Properties

Label 483.2.q.c.358.2
Level $483$
Weight $2$
Character 483.358
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 40 x^{18} - 117 x^{17} + 295 x^{16} - 575 x^{15} + 1777 x^{14} - 1560 x^{13} + 4383 x^{12} - 6446 x^{11} + 7261 x^{10} + 7700 x^{9} + 7852 x^{8} - 39430 x^{7} - 101709 x^{6} + 156742 x^{5} + 999838 x^{4} + 2029154 x^{3} + 3616480 x^{2} + 4299390 x + 2374681\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 358.2
Root \(1.49752 - 1.72823i\) of defining polynomial
Character \(\chi\) \(=\) 483.358
Dual form 483.2.q.c.85.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.544078 - 0.627899i) q^{2} +(0.841254 + 0.540641i) q^{3} +(0.186393 - 1.29639i) q^{4} +(0.405886 - 0.888766i) q^{5} +(-0.118239 - 0.822373i) q^{6} +(-0.959493 - 0.281733i) q^{7} +(-2.31329 + 1.48666i) q^{8} +(0.415415 + 0.909632i) q^{9} +O(q^{10})\) \(q+(-0.544078 - 0.627899i) q^{2} +(0.841254 + 0.540641i) q^{3} +(0.186393 - 1.29639i) q^{4} +(0.405886 - 0.888766i) q^{5} +(-0.118239 - 0.822373i) q^{6} +(-0.959493 - 0.281733i) q^{7} +(-2.31329 + 1.48666i) q^{8} +(0.415415 + 0.909632i) q^{9} +(-0.778889 + 0.228702i) q^{10} +(3.57214 - 4.12247i) q^{11} +(0.857685 - 0.989821i) q^{12} +(-0.954742 + 0.280337i) q^{13} +(0.345139 + 0.755750i) q^{14} +(0.821956 - 0.528239i) q^{15} +(-0.321251 - 0.0943278i) q^{16} +(-0.595548 - 4.14213i) q^{17} +(0.345139 - 0.755750i) q^{18} +(0.0835672 - 0.581223i) q^{19} +(-1.07653 - 0.691846i) q^{20} +(-0.654861 - 0.755750i) q^{21} -4.53202 q^{22} +(-1.96432 - 4.37509i) q^{23} -2.74982 q^{24} +(2.64914 + 3.05727i) q^{25} +(0.695478 + 0.446956i) q^{26} +(-0.142315 + 0.989821i) q^{27} +(-0.544078 + 1.19136i) q^{28} +(-0.113996 - 0.792858i) q^{29} +(-0.778889 - 0.228702i) q^{30} +(-3.31199 + 2.12849i) q^{31} +(2.40019 + 5.25568i) q^{32} +(5.23385 - 1.53680i) q^{33} +(-2.27682 + 2.62759i) q^{34} +(-0.639839 + 0.738413i) q^{35} +(1.25667 - 0.368991i) q^{36} +(-1.49833 - 3.28089i) q^{37} +(-0.410416 + 0.263759i) q^{38} +(-0.954742 - 0.280337i) q^{39} +(0.382363 + 2.65939i) q^{40} +(4.02324 - 8.80966i) q^{41} +(-0.118239 + 0.822373i) q^{42} +(9.13966 + 5.87370i) q^{43} +(-4.67851 - 5.39929i) q^{44} +0.977061 q^{45} +(-1.67837 + 3.61379i) q^{46} -11.5601 q^{47} +(-0.219256 - 0.253035i) q^{48} +(0.841254 + 0.540641i) q^{49} +(0.478320 - 3.32679i) q^{50} +(1.73840 - 3.80656i) q^{51} +(0.185470 + 1.28997i) q^{52} +(0.848176 + 0.249047i) q^{53} +(0.698939 - 0.449181i) q^{54} +(-2.21403 - 4.84805i) q^{55} +(2.63843 - 0.774713i) q^{56} +(0.384534 - 0.443776i) q^{57} +(-0.435813 + 0.502955i) q^{58} +(6.25110 - 1.83549i) q^{59} +(-0.531597 - 1.16404i) q^{60} +(1.25651 - 0.807508i) q^{61} +(3.13846 + 0.921535i) q^{62} +(-0.142315 - 0.989821i) q^{63} +(1.71597 - 3.75746i) q^{64} +(-0.138362 + 0.962327i) q^{65} +(-3.81258 - 2.45019i) q^{66} +(-0.874085 - 1.00875i) q^{67} -5.48082 q^{68} +(0.712860 - 4.74256i) q^{69} +0.811772 q^{70} +(7.26595 + 8.38535i) q^{71} +(-2.31329 - 1.48666i) q^{72} +(-1.33652 + 9.29567i) q^{73} +(-1.24486 + 2.72586i) q^{74} +(0.575714 + 4.00418i) q^{75} +(-0.737915 - 0.216671i) q^{76} +(-4.58888 + 2.94909i) q^{77} +(0.343430 + 0.752007i) q^{78} +(8.76905 - 2.57482i) q^{79} +(-0.214227 + 0.247231i) q^{80} +(-0.654861 + 0.755750i) q^{81} +(-7.72054 + 2.26695i) q^{82} +(-1.31567 - 2.88091i) q^{83} +(-1.10181 + 0.708089i) q^{84} +(-3.92311 - 1.15193i) q^{85} +(-1.28459 - 8.93454i) q^{86} +(0.332752 - 0.728626i) q^{87} +(-2.13468 + 14.8470i) q^{88} +(3.21116 + 2.06369i) q^{89} +(-0.531597 - 0.613496i) q^{90} +0.995048 q^{91} +(-6.03796 + 1.73104i) q^{92} -3.93697 q^{93} +(6.28960 + 7.25858i) q^{94} +(-0.482652 - 0.310182i) q^{95} +(-0.822267 + 5.71900i) q^{96} +(-7.38495 + 16.1708i) q^{97} +(-0.118239 - 0.822373i) q^{98} +(5.23385 + 1.53680i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + O(q^{10}) \) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + 9q^{10} + 3q^{11} + 18q^{12} - 2q^{13} + 18q^{14} - q^{15} + 8q^{16} + 8q^{17} + 18q^{18} + 6q^{19} - 2q^{20} - 2q^{21} + 6q^{22} + 11q^{23} + 9q^{25} + 7q^{26} - 2q^{27} - 4q^{28} + 23q^{29} + 9q^{30} + q^{31} - 28q^{32} + 14q^{33} - 28q^{34} + 10q^{35} - 4q^{36} - 9q^{37} + 34q^{38} - 2q^{39} - 15q^{41} - 4q^{42} - 23q^{43} - 16q^{44} - 12q^{45} + 11q^{46} - 66q^{47} - 36q^{48} - 2q^{49} - 26q^{50} - 14q^{51} + 7q^{52} + 9q^{53} - 4q^{54} - 62q^{55} + 22q^{56} - 27q^{57} - 20q^{58} + 49q^{59} - 2q^{60} + 46q^{61} - 9q^{62} - 2q^{63} + 16q^{64} + 11q^{65} - 16q^{66} + 14q^{67} + 38q^{68} + 11q^{69} - 2q^{70} + 36q^{71} - q^{73} + 4q^{74} - 2q^{75} + 34q^{76} - 8q^{77} - 15q^{78} - 22q^{79} + 15q^{80} - 2q^{81} - 30q^{82} + 8q^{83} - 4q^{84} - 32q^{85} - 68q^{86} + q^{87} - 11q^{88} - 2q^{89} - 2q^{90} - 24q^{91} + 11q^{92} - 32q^{93} + 33q^{94} - 107q^{95} + 16q^{96} + 18q^{97} - 4q^{98} + 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{7}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.544078 0.627899i −0.384721 0.443992i 0.530049 0.847967i \(-0.322174\pi\)
−0.914770 + 0.403975i \(0.867628\pi\)
\(3\) 0.841254 + 0.540641i 0.485698 + 0.312139i
\(4\) 0.186393 1.29639i 0.0931964 0.648195i
\(5\) 0.405886 0.888766i 0.181518 0.397468i −0.796898 0.604114i \(-0.793527\pi\)
0.978416 + 0.206645i \(0.0662546\pi\)
\(6\) −0.118239 0.822373i −0.0482710 0.335733i
\(7\) −0.959493 0.281733i −0.362654 0.106485i
\(8\) −2.31329 + 1.48666i −0.817872 + 0.525615i
\(9\) 0.415415 + 0.909632i 0.138472 + 0.303211i
\(10\) −0.778889 + 0.228702i −0.246306 + 0.0723221i
\(11\) 3.57214 4.12247i 1.07704 1.24297i 0.108506 0.994096i \(-0.465393\pi\)
0.968535 0.248876i \(-0.0800611\pi\)
\(12\) 0.857685 0.989821i 0.247592 0.285737i
\(13\) −0.954742 + 0.280337i −0.264798 + 0.0777516i −0.411436 0.911439i \(-0.634973\pi\)
0.146639 + 0.989190i \(0.453155\pi\)
\(14\) 0.345139 + 0.755750i 0.0922423 + 0.201983i
\(15\) 0.821956 0.528239i 0.212228 0.136391i
\(16\) −0.321251 0.0943278i −0.0803127 0.0235819i
\(17\) −0.595548 4.14213i −0.144442 1.00461i −0.925118 0.379679i \(-0.876034\pi\)
0.780677 0.624935i \(-0.214875\pi\)
\(18\) 0.345139 0.755750i 0.0813501 0.178132i
\(19\) 0.0835672 0.581223i 0.0191716 0.133342i −0.977988 0.208662i \(-0.933089\pi\)
0.997159 + 0.0753208i \(0.0239981\pi\)
\(20\) −1.07653 0.691846i −0.240720 0.154701i
\(21\) −0.654861 0.755750i −0.142902 0.164918i
\(22\) −4.53202 −0.966230
\(23\) −1.96432 4.37509i −0.409590 0.912270i
