524i $$0.650338\pi$$
$$432$$ 2.19360 2.53155i 0.105540 0.121799i
$$433$$ 34.7859 10.2141i 1.67170 0.490856i 0.697510 0.716575i $$-0.254291\pi$$
0.974192 + 0.225719i $$0.0724731\pi$$
$$434$$ −1.35298 + 2.96262i −0.0649452 + 0.142210i
$$435$$ −0.769352 5.35096i −0.0368876 0.256559i
$$436$$ 2.55023 0.122134
$$437$$ 6.90675 26.7097i 0.330395 1.27770i
$$438$$ −5.71703 −0.273170
$$439$$ 5.05375 + 35.1496i 0.241202 + 1.67760i 0.646113 + 0.763242i $$0.276393\pi$$
−0.404911 + 0.914356i $$0.632698\pi$$
$$440$$ 7.80606 17.0929i 0.372139 0.814872i
$$441$$ −0.959493 + 0.281733i −0.0456901 + 0.0134158i
$$442$$ 8.09311 9.33994i 0.384950 0.444256i
$$443$$ 16.0351 + 4.70833i 0.761850 + 0.223699i 0.639504 0.768788i $$-0.279140\pi$$
0.122347 + 0.992487i $$0.460958\pi$$
$$444$$ −2.03414 + 1.30726i −0.0965362 + 0.0620400i
$$445$$ 3.57480 + 7.82771i 0.169462 + 0.371069i
$$446$$ −17.0355 19.6600i −0.806655 0.930929i
$$447$$ −14.2258 9.14236i −0.672856 0.432419i
$$448$$ −1.25115 + 8.70192i −0.0591111 + 0.411127i
$$449$$ 3.04200 21.1575i 0.143561 0.998486i −0.782914 0.622130i $$-0.786268\pi$$
0.926475 0.376357i $$-0.122823\pi$$
$$450$$ 3.82181 + 2.45613i 0.180162 + 0.115783i
$$451$$ 19.8829 + 22.9460i 0.936247 + 1.08049i
$$452$$ 2.02304 + 4.42984i 0.0951557 + 0.208362i
$$453$$ −10.3876 + 6.67573i −0.488054 + 0.313653i
$$454$$ 19.5336 + 5.73558i 0.916757 + 0.269184i
$$455$$ 1.26966 1.46527i 0.0595226 0.0686927i
$$456$$ 16.5157 4.84944i 0.773417 0.227096i
$$457$$ −4.45265 + 9.74994i −0.208286 + 0.456083i −0.984727 0.174108i $$-0.944296\pi$$
0.776441 + 0.630191i $$0.217023\pi$$
$$458$$ −0.765154 5.32177i −0.0357533 0.248670i
$$459$$ −6.02259 −0.281111
$$460$$ 0.959016 + 1.39056i 0.0447144 + 0.0648351i
$$461$$ −33.0490 −1.53924 −0.769622 0.638500i $$-0.779555\pi$$
−0.769622 + 0.638500i $$0.779555\pi$$
$$462$$ 0.945910 + 6.57895i 0.0440077 + 0.306080i
$$463$$ −0.336321 + 0.736440i −0.0156301 + 0.0342253i −0.917286 0.398229i $$-0.869625\pi$$
0.901656 + 0.432454i $$0.142352\pi$$
$$464$$ 14.0408 4.12275i 0.651827 0.191394i
$$465$$ −2.01518 + 2.32564i −0.0934518 + 0.107849i
$$466$$ −19.3749 5.68898i −0.897524 0.263537i
$$467$$ −0.800368 + 0.514365i −0.0370366 + 0.0238020i −0.559028 0.829149i $$-0.688826\pi$$
0.521992 + 0.852951i $$0.325189\pi$$
$$468$$ 0.185253 + 0.405649i 0.00856335 + 0.0187511i
$$469$$ −7.95398 9.17938i −0.367280 0.423864i
$$470$$ 3.24770 + 2.08717i 0.149805 + 0.0962740i
$$471$$ 2.89558 20.1392i 0.133421 0.927965i
