Properties

Label 483.2.q.c.232.1
Level $483$
Weight $2$
Character 483.232
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 40 x^{18} - 117 x^{17} + 295 x^{16} - 575 x^{15} + 1777 x^{14} - 1560 x^{13} + 4383 x^{12} - 6446 x^{11} + 7261 x^{10} + 7700 x^{9} + 7852 x^{8} - 39430 x^{7} - 101709 x^{6} + 156742 x^{5} + 999838 x^{4} + 2029154 x^{3} + 3616480 x^{2} + 4299390 x + 2374681\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 232.1
Root \(-1.02673 + 0.659842i\) of defining polynomial
Character \(\chi\) \(=\) 483.232
Dual form 483.2.q.c.127.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.61435 - 1.03748i) q^{2} +(-0.142315 - 0.989821i) q^{3} +(0.698939 + 1.53046i) q^{4} +(-2.78540 - 0.817866i) q^{5} +(-0.797176 + 1.74557i) q^{6} +(-0.654861 + 0.755750i) q^{7} +(-0.0867074 + 0.603063i) q^{8} +(-0.959493 + 0.281733i) q^{9} +O(q^{10})\) \(q+(-1.61435 - 1.03748i) q^{2} +(-0.142315 - 0.989821i) q^{3} +(0.698939 + 1.53046i) q^{4} +(-2.78540 - 0.817866i) q^{5} +(-0.797176 + 1.74557i) q^{6} +(-0.654861 + 0.755750i) q^{7} +(-0.0867074 + 0.603063i) q^{8} +(-0.959493 + 0.281733i) q^{9} +(3.64809 + 4.21012i) q^{10} +(-1.01130 + 0.649920i) q^{11} +(1.41542 - 0.909632i) q^{12} +(2.65446 + 3.06341i) q^{13} +(1.84125 - 0.540641i) q^{14} +(-0.413138 + 2.87344i) q^{15} +(2.96926 - 3.42671i) q^{16} +(-0.185587 + 0.406379i) q^{17} +(1.84125 + 0.540641i) q^{18} +(-0.122970 - 0.269268i) q^{19} +(-0.695108 - 4.83458i) q^{20} +(0.841254 + 0.540641i) q^{21} +2.30687 q^{22} +(3.14576 - 3.61997i) q^{23} +0.609264 q^{24} +(2.88326 + 1.85296i) q^{25} +(-1.10700 - 7.69937i) q^{26} +(0.415415 + 0.909632i) q^{27} +(-1.61435 - 0.474017i) q^{28} +(-1.93907 + 4.24598i) q^{29} +(3.64809 - 4.21012i) q^{30} +(-0.518984 + 3.60962i) q^{31} +(-7.17941 + 2.10807i) q^{32} +(0.787227 + 0.908508i) q^{33} +(0.721214 - 0.463496i) q^{34} +(2.44215 - 1.56947i) q^{35} +(-1.10181 - 1.27155i) q^{36} +(5.35680 - 1.57290i) q^{37} +(-0.0808426 + 0.562273i) q^{38} +(2.65446 - 3.06341i) q^{39} +(0.734739 - 1.60885i) q^{40} +(1.51933 + 0.446116i) q^{41} +(-0.797176 - 1.74557i) q^{42} +(0.200691 + 1.39584i) q^{43} +(-1.70151 - 1.09349i) q^{44} +2.90299 q^{45} +(-8.83402 + 2.58025i) q^{46} -3.48129 q^{47} +(-3.81440 - 2.45137i) q^{48} +(-0.142315 - 0.989821i) q^{49} +(-2.73219 - 5.98266i) q^{50} +(0.428654 + 0.125864i) q^{51} +(-2.83313 + 6.20368i) q^{52} +(7.57328 - 8.74004i) q^{53} +(0.273100 - 1.89945i) q^{54} +(3.34841 - 0.983181i) q^{55} +(-0.398983 - 0.460451i) q^{56} +(-0.249026 + 0.160040i) q^{57} +(7.53547 - 4.84275i) q^{58} +(8.82892 + 10.1891i) q^{59} +(-4.68645 + 1.37607i) q^{60} +(-0.602744 + 4.19218i) q^{61} +(4.58274 - 5.28876i) q^{62} +(0.415415 - 0.909632i) q^{63} +(5.07616 + 1.49049i) q^{64} +(-4.88826 - 10.7038i) q^{65} +(-0.328302 - 2.28339i) q^{66} +(3.01093 + 1.93501i) q^{67} -0.751662 q^{68} +(-4.03082 - 2.59856i) q^{69} -5.57079 q^{70} +(10.0099 + 6.43295i) q^{71} +(-0.0867074 - 0.603063i) q^{72} +(4.65850 + 10.2007i) q^{73} +(-10.2796 - 3.01837i) q^{74} +(1.42377 - 3.11762i) q^{75} +(0.326155 - 0.376403i) q^{76} +(0.171081 - 1.18989i) q^{77} +(-7.46346 + 2.19147i) q^{78} +(-4.68236 - 5.40373i) q^{79} +(-11.0732 + 7.11628i) q^{80} +(0.841254 - 0.540641i) q^{81} +(-1.98990 - 2.29647i) q^{82} +(-0.0254587 + 0.00747534i) q^{83} +(-0.239446 + 1.66538i) q^{84} +(0.849297 - 0.980141i) q^{85} +(1.12417 - 2.46159i) q^{86} +(4.47872 + 1.31507i) q^{87} +(-0.304256 - 0.666228i) q^{88} +(1.50411 + 10.4613i) q^{89} +(-4.68645 - 3.01180i) q^{90} -4.05347 q^{91} +(7.73893 + 2.28432i) q^{92} +3.64673 q^{93} +(5.62003 + 3.61177i) q^{94} +(0.122296 + 0.850591i) q^{95} +(3.10835 + 6.80633i) q^{96} +(0.0741642 + 0.0217766i) q^{97} +(-0.797176 + 1.74557i) q^{98} +(0.787227 - 0.908508i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + O(q^{10}) \) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + 9q^{10} + 3q^{11} + 18q^{12} - 2q^{13} + 18q^{14} - q^{15} + 8q^{16} + 8q^{17} + 18q^{18} + 6q^{19} - 2q^{20} - 2q^{21} + 6q^{22} + 