\(24\) −2.74982 −0.561304
\(25\) 2.64914 + 3.05727i 0.529828 + 0.611455i
\(26\) 0.695478 + 0.446956i 0.136394 + 0.0876553i
\(27\) −0.142315 + 0.989821i −0.0273885 + 0.190491i
\(28\) −0.544078 + 1.19136i −0.102821 + 0.225147i
\(29\) −0.113996 0.792858i −0.0211685 0.147230i 0.976496 0.215536i \(-0.0691498\pi\)
−0.997664 + 0.0683056i \(0.978241\pi\)
\(30\) −0.778889 0.228702i −0.142205 0.0417552i
\(31\) −3.31199 + 2.12849i −0.594851 + 0.382288i −0.803149 0.595778i \(-0.796844\pi\)
0.208298 + 0.978065i \(0.433208\pi\)
\(32\) 2.40019 + 5.25568i 0.424297 + 0.929081i
\(33\) 5.23385 1.53680i 0.911097 0.267522i
\(34\) −2.27682 + 2.62759i −0.390471 + 0.450627i
\(35\) −0.639839 + 0.738413i −0.108153 + 0.124815i
\(36\) 1.25667 0.368991i 0.209445 0.0614985i
\(37\) −1.49833 3.28089i −0.246324 0.539375i 0.745572 0.666425i \(-0.232176\pi\)
−0.991896 + 0.127050i \(0.959449\pi\)
\(38\) −0.410416 + 0.263759i −0.0665783 + 0.0427873i
\(39\) −0.954742 0.280337i −0.152881 0.0448899i
\(40\) 0.382363 + 2.65939i 0.0604568 + 0.420487i
\(41\) 4.02324 8.80966i 0.628324 1.37584i −0.280983 0.959713i \(-0.590660\pi\)
0.909307 0.416126i \(-0.136612\pi\)
\(42\) −0.118239 + 0.822373i −0.0182447 + 0.126895i
\(43\) 9.13966 + 5.87370i 1.39378 + 0.895731i 0.999727 0.0233550i \(-0.00743479\pi\)
0.394057 + 0.919086i \(0.371071\pi\)
\(44\) −4.67851 5.39929i −0.705312 0.813973i
\(45\) 0.977061 0.145652
\(46\) −1.67837 + 3.61379i −0.247463 + 0.532824i
\(47\) −11.5601 −1.68621 −0.843107 0.537746i \(-0.819276\pi\)
−0.843107 + 0.537746i \(0.819276\pi\)
\(48\) −0.219256 0.253035i −0.0316469 0.0365225i
\(49\) 0.841254 + 0.540641i 0.120179 + 0.0772344i
\(50\) 0.478320 3.32679i 0.0676447 0.470479i
\(51\) 1.73840 3.80656i 0.243424 0.533025i
\(52\) 0.185470 + 1.28997i 0.0257200 + 0.178887i
\(53\) 0.848176 + 0.249047i 0.116506 + 0.0342092i 0.339466 0.940618i \(-0.389754\pi\)
−0.222960 + 0.974828i \(0.571572\pi\)
\(54\) 0.698939 0.449181i 0.0951135 0.0611257i
\(55\) −2.21403 4.84805i −0.298540 0.653711i
\(56\) 2.63843 0.774713i 0.352575 0.103525i
\(57\) 0.384534 0.443776i 0.0509327 0.0587795i
\(58\) −0.435813 + 0.502955i −0.0572250 + 0.0660412i
\(59\) 6.25110 1.83549i 0.813824 0.238960i 0.151770 0.988416i \(-0.451503\pi\)
0.662055 + 0.749456i \(0.269685\pi\)
\(60\) −0.531597 1.16404i −0.0686289 0.150276i
\(61\) 1.25651 0.807508i 0.160879 0.103391i −0.457724 0.889094i \(-0.651335\pi\)
0.618603 + 0.785703i \(0.287699\pi\)
\(62\) 3.13846 + 0.921535i 0.398585 + 0.117035i
\(63\) −0.142315 0.989821i −0.0179300 0.124706i
\(64\) 1.71597 3.75746i 0.214497 0.469682i
\(65\) −0.138362 + 0.962327i −0.0171617 + 0.119362i
\(66\) −3.81258 2.45019i −0.469296 0.301598i
\(67\) −0.874085 1.00875i −0.106786 0.123238i 0.699840 0.714299i \(-0.253255\pi\)
−0.806627 + 0.591061i \(0.798709\pi\)
\(68\) −5.48082 −0.664648
\(69\) 0.712860 4.74256i 0.0858182 0.570937i
\(70\) 0.811772 0.0970253
\(71\) 7.26595 + 8.38535i 0.862309 + 0.995158i 0.999989 + 0.00468118i \(0.00149007\pi\)
−0.137680 + 0.990477i \(0.543964\pi\)
\(72\) −2.31329 1.48666i −0.272624 0.175205i
\(73\) −1.33652 + 9.29567i −0.156427 + 1.08798i 0.748723 + 0.662883i \(0.230667\pi\)
−0.905150 + 0.425092i \(0.860242\pi\)
\(74\) −1.24486 + 2.72586i −0.144712 + 0.316875i
\(75\) 0.575714 + 4.00418i 0.0664777 + 0.462362i
\(76\) −0.737915 0.216671i −0.0846447 0.0248539i
\(77\) −4.58888 + 2.94909i −0.522951 + 0.336080i
\(78\) 0.343430 + 0.752007i 0.0388858 + 0.0851480i
\(79\) 8.76905 2.57482i 0.986595 0.289690i 0.251651 0.967818i \(-0.419027\pi\)
0.734944 + 0.678128i \(0.237208\pi\)
\(80\) −0.214227 + 0.247231i −0.0239513 + 0.0276412i
\(81\) −0.654861 + 0.755750i −0.0727623 + 0.0839722i
\(82\) −7.72054 + 2.26695i −0.852591 + 0.250343i
\(83\) −1.31567 2.88091i −0.144413 0.316220i 0.823579 0.567202i \(-0.191974\pi\)
−0.967992 + 0.250981i \(0.919247\pi\)
\(84\) −1.10181 + 0.708089i −0.120217 + 0.0772588i
\(85\) −3.92311 1.15193i −0.425521 0.124944i
\(86\) −1.28459 8.93454i −0.138521 0.963436i
\(87\) 0.332752 0.728626i 0.0356748 0.0781169i
\(88\) −2.13468 + 14.8470i −0.227558 + 1.58270i
\(89\) 3.21116 + 2.06369i 0.340382 + 0.218750i 0.699653 0.714483i \(-0.253338\pi\)
−0.359270 + 0.933233i \(0.616974\pi\)
\(90\) −0.531597 0.613496i −0.0560353 0.0646682i
\(91\) 0.995048 0.104309
\(92\) −6.03796 + 1.73104i −0.629501 + 0.180474i
\(93\) −3.93697 −0.408245
\(94\) 6.28960 + 7.25858i 0.648722 + 0.748665i
\(95\) −0.482652 0.310182i −0.0495191 0.0318240i
\(96\) −0.822267 + 5.71900i −0.0839223 + 0.583692i
\(97\) −7.38495 + 16.1708i −0.749828 + 1.64189i 0.0168467 + 0.999858i \(0.494637\pi\)
−0.766675 + 0.642036i \(0.778090\pi\)
\(98\) −0.118239 0.822373i −0.0119440 0.0830723i
\(99\) 5.23385 + 1.53680i 0.526022 + 0.154454i
\(100\) 4.45720 2.86447i 0.445720 0.286447i
\(101\) 3.46645 + 7.59047i 0.344925 + 0.755280i 1.00000 0.000283479i \(-9.02343e-5\pi\)
−0.655075 + 0.755564i \(0.727363\pi\)
\(102\) −3.33596 + 0.979526i −0.330309 + 0.0969876i
\(103\) −0.122213 + 0.141041i −0.0120420 + 0.0138972i −0.761739 0.647884i \(-0.775654\pi\)
0.749697 + 0.661782i \(0.230199\pi\)
\(104\) 1.79183 2.06788i 0.175703 0.202772i
\(105\) −0.937483 + 0.275270i −0.0914890 + 0.0268636i
\(106\) −0.305097 0.668070i −0.0296337 0.0648887i
\(107\) 3.71790 2.38935i 0.359423 0.230987i −0.348449 0.937328i \(-0.613292\pi\)
0.707872 + 0.706341i \(0.249655\pi\)
\(108\) 1.25667 + 0.368991i 0.120923 + 0.0355062i
\(109\) 2.59868 + 18.0742i 0.248909 + 1.73120i 0.604542 + 0.796573i \(0.293356\pi\)
−0.355633 + 0.934626i \(0.615735\pi\)
\(110\) −1.83948 + 4.02790i −0.175388 + 0.384046i
\(111\) 0.513306 3.57012i 0.0487208 0.338861i
\(112\) 0.281663 + 0.181014i 0.0266146 + 0.0171042i
\(113\) 7.02402 + 8.10616i 0.660765 + 0.762563i 0.982902 0.184130i \(-0.0589467\pi\)
−0.322137 + 0.946693i \(0.604401\pi\)
\(114\) −0.487863 −0.0456925
\(115\) −4.68572 0.0299643i −0.436946 0.00279418i
\(116\) −1.04910 −0.0974067
\(117\) −0.651618 0.752007i −0.0602421 0.0695231i
\(118\) −4.55359 2.92641i −0.419192 0.269398i
\(119\) −0.595548 + 4.14213i −0.0545938 + 0.379708i
\(120\) −1.11611 + 2.44394i −0.101887 + 0.223100i
\(121\) −2.66911 18.5641i −0.242646 1.68764i
\(122\) −1.19067 0.349613i −0.107798 0.0316525i
\(123\) 8.14743 5.23603i 0.734629 0.472117i
\(124\) 2.14202 + 4.69037i 0.192359 + 0.421208i
\(125\) 8.47987 2.48991i 0.758462 0.222705i