$$472$$ 5.26539 36.6216i 0.242359 1.68565i
$$473$$ −8.65979 5.56531i −0.398178 0.255893i
$$474$$ −4.60745 5.31728i −0.211627 0.244231i
$$475$$ 8.28905 + 18.1505i 0.380328 + 0.832802i
$$476$$ 1.44208 0.926771i 0.0660978 0.0424785i
$$477$$ 6.21162 + 1.82389i 0.284410 + 0.0835104i
$$478$$ 17.8540 20.6046i 0.816623 0.942433i
$$479$$ −9.99872 + 2.93589i −0.456853 + 0.134144i −0.502059 0.864833i $$-0.667424\pi$$
0.0452055 + 0.998978i $$0.485606\pi$$
$$480$$ −0.821087 + 1.79793i −0.0374773 + 0.0820638i
$$481$$ 1.89421 + 13.1745i 0.0863686 + 0.600707i
$$482$$ −36.7461 −1.67374
$$483$$ −4.42498 1.84921i −0.201343 0.0841418i
$$484$$ −4.19937 −0.190880
$$485$$ 3.01593 + 20.9762i 0.136946 + 0.952482i
$$486$$ −0.544078 + 1.19136i −0.0246799 + 0.0540414i
$$487$$ −14.8598 + 4.36324i −0.673364 + 0.197717i −0.600500 0.799625i $$-0.705032\pi$$
−0.0728634 + 0.997342i $$0.523214\pi$$
$$488$$ 6.44531 7.43828i 0.291765 0.336715i
$$489$$ 7.52633 + 2.20993i 0.340353 + 0.0999365i
$$490$$ −1.36345 + 0.876238i −0.0615945 + 0.0395844i
$$491$$ 0.509450 + 1.11554i 0.0229911 + 0.0503436i 0.920779 0.390084i $$-0.127554\pi$$
−0.897788 + 0.440428i $$0.854827\pi$$
$$492$$ −1.11516 1.28697i −0.0502754 0.0580209i
$$493$$ −22.1335 14.2244i −0.996844 0.640633i
$$494$$ 1.67994 11.6842i 0.0755839 0.525697i
$$495$$ −0.893728 + 6.21601i −0.0401701 + 0.279389i
$$496$$ −7.00756 4.50349i −0.314649 0.202213i
$$497$$ 5.36948 + 6.19671i 0.240854 + 0.277960i
$$498$$ 1.83796 + 4.02457i 0.0823609 + 0.180345i
$$499$$ −3.32849 + 2.13909i −0.149004 + 0.0957588i −0.613018 0.790069i $$-0.710045\pi$$
0.464015 + 0.885827i $$0.346408\pi$$
$$500$$ −2.86201 0.840363i −0.127993 0.0375822i
$$501$$ −1.31499 + 1.51758i −0.0587495 + 0.0678005i
$$502$$ −4.43798 + 1.30311i −0.198077 + 0.0581606i
$$503$$ −1.25095 + 2.73920i −0.0557771 + 0.122135i −0.935468 0.353410i $$-0.885022\pi$$
0.879691 + 0.475545i $$0.157749\pi$$
$$504$$ −0.425839 2.96177i −0.0189684 0.131928i
$$505$$ 6.16768 0.274458
$$506$$ −16.3515 + 27.3625i −0.726911 + 1.21641i
$$507$$ −10.5452 −0.468331
$$508$$ −0.267965 1.86374i −0.0118890 0.0826900i
$$509$$ 10.4783 22.9444i 0.464444 1.01699i −0.522008 0.852941i $$-0.674817\pi$$
0.986452 0.164051i $$-0.0524560\pi$$
$$510$$ −9.36566 + 2.75001i −0.414719 + 0.121772i
$$511$$ −2.85852 + 3.29890i −0.126453 + 0.145935i
$$512$$ −24.3679 7.15506i −1.07692 0.316212i
$$513$$ −4.83934 + 3.11006i −0.213662 + 0.137312i
$$514$$ −11.4573 25.0881i −0.505361 1.10659i
$$515$$ −4.90281 5.65814i −0.216044 0.249328i