11q^{23} + 9q^{25} + 7q^{26} - 2q^{27} - 4q^{28} + 23q^{29} + 9q^{30} + q^{31} - 28q^{32} + 14q^{33} - 28q^{34} + 10q^{35} - 4q^{36} - 9q^{37} + 34q^{38} - 2q^{39} - 15q^{41} - 4q^{42} - 23q^{43} - 16q^{44} - 12q^{45} + 11q^{46} - 66q^{47} - 36q^{48} - 2q^{49} - 26q^{50} - 14q^{51} + 7q^{52} + 9q^{53} - 4q^{54} - 62q^{55} + 22q^{56} - 27q^{57} - 20q^{58} + 49q^{59} - 2q^{60} + 46q^{61} - 9q^{62} - 2q^{63} + 16q^{64} + 11q^{65} - 16q^{66} + 14q^{67} + 38q^{68} + 11q^{69} - 2q^{70} + 36q^{71} - q^{73} + 4q^{74} - 2q^{75} + 34q^{76} - 8q^{77} - 15q^{78} - 22q^{79} + 15q^{80} - 2q^{81} - 30q^{82} + 8q^{83} - 4q^{84} - 32q^{85} - 68q^{86} + q^{87} - 11q^{88} - 2q^{89} - 2q^{90} - 24q^{91} + 11q^{92} - 32q^{93} + 33q^{94} - 107q^{95} + 16q^{96} + 18q^{97} - 4q^{98} + 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61435 1.03748i −1.14152 0.733611i −0.173587 0.984818i \(-0.555536\pi\)
−0.967933 + 0.251208i \(0.919172\pi\)
\(3\) −0.142315 0.989821i −0.0821655 0.571474i
\(4\) 0.698939 + 1.53046i 0.349469 + 0.765231i
\(5\) −2.78540 0.817866i −1.24567 0.365761i −0.408525 0.912747i \(-0.633957\pi\)
−0.837142 + 0.546986i \(0.815775\pi\)
\(6\) −0.797176 + 1.74557i −0.325446 + 0.712626i
\(7\) −0.654861 + 0.755750i −0.247514 + 0.285646i
\(8\) −0.0867074 + 0.603063i −0.0306557 + 0.213215i
\(9\) −0.959493 + 0.281733i −0.319831 + 0.0939109i
\(10\) 3.64809 + 4.21012i 1.15363 + 1.33136i
\(11\) −1.01130 + 0.649920i −0.304917 + 0.195958i −0.684147 0.729344i \(-0.739825\pi\)
0.379230 + 0.925302i \(0.376189\pi\)
\(12\) 1.41542 0.909632i 0.408595 0.262588i
\(13\) 2.65446 + 3.06341i 0.736214 + 0.849636i 0.993157 0.116791i \(-0.0372606\pi\)
−0.256943 + 0.966427i \(0.582715\pi\)
\(14\) 1.84125 0.540641i 0.492096 0.144492i
\(15\) −0.413138 + 2.87344i −0.106672 + 0.741919i
\(16\) 2.96926 3.42671i 0.742315 0.856677i
\(17\) −0.185587 + 0.406379i −0.0450115 + 0.0985614i −0.930802 0.365524i \(-0.880890\pi\)
0.885790 + 0.464086i \(0.153617\pi\)
\(18\) 1.84125 + 0.540641i 0.433988 + 0.127430i
\(19\) −0.122970 0.269268i −0.0282114 0.0617742i 0.895002 0.446063i \(-0.147174\pi\)
−0.923213 + 0.384288i \(0.874447\pi\)
\(20\) −0.695108 4.83458i −0.155431 1.08105i
\(21\) 0.841254 + 0.540641i 0.183577 + 0.117977i
\(22\) 2.30687 0.491826
\(23\) 3.14576 3.61997i 0.655936 0.754817i
\(24\) 0.609264 0.124366
\(25\) 2.88326 + 1.85296i 0.576652 + 0.370592i
\(26\) −1.10700 7.69937i −0.217101 1.50997i
\(27\) 0.415415 + 0.909632i 0.0799467 + 0.175059i
\(28\) −1.61435 0.474017i −0.305084 0.0895808i
\(29\) −1.93907 + 4.24598i −0.360077 + 0.788458i 0.639726 + 0.768603i \(0.279048\pi\)
−0.999803 + 0.0198550i \(0.993680\pi\)
\(30\) 3.64809 4.21012i 0.666048 0.768660i
\(31\) −0.518984 + 3.60962i −0.0932123 + 0.648306i 0.888632 + 0.458620i \(0.151656\pi\)
−0.981845 + 0.189686i \(0.939253\pi\)
\(32\) −7.17941 + 2.10807i −1.26915 + 0.372657i
\(33\) 0.787227 + 0.908508i 0.137039 + 0.158151i
\(34\) 0.721214 0.463496i 0.123687 0.0794889i
\(35\) 2.44215 1.56947i 0.412798 0.265289i
\(36\) −1.10181 1.27155i −0.183635 0.211926i
\(37\) 5.35680 1.57290i 0.880652 0.258583i 0.190012 0.981782i \(-0.439147\pi\)
0.690640 + 0.723199i \(0.257329\pi\)
\(38\) −0.0808426 + 0.562273i −0.0131144 + 0.0912127i
\(39\) 2.65446 3.06341i 0.425053 0.490538i
\(40\) 0.734739 1.60885i 0.116172 0.254382i
\(41\) 1.51933 + 0.446116i 0.237280 + 0.0696716i 0.398210 0.917294i \(-0.369631\pi\)
−0.160931 + 0.986966i \(0.551450\pi\)
\(42\) −0.797176 1.74557i −0.123007 0.269347i
\(43\) 0.200691 + 1.39584i 0.0306051 + 0.212863i 0.999385 0.0350582i \(-0.0111616\pi\)
−0.968780 + 0.247921i \(0.920253\pi\)
\(44\) −1.70151 1.09349i −0.256512 0.164851i
\(45\) 2.90299 0.432752
\(46\) −8.83402 + 2.58025i −1.30251 + 0.380438i
\(47\) −3.48129 −0.507798 −0.253899 0.967231i \(-0.581713\pi\)
−0.253899 + 0.967231i \(0.581713\pi\)
\(48\) −3.81440 2.45137i −0.550561 0.353824i
\(49\) −0.142315 0.989821i −0.0203307 0.141403i
\(50\) −2.73219 5.98266i −0.386390 0.846076i
\(51\) 0.428654 + 0.125864i 0.0600236 + 0.0176245i