\(126\) −0.544078 + 0.627899i −0.0484703 + 0.0559377i
\(127\) 11.9843 13.8306i 1.06343 1.22726i 0.0905659 0.995890i \(-0.471132\pi\)
0.972865 0.231374i \(-0.0743221\pi\)
\(128\) 7.79460 2.28870i 0.688951 0.202294i
\(129\) 4.51321 + 9.88254i 0.397366 + 0.870109i
\(130\) 0.679524 0.436704i 0.0595982 0.0383014i
\(131\) 16.0496 + 4.71259i 1.40226 + 0.411741i 0.893460 0.449143i \(-0.148271\pi\)
0.508801 + 0.860884i \(0.330089\pi\)
\(132\) −1.01674 7.07156i −0.0884956 0.615501i
\(133\) −0.243931 + 0.534135i −0.0211515 + 0.0463154i
\(134\) −0.157822 + 1.09767i −0.0136337 + 0.0948246i
\(135\) 0.821956 + 0.528239i 0.0707427 + 0.0454636i
\(136\) 7.53563 + 8.69658i 0.646175 + 0.745726i
\(137\) 1.31005 0.111925 0.0559627 0.998433i \(-0.482177\pi\)
0.0559627 + 0.998433i \(0.482177\pi\)
\(138\) −3.36570 + 2.13272i −0.286507 + 0.181549i
\(139\) −11.2805 −0.956802 −0.478401 0.878141i \(-0.658784\pi\)
−0.478401 + 0.878141i \(0.658784\pi\)
\(140\) 0.838011 + 0.967116i 0.0708248 + 0.0817362i
\(141\) −9.72497 6.24986i −0.818991 0.526333i
\(142\) 1.31191 9.12457i 0.110093 0.765717i
\(143\) −2.25479 + 4.93730i −0.188555 + 0.412878i
\(144\) −0.0476489 0.331405i −0.00397074 0.0276171i
\(145\) −0.750935 0.220494i −0.0623617 0.0183111i
\(146\) 6.56391 4.21837i 0.543233 0.349115i
\(147\) 0.415415 + 0.909632i 0.0342629 + 0.0750252i
\(148\) −4.53259 + 1.33089i −0.372577 + 0.109398i
\(149\) −1.72101 + 1.98615i −0.140991 + 0.162712i −0.821853 0.569699i \(-0.807060\pi\)
0.680862 + 0.732411i \(0.261605\pi\)
\(150\) 2.20099 2.54007i 0.179710 0.207396i
\(151\) 6.14357 1.80392i 0.499957 0.146801i −0.0220245 0.999757i \(-0.507011\pi\)
0.521981 + 0.852957i \(0.325193\pi\)
\(152\) 0.670767 + 1.46877i 0.0544064 + 0.119133i
\(153\) 3.52041 2.26243i 0.284609 0.182907i
\(154\) 4.34844 + 1.27682i 0.350407 + 0.102889i
\(155\) 0.547437 + 3.80751i 0.0439712 + 0.305827i
\(156\) −0.541384 + 1.18547i −0.0433454 + 0.0949132i
\(157\) −2.59139 + 18.0235i −0.206816 + 1.43843i 0.576646 + 0.816994i \(0.304361\pi\)
−0.783462 + 0.621440i \(0.786548\pi\)
\(158\) −6.38778 4.10517i −0.508184 0.326590i
\(159\) 0.578886 + 0.668070i 0.0459087 + 0.0529814i
\(160\) 5.64527 0.446298
\(161\) 0.652148 + 4.75128i 0.0513965 + 0.374454i
\(162\) 0.830830 0.0652762
\(163\) 2.18363 + 2.52005i 0.171035 + 0.197385i 0.834795 0.550560i \(-0.185586\pi\)
−0.663760 + 0.747945i \(0.731040\pi\)
\(164\) −10.6709 6.85775i −0.833254 0.535500i
\(165\) 0.758493 5.27543i 0.0590486 0.410692i
\(166\) −1.09309 + 2.39354i −0.0848406 + 0.185775i
\(167\) −0.119468 0.830921i −0.00924474 0.0642986i 0.984677 0.174389i \(-0.0557950\pi\)
−0.993922 + 0.110090i \(0.964886\pi\)
\(168\) 2.63843 + 0.774713i 0.203559 + 0.0597704i
\(169\) −10.1034 + 6.49303i −0.777181 + 0.499464i
\(170\) 1.41118 + 3.09006i 0.108233 + 0.236997i
\(171\) 0.563414 0.165433i 0.0430853 0.0126510i
\(172\) 9.31817 10.7537i 0.710504 0.819966i
\(173\) −11.5403 + 13.3183i −0.877395 + 1.01257i 0.122403 + 0.992480i \(0.460940\pi\)
−0.999798 + 0.0200877i \(0.993605\pi\)
\(174\) −0.638547 + 0.187494i −0.0484081 + 0.0142139i
\(175\) −1.68050 3.67978i −0.127034 0.278165i
\(176\) −1.53642 + 0.987395i −0.115812 + 0.0744277i
\(177\) 6.25110 + 1.83549i 0.469862 + 0.137964i
\(178\) −0.451333 3.13909i −0.0338289 0.235285i
\(179\) −5.86921 + 12.8518i −0.438686 + 0.960587i 0.553152 + 0.833080i \(0.313425\pi\)
−0.991838 + 0.127507i \(0.959302\pi\)
\(180\) 0.182117 1.26665i 0.0135742 0.0944107i
\(181\) 0.228593 + 0.146908i 0.0169912 + 0.0109196i 0.549109 0.835751i \(-0.314967\pi\)
−0.532118 + 0.846670i \(0.678604\pi\)
\(182\) −0.541384 0.624790i −0.0401300 0.0463125i
\(183\) 1.49361 0.110411
\(184\) 11.0483 + 7.20058i 0.814495 + 0.530834i
\(185\) −3.52410 −0.259097
\(186\) 2.14202 + 2.47202i 0.157061 + 0.181258i
\(187\) −19.2032 12.3411i −1.40428 0.902474i
\(188\) −2.15472 + 14.9864i −0.157149 + 1.09300i
\(189\) 0.415415 0.909632i 0.0302170 0.0661660i
\(190\) 0.0678375 + 0.471820i 0.00492145 + 0.0342294i
\(191\) −17.7263 5.20492i −1.28263 0.376615i −0.431761 0.901988i \(-0.642108\pi\)
−0.850872 + 0.525373i \(0.823926\pi\)
\(192\) 3.47501 2.23325i 0.250787 0.161171i
\(193\) −8.52916 18.6762i −0.613942 1.34435i −0.919845 0.392283i \(-0.871685\pi\)
0.305902 0.952063i \(-0.401042\pi\)
\(194\) 14.1716 4.16116i 1.01746 0.298754i
\(195\) −0.636671 + 0.734757i −0.0455929 + 0.0526170i
\(196\) 0.857685 0.989821i 0.0612632 0.0707015i
\(197\) 11.1451 3.27250i 0.794057 0.233156i 0.140547 0.990074i \(-0.455114\pi\)
0.653510 + 0.756918i \(0.273296\pi\)
\(198\) −1.88267 4.12247i −0.133795 0.292971i
\(199\) 6.89107 4.42862i 0.488495 0.313937i −0.273105 0.961984i \(-0.588051\pi\)
0.761600 + 0.648048i \(0.224414\pi\)
\(200\) −10.6734 3.13399i −0.754721 0.221606i
\(201\) −0.189957 1.32118i −0.0133985 0.0931887i
\(202\) 2.88003 6.30639i 0.202638 0.443716i
\(203\) −0.113996 + 0.792858i −0.00800094 + 0.0556478i
\(204\) −4.61076 2.96316i −0.322818 0.207463i
\(205\) −6.19675 7.15144i −0.432800 0.499478i
\(206\) 0.155053 0.0108031
\(207\) 3.16371 3.60429i 0.219893 0.250516i
\(208\) 0.333155 0.0231002
\(209\) −2.09756 2.42071i −0.145091 0.167444i
\(210\) 0.682906 + 0.438877i 0.0471250 + 0.0302854i
\(211\) 4.03425 28.0588i 0.277729 1.93165i −0.0777665 0.996972i \(-0.524779\pi\)
0.355496 0.934678i \(-0.384312\pi\)
\(212\) 0.480956 1.05315i 0.0330322 0.0723304i
\(213\) 1.57904 + 10.9825i 0.108194 + 0.752507i
\(214\) −3.52310 1.03447i −0.240834 0.0707152i
\(215\) 8.93000 5.73896i 0.609021 0.391394i
\(216\) −1.14231 2.50132i −0.0777247 0.170193i
\(217\) 3.77750 1.10917i 0.256433 0.0752956i
\(218\) 9.93492 11.4655i 0.672878 0.776542i
\(219\) −6.14997 + 7.09744i −0.415576 + 0.479600i
\(220\) −6.69764 + 1.96661i −0.451555 + 0.132589i
\(221\) 1.72979 + 3.78771i 0.116358 + 0.254789i
\(222\) −2.52095 + 1.62012i −0.169195 + 0.108735i
\(223\) −13.5714 3.98493i −0.908811 0.266851i −0.206271 0.978495i \(-0.566133\pi\)
−0.702540 + 0.711644i \(0.747951\pi\)
\(224\) −0.822267 5.71900i −0.0549400 0.382116i
\(225\) −1.68050 + 3.67978i −0.112033 + 0.245319i
\(226\) 1.26823 8.82076i 0.0843617 0.586748i
\(227\) 9.79284 + 6.29348i 0.649974 + 0.417713i 0.823657 0.567089i \(-0.191930\pi\)
−0.173683 + 0.984802i \(0.555567\pi\)
\(228\) −0.503632 0.581223i −0.0333539 0.0384924i
\(229\) 18.7885 1.24158 0.620788 0.783979i \(-0.286813\pi\)
0.620788 + 0.783979i \(0.286813\pi\)
\(230\) 2.53058 + 2.95847i 0.166862 + 0.195076i