$$516$$ 0.485699 + 0.312140i 0.0213817 + 0.0137412i
$$517$$ 1.72031 11.9650i 0.0756591 0.526221i
$$518$$ 1.58345 11.0131i 0.0695727 0.483889i
$$519$$ −2.02681 1.30255i −0.0889670 0.0571756i
$$520$$ 3.79911 + 4.38441i 0.166602 + 0.192269i
$$521$$ −9.68150 21.1995i −0.424154 0.928768i −0.994239 0.107183i $$-0.965817\pi$$
0.570085 0.821586i $$-0.306910\pi$$
$$522$$ −4.81334 + 3.09334i −0.210674 + 0.135392i
$$523$$ −43.0007 12.6261i −1.88029 0.552103i −0.996437 0.0843350i $$-0.973123\pi$$
−0.883851 0.467768i $$-0.845058\pi$$
$$524$$ 0.630299 0.727403i 0.0275347 0.0317768i
$$525$$ 3.32816 0.977237i 0.145253 0.0426501i
$$526$$ −13.5099 + 29.5825i −0.589059 + 1.28986i
$$527$$ 2.13140 + 14.8242i 0.0928451 + 0.645752i
$$528$$ −16.9993 −0.739798
$$529$$ −10.8956 20.2555i −0.473721 0.880675i
$$530$$ 10.4924 0.455762
$$531$$ 1.75969 + 12.2389i 0.0763640 + 0.531123i
$$532$$ 0.680177 1.48938i 0.0294894 0.0645728i
$$533$$ −8.99404 + 2.64089i −0.389575 + 0.114390i
$$534$$ 5.96434 6.88322i 0.258102 0.297866i
$$535$$ 20.0403 + 5.88438i 0.866420 + 0.254404i
$$536$$ 30.5743 19.6489i 1.32061 0.848705i
$$537$$ 10.7141 + 23.4607i 0.462350 + 1.01240i
$$538$$ −21.9782 25.3641i −0.947545 1.09353i
$$539$$ 4.26921 + 2.74365i 0.183888 + 0.118178i
$$540$$ 0.0501262 0.348635i 0.00215709 0.0150029i
$$541$$ −3.08437 + 21.4522i −0.132607 + 0.922304i 0.809531 + 0.587078i $$0.199722\pi$$
−0.942138 + 0.335226i $$0.891187\pi$$
$$542$$ 4.26469 + 2.74075i 0.183184 + 0.117725i
$$543$$ −7.19721 8.30602i −0.308862 0.356445i
$$544$$ 3.99612 + 8.75027i 0.171332 + 0.375165i
$$545$$ −9.32738 + 5.99434i −0.399541 + 0.256769i
$$546$$ −1.96890 0.578123i −0.0842614 0.0247414i
$$547$$ −16.6646 + 19.2319i −0.712525 + 0.822298i −0.990387 0.138323i $$-0.955829\pi$$
0.277862 + 0.960621i $$0.410374\pi$$
$$548$$ 3.75526 1.10264i 0.160417 0.0471027i
$$549$$ −1.36641 + 2.99203i −0.0583171 + 0.127697i
$$550$$ −3.28105 22.8202i −0.139904 0.973057i
$$551$$ −25.1304 −1.07059
$$552$$ 7.36125 12.3183i 0.313316 0.524302i
$$553$$ −5.37195 −0.228439
$$554$$ 4.14771 + 28.8480i 0.176219 + 1.22563i
$$555$$ 4.36708 9.56257i 0.185372 0.405908i
$$556$$ 0.910278 0.267282i 0.0386044 0.0113353i
$$557$$ −4.68482 + 5.40657i −0.198502 + 0.229084i −0.846270 0.532754i $$-0.821157\pi$$
0.647768 + 0.761838i $$0.275703\pi$$
$$558$$ 3.12501 + 0.917586i 0.132292 + 0.0388445i
$$559$$ 2.67356 1.71820i 0.113080 0.0726719i
$$560$$ −1.72197 3.77059i −0.0727666 0.159337i