\(52\) −2.83313 + 6.20368i −0.392884 + 0.860295i
\(53\) 7.57328 8.74004i 1.04027 1.20054i 0.0609670 0.998140i \(-0.480582\pi\)
0.979304 0.202397i \(-0.0648730\pi\)
\(54\) 0.273100 1.89945i 0.0371642 0.258483i
\(55\) 3.34841 0.983181i 0.451499 0.132572i
\(56\) −0.398983 0.460451i −0.0533164 0.0615304i
\(57\) −0.249026 + 0.160040i −0.0329844 + 0.0211978i
\(58\) 7.53547 4.84275i 0.989456 0.635885i
\(59\) 8.82892 + 10.1891i 1.14943 + 1.32651i 0.936999 + 0.349333i \(0.113592\pi\)
0.212429 + 0.977177i \(0.431863\pi\)
\(60\) −4.68645 + 1.37607i −0.605018 + 0.177649i
\(61\) −0.602744 + 4.19218i −0.0771735 + 0.536753i 0.914157 + 0.405361i \(0.132854\pi\)
−0.991330 + 0.131393i \(0.958055\pi\)
\(62\) 4.58274 5.28876i 0.582008 0.671673i
\(63\) 0.415415 0.909632i 0.0523374 0.114603i
\(64\) 5.07616 + 1.49049i 0.634520 + 0.186312i
\(65\) −4.88826 10.7038i −0.606314 1.32764i
\(66\) −0.328302 2.28339i −0.0404111 0.281066i
\(67\) 3.01093 + 1.93501i 0.367844 + 0.236399i 0.711484 0.702703i \(-0.248024\pi\)
−0.343640 + 0.939102i \(0.611660\pi\)
\(68\) −0.751662 −0.0911523
\(69\) −4.03082 2.59856i −0.485253 0.312830i
\(70\) −5.57079 −0.665837
\(71\) 10.0099 + 6.43295i 1.18795 + 0.763451i 0.976832 0.214009i \(-0.0686522\pi\)
0.211121 + 0.977460i \(0.432289\pi\)
\(72\) −0.0867074 0.603063i −0.0102186 0.0710717i
\(73\) 4.65850 + 10.2007i 0.545236 + 1.19390i 0.958971 + 0.283503i \(0.0914965\pi\)
−0.413736 + 0.910397i \(0.635776\pi\)
\(74\) −10.2796 3.01837i −1.19498 0.350878i
\(75\) 1.42377 3.11762i 0.164403 0.359991i
\(76\) 0.326155 0.376403i 0.0374126 0.0431764i
\(77\) 0.171081 1.18989i 0.0194965 0.135601i
\(78\) −7.46346 + 2.19147i −0.845071 + 0.248135i
\(79\) −4.68236 5.40373i −0.526807 0.607967i 0.428515 0.903535i \(-0.359037\pi\)
−0.955322 + 0.295567i \(0.904491\pi\)
\(80\) −11.0732 + 7.11628i −1.23802 + 0.795625i
\(81\) 0.841254 0.540641i 0.0934726 0.0600712i
\(82\) −1.98990 2.29647i −0.219748 0.253602i
\(83\) −0.0254587 + 0.00747534i −0.00279445 + 0.000820525i −0.283129 0.959082i \(-0.591373\pi\)
0.280335 + 0.959902i \(0.409554\pi\)
\(84\) −0.239446 + 1.66538i −0.0261257 + 0.181708i
\(85\) 0.849297 0.980141i 0.0921192 0.106311i
\(86\) 1.12417 2.46159i 0.121222 0.265440i
\(87\) 4.47872 + 1.31507i 0.480169 + 0.140990i
\(88\) −0.304256 0.666228i −0.0324338 0.0710201i
\(89\) 1.50411 + 10.4613i 0.159435 + 1.10890i 0.899677 + 0.436555i \(0.143802\pi\)
−0.740242 + 0.672340i \(0.765289\pi\)
\(90\) −4.68645 3.01180i −0.493995 0.317471i
\(91\) −4.05347 −0.424919
\(92\) 7.73893 + 2.28432i 0.806839 + 0.238157i
\(93\) 3.64673 0.378149
\(94\) 5.62003 + 3.61177i 0.579662 + 0.372526i
\(95\) 0.122296 + 0.850591i 0.0125474 + 0.0872688i
\(96\) 3.10835 + 6.80633i 0.317244 + 0.694668i
\(97\) 0.0741642 + 0.0217766i 0.00753024 + 0.00221108i 0.285496 0.958380i \(-0.407842\pi\)
−0.277965 + 0.960591i \(0.589660\pi\)
\(98\) −0.797176 + 1.74557i −0.0805269 + 0.176329i
\(99\) 0.787227 0.908508i 0.0791193 0.0913085i
\(100\) −0.820661 + 5.70783i −0.0820661 + 0.570783i
\(101\) −16.9464 + 4.97591i −1.68623 + 0.495122i −0.977602 0.210461i \(-0.932504\pi\)
−0.708628 + 0.705582i \(0.750685\pi\)
\(102\) −0.561418 0.647911i −0.0555886 0.0641527i
\(103\) 3.33681 2.14444i 0.328786 0.211298i −0.365825 0.930684i \(-0.619213\pi\)
0.694611 + 0.719386i \(0.255577\pi\)
\(104\) −2.07759 + 1.33518i −0.203724 + 0.130926i
\(105\) −1.90105 2.19393i −0.185524 0.214106i
\(106\) −21.2936 + 6.25236i −2.06822 + 0.607283i
\(107\) 0.0744754 0.517988i 0.00719981 0.0500758i −0.985905 0.167307i \(-0.946493\pi\)
0.993105 + 0.117231i \(0.0374019\pi\)
\(108\) −1.10181 + 1.27155i −0.106022 + 0.122355i
\(109\) −2.40391 + 5.26384i −0.230253 + 0.504184i −0.989129 0.147051i \(-0.953022\pi\)
0.758876 + 0.651235i \(0.225749\pi\)
\(110\) −6.42554 1.88671i −0.612651 0.179891i
\(111\) −2.31924 5.07843i −0.220133 0.482023i
\(112\) 0.645282 + 4.48803i 0.0609734 + 0.424079i
\(113\) 15.2240 + 9.78385i 1.43215 + 0.920387i 0.999826 + 0.0186690i \(0.00594288\pi\)
0.432325 + 0.901718i \(0.357693\pi\)