\(231\) −5.45481 −0.358900
\(232\) 1.44242 + 1.66464i 0.0946994 + 0.109289i
\(233\) −16.5140 10.6129i −1.08187 0.695272i −0.126878 0.991918i \(-0.540496\pi\)
−0.954988 + 0.296646i \(0.904132\pi\)
\(234\) −0.117654 + 0.818301i −0.00769128 + 0.0534940i
\(235\) −4.69208 + 10.2742i −0.306078 + 0.670216i
\(236\) −1.21435 8.44599i −0.0790475 0.549787i
\(237\) 8.76905 + 2.57482i 0.569611 + 0.167253i
\(238\) 2.92487 1.87970i 0.189591 0.121843i
\(239\) −2.60622 5.70683i −0.168582 0.369144i 0.806418 0.591345i \(-0.201403\pi\)
−0.975001 + 0.222201i \(0.928676\pi\)
\(240\) −0.313882 + 0.0921640i −0.0202610 + 0.00594916i
\(241\) 2.46709 2.84717i 0.158919 0.183403i −0.670706 0.741723i \(-0.734009\pi\)
0.829625 + 0.558321i \(0.188554\pi\)
\(242\) −10.2042 + 11.7762i −0.655948 + 0.757004i
\(243\) −0.959493 + 0.281733i −0.0615515 + 0.0180732i
\(244\) −0.812642 1.77944i −0.0520241 0.113917i
\(245\) 0.821956 0.528239i 0.0525128 0.0337480i
\(246\) −7.72054 2.26695i −0.492244 0.144536i
\(247\) 0.0831534 + 0.578344i 0.00529092 + 0.0367992i
\(248\) 4.49726 9.84763i 0.285576 0.625325i
\(249\) 0.450727 3.13487i 0.0285637 0.198665i
\(250\) −6.17712 3.96980i −0.390676 0.251072i
\(251\) −16.6792 19.2488i −1.05278 1.21497i −0.975965 0.217926i \(-0.930071\pi\)
−0.0768135 0.997045i \(-0.524475\pi\)
\(252\) −1.30972 −0.0825047
\(253\) −25.0530 7.53058i −1.57507 0.473444i
\(254\) −15.2046 −0.954020
\(255\) −2.67755 3.09006i −0.167675 0.193507i
\(256\) −12.6280 8.11549i −0.789247 0.507218i
\(257\) 0.541552 3.76658i 0.0337811 0.234953i −0.965935 0.258785i \(-0.916678\pi\)
0.999716 + 0.0238326i \(0.00758686\pi\)
\(258\) 3.74971 8.21071i 0.233447 0.511177i
\(259\) 0.513306 + 3.57012i 0.0318953 + 0.221836i
\(260\) 1.22176 + 0.358742i 0.0757704 + 0.0222482i
\(261\) 0.673854 0.433060i 0.0417105 0.0268057i
\(262\) −5.77321 12.6416i −0.356670 0.780998i
\(263\) −0.728046 + 0.213774i −0.0448932 + 0.0131818i −0.304102 0.952639i \(-0.598356\pi\)
0.259209 + 0.965821i \(0.416538\pi\)
\(264\) −9.82273 + 11.3360i −0.604547 + 0.697685i
\(265\) 0.565607 0.652745i 0.0347450 0.0400978i
\(266\) 0.468101 0.137447i 0.0287011 0.00842741i
\(267\) 1.58569 + 3.47217i 0.0970424 + 0.212493i
\(268\) −1.47065 + 0.945132i −0.0898345 + 0.0577331i
\(269\) −13.8147 4.05636i −0.842296 0.247320i −0.168005 0.985786i \(-0.553733\pi\)
−0.674291 + 0.738466i \(0.735551\pi\)
\(270\) −0.115527 0.803509i −0.00703076 0.0489000i
\(271\) −2.46886 + 5.40605i −0.149973 + 0.328394i −0.969676 0.244394i \(-0.921411\pi\)
0.819703 + 0.572788i \(0.194138\pi\)
\(272\) −0.199398 + 1.38684i −0.0120903 + 0.0840895i
\(273\) 0.837088 + 0.537964i 0.0506629 + 0.0325590i
\(274\) −0.712771 0.822581i −0.0430601 0.0496940i
\(275\) 22.0666 1.33067
\(276\) −6.01533 1.80812i −0.362080 0.108836i
\(277\) −15.6271 −0.938942 −0.469471 0.882948i \(-0.655555\pi\)
−0.469471 + 0.882948i \(0.655555\pi\)
\(278\) 6.13749 + 7.08304i 0.368102 + 0.424813i
\(279\) −3.31199 2.12849i −0.198284 0.127429i
\(280\) 0.382363 2.65939i 0.0228505 0.158929i
\(281\) −2.16236 + 4.73490i −0.128995 + 0.282461i −0.963099 0.269147i \(-0.913258\pi\)
0.834104 + 0.551608i \(0.185985\pi\)
\(282\) 1.36686 + 9.50672i 0.0813953 + 0.566117i
\(283\) 24.8798 + 7.30537i 1.47895 + 0.434259i 0.918997 0.394265i \(-0.129001\pi\)
0.559954 + 0.828524i \(0.310819\pi\)
\(284\) 12.2250 7.85654i 0.725421 0.466200i
\(285\) −0.238336 0.521883i −0.0141178 0.0309137i
\(286\) 4.32691 1.27049i 0.255855 0.0751259i
\(287\) −6.34224 + 7.31933i −0.374371 + 0.432047i
\(288\) −3.78366 + 4.36657i −0.222954 + 0.257303i
\(289\) −0.491187 + 0.144226i −0.0288934 + 0.00848386i
\(290\) 0.270119 + 0.591478i 0.0158619 + 0.0347328i
\(291\) −14.9552 + 9.61112i −0.876689 + 0.563414i
\(292\) 11.8017 + 3.46529i 0.690642 + 0.202791i
\(293\) −0.0489996 0.340800i −0.00286259 0.0199097i 0.988340 0.152263i \(-0.0486559\pi\)
−0.991203 + 0.132353i \(0.957747\pi\)
\(294\) 0.345139 0.755750i 0.0201289 0.0440762i
\(295\) 0.905913 6.30077i 0.0527443 0.366845i
\(296\) 8.34366 + 5.36214i 0.484965 + 0.311668i
\(297\) 3.57214 + 4.12247i 0.207277 + 0.239210i
\(298\) 2.18347 0.126485
\(299\) 3.10192 + 3.62641i 0.179389 + 0.209721i
\(300\) 5.29828 0.305897
\(301\) −7.11462 8.21071i −0.410080 0.473258i
\(302\) −4.47526 2.87608i −0.257522 0.165500i
\(303\) −1.18755 + 8.25962i −0.0682232 + 0.474503i
\(304\) −0.0816715 + 0.178836i −0.00468418 + 0.0102569i
\(305\) −0.207687 1.44450i −0.0118921 0.0827117i
\(306\) −3.33596 0.979526i −0.190704 0.0559958i
\(307\) 18.3931 11.8206i 1.04975 0.674635i 0.102372 0.994746i \(-0.467357\pi\)
0.947380 + 0.320112i \(0.103720\pi\)
\(308\) 2.96784 + 6.49867i 0.169108 + 0.370296i
\(309\) −0.179065 + 0.0525782i −0.0101866 + 0.00299107i
\(310\) 2.09288 2.41532i 0.118868 0.137181i
\(311\) 14.7275 16.9965i 0.835122 0.963782i −0.164623 0.986356i \(-0.552641\pi\)
0.999745 + 0.0225746i \(0.00718634\pi\)
\(312\) 2.62536 0.770876i 0.148632 0.0436423i
\(313\) 0.932104 + 2.04102i 0.0526856 + 0.115365i 0.934144 0.356896i \(-0.116165\pi\)
−0.881458 + 0.472262i \(0.843438\pi\)
\(314\) 12.7269 8.17907i 0.718220 0.461572i
\(315\) −0.937483 0.275270i −0.0528212 0.0155097i
\(316\) −1.70349 11.8480i −0.0958288 0.666504i
\(317\) 2.11610 4.63361i 0.118852 0.260249i −0.840851 0.541267i \(-0.817945\pi\)
0.959703 + 0.281018i \(0.0906720\pi\)
\(318\) 0.104522 0.726965i 0.00586129 0.0407662i
\(319\) −3.67574 2.36226i −0.205802 0.132261i
\(320\) −2.64301 3.05020i −0.147749 0.170511i
\(321\) 4.41947 0.246671
\(322\) 2.62851 2.99455i 0.146481 0.166880i
\(323\) −2.45727 −0.136726
\(324\) 0.857685 + 0.989821i 0.0476492 + 0.0549901i
\(325\) −3.38631 2.17625i −0.187839 0.120717i
\(326\) 0.394269 2.74220i 0.0218365 0.151877i
\(327\) −7.58552 + 16.6100i −0.419480 + 0.918534i
\(328\) 3.79007 + 26.3605i 0.209272 + 1.45552i
\(329\) 11.0918 + 3.25686i 0.611513 + 0.179556i
\(330\) −3.72512 + 2.39399i −0.205061 + 0.131785i
\(331\) −11.9717 26.2144i −0.658025 1.44087i −0.884351 0.466822i \(-0.845399\pi\)
0.226326 0.974052i \(-0.427328\pi\)
\(332\) −3.98001 + 1.16864i −0.218431 + 0.0641372i
\(333\) 2.36197 2.72586i 0.129435 0.149376i
\(334\) −0.456735 + 0.527100i −0.0249914 + 0.0288416i
\(335\) −1.25132 + 0.367420i −0.0683669 + 0.0200743i
\(336\) 0.139086 + 0.304557i 0.00758779 + 0.0166149i
\(337\) 23.1837 14.8993i 1.26290 0.811614i 0.274219 0.961667i \(-0.411581\pi\)