$$561$$ 20.0149 + 23.0984i 0.845029 + 0.975215i
$$562$$ −8.76744 5.63449i −0.369832 0.237677i
$$563$$ 0.493281 3.43085i 0.0207893 0.144593i −0.976783 0.214231i $$-0.931275\pi$$
0.997572 + 0.0696382i $$0.0221845\pi$$
$$564$$ −0.0964864 + 0.671078i −0.00406281 + 0.0282575i
$$565$$ −17.8116 11.4468i −0.749340 0.481572i
$$566$$ 18.4895 + 21.3380i 0.777170 + 0.896902i
$$567$$ 0.415415 + 0.909632i 0.0174458 + 0.0382010i
$$568$$ −20.6398 + 13.2644i −0.866025 + 0.556561i
$$569$$ 10.7227 + 3.14847i 0.449520 + 0.131991i 0.498654 0.866801i $$-0.333828\pi$$
−0.0491341 + 0.998792i $$0.515646\pi$$
$$570$$ −6.10551 + 7.04613i −0.255732 + 0.295130i
$$571$$ −36.1496 + 10.6145i −1.51281 + 0.444202i −0.929740 0.368217i $$-0.879968\pi$$
−0.583074 + 0.812419i $$0.698150\pi$$
$$572$$ 0.940128 2.05859i 0.0393087 0.0860741i
$$573$$ 1.57074 + 10.9248i 0.0656187 + 0.456388i
$$574$$ 7.83588 0.327064
$$575$$ 15.3488 + 6.41429i 0.640089 + 0.267494i
$$576$$ 8.79140 0.366308
$$577$$ 4.40027 + 30.6045i 0.183185 + 1.27408i 0.849171 + 0.528118i $$0.177102\pi$$
−0.665986 + 0.745965i $$0.731989\pi$$
$$578$$ −10.4853 + 22.9595i −0.436129 + 0.954990i
$$579$$ 18.2118 5.34746i 0.756855 0.222233i
$$580$$ 1.00764 1.16287i 0.0418398 0.0482857i
$$581$$ 3.24128 + 0.951726i 0.134471 + 0.0394842i
$$582$$ 18.8687 12.1262i 0.782133 0.502646i
$$583$$ −13.6479 29.8847i −0.565238 1.23770i
$$584$$ −8.55333 9.87107i −0.353939 0.408468i
$$585$$ −1.63104 1.04821i −0.0674353 0.0433380i
$$586$$ 5.39945 37.5540i 0.223049 1.55134i
$$587$$ 1.92027 13.3557i 0.0792579 0.551251i −0.911043 0.412311i $$-0.864722\pi$$
0.990301 0.138939i $$-0.0443693\pi$$
$$588$$ −0.239446 0.153882i −0.00987458 0.00634600i
$$589$$ 9.36783 + 10.8111i 0.385995 + 0.445462i
$$590$$ 8.32494 + 18.2291i 0.342732 + 0.750479i
$$591$$ 10.7634 6.91721i 0.442746 0.284536i
$$592$$ 27.3040 + 8.01716i 1.12219 + 0.329503i
$$593$$ 17.6057 20.3180i 0.722978 0.834361i −0.268684 0.963228i $$-0.586589\pi$$
0.991662 + 0.128867i $$0.0411342\pi$$
$$594$$ 6.37737 1.87256i 0.261667 0.0768322i
$$595$$ −3.09599 + 6.77928i −0.126923 + 0.277923i
$$596$$ −0.684983 4.76416i −0.0280580 0.195148i
$$597$$ −1.25128 −0.0512117
$$598$$ −5.58720 8.10135i −0.228478 0.331289i
$$599$$ 3.51729 0.143713 0.0718563 0.997415i $$-0.477108\pi$$
0.0718563 + 0.997415i $$0.477108\pi$$
$$600$$ 1.47709 + 10.2734i 0.0603021 + 0.419410i
$$601$$ −14.9738 + 32.7881i −0.610796 + 1.33746i 0.311232 + 0.950334i $$0.399258\pi$$
−0.922028 + 0.387123i $$0.873469\pi$$