\(114\) 0.568055 0.0532032
\(115\) −11.7228 + 7.51026i −1.09316 + 0.700335i
\(116\) −7.85360 −0.729188
\(117\) −3.40999 2.19147i −0.315254 0.202601i
\(118\) −3.68197 25.6087i −0.338953 2.35747i
\(119\) −0.185587 0.406379i −0.0170127 0.0372527i
\(120\) −1.69704 0.498297i −0.154918 0.0454881i
\(121\) −3.96924 + 8.69143i −0.360840 + 0.790130i
\(122\) 5.32235 6.14232i 0.481863 0.556100i
\(123\) 0.225352 1.56736i 0.0203193 0.141324i
\(124\) −5.88712 + 1.72861i −0.528679 + 0.155234i
\(125\) 2.98971 + 3.45031i 0.267408 + 0.308605i
\(126\) −1.61435 + 1.03748i −0.143818 + 0.0924263i
\(127\) −11.8527 + 7.61725i −1.05175 + 0.675922i −0.947867 0.318667i \(-0.896765\pi\)
−0.103888 + 0.994589i \(0.533128\pi\)
\(128\) 3.15165 + 3.63720i 0.278569 + 0.321486i
\(129\) 1.35307 0.397297i 0.119131 0.0349800i
\(130\) −3.21362 + 22.3512i −0.281853 + 1.96033i
\(131\) −10.3363 + 11.9287i −0.903085 + 1.04222i 0.0958183 + 0.995399i \(0.469453\pi\)
−0.998903 + 0.0468170i \(0.985092\pi\)
\(132\) −0.840214 + 1.83981i −0.0731313 + 0.160135i
\(133\) 0.284027 + 0.0833980i 0.0246283 + 0.00723152i
\(134\) −2.85317 6.24758i −0.246477 0.539709i
\(135\) −0.413138 2.87344i −0.0355573 0.247306i
\(136\) −0.228980 0.147157i −0.0196349 0.0126186i
\(137\) 3.02092 0.258095 0.129047 0.991638i \(-0.458808\pi\)
0.129047 + 0.991638i \(0.458808\pi\)
\(138\) 3.81120 + 8.37690i 0.324431 + 0.713089i
\(139\) −11.3664 −0.964085 −0.482043 0.876148i \(-0.660105\pi\)
−0.482043 + 0.876148i \(0.660105\pi\)
\(140\) 4.10893 + 2.64065i 0.347268 + 0.223176i
\(141\) 0.495439 + 3.44585i 0.0417235 + 0.290193i
\(142\) −9.48539 20.7701i −0.795997 1.74299i
\(143\) −4.67541 1.37282i −0.390977 0.114801i
\(144\) −1.88357 + 4.12444i −0.156964 + 0.343703i
\(145\) 8.87372 10.2408i 0.736923 0.850454i
\(146\) 3.06257 21.3006i 0.253460 1.76285i
\(147\) −0.959493 + 0.281733i −0.0791376 + 0.0232369i
\(148\) 6.15133 + 7.09902i 0.505637 + 0.583536i
\(149\) −15.2467 + 9.79845i −1.24906 + 0.802720i −0.986747 0.162264i \(-0.948120\pi\)
−0.262309 + 0.964984i \(0.584484\pi\)
\(150\) −5.53294 + 3.55580i −0.451762 + 0.290330i
\(151\) 2.89891 + 3.34552i 0.235910 + 0.272254i 0.861344 0.508023i \(-0.169623\pi\)
−0.625434 + 0.780277i \(0.715078\pi\)
\(152\) 0.173048 0.0508114i 0.0140360 0.00412135i
\(153\) 0.0635793 0.442204i 0.00514008 0.0357500i
\(154\) −1.51068 + 1.74341i −0.121734 + 0.140488i
\(155\) 4.39776 9.62975i 0.353237 0.773480i
\(156\) 6.54373 + 1.92141i 0.523918 + 0.153836i
\(157\) −6.59036 14.4309i −0.525968 1.15171i −0.967130 0.254282i \(-0.918161\pi\)
0.441162 0.897427i \(-0.354566\pi\)
\(158\) 1.95271 + 13.5814i 0.155349 + 1.08048i
\(159\) −9.72887 6.25236i −0.771549 0.495845i
\(160\) 21.7216 1.71725
\(161\) 0.675762 + 4.74798i 0.0532575 + 0.374194i
\(162\) −1.91899 −0.150770
\(163\) 1.66312 + 1.06882i 0.130265 + 0.0837164i 0.604151 0.796870i \(-0.293513\pi\)
−0.473885 + 0.880587i \(0.657149\pi\)
\(164\) 0.379156 + 2.63709i 0.0296071 + 0.205922i
\(165\) −1.44970 3.17440i −0.112859 0.247127i
\(166\) 0.0488548 + 0.0143451i 0.00379187 + 0.00111339i
\(167\) 5.83085 12.7678i 0.451204 0.988000i −0.538200 0.842817i \(-0.680896\pi\)
0.989405 0.145183i \(-0.0463771\pi\)
\(168\) −0.398983 + 0.460451i −0.0307822 + 0.0355246i
\(169\) −0.488225 + 3.39568i −0.0375558 + 0.261206i
\(170\) −2.38794 + 0.701164i −0.183147 + 0.0537768i
\(171\) 0.193851 + 0.223716i 0.0148241 + 0.0171080i
\(172\) −1.99601 + 1.28275i −0.152194 + 0.0978091i
\(173\) −5.56630 + 3.57724i −0.423198 + 0.271973i −0.734858 0.678221i \(-0.762751\pi\)
0.311660 + 0.950194i \(0.399115\pi\)
\(174\) −5.86587 6.76958i −0.444690 0.513200i
\(175\) −3.28851 + 0.965593i −0.248588 + 0.0729919i
\(176\) −0.775712 + 5.39519i −0.0584715 + 0.406678i
\(177\) 8.82892 10.1891i 0.663622 0.765861i
\(178\) 8.42525 18.4487i 0.631499 1.38279i
\(179\) 21.6136 + 6.34632i 1.61548 + 0.474347i 0.959797 0.280694i \(-0.0905645\pi\)
0.655678 + 0.755040i \(0.272383\pi\)
\(180\) 2.02901 + 4.44291i 0.151234 + 0.331155i