0.988678 + 0.150053i \(0.0479445\pi\)
\(338\) 9.57398 + 2.81117i 0.520756 + 0.152908i
\(339\) 1.52647 + 10.6168i 0.0829063 + 0.576626i
\(340\) −2.22459 + 4.87117i −0.120645 + 0.264176i
\(341\) −3.05627 + 21.2569i −0.165506 + 1.15112i
\(342\) −0.410416 0.263759i −0.0221928 0.0142624i
\(343\) −0.654861 0.755750i −0.0353592 0.0408066i
\(344\) −29.8749 −1.61075
\(345\) −3.92568 2.55850i −0.211352 0.137745i
\(346\) 14.6414 0.787125
\(347\) 5.67518 + 6.54951i 0.304660 + 0.351596i 0.887349 0.461099i \(-0.152545\pi\)
−0.582689 + 0.812695i \(0.697999\pi\)
\(348\) −0.882561 0.567187i −0.0473102 0.0304044i
\(349\) −1.54134 + 10.7202i −0.0825059 + 0.573841i 0.906071 + 0.423125i \(0.139067\pi\)
−0.988577 + 0.150716i \(0.951842\pi\)
\(350\) −1.39621 + 3.05727i −0.0746305 + 0.163418i
\(351\) −0.141610 0.984920i −0.00755859 0.0525711i
\(352\) 30.2402 + 8.87932i 1.61181 + 0.473269i
\(353\) −19.0965 + 12.2726i −1.01640 + 0.653203i −0.939043 0.343800i \(-0.888286\pi\)
−0.0773612 + 0.997003i \(0.524649\pi\)
\(354\) −2.24858 4.92371i −0.119511 0.261692i
\(355\) 10.4018 3.05423i 0.552068 0.162102i
\(356\) 3.27388 3.77826i 0.173515 0.200247i
\(357\) −2.74041 + 3.16260i −0.145038 + 0.167383i
\(358\) 11.2629 3.30710i 0.595265 0.174785i
\(359\) −3.68521 8.06949i −0.194498 0.425891i 0.787106 0.616817i \(-0.211578\pi\)
−0.981604 + 0.190926i \(0.938851\pi\)
\(360\) −2.26023 + 1.45256i −0.119124 + 0.0765566i
\(361\) 17.8995 + 5.25578i 0.942081 + 0.276620i
\(362\) −0.0321291 0.223463i −0.00168867 0.0117450i
\(363\) 7.79109 17.0601i 0.408926 0.895423i
\(364\) 0.185470 1.28997i 0.00972126 0.0676128i
\(365\) 7.71920 + 4.96083i 0.404041 + 0.259662i
\(366\) −0.812642 0.937839i −0.0424775 0.0490216i
\(367\) −32.6808 −1.70592 −0.852961 0.521974i \(-0.825196\pi\)
−0.852961 + 0.521974i \(0.825196\pi\)
\(368\) 0.218348 + 1.59079i 0.0113822 + 0.0829258i
\(369\) 9.68487 0.504174
\(370\) 1.91738 + 2.21278i 0.0996800 + 0.115037i
\(371\) −0.743654 0.477918i −0.0386086 0.0248122i
\(372\) −0.733823 + 5.10385i −0.0380470 + 0.264623i
\(373\) 2.52094 5.52009i 0.130529 0.285820i −0.833071 0.553166i \(-0.813420\pi\)
0.963600 + 0.267346i \(0.0861468\pi\)
\(374\) 2.69904 + 18.7722i 0.139564 + 0.970688i
\(375\) 8.47987 + 2.48991i 0.437898 + 0.128579i
\(376\) 26.7419 17.1860i 1.37911 0.886299i
\(377\) 0.331104 + 0.725018i 0.0170527 + 0.0373403i
\(378\) −0.797176 + 0.234072i −0.0410023 + 0.0120394i
\(379\) 1.68937 1.94963i 0.0867769 0.100146i −0.710700 0.703495i \(-0.751622\pi\)
0.797477 + 0.603349i \(0.206167\pi\)
\(380\) −0.492079 + 0.567890i −0.0252431 + 0.0291321i
\(381\) 17.5592 5.15584i 0.899583 0.264142i
\(382\) 6.37634 + 13.9622i 0.326242 + 0.714371i
\(383\) −29.8421 + 19.1784i −1.52486 + 0.979968i −0.533940 + 0.845523i \(0.679289\pi\)
−0.990921 + 0.134446i \(0.957075\pi\)
\(384\) 7.79460 + 2.28870i 0.397766 + 0.116795i
\(385\) 0.758493 + 5.27543i 0.0386564 + 0.268861i
\(386\) −7.08628 + 15.5168i −0.360682 + 0.789784i
\(387\) −1.54616 + 10.7537i −0.0785955 + 0.546644i
\(388\) 19.5871 + 12.5879i 0.994387 + 0.639053i
\(389\) 10.8315 + 12.5002i 0.549180 + 0.633788i 0.960692 0.277617i \(-0.0895446\pi\)
−0.411512 + 0.911404i \(0.634999\pi\)
\(390\) 0.807752 0.0409021
\(391\) −16.9524 + 10.7421i −0.857317 + 0.543249i
\(392\) −2.74982 −0.138887
\(393\) 10.9540 + 12.6416i 0.552555 + 0.637682i
\(394\) −8.11862 5.21752i −0.409010 0.262855i
\(395\) 1.27082 8.83872i 0.0639417 0.444724i
\(396\) 2.96784 6.49867i 0.149140 0.326570i
\(397\) −1.77731 12.3615i −0.0892006 0.620404i −0.984558 0.175056i \(-0.943989\pi\)
0.895358 0.445348i \(-0.146920\pi\)
\(398\) −6.53001 1.91738i −0.327320 0.0961097i
\(399\) −0.493984 + 0.317464i −0.0247301 + 0.0158931i
\(400\) −0.562654 1.23204i −0.0281327 0.0616020i
\(401\) 8.64913 2.53961i 0.431917 0.126822i −0.0585451 0.998285i \(-0.518646\pi\)
0.490462 + 0.871462i \(0.336828\pi\)
\(402\) −0.726216 + 0.838098i −0.0362204 + 0.0418005i
\(403\) 2.56540 2.96063i 0.127792 0.147480i
\(404\) 10.4863 3.07907i 0.521715 0.153189i
\(405\) 0.405886 + 0.888766i 0.0201686 + 0.0441631i
\(406\) 0.559858 0.359799i 0.0277853 0.0178565i
\(407\) −18.8776 5.54297i −0.935729 0.274755i
\(408\) 1.63765 + 11.3901i 0.0810757 + 0.563894i
\(409\) −10.3139 + 22.5844i −0.509992 + 1.11673i 0.463099 + 0.886306i \(0.346737\pi\)
−0.973091 + 0.230420i \(0.925990\pi\)
\(410\) −1.11886 + 7.78188i −0.0552568 + 0.384320i
\(411\) 1.10209 + 0.708268i 0.0543619 + 0.0349363i
\(412\) 0.160065 + 0.184725i 0.00788583 + 0.00910074i
\(413\) −6.51501 −0.320582
\(414\) −3.98444 0.0254797i −0.195825 0.00125226i
\(415\) −3.09446 −0.151901
\(416\) −3.76492 4.34495i −0.184590 0.213029i
\(417\) −9.48979 6.09872i −0.464717 0.298655i
\(418\) −0.378728 + 2.63411i −0.0185242 + 0.128839i
\(419\) −2.30313 + 5.04314i −0.112515 + 0.246374i −0.957510 0.288401i \(-0.906876\pi\)
0.844995 + 0.534775i \(0.179604\pi\)
\(420\) 0.182117 + 1.26665i 0.00888641 + 0.0618063i
\(421\) 20.7815 + 6.10200i 1.01283 + 0.297393i 0.745710 0.666271i \(-0.232110\pi\)
0.267118 + 0.963664i \(0.413929\pi\)
\(422\) −19.8131 + 12.7331i −0.964485 + 0.619837i
\(423\) −4.80224 10.5154i −0.233493 0.511278i
\(424\) −2.33233 + 0.684833i −0.113268 + 0.0332584i
\(425\) 11.0859 12.7938i 0.537747 0.620593i
\(426\) 6.03677 6.96680i 0.292482 0.337543i
\(427\) −1.43311 + 0.420800i −0.0693531 + 0.0203639i
\(428\) −2.40454 5.26520i −0.116228 0.254503i
\(429\) −4.56615 + 2.93449i −0.220456 + 0.141678i
\(430\) −8.46211 2.48470i −0.408079 0.119823i
\(431\) −5.22203 36.3200i −0.251536 1.74947i −0.588997 0.808135i \(-0.700477\pi\)
0.337461 0.941340i \(-0.390432\pi\)
\(432\) 0.139086 0.304557i 0.00669180 0.0146530i
\(433\) −4.84971 + 33.7305i −0.233062 + 1.62098i 0.451668 + 0.892186i \(0.350829\pi\)
−0.684730 + 0.728797i \(0.740080\pi\)
\(434\) −2.75170 1.76841i −0.132086 0.0848865i
\(435\) −0.512518 0.591478i −0.0245734 0.0283592i
\(436\) 23.9157 1.14535
\(437\) −2.70706 + 0.776095i −0.129496 + 0.0371257i
\(438\) 7.80254 0.372820
\(439\) 2.93626 + 3.38863i 0.140140 + 0.161730i 0.821481 0.570236i \(-0.193148\pi\)
−0.681341 + 0.731966i \(0.738603\pi\)
\(440\) 12.3291 + 7.92344i 0.587767 + 0.377735i
\(441\) −0.142315 + 0.989821i −0.00677690 + 0.0471344i
\(442\) 1.43716 3.14694i 0.0683588 0.149685i
\(443\) 2.38442 + 16.5840i 0.113287 + 0.787928i 0.964685 + 0.263408i \(0.0848464\pi\)
−0.851398 + 0.524521i \(0.824245\pi\)