$$602$$ −2.54906 + 0.748472i −0.103892 + 0.0305055i
$$603$$ −7.95398 + 9.17938i −0.323911 + 0.373813i
$$604$$ −3.37219 0.990164i −0.137212 0.0402892i
$$605$$ 15.3591 9.87068i 0.624435 0.401300i
$$606$$ −2.71174 5.93789i −0.110157 0.241210i
$$607$$ −4.59837 5.30680i −0.186642 0.215396i 0.654715 0.755875i $$-0.272788\pi$$
−0.841357 + 0.540479i $$0.818243\pi$$
$$608$$ 7.72963 + 4.96753i 0.313478 + 0.201460i
$$609$$ −0.621714 + 4.32411i −0.0251931 + 0.175222i
$$610$$ −0.758688 + 5.27679i −0.0307184 + 0.213651i
$$611$$ 3.13954 + 2.01766i 0.127012 + 0.0816259i
$$612$$ −1.12257 1.29551i −0.0453771 0.0523680i
$$613$$ 14.0309 + 30.7233i 0.566701 + 1.24090i 0.948535 + 0.316672i $$0.102565\pi$$
−0.381834 + 0.924231i $$0.624707\pi$$
$$614$$ 14.5617 9.35821i 0.587661 0.377667i
$$615$$ 7.10371 + 2.08584i 0.286449 + 0.0841091i
$$616$$ −9.94407 + 11.4761i −0.400658 + 0.462384i
$$617$$ −9.96521 + 2.92605i −0.401184 + 0.117798i −0.476099 0.879392i $$-0.657950\pi$$
0.0749150 + 0.997190i $$0.476131\pi$$
$$618$$ −3.29172 + 7.20786i −0.132412 + 0.289943i
$$619$$ 1.10133 + 7.65991i 0.0442661 + 0.307878i 0.999911 + 0.0133556i $$0.00425136\pi$$
−0.955645 + 0.294522i $$0.904840\pi$$
$$620$$ −0.875881 −0.0351762
$$621$$ −1.20064 + 4.64311i −0.0481802 + 0.186322i
$$622$$ 21.1187 0.846783
$$623$$ −0.989657 6.88322i −0.0396498 0.275770i
$$624$$ 2.18020 4.77396i 0.0872777 0.191111i
$$625$$ −4.19781 + 1.23259i −0.167912 + 0.0493035i
$$626$$ −5.61172 + 6.47626i −0.224289 + 0.258844i
$$627$$ 28.0106 + 8.22465i 1.11863 + 0.328461i
$$628$$ 4.87183 3.13094i 0.194407 0.124938i
$$629$$ −21.2540 46.5397i −0.847451 1.85566i
$$630$$ 1.06136 + 1.22487i 0.0422855 + 0.0488001i
$$631$$ 8.27780 + 5.31982i 0.329534 + 0.211779i 0.694937 0.719071i $$-0.255432\pi$$
−0.365403 + 0.930849i $$0.619069\pi$$
$$632$$ 2.28759 15.9105i 0.0909953 0.632886i
$$633$$ −0.330838 + 2.30103i −0.0131496 + 0.0914577i
$$634$$ 17.7468 + 11.4052i 0.704814 + 0.452957i
$$635$$ 5.36082 + 6.18672i 0.212738 + 0.245512i
$$636$$ 0.765465 + 1.67613i 0.0303526 + 0.0664630i
$$637$$ −1.31805 + 0.847057i −0.0522229 + 0.0335616i
$$638$$ 27.8600 + 8.18045i 1.10299 + 0.323867i
$$639$$ 5.36948 6.19671i 0.212413 0.245138i
$$640$$ 9.87845 2.90057i 0.390480 0.114655i
$$641$$ 15.2971 33.4960i 0.604200 1.32301i −0.322271 0.946647i $$-0.604446\pi$$
0.926471 0.376366i $$-0.122827\pi$$
$$642$$ −3.14600 21.8809i −0.124163 0.863569i
$$643$$ 35.9019 1.41583 0.707916 0.706297i $$-0.249636\pi$$