\(181\) 1.20178 + 8.35854i 0.0893274 + 0.621286i 0.984476 + 0.175518i \(0.0561601\pi\)
−0.895149 + 0.445767i \(0.852931\pi\)
\(182\) 6.54373 + 4.20540i 0.485054 + 0.311725i
\(183\) 4.23529 0.313081
\(184\) 1.91031 + 2.21097i 0.140830 + 0.162995i
\(185\) −16.2072 −1.19158
\(186\) −5.88712 3.78342i −0.431664 0.277414i
\(187\) −0.0764305 0.531586i −0.00558915 0.0388734i
\(188\) −2.43321 5.32798i −0.177460 0.388583i
\(189\) −0.959493 0.281733i −0.0697928 0.0204930i
\(190\) 0.685043 1.50003i 0.0496982 0.108824i
\(191\) 14.1995 16.3872i 1.02744 1.18573i 0.0450353 0.998985i \(-0.485660\pi\)
0.982408 0.186747i \(-0.0597946\pi\)
\(192\) 0.752911 5.23661i 0.0543366 0.377920i
\(193\) 18.6865 5.48686i 1.34509 0.394953i 0.471605 0.881810i \(-0.343675\pi\)
0.873482 + 0.486857i \(0.161857\pi\)
\(194\) −0.0971345 0.112099i −0.00697385 0.00804825i
\(195\) −9.89917 + 6.36181i −0.708894 + 0.455579i
\(196\) 1.41542 0.909632i 0.101101 0.0649737i
\(197\) 6.61609 + 7.63537i 0.471377 + 0.543998i 0.940794 0.338979i \(-0.110081\pi\)
−0.469417 + 0.882976i \(0.655536\pi\)
\(198\) −2.21342 + 0.649920i −0.157301 + 0.0461878i
\(199\) 0.584439 4.06486i 0.0414298 0.288151i −0.958565 0.284874i \(-0.908048\pi\)
0.999995 0.00327615i \(-0.00104283\pi\)
\(200\) −1.36745 + 1.57812i −0.0966934 + 0.111590i
\(201\) 1.48681 3.25567i 0.104872 0.229637i
\(202\) 32.5199 + 9.54871i 2.28809 + 0.671845i
\(203\) −1.93907 4.24598i −0.136096 0.298009i
\(204\) 0.106973 + 0.744011i 0.00748958 + 0.0520912i
\(205\) −3.86708 2.48522i −0.270088 0.173575i
\(206\) −7.61161 −0.530326
\(207\) −1.99847 + 4.35960i −0.138903 + 0.303013i
\(208\) 18.3792 1.27437
\(209\) 0.299362 + 0.192388i 0.0207073 + 0.0133078i
\(210\) 0.792806 + 5.51409i 0.0547088 + 0.380508i
\(211\) −9.46499 20.7254i −0.651597 1.42680i −0.890150 0.455668i \(-0.849400\pi\)
0.238553 0.971129i \(-0.423327\pi\)
\(212\) 18.6696 + 5.48188i 1.28223 + 0.376497i
\(213\) 4.94292 10.8235i 0.338683 0.741613i
\(214\) −0.657632 + 0.758948i −0.0449548 + 0.0518806i
\(215\) 0.582604 4.05210i 0.0397332 0.276351i
\(216\) −0.584585 + 0.171650i −0.0397760 + 0.0116793i
\(217\) −2.38810 2.75602i −0.162115 0.187091i
\(218\) 9.34190 6.00368i 0.632713 0.406620i
\(219\) 9.43388 6.06279i 0.637483 0.409685i
\(220\) 3.84505 + 4.43743i 0.259233 + 0.299171i
\(221\) −1.73754 + 0.510187i −0.116879 + 0.0343189i
\(222\) −1.52470 + 10.6045i −0.102331 + 0.711731i
\(223\) 10.5014 12.1192i 0.703224 0.811564i −0.285960 0.958242i \(-0.592313\pi\)
0.989184 + 0.146678i \(0.0468580\pi\)
\(224\) 3.10835 6.80633i 0.207685 0.454767i
\(225\) −3.28851 0.965593i −0.219234 0.0643728i
\(226\) −14.4263 31.5892i −0.959623 2.10128i
\(227\) −0.591691 4.11530i −0.0392719 0.273142i 0.960719 0.277525i \(-0.0895140\pi\)
−0.999990 + 0.00438268i \(0.998605\pi\)
\(228\) −0.418989 0.269268i −0.0277482 0.0178327i
\(229\) 14.7545 0.975002 0.487501 0.873122i \(-0.337909\pi\)
0.487501 + 0.873122i \(0.337909\pi\)
\(230\) 26.7166 + 0.0380204i 1.76164 + 0.00250699i
\(231\) −1.20213 −0.0790943
\(232\) −2.39246 1.53754i −0.157073 0.100944i
\(233\) −1.45568 10.1245i −0.0953650 0.663278i −0.980293 0.197550i \(-0.936702\pi\)
0.884928 0.465728i \(-0.154208\pi\)
\(234\) 3.23133 + 7.07562i 0.211238 + 0.462547i
\(235\) 9.69677 + 2.84723i 0.632547 + 0.185733i
\(236\) −9.42318 + 20.6339i −0.613397 + 1.34315i
\(237\) −4.68236 + 5.40373i −0.304152 + 0.351010i
\(238\) −0.122008 + 0.848582i −0.00790859 + 0.0550054i
\(239\) 3.49850 1.02725i 0.226299 0.0664475i −0.166617 0.986022i \(-0.553284\pi\)
0.392916 + 0.919574i \(0.371466\pi\)
\(240\) 8.61972 + 9.94769i 0.556401 + 0.642121i
\(241\) −13.1849 + 8.47343i −0.849315 + 0.545822i −0.891361 0.453294i \(-0.850249\pi\)
0.0420461 + 0.999116i \(0.486612\pi\)
\(242\) 15.4250 9.91302i 0.991554 0.637233i
\(243\) −0.654861 0.755750i −0.0420093 0.0484814i
\(244\) −6.83725 + 2.00760i −0.437710 + 0.128523i
\(245\) −0.413138 + 2.87344i −0.0263944 + 0.183577i
\(246\) −1.98990 + 2.29647i −0.126871 + 0.146417i
\(247\) 0.498457 1.09147i 0.0317160 0.0694484i