\(444\) −4.53259 1.33089i −0.215107 0.0631612i
\(445\) 3.13750 2.01635i 0.148732 0.0955841i
\(446\) 4.88178 + 10.6896i 0.231159 + 0.506168i
\(447\) −2.52160 + 0.740409i −0.119268 + 0.0350202i
\(448\) −2.70506 + 3.12181i −0.127802 + 0.147492i
\(449\) −18.2753 + 21.0909i −0.862466 + 0.995339i 0.137522 + 0.990499i \(0.456086\pi\)
−0.999988 + 0.00484064i \(0.998459\pi\)
\(450\) 3.22486 0.946903i 0.152021 0.0446374i
\(451\) −21.9460 48.0550i −1.03340 2.26282i
\(452\) 11.8180 7.59495i 0.555871 0.357236i
\(453\) 6.14357 + 1.80392i 0.288650 + 0.0847554i
\(454\) −1.37640 9.57306i −0.0645976 0.449286i
\(455\) 0.403876 0.884365i 0.0189340 0.0414597i
\(456\) −0.229794 + 1.59826i −0.0107611 + 0.0748451i
\(457\) 5.43474 + 3.49270i 0.254226 + 0.163381i 0.661547 0.749904i \(-0.269900\pi\)
−0.407320 + 0.913285i \(0.633537\pi\)
\(458\) −10.2224 11.7973i −0.477661 0.551250i
\(459\) 4.18473 0.195326
\(460\) −0.912231 + 6.06894i −0.0425330 + 0.282966i
\(461\) −28.4302 −1.32413 −0.662063 0.749448i \(-0.730319\pi\)
−0.662063 + 0.749448i \(0.730319\pi\)
\(462\) 2.96784 + 3.42507i 0.138076 + 0.159349i
\(463\) 14.7028 + 9.44892i 0.683297 + 0.439128i 0.835697 0.549190i \(-0.185064\pi\)
−0.152400 + 0.988319i \(0.548700\pi\)
\(464\) −0.0381673 + 0.265460i −0.00177187 + 0.0123236i
\(465\) −1.59796 + 3.49905i −0.0741037 + 0.162264i
\(466\) 2.32106 + 16.1433i 0.107521 + 0.747825i
\(467\) −26.7994 7.86900i −1.24013 0.364134i −0.405063 0.914289i \(-0.632751\pi\)
−0.835063 + 0.550155i \(0.814569\pi\)
\(468\) −1.09635 + 0.704583i −0.0506789 + 0.0325693i
\(469\) 0.554481 + 1.21414i 0.0256036 + 0.0560640i
\(470\) 9.00404 2.64382i 0.415325 0.121950i
\(471\) −11.9243 + 13.7613i −0.549442 + 0.634089i
\(472\) −11.7319 + 13.5393i −0.540003 + 0.623197i
\(473\) 56.8623 16.6963i 2.61453 0.767696i
\(474\) −3.15431 6.90699i −0.144882 0.317248i
\(475\) 1.99834 1.28425i 0.0916900 0.0589256i
\(476\) 5.25881 + 1.54413i 0.241037 + 0.0707749i
\(477\) 0.125804 + 0.874986i 0.00576017 + 0.0400629i
\(478\) −2.16533 + 4.74140i −0.0990397 + 0.216867i
\(479\) −2.68712 + 18.6893i −0.122777 + 0.853936i 0.831609 + 0.555362i \(0.187420\pi\)
−0.954386 + 0.298574i \(0.903489\pi\)
\(480\) 4.74910 + 3.05206i 0.216766 + 0.139307i
\(481\) 2.35028 + 2.71236i 0.107163 + 0.123673i
\(482\) −3.13003 −0.142569
\(483\) −2.02012 + 4.34961i −0.0919185 + 0.197914i
\(484\) −24.5638 −1.11653
\(485\) 11.3746 + 13.1270i 0.516494 + 0.596066i
\(486\) 0.698939 + 0.449181i 0.0317045 + 0.0203752i
\(487\) 1.70271 11.8426i 0.0771570 0.536638i −0.914181 0.405305i \(-0.867165\pi\)
0.991338 0.131333i \(-0.0419257\pi\)
\(488\) −1.70618 + 3.73601i −0.0772350 + 0.169121i
\(489\) 0.474548 + 3.30056i 0.0214598 + 0.149256i
\(490\) −0.778889 0.228702i −0.0351866 0.0103317i
\(491\) −14.1174 + 9.07267i −0.637107 + 0.409444i −0.818935 0.573886i \(-0.805435\pi\)
0.181828 + 0.983330i \(0.441799\pi\)
\(492\) −5.26932 11.5382i −0.237559 0.520183i
\(493\) −3.21623 + 0.944371i −0.144852 + 0.0425323i
\(494\) 0.317900 0.366876i 0.0143030 0.0165065i
\(495\) 3.49020 4.02790i 0.156873 0.181041i
\(496\) 1.26476 0.371366i 0.0567892 0.0166748i
\(497\) −4.60920 10.0927i −0.206751 0.452721i
\(498\) −2.21362 + 1.42260i −0.0991945 + 0.0637484i
\(499\) −13.4829 3.95895i −0.603579 0.177227i −0.0343558 0.999410i \(-0.510938\pi\)
−0.569224 + 0.822183i \(0.692756\pi\)
\(500\) −1.64731 11.4573i −0.0736701 0.512387i
\(501\) 0.348726 0.763604i 0.0155799 0.0341153i
\(502\) −3.01153 + 20.9457i −0.134411 + 0.934851i
\(503\) 22.6777 + 14.5741i 1.01115 + 0.649825i 0.937690 0.347473i \(-0.112960\pi\)
0.0734579 + 0.997298i \(0.476597\pi\)
\(504\) 1.80075 + 2.07817i 0.0802116 + 0.0925691i
\(505\) 8.15314 0.362810
\(506\) 8.90235 + 19.8280i 0.395758 + 0.881462i
\(507\) −12.0099 −0.533377
\(508\) −15.6960 18.1142i −0.696399 0.803687i
\(509\) −19.5733 12.5790i −0.867569 0.557553i 0.0294389 0.999567i \(-0.490628\pi\)
−0.897008 + 0.442014i \(0.854264\pi\)
\(510\) −0.483449 + 3.36246i −0.0214075 + 0.148892i
\(511\) 3.90127 8.54259i 0.172582 0.377902i
\(512\) −0.537357 3.73740i −0.0237481 0.165171i
\(513\) 0.563414 + 0.165433i 0.0248753 + 0.00730405i
\(514\) −2.65968 + 1.70927i −0.117313 + 0.0753928i
\(515\) 0.0757482 + 0.165865i 0.00333786 + 0.00730890i
\(516\) 13.6529 4.00884i 0.601034 0.176479i
\(517\) −41.2943 + 47.6562i −1.81612 + 2.09592i
\(518\) 1.96240 2.26473i 0.0862228 0.0995064i
\(519\) −16.9087 + 4.96485i −0.742211 + 0.217933i
\(520\) −1.11058 2.43184i −0.0487024 0.106643i
\(521\) 21.8830 14.0634i 0.958713 0.616127i 0.0350714 0.999385i \(-0.488834\pi\)
0.923642 + 0.383257i \(0.125198\pi\)
\(522\) −0.638547 0.187494i −0.0279484 0.00820640i
\(523\) −4.53565 31.5461i −0.198330 1.37941i −0.809130 0.587630i \(-0.800061\pi\)
0.610800 0.791785i \(-0.290848\pi\)
\(524\) 9.10089 19.9282i 0.397574 0.870566i
\(525\) 0.575714 4.00418i 0.0251262 0.174757i
\(526\) 0.530342 + 0.340830i 0.0231240 + 0.0148609i
\(527\) 10.7889 + 12.4511i 0.469973 + 0.542378i
\(528\) −1.82634 −0.0794814
\(529\) −15.2829 + 17.1882i −0.664473 + 0.747313i
\(530\) −0.717593 −0.0311702
\(531\) 4.26642 + 4.92371i 0.185147 + 0.213671i
\(532\) 0.646981 + 0.415789i 0.0280502 + 0.0180268i
\(533\) −1.37147 + 9.53882i −0.0594052 + 0.413172i
\(534\) 1.31744 2.88478i 0.0570110 0.124837i
\(535\) −0.614529 4.27414i −0.0265684 0.184787i
\(536\) 3.52168 + 1.03406i 0.152113 + 0.0446645i
\(537\) −11.8857 + 7.63847i −0.512906 + 0.329624i
\(538\) 4.96928 + 10.8812i 0.214241 + 0.469122i
\(539\) 5.23385 1.53680i 0.225438 0.0661946i
\(540\) 0.838011 0.967116i 0.0360622 0.0416180i
\(541\) −13.1146 + 15.1351i −0.563842 + 0.650709i −0.964052 0.265715i \(-0.914392\pi\)
0.400209 + 0.916424i \(0.368937\pi\)
\(542\) 4.73771 1.39112i 0.203502 0.0597536i
\(543\) 0.112880 + 0.247174i 0.00484416 + 0.0106072i
\(544\) 20.3403 13.0719i 0.872082 0.560453i
\(545\) 17.1185 + 5.02646i 0.733278 + 0.215310i
\(546\) −0.117654 0.818301i −0.00503512 0.0350201i
\(547\) 1.01148 2.21483i 0.0432477 0.0946993i −0.886775 0.462202i \(-0.847060\pi\)
0.930023 + 0.367502i \(0.119787\pi\)
\(548\) 0.244184 1.69834i 0.0104310 0.0725495i
\(549\) 1.25651 + 0.807508i 0.0536264 + 0.0344636i
\(550\) −12.0060 13.8556i −0.511936 0.590806i
\(551\) −0.470354 −0.0200377
\(552\) 5.40153 + 12.0307i 0.229904 + 0.512061i
\(553\) −9.13925 −0.388641
\(554\) 8.50236 + 9.81225i 0.361231 + 0.416883i