0.707916 + 0.706297i $$0.249636\pi$$
$$644$$ −0.427004 1.29653i −0.0168263 0.0510905i
$$645$$ −2.51012 −0.0988358
$$646$$ 6.45761 + 44.9137i 0.254071 + 1.76711i
$$647$$ −2.90327 + 6.35727i −0.114139 + 0.249930i −0.958077 0.286511i $$-0.907504\pi$$
0.843938 + 0.536441i $$0.180232\pi$$
$$648$$ −2.87102 + 0.843008i −0.112784 + 0.0331165i
$$649$$ 41.0918 47.4225i 1.61299 1.86149i
$$650$$ 6.82948 + 2.00532i 0.267874 + 0.0786550i
$$651$$ 2.09198 1.34443i 0.0819912 0.0526925i
$$652$$ 0.927479 + 2.03090i 0.0363229 + 0.0795360i
$$653$$ 9.32812 + 10.7652i 0.365038 + 0.421276i 0.908321 0.418273i $$-0.137365\pi$$
−0.543284 + 0.839549i $$0.682819\pi$$
$$654$$ 9.87198 + 6.34434i 0.386025 + 0.248083i
$$655$$ −0.595527 + 4.14198i −0.0232692 + 0.161841i
$$656$$ −2.85213 + 19.8370i −0.111357 + 0.774503i
$$657$$ 3.67213 + 2.35994i 0.143264 + 0.0920699i
$$658$$ −2.04298 2.35772i −0.0796436 0.0919136i
$$659$$ 4.94239 + 10.8223i 0.192528 + 0.421578i 0.981136 0.193319i $$-0.0619251\pi$$
−0.788608 + 0.614896i $$0.789198\pi$$
$$660$$ −1.50370 + 0.966371i −0.0585316 + 0.0376159i
$$661$$ −22.0859 6.48502i −0.859044 0.252238i −0.177595 0.984104i $$-0.556832\pi$$
−0.681449 + 0.731866i $$0.738650\pi$$
$$662$$ 8.75117 10.0994i 0.340124 0.392524i
$$663$$ −9.05377 + 2.65843i −0.351619 + 0.103245i
$$664$$ −4.19906 + 9.19465i −0.162955 + 0.356822i
$$665$$ 1.01308 + 7.04613i 0.0392856 + 0.273237i
$$666$$ −11.1264 −0.431138
$$667$$ −15.3787 + 14.2281i −0.595466 + 0.550914i
$$668$$ −0.571550 −0.0221139
$$669$$ 2.82668 + 19.6600i 0.109286 + 0.760100i
$$670$$ −8.17769 + 17.9066i −0.315932 + 0.691794i
$$671$$ 16.0163 4.70281i 0.618303 0.181550i
$$672$$ 1.04598 1.20712i 0.0403494 0.0465657i
$$673$$ 0.725833 + 0.213124i 0.0279788 + 0.00821532i 0.295692 0.955283i $$-0.404450\pi$$
−0.267713 + 0.963499i $$0.586268\pi$$
$$674$$ −26.6940 + 17.1552i −1.02821 + 0.660793i
$$675$$ −1.44094 3.15521i −0.0554617 0.121444i
$$676$$ −1.96556 2.26837i −0.0755984 0.0872452i
$$677$$ 20.2601 + 13.0204i 0.778659 + 0.500413i 0.868588 0.495535i $$-0.165028\pi$$
−0.0899296 + 0.995948i $$0.528664\pi$$
$$678$$ −3.18912 + 22.1808i −0.122477 + 0.851849i
$$679$$ 2.43717 16.9509i 0.0935301 0.650516i
$$680$$ −18.7603 12.0565i −0.719424 0.462346i
$$681$$ −10.1791 11.7473i −0.390065 0.450159i
$$682$$ −6.86614 15.0347i −0.262918 0.575710i
$$683$$ 11.9849 7.70225i 0.458591 0.294718i −0.290875 0.956761i $$-0.593947\pi$$
0.749466 + 0.662042i $$0.230310\pi$$
$$684$$ −1.57102 0.461293i −0.0600694 0.0176380i