\(248\) −2.13183 0.625961i −0.135371 0.0397485i
\(249\) 0.0110224 + 0.0241357i 0.000698516 + 0.00152954i
\(250\) −1.24682 8.67180i −0.0788556 0.548453i
\(251\) −10.4770 6.73318i −0.661305 0.424995i 0.166477 0.986045i \(-0.446761\pi\)
−0.827781 + 0.561051i \(0.810397\pi\)
\(252\) 1.68251 0.105988
\(253\) −0.828595 + 5.70535i −0.0520933 + 0.358692i
\(254\) 27.0372 1.69646
\(255\) −1.09103 0.701164i −0.0683231 0.0439086i
\(256\) −2.82017 19.6147i −0.176261 1.22592i
\(257\) 9.21150 + 20.1704i 0.574598 + 1.25819i 0.944313 + 0.329049i \(0.106728\pi\)
−0.369715 + 0.929145i \(0.620545\pi\)
\(258\) −2.59652 0.762407i −0.161652 0.0474654i
\(259\) −2.31924 + 5.07843i −0.144111 + 0.315558i
\(260\) 12.9652 14.9626i 0.804065 0.927940i
\(261\) 0.664296 4.62028i 0.0411189 0.285988i
\(262\) 29.0622 8.53344i 1.79547 0.527198i
\(263\) −5.63899 6.50774i −0.347715 0.401285i 0.554771 0.832003i \(-0.312806\pi\)
−0.902486 + 0.430718i \(0.858260\pi\)
\(264\) −0.616146 + 0.395973i −0.0379212 + 0.0243705i
\(265\) −28.2428 + 18.1505i −1.73494 + 1.11498i
\(266\) −0.371997 0.429307i −0.0228086 0.0263225i
\(267\) 10.1408 2.97760i 0.620604 0.182226i
\(268\) −0.857001 + 5.96057i −0.0523497 + 0.364100i
\(269\) −14.8106 + 17.0924i −0.903019 + 1.04214i 0.0958879 + 0.995392i \(0.469431\pi\)
−0.998907 + 0.0467472i \(0.985114\pi\)
\(270\) −2.31419 + 5.06737i −0.140837 + 0.308390i
\(271\) −14.2737 4.19113i −0.867065 0.254593i −0.182199 0.983262i \(-0.558321\pi\)
−0.684867 + 0.728668i \(0.740140\pi\)
\(272\) 0.841486 + 1.84260i 0.0510226 + 0.111724i
\(273\) 0.576869 + 4.01221i 0.0349137 + 0.242830i
\(274\) −4.87683 3.13415i −0.294620 0.189341i
\(275\) −4.12010 −0.248451
\(276\) 1.15971 7.98525i 0.0698061 0.480655i
\(277\) −26.3243 −1.58167 −0.790837 0.612027i \(-0.790354\pi\)
−0.790837 + 0.612027i \(0.790354\pi\)
\(278\) 18.3494 + 11.7924i 1.10052 + 0.707263i
\(279\) −0.518984 3.60962i −0.0310708 0.216102i
\(280\) 0.734739 + 1.60885i 0.0439091 + 0.0961475i
\(281\) 18.2275 + 5.35207i 1.08736 + 0.319278i 0.775819 0.630955i \(-0.217337\pi\)
0.311540 + 0.950233i \(0.399155\pi\)
\(282\) 2.77520 6.07684i 0.165261 0.361870i
\(283\) 13.7978 15.9235i 0.820194 0.946554i −0.179112 0.983829i \(-0.557322\pi\)
0.999305 + 0.0372750i \(0.0118678\pi\)
\(284\) −2.84911 + 19.8160i −0.169063 + 1.17586i
\(285\) 0.824528 0.242103i 0.0488408 0.0143410i
\(286\) 6.12348 + 7.06688i 0.362089 + 0.417873i
\(287\) −1.33210 + 0.856090i −0.0786315 + 0.0505334i
\(288\) 6.29469 4.04535i 0.370918 0.238374i
\(289\) 11.0019 + 12.6969i 0.647172 + 0.746877i
\(290\) −24.9500 + 7.32598i −1.46511 + 0.430196i
\(291\) 0.0110003 0.0765085i 0.000644847 0.00448501i
\(292\) −12.3558 + 14.2593i −0.723066 + 0.834463i
\(293\) −11.5235 + 25.2329i −0.673209 + 1.47412i 0.196474 + 0.980509i \(0.437051\pi\)
−0.869682 + 0.493612i \(0.835676\pi\)
\(294\) 1.84125 + 0.540641i 0.107384 + 0.0315308i
\(295\) −16.2587 35.6016i −0.946618 2.07281i
\(296\) 0.484083 + 3.36687i 0.0281367 + 0.195695i
\(297\) −1.01130 0.649920i −0.0586813 0.0377122i
\(298\) 34.7792 2.01471
\(299\) 19.4397 + 0.0276647i 1.12423 + 0.00159989i
\(300\) 5.76652 0.332930
\(301\) −1.18633 0.762407i −0.0683788 0.0439444i
\(302\) −1.20895 8.40841i −0.0695671 0.483850i
\(303\) 7.33699 + 16.0658i 0.421499 + 0.922954i
\(304\) −1.28783 0.378142i −0.0738623 0.0216879i
\(305\) 5.10752 11.1839i 0.292456 0.640389i
\(306\) −0.561418 + 0.647911i −0.0320941 + 0.0370386i
\(307\) 1.09159 7.59220i 0.0623005 0.433310i −0.934669 0.355519i \(-0.884304\pi\)
0.996970 0.0777911i \(-0.0247867\pi\)
\(308\) 1.94066 0.569830i 0.110579 0.0324691i
\(309\) −2.59749 2.99766i −0.147766 0.170531i
\(310\) −17.0902 + 10.9832i −0.970660 + 0.623805i
\(311\) −12.1727 + 7.82290i −0.690249 + 0.443596i −0.838174 0.545402i \(-0.816377\pi\)
0.147925 + 0.988999i \(0.452740\pi\)
\(312\) 1.61727 + 1.86642i 0.0915597 + 0.105665i
\(313\) −13.5303 + 3.97286i −0.764779 + 0.224560i −0.640782 0.767723i \(-0.721390\pi\)
−0.123998 + 0.992283i \(0.539572\pi\)
\(314\) −4.33260 + 30.1339i −0.244503 + 1.70056i