\(555\) −2.96466 1.90527i −0.125843 0.0808742i
\(556\) −2.10261 + 14.6240i −0.0891705 + 0.620195i
\(557\) −5.34713 + 11.7086i −0.226565 + 0.496108i −0.988439 0.151617i \(-0.951552\pi\)
0.761874 + 0.647725i \(0.224279\pi\)
\(558\) 0.465505 + 3.23766i 0.0197064 + 0.137061i
\(559\) −10.3726 3.04568i −0.438715 0.128818i
\(560\) 0.275202 0.176861i 0.0116294 0.00747376i
\(561\) −9.48263 20.7641i −0.400357 0.876659i
\(562\) 4.14953 1.21841i 0.175037 0.0513956i
\(563\) 23.2511 26.8332i 0.979915 1.13088i −0.0114737 0.999934i \(-0.503652\pi\)
0.991389 0.130949i \(-0.0418023\pi\)
\(564\) −9.91493 + 11.4424i −0.417494 + 0.481813i
\(565\) 10.0554 2.95254i 0.423035 0.124214i
\(566\) −8.94951 19.5967i −0.376176 0.823711i
\(567\) 0.841254 0.540641i 0.0353293 0.0227048i
\(568\) −29.2744 8.59575i −1.22833 0.360670i
\(569\) 1.28009 + 8.90324i 0.0536643 + 0.373243i 0.998902 + 0.0468591i \(0.0149212\pi\)
−0.945237 + 0.326384i \(0.894170\pi\)
\(570\) −0.198017 + 0.433596i −0.00829400 + 0.0181613i
\(571\) −0.826589 + 5.74905i −0.0345917 + 0.240590i −0.999780 0.0209647i \(-0.993326\pi\)
0.965189 + 0.261555i \(0.0842353\pi\)
\(572\) 5.98039 + 3.84336i 0.250053 + 0.160699i
\(573\) −12.0984 13.9622i −0.505416 0.583281i
\(574\) 8.04648 0.335853
\(575\) 8.17208 17.5957i 0.340799 0.733792i
\(576\) 4.13075 0.172114
\(577\) −7.56986 8.73608i −0.315137 0.363688i 0.575978 0.817465i \(-0.304622\pi\)
−0.891115 + 0.453778i \(0.850076\pi\)
\(578\) 0.357803 + 0.229946i 0.0148827 + 0.00956450i
\(579\) 2.92196 20.3227i 0.121432 0.844581i
\(580\) −0.425816 + 0.932406i −0.0176810 + 0.0387161i
\(581\) 0.450727 + 3.13487i 0.0186993 + 0.130057i
\(582\) 14.1716 + 4.16116i 0.587432 + 0.172486i
\(583\) 4.05649 2.60695i 0.168003 0.107969i
\(584\) −10.7278 23.4905i −0.443918 0.972046i
\(585\) −0.932841 + 0.273907i −0.0385682 + 0.0113247i
\(586\) −0.187328 + 0.216188i −0.00773846 + 0.00893066i
\(587\) −5.48041 + 6.32473i −0.226201 + 0.261049i −0.857493 0.514495i \(-0.827979\pi\)
0.631293 + 0.775545i \(0.282525\pi\)
\(588\) 1.25667 0.368991i 0.0518241 0.0152169i
\(589\) 0.960352 + 2.10288i 0.0395706 + 0.0866475i
\(590\) −4.44913 + 2.85929i −0.183168 + 0.117715i
\(591\) 11.1451 + 3.27250i 0.458449 + 0.134613i
\(592\) 0.171862 + 1.19532i 0.00706347 + 0.0491275i
\(593\) 12.5434 27.4663i 0.515097 1.12791i −0.456166 0.889895i \(-0.650778\pi\)
0.971263 0.238010i \(-0.0764952\pi\)
\(594\) 0.644974 4.48589i 0.0264636 0.184058i
\(595\) 3.43966 + 2.21054i 0.141012 + 0.0906231i
\(596\) 2.25405 + 2.60131i 0.0923293 + 0.106554i
\(597\) 8.19143 0.335253
\(598\) 0.589332 3.92075i 0.0240996 0.160331i
\(599\) 28.8614 1.17925 0.589623 0.807678i \(-0.299276\pi\)
0.589623 + 0.807678i \(0.299276\pi\)
\(600\) −7.28465 8.40694i −0.297395 0.343212i
\(601\) 27.4921 + 17.6681i 1.12143 + 0.720697i 0.963754 0.266794i \(-0.0859643\pi\)
0.157673 + 0.987491i \(0.449601\pi\)
\(602\) −1.28459 + 8.93454i −0.0523561 + 0.364144i
\(603\) 0.554481 1.21414i 0.0225802 0.0494438i
\(604\) −1.19346 8.30071i −0.0485613 0.337751i
\(605\) −17.5825 5.16267i −0.714828 0.209893i
\(606\) 5.83233 3.74821i 0.236922 0.152261i
\(607\) 13.9159 + 30.4717i 0.564831 + 1.23681i 0.949504 + 0.313754i \(0.101587\pi\)
−0.384673 + 0.923053i \(0.625686\pi\)
\(608\) 3.25529 0.955841i 0.132020 0.0387645i
\(609\) −0.524551 + 0.605364i −0.0212559 + 0.0245306i
\(610\) −0.794001 + 0.916326i −0.0321482 + 0.0371010i
\(611\) 11.0369 3.24073i 0.446506 0.131106i
\(612\) −2.27682 4.98553i −0.0920349 0.201528i
\(613\) −32.2776 + 20.7435i −1.30368 + 0.837824i −0.993608 0.112889i \(-0.963990\pi\)
−0.310072 + 0.950713i \(0.600353\pi\)
\(614\) −17.4294 5.11774i −0.703394 0.206535i
\(615\) −1.34668 9.36639i −0.0543035 0.377689i
\(616\) 6.23111 13.6442i 0.251059 0.549742i
\(617\) −2.70392 + 18.8061i −0.108856 + 0.757107i 0.860145 + 0.510049i \(0.170373\pi\)
−0.969001 + 0.247058i \(0.920536\pi\)
\(618\) 0.130439 + 0.0838280i 0.00524703 + 0.00337206i
\(619\) 2.56152 + 2.95615i 0.102956 + 0.118818i 0.804889 0.593425i \(-0.202225\pi\)
−0.701933 + 0.712243i \(0.747679\pi\)
\(620\) 5.03806 0.202333
\(621\) 4.61011 1.32169i 0.184997 0.0530375i
\(622\) −18.6850 −0.749200
\(623\) −2.49968 2.88478i −0.100147 0.115576i
\(624\) 0.280268 + 0.180117i 0.0112197 + 0.00721046i
\(625\) −1.64966 + 11.4736i −0.0659864 + 0.458946i
\(626\) 0.774420 1.69574i 0.0309520 0.0677755i
\(627\) −0.455843 3.17046i −0.0182046 0.126616i
\(628\) 22.8825 + 6.71891i 0.913112 + 0.268114i
\(629\) −12.6975 + 8.16022i −0.506284 + 0.325369i
\(630\) 0.337222 + 0.738413i 0.0134353 + 0.0294191i
\(631\) 30.6237 8.99192i 1.21911 0.357963i 0.391979 0.919974i \(-0.371790\pi\)
0.827130 + 0.562011i \(0.189972\pi\)
\(632\) −16.4575 + 18.9929i −0.654643 + 0.755499i
\(633\) 18.5636 21.4235i 0.737836 0.851508i
\(634\) −4.06076 + 1.19235i −0.161274 + 0.0473542i
\(635\) −7.42790 16.2648i −0.294767 0.645450i
\(636\) 0.973980 0.625939i 0.0386208 0.0248201i
\(637\) −0.954742 0.280337i −0.0378282 0.0111074i
\(638\) 0.516631 + 3.59325i 0.0204536 + 0.142258i
\(639\) −4.60920 + 10.0927i −0.182337 + 0.399263i
\(640\) 1.12960 7.85652i 0.0446513 0.310556i
\(641\) −14.4921 9.31350i −0.572403 0.367861i 0.222190 0.975003i \(-0.428679\pi\)
−0.794593 + 0.607142i \(0.792316\pi\)
\(642\) −2.40454 2.77498i −0.0948995 0.109520i
\(643\) −13.2525 −0.522626 −0.261313 0.965254i \(-0.584156\pi\)
−0.261313 + 0.965254i \(0.584156\pi\)
\(644\) 6.28108 + 0.0401662i 0.247509 + 0.00158277i
\(645\) 10.6151 0.417970
\(646\) 1.33695 + 1.54292i 0.0526014 + 0.0607053i
\(647\) 13.8571 + 8.90539i 0.544777 + 0.350107i 0.783905 0.620881i \(-0.213225\pi\)
−0.239128 + 0.970988i \(0.576861\pi\)
\(648\) 0.391340 2.72183i 0.0153733 0.106923i
\(649\) 14.7631 32.3266i 0.579501 1.26893i
\(650\) 0.475952 + 3.31032i 0.0186684 + 0.129841i
\(651\) 3.77750 + 1.10917i 0.148052 + 0.0434719i
\(652\) 3.67398 2.36112i 0.143884 0.0924686i
\(653\) 8.79647 + 19.2616i 0.344232 + 0.753764i 0.999999 0.00119955i \(-0.000381828\pi\)
−0.655767 + 0.754963i \(0.727655\pi\)
\(654\) 14.5565 4.27418i 0.569205 0.167134i
\(655\) 10.7027 12.3516i 0.418189 0.482616i
\(656\) −2.12347 + 2.45061i −0.0829074 + 0.0956802i
\(657\) −9.01085 + 2.64582i −0.351547 + 0.103223i
\(658\) −3.98984 8.73654i −0.155540 0.340586i
\(659\) −4.12553 + 2.65132i −0.160708 + 0.103281i −0.618523 0.785767i \(-0.712269\pi\)
0.457815 + 0.889047i \(0.348632\pi\)
\(660\) −6.69764 1.96661i −0.260705 0.0765500i