$$685$$ −11.1430 + 12.8597i −0.425752 + 0.491344i
$$686$$ 1.25667 0.368991i 0.0479798 0.0140881i
$$687$$ −1.70531 + 3.73410i −0.0650615 + 0.142465i
$$688$$ −0.966984 6.72552i −0.0368659 0.256408i
$$689$$ 10.1430 0.386418
$$690$$ 0.253006 + 7.76868i 0.00963176 + 0.295748i
$$691$$ −42.3183 −1.60986 −0.804932 0.593367i $$-0.797798\pi$$
−0.804932 + 0.593367i $$0.797798\pi$$
$$692$$ −0.0975925 0.678771i −0.00370991 0.0258030i
$$693$$ 2.10816 4.61622i 0.0800822 0.175356i
$$694$$ −5.65190 + 1.65955i −0.214543 + 0.0629956i
$$695$$ −2.70107 + 3.11720i −0.102457 + 0.118242i
$$696$$ −12.5423 3.68275i −0.475414 0.139594i
$$697$$ 30.3123 19.4806i 1.14816 0.737879i
$$698$$ 11.4544 + 25.0816i 0.433555 + 0.949352i
$$699$$ 10.0964 + 11.6519i 0.381881 + 0.440715i
$$700$$ 0.830558 + 0.533767i 0.0313922 + 0.0201745i
$$701$$ −1.87982 + 13.0744i −0.0709998 + 0.493815i 0.923032 + 0.384723i $$0.125703\pi$$
−0.994032 + 0.109091i $$0.965206\pi$$
$$702$$ −0.292034 + 2.03114i −0.0110221 + 0.0766604i
$$703$$ −41.1113 26.4206i −1.55054 0.996472i
$$704$$ −29.2165 33.7176i −1.10114 1.27078i
$$705$$ −1.22448 2.68124i −0.0461166 0.100981i
$$706$$ −33.8698 + 21.7668i −1.27471 + 0.819203i
$$707$$ −4.78222 1.40419i −0.179854 0.0528099i
$$708$$ −2.30470 + 2.65977i −0.0866160 + 0.0999602i
$$709$$ 22.9380 6.73521i 0.861456 0.252946i 0.178978 0.983853i $$-0.442721\pi$$
0.682477 + 0.730907i $$0.260903\pi$$
$$710$$ 5.52050 12.0882i 0.207181 0.453663i
$$711$$ 0.764509 + 5.31728i 0.0286713 + 0.199413i
$$712$$ 20.8080 0.779811
$$713$$ 11.8536 + 1.31210i 0.443921 + 0.0491387i
$$714$$ 7.88792 0.295198
$$715$$ 1.40026 + 9.73903i 0.0523668 + 0.364219i
$$716$$ −3.04956 + 6.67761i −0.113968 + 0.249554i
$$717$$ −19.9733 + 5.86468i −0.745916 + 0.219021i
$$718$$ 11.1403 12.8566i 0.415753 0.479805i
$$719$$ −25.4193 7.46378i −0.947980 0.278352i −0.229035 0.973418i $$-0.573557\pi$$
−0.718946 + 0.695066i $$0.755375\pi$$
$$720$$ −3.48715 + 2.24106i −0.129958 + 0.0835192i
$$721$$ 2.51330 + 5.50335i 0.0936001 + 0.204956i
$$722$$ 12.0862 + 13.9483i 0.449803 + 0.519101i
$$723$$ 23.6025 + 15.1684i 0.877788 + 0.564120i
$$724$$ 0.445190 3.09636i 0.0165454 0.115075i
$$725$$ 2.15652 14.9989i 0.0800911 0.557046i
$$726$$ −16.2558 10.4470i −0.603311 0.387725i
$$727$$ 12.7965 + 14.7680i 0.474596 + 0.547713i 0.941684 0.336498i $$-0.109242\pi$$
−0.467088 + 0.884211i $$0.654697\pi$$
$$728$$ −1.94752 4.26446i −0.0721797 0.158052i
$$729$$ 0.841254 0.540641i 0.0311575 0.0200237i