\(315\) −1.90105 + 2.19393i −0.107112 + 0.123614i
\(316\) 4.99753 10.9431i 0.281133 0.615595i
\(317\) −22.9933 6.75144i −1.29143 0.379199i −0.437329 0.899302i \(-0.644075\pi\)
−0.854104 + 0.520103i \(0.825894\pi\)
\(318\) 9.21912 + 20.1870i 0.516982 + 1.13203i
\(319\) −0.798570 5.55418i −0.0447113 0.310974i
\(320\) −12.9201 8.30323i −0.722255 0.464165i
\(321\) −0.523314 −0.0292085
\(322\) 3.83503 8.36602i 0.213718 0.466220i
\(323\) 0.132246 0.00735839
\(324\) 1.41542 + 0.909632i 0.0786342 + 0.0505351i
\(325\) 1.97712 + 13.7512i 0.109671 + 0.762779i
\(326\) −1.57598 3.45090i −0.0872852 0.191128i
\(327\) 5.55237 + 1.63032i 0.307047 + 0.0901571i
\(328\) −0.400773 + 0.877571i −0.0221290 + 0.0484557i
\(329\) 2.27976 2.63098i 0.125687 0.145051i
\(330\) −0.953056 + 6.62865i −0.0524640 + 0.364895i
\(331\) −20.0779 + 5.89539i −1.10358 + 0.324040i −0.782273 0.622935i \(-0.785940\pi\)
−0.321306 + 0.946975i \(0.604122\pi\)
\(332\) −0.0292348 0.0337387i −0.00160447 0.00185165i
\(333\) −4.69667 + 3.01837i −0.257376 + 0.165406i
\(334\) −22.6594 + 14.5623i −1.23987 + 0.796814i
\(335\) −6.80407 7.85231i −0.371746 0.429018i
\(336\) 4.35052 1.27743i 0.237340 0.0696894i
\(337\) 2.03640 14.1634i 0.110930 0.771532i −0.856089 0.516828i \(-0.827113\pi\)
0.967019 0.254704i \(-0.0819782\pi\)
\(338\) 4.31112 4.97530i 0.234494 0.270621i
\(339\) 7.51767 16.4614i 0.408304 0.894060i
\(340\) 2.09368 + 0.614759i 0.113545 + 0.0333400i
\(341\) −1.82111 3.98768i −0.0986189 0.215945i
\(342\) −0.0808426 0.562273i −0.00437147 0.0304042i
\(343\) 0.841254 + 0.540641i 0.0454234 + 0.0291919i
\(344\) −0.859179 −0.0463238
\(345\) 9.10215 + 10.5347i 0.490043 + 0.567169i
\(346\) 12.6973 0.682611
\(347\) 16.2732 + 10.4582i 0.873591 + 0.561423i 0.898849 0.438258i \(-0.144404\pi\)
−0.0252580 + 0.999681i \(0.508041\pi\)
\(348\) 1.11768 + 7.77366i 0.0599141 + 0.416712i
\(349\) 0.384187 + 0.841253i 0.0205651 + 0.0450312i 0.919636 0.392772i \(-0.128484\pi\)
−0.899071 + 0.437803i \(0.855757\pi\)
\(350\) 6.31060 + 1.85296i 0.337316 + 0.0990448i
\(351\) −1.68387 + 3.68716i −0.0898784 + 0.196806i
\(352\) 5.89043 6.79792i 0.313961 0.362330i
\(353\) 2.65353 18.4557i 0.141233 0.982297i −0.788755 0.614708i \(-0.789274\pi\)
0.929988 0.367590i \(-0.119817\pi\)
\(354\) −24.8240 + 7.28899i −1.31938 + 0.387405i
\(355\) −22.6202 26.1051i −1.20055 1.38551i
\(356\) −14.9593 + 9.61378i −0.792844 + 0.509530i
\(357\) −0.375831 + 0.241532i −0.0198911 + 0.0127832i
\(358\) −28.3078 32.6689i −1.49611 1.72661i
\(359\) −1.19924 + 0.352130i −0.0632937 + 0.0185847i −0.313226 0.949679i \(-0.601410\pi\)
0.249932 + 0.968263i \(0.419592\pi\)
\(360\) −0.251710 + 1.75068i −0.0132663 + 0.0922692i
\(361\) 12.3850 14.2930i 0.651841 0.752264i
\(362\) 6.73175 14.7405i 0.353813 0.774742i
\(363\) 9.16785 + 2.69192i 0.481187 + 0.141289i
\(364\) −2.83313 6.20368i −0.148496 0.325161i
\(365\) −4.63296 32.2230i −0.242500 1.68663i
\(366\) −6.83725 4.39404i −0.357389 0.229680i
\(367\) 18.0114 0.940185 0.470093 0.882617i \(-0.344221\pi\)
0.470093 + 0.882617i \(0.344221\pi\)
\(368\) −3.06403 21.5282i −0.159724 1.12224i
\(369\) −1.58347 −0.0824323
\(370\) 26.1642 + 16.8147i 1.36021 + 0.874155i
\(371\) 1.64583 + 11.4470i 0.0854473 + 0.594299i
\(372\) 2.54884 + 5.58119i 0.132151 + 0.289371i
\(373\) 20.7698 + 6.09857i 1.07542 + 0.315772i 0.771045 0.636780i \(-0.219734\pi\)
0.304375 + 0.952552i \(0.401552\pi\)
\(374\) −0.428125 + 0.937463i −0.0221378 + 0.0484750i
\(375\) 2.98971 3.45031i 0.154388 0.178173i
\(376\) 0.301853 2.09944i 0.0155669 0.108270i
\(377\) −18.1543 + 5.33059i −0.934996 + 0.274539i
\(378\) 1.25667 + 1.45027i 0.0646361 + 0.0745940i
\(379\) 11.4115 7.33373i 0.586170 0.376709i −0.213684 0.976903i \(-0.568546\pi\)
0.799854 + 0.600194i \(0.204910\pi\)
\(380\) −1.21632 + 0.781681i −0.0623959 + 0.0400994i
\(381\) 9.22653 + 10.6480i 0.472689 + 0.545513i
\(382\) −39.9245 + 11.7229i −2.04271 + 0.599795i
\(383\) 1.21662 8.46177i 0.0621663 0.432376i −0.934841 0.355067i \(-0.884458\pi\)