\(661\) −3.10237 21.5774i −0.120668 0.839265i −0.956802 0.290740i \(-0.906099\pi\)
0.836134 0.548525i \(-0.184811\pi\)
\(662\) −9.94646 + 21.7797i −0.386580 + 0.846492i
\(663\) −0.592599 + 4.12162i −0.0230147 + 0.160070i
\(664\) 7.32645 + 4.70843i 0.284322 + 0.182722i
\(665\) 0.375713 + 0.433596i 0.0145695 + 0.0168141i
\(666\) −2.99666 −0.116118
\(667\) −3.24490 + 2.05617i −0.125643 + 0.0796153i
\(668\) −1.09947 −0.0425396
\(669\) −9.26260 10.6896i −0.358113 0.413284i
\(670\) 0.911518 + 0.585797i 0.0352150 + 0.0226313i
\(671\) 1.15949 8.06445i 0.0447617 0.311325i
\(672\) 2.40019 5.25568i 0.0925892 0.202742i
\(673\) 6.81275 + 47.3837i 0.262612 + 1.82651i 0.513029 + 0.858371i \(0.328523\pi\)
−0.250417 + 0.968138i \(0.580568\pi\)
\(674\) −21.9690 6.45067i −0.846213 0.248471i
\(675\) −3.40317 + 2.18708i −0.130988 + 0.0841808i
\(676\) 6.53431 + 14.3081i 0.251320 + 0.550313i
\(677\) −17.0216 + 4.99799i −0.654193 + 0.192088i −0.591952 0.805973i \(-0.701643\pi\)
−0.0622403 + 0.998061i \(0.519825\pi\)
\(678\) 5.83577 6.73484i 0.224121 0.258650i
\(679\) 11.6416 13.4352i 0.446765 0.515595i
\(680\) 10.7878 3.16759i 0.413694 0.121472i
\(681\) 4.83575 + 10.5888i 0.185306 + 0.405765i
\(682\) 15.0100 9.64635i 0.574763 0.369378i
\(683\) −10.9840 3.22518i −0.420289 0.123408i 0.0647478 0.997902i \(-0.479376\pi\)
−0.485037 + 0.874494i \(0.661194\pi\)
\(684\) −0.109450 0.761240i −0.00418492 0.0291067i
\(685\) 0.531732 1.16433i 0.0203164 0.0444868i
\(686\) −0.118239 + 0.822373i −0.00451440 + 0.0313984i
\(687\) 15.8059 + 10.1578i 0.603031 + 0.387544i
\(688\) −2.38207 2.74906i −0.0908156 0.104807i
\(689\) −0.879606 −0.0335103
\(690\) 0.529396 + 3.85696i 0.0201537 + 0.146832i
\(691\) −27.0982 −1.03086 −0.515432 0.856931i \(-0.672368\pi\)
−0.515432 + 0.856931i \(0.672368\pi\)
\(692\) 15.1146 + 17.4432i 0.574572 + 0.663091i
\(693\) −4.58888 2.94909i −0.174317 0.112027i
\(694\) 1.02469 7.12689i 0.0388968 0.270533i
\(695\) −4.57861 + 10.0258i −0.173677 + 0.380299i
\(696\) 0.313468 + 2.18021i 0.0118820 + 0.0826408i
\(697\) −38.8868 11.4182i −1.47294 0.432495i
\(698\) 7.56983 4.86484i 0.286522 0.184137i
\(699\) −8.15467 17.8562i −0.308438 0.675385i
\(700\) −5.08367 + 1.49270i −0.192145 + 0.0564187i
\(701\) 9.91493 11.4424i 0.374482 0.432175i −0.536958 0.843609i \(-0.680427\pi\)
0.911439 + 0.411434i \(0.134972\pi\)
\(702\) −0.541384 + 0.624790i −0.0204332 + 0.0235812i
\(703\) −2.03214 + 0.596690i −0.0766436 + 0.0225046i
\(704\) −9.36031 20.4962i −0.352780 0.772481i
\(705\) −9.50189 + 6.10650i −0.357862 + 0.229984i
\(706\) 18.0959 + 5.31344i 0.681049 + 0.199974i
\(707\) −1.18755 8.25962i −0.0446626 0.310635i
\(708\) 3.54467 7.76175i 0.133217 0.291704i
\(709\) −4.26764 + 29.6821i −0.160275 + 1.11473i 0.737841 + 0.674975i \(0.235845\pi\)
−0.898116 + 0.439760i \(0.855064\pi\)
\(710\) −7.57712 4.86952i −0.284364 0.182750i
\(711\) 5.98494 + 6.90699i 0.224453 + 0.259032i
\(712\) −10.4964 −0.393368
\(713\) 15.8182 + 10.3092i 0.592395 + 0.386084i
\(714\) 3.47680 0.130116
\(715\) 3.47292 + 4.00796i 0.129880 + 0.149889i
\(716\) 15.5669 + 10.0043i 0.581764 + 0.373877i
\(717\) 0.892851 6.20992i 0.0333441 0.231914i
\(718\) −3.06178 + 6.70437i −0.114265 + 0.250205i
\(719\) −4.83385 33.6202i −0.180272 1.25382i −0.856119 0.516779i \(-0.827131\pi\)
0.675847 0.737042i \(-0.263778\pi\)
\(720\) −0.313882 0.0921640i −0.0116977 0.00343475i
\(721\) 0.156998 0.100897i 0.00584693 0.00375759i
\(722\) −6.43864 14.0987i −0.239621 0.524698i
\(723\) 3.61475 1.06139i 0.134434 0.0394733i
\(724\) 0.233058 0.268964i 0.00866154 0.00999595i
\(725\) 2.12199 2.44891i 0.0788089 0.0909503i
\(726\) −14.9510 + 4.39001i −0.554883 + 0.162928i
\(727\) −2.85047 6.24166i −0.105718 0.231490i 0.849379 0.527783i \(-0.176977\pi\)
−0.955097 + 0.296293i \(0.904249\pi\)
\(728\) −2.30184 + 1.47930i −0.0853118 + 0.0548265i
\(729\) −0.959493 0.281733i −0.0355368 0.0104345i
\(730\) −1.08495 7.54596i −0.0401556 0.279288i
\(731\) 18.8865 41.3557i 0.698543 1.52960i
\(732\) 0.278399 1.93631i 0.0102899 0.0715679i
\(733\) −34.5672 22.2150i −1.27677 0.820529i −0.286283 0.958145i \(-0.592420\pi\)
−0.990486 + 0.137616i \(0.956056\pi\)
\(734\) 17.7809 + 20.5202i 0.656305 + 0.757416i
\(735\) 0.977061 0.0360394
\(736\) 18.2793 20.8249i 0.673785 0.767616i
\(737\) −7.28089 −0.268195
\(738\) −5.26932 6.08112i −0.193966 0.223849i
\(739\) −4.60423 2.95896i −0.169369 0.108847i 0.453210 0.891404i \(-0.350279\pi\)
−0.622579 + 0.782557i \(0.713915\pi\)
\(740\) −0.656866 + 4.56860i −0.0241469 + 0.167945i
\(741\) −0.242724 + 0.531490i −0.00891667 + 0.0195248i
\(742\) 0.104522 + 0.726965i 0.00383711 + 0.0266877i
\(743\) 9.59119 + 2.81623i 0.351867 + 0.103317i 0.452889 0.891567i \(-0.350393\pi\)
−0.101023 + 0.994884i \(0.532211\pi\)
\(744\) 9.10737 5.85295i 0.333892 0.214580i
\(745\) 1.06669 + 2.33573i 0.0390805 + 0.0855744i
\(746\) −4.83765 + 1.42046i −0.177119 + 0.0520068i
\(747\) 2.07402 2.39354i 0.0758843 0.0875751i
\(748\) −19.5783 + 22.5945i −0.715853 + 0.826138i
\(749\) −4.24045 + 1.24511i −0.154943 + 0.0454953i
\(750\) −3.05029 6.67921i −0.111381 0.243890i
\(751\) 7.98488 5.13157i 0.291372 0.187254i −0.386786 0.922170i \(-0.626415\pi\)
0.678158 + 0.734916i \(0.262778\pi\)
\(752\) 3.71369 + 1.09044i 0.135424 + 0.0397642i
\(753\) −3.62473 25.2105i −0.132092 0.918723i
\(754\) 0.275092 0.602366i 0.0100182 0.0219369i
\(755\) 0.890330 6.19238i 0.0324024 0.225364i
\(756\) −1.10181 0.708089i −0.0400724 0.0257529i
\(757\) 12.9474 + 14.9421i 0.470583 + 0.543082i 0.940574 0.339590i \(-0.110288\pi\)
−0.469991 + 0.882671i \(0.655743\pi\)
\(758\) −2.14332 −0.0778489
\(759\) −17.0046 19.8798i −0.617228 0.721592i
\(760\) 1.57765 0.0572274
\(761\) −21.6529 24.9888i −0.784916 0.905842i 0.212538 0.977153i \(-0.431827\pi\)
−0.997454 + 0.0713111i \(0.977282\pi\)
\(762\) −12.7909 8.22021i −0.463366 0.297787i
\(763\) 2.59868 18.0742i 0.0940787 0.654332i
\(764\) −10.0517 + 22.0101i −0.363657 + 0.796298i
\(765\) −0.581887 4.04711i −0.0210382 0.146324i
\(766\) 28.2785 + 8.30332i 1.02174 + 0.300011i
\(767\) −5.45363 + 3.50484i −0.196919 + 0.126552i
\(768\) −6.23574 13.6544i −0.225013 0.492710i
\(769\) −20.3346 + 5.97079i −0.733285 + 0.215312i −0.626995 0.779023i \(-0.715715\pi\)
−0.106290 + 0.994335i \(0.533897\pi\)
\(770\) 2.89976 3.34650i 0.104500 0.120600i
\(771\) 2.49195 2.87586i 0.0897454