$$730$$ 6.78808 + 1.99316i 0.251238 + 0.0737701i
$$731$$ −8.00004 + 9.23254i −0.295892 + 0.341478i
$$732$$ −0.898301 + 0.263765i −0.0332022 + 0.00974903i
$$733$$ −3.10247 + 6.79347i −0.114592 + 0.250922i −0.958235 0.285984i $$-0.907680\pi$$
0.843642 + 0.536906i $$0.180407\pi$$
$$734$$ −0.968344 6.73498i −0.0357422 0.248593i
$$735$$ 1.23747 0.0456447
$$736$$ 7.54266 1.33637i 0.278026 0.0492594i
$$737$$ 61.6391 2.27050
$$738$$ −1.11516 7.75613i −0.0410497 0.285507i
$$739$$ −15.0021 + 32.8501i −0.551862 + 1.20841i 0.404045 + 0.914739i $$0.367604\pi$$
−0.955907 + 0.293670i $$0.905123\pi$$
$$740$$ 2.87098 0.842997i 0.105539 0.0309892i
$$741$$ −5.90218 + 6.81148i −0.216822 + 0.250226i
$$742$$ −8.13549 2.38879i −0.298663 0.0876954i
$$743$$ 8.48702 5.45428i 0.311358 0.200098i −0.375624 0.926772i $$-0.622571\pi$$
0.686982 + 0.726674i $$0.258935\pi$$
$$744$$ 3.09106 + 6.76848i 0.113324 + 0.248145i
$$745$$ 13.7035 + 15.8147i 0.502059 + 0.579407i
$$746$$ −12.1217 7.79013i −0.443806 0.285217i
$$747$$ 0.480756 3.34373i 0.0175899 0.122341i
$$748$$ −1.23804 + 8.61075i −0.0452672 + 0.314840i
$$749$$ −14.1989 9.12510i −0.518818 0.333424i
$$750$$ −8.98830 10.3730i −0.328206 0.378770i
$$751$$ 7.04358 + 15.4233i 0.257024 + 0.562804i 0.993523 0.113635i $$-0.0362494\pi$$
−0.736499 + 0.676439i $$0.763522\pi$$
$$752$$ 6.71231 4.31374i 0.244773 0.157306i
$$753$$ 3.38849 + 0.994951i 0.123484 + 0.0362580i
$$754$$ −5.87046 + 6.77487i −0.213790 + 0.246726i
$$755$$ 14.6611 4.30488i 0.533571 0.156671i
$$756$$ −0.118239 + 0.258908i −0.00430033 + 0.00941640i
$$757$$ −0.718352 4.99625i −0.0261090 0.181592i 0.972594 0.232511i $$-0.0746941\pi$$
−0.998703 + 0.0509189i $$0.983785\pi$$
$$758$$ 30.9841 1.12539
$$759$$ 21.7978 10.8256i 0.791209 0.392945i
$$760$$ −21.3004 −0.772648
$$761$$ −5.22083 36.3117i −0.189255 1.31630i −0.833943 0.551851i $$-0.813922\pi$$
0.644688 0.764446i $$-0.276987\pi$$
$$762$$ 3.59923 7.88121i 0.130386 0.285506i
$$763$$ 8.59687 2.52427i 0.311227 0.0913846i
$$764$$ −2.05724 + 2.37418i −0.0744282 + 0.0858947i
$$765$$ 7.15088 + 2.09969i 0.258541 + 0.0759144i
$$766$$ 23.7256 15.2475i 0.857240 0.550915i
$$767$$ 8.04770 + 17.6220i 0.290586 + 0.636294i
$$768$$ 4.37853 + 5.05309i 0.157996 + 0.182338i
$$769$$ −4.44668 2.85771i −0.160351 0.103052i 0.458004 0.888950i $$-0.348564\pi$$
−0.618356 + 0.785898i $$0.712201\pi$$
$$770$$ 1.17053 8.14124i 0.0421831 0.293390i
$$771$$ −2.99690 + 20.8439i −0.107931 + 0.750675i
$$772$$ 4.54483 +