0.997007 0.0773091i \(-0.0246328\pi\)
\(384\) 3.15165 3.63720i 0.160832 0.185610i
\(385\) −1.44970 + 3.17440i −0.0738836 + 0.161783i
\(386\) −35.8592 10.5292i −1.82519 0.535923i
\(387\) −0.585814 1.28275i −0.0297786 0.0652061i
\(388\) 0.0185080 + 0.128726i 0.000939602 + 0.00653508i
\(389\) −0.165993 0.106677i −0.00841618 0.00540875i 0.536426 0.843947i \(-0.319774\pi\)
−0.544842 + 0.838539i \(0.683410\pi\)
\(390\) 22.5810 1.14343
\(391\) 0.887270 + 1.95019i 0.0448712 + 0.0986253i
\(392\) 0.609264 0.0307725
\(393\) 13.2783 + 8.53344i 0.669801 + 0.430455i
\(394\) −2.75914 19.1903i −0.139004 0.966792i
\(395\) 8.62270 + 18.8811i 0.433855 + 0.950010i
\(396\) 1.94066 + 0.569830i 0.0975219 + 0.0286350i
\(397\) −13.6949 + 29.9876i −0.687326 + 1.50503i 0.167363 + 0.985895i \(0.446475\pi\)
−0.854690 + 0.519139i \(0.826253\pi\)
\(398\) −5.16072 + 5.95578i −0.258683 + 0.298537i
\(399\) 0.0421278 0.293005i 0.00210903 0.0146686i
\(400\) 14.9107 4.37817i 0.745535 0.218909i
\(401\) −17.5850 20.2942i −0.878154 1.01344i −0.999782 0.0208683i \(-0.993357\pi\)
0.121628 0.992576i \(-0.461189\pi\)
\(402\) −5.77794 + 3.71326i −0.288177 + 0.185200i
\(403\) −12.4353 + 7.99171i −0.619448 + 0.398095i
\(404\) −19.4599 22.4580i −0.968168 1.11733i
\(405\) −2.78540 + 0.817866i −0.138407 + 0.0406401i
\(406\) −1.27478 + 8.86626i −0.0632660 + 0.440025i
\(407\) −4.39505 + 5.07215i −0.217854 + 0.251417i
\(408\) −0.113072 + 0.247592i −0.00559788 + 0.0122576i
\(409\) 6.43959 + 1.89084i 0.318417 + 0.0934958i 0.437036 0.899444i \(-0.356028\pi\)
−0.118618 + 0.992940i \(0.537847\pi\)
\(410\) 3.66446 + 8.02404i 0.180975 + 0.396279i
\(411\) −0.429922 2.99017i −0.0212065 0.147494i
\(412\) 5.61421 + 3.60803i 0.276592 + 0.177755i
\(413\) −13.4821 −0.663412
\(414\) 7.74924 4.96457i 0.380854 0.243995i
\(415\) 0.0770263 0.00378107
\(416\) −25.5153 16.3977i −1.25099 0.803963i
\(417\) 1.61761 + 11.2507i 0.0792146 + 0.550949i
\(418\) −0.283677 0.621165i −0.0138751 0.0303822i
\(419\) 4.30211 + 1.26321i 0.210172 + 0.0617120i 0.385124 0.922865i \(-0.374159\pi\)
−0.174952 + 0.984577i \(0.555977\pi\)
\(420\) 2.02901 4.44291i 0.0990056 0.216792i
\(421\) −26.7489 + 30.8698i −1.30366 + 1.50450i −0.579200 + 0.815185i \(0.696635\pi\)
−0.724459 + 0.689318i \(0.757910\pi\)
\(422\) −6.22243 + 43.2779i −0.302903 + 2.10674i
\(423\) 3.34027 0.980792i 0.162410 0.0476878i
\(424\) 4.61413 + 5.32499i 0.224082 + 0.258605i
\(425\) −1.28810 + 0.827811i −0.0624820 + 0.0401547i
\(426\) −19.2088 + 12.3447i −0.930669 + 0.598105i
\(427\) −2.77352 3.20082i −0.134220 0.154898i
\(428\) 0.844814 0.248060i 0.0408356 0.0119904i
\(429\) −0.693470 + 4.82319i −0.0334811 + 0.232866i
\(430\) −5.14451 + 5.93708i −0.248090 + 0.286311i
\(431\) 16.9646 37.1474i 0.817158 1.78933i 0.244236 0.969716i \(-0.421463\pi\)
0.572922 0.819610i \(-0.305810\pi\)
\(432\) 4.35052 + 1.27743i 0.209314 + 0.0614602i
\(433\) 16.3503 + 35.8022i 0.785746 + 1.72054i 0.688444 + 0.725290i \(0.258294\pi\)
0.0973023 + 0.995255i \(0.468979\pi\)
\(434\) 0.995924 + 6.92680i 0.0478059 + 0.332497i
\(435\) −11.3994 7.32598i −0.546562 0.351254i
\(436\) −9.73629 −0.466284
\(437\) −1.36158 0.401901i −0.0651331 0.0192255i
\(438\) −21.5197 −1.02825
\(439\) 16.5106 + 10.6107i 0.788007 + 0.506421i 0.871682 0.490072i \(-0.163029\pi\)
−0.0836753 + 0.996493i \(0.526666\pi\)
\(440\) 0.302588 + 2.10455i 0.0144253 + 0.100330i
\(441\) 0.415415 + 0.909632i 0.0197817 + 0.0433158i
\(442\) 3.33431 + 0.979041i 0.158597 + 0.0465682i
\(443\) −9.85390 + 21.5770i −0.468173 + 1.02516i 0.517375 + 0.855759i \(0.326909\pi\)
−0.985548 + 0.169397i \(0.945818\pi\)
\(444\) 6.15133 7.09902i 0.291929 0.336905i
\(445\) 4.36641 30.3690i 0.206987 1.43963i
\(446\) −29.5264 + 8.66974i −1.39812 + 0.410524i
\(447\) 11.8685 + 13.6970i 0.561363 + 0.647847i
\(448\) −4.45062 + 2.86024i −0.210272 + 0.135133i
\(449\) 14.5774 9.36836i 0.687952 0.442120i −0.149405 0.988776i \(-0.547736\pi\)
0.837357 + 0.546656i \(0.184099\pi\)
\(450\) 4.30703 + 4.97057i 0.203035 + 0.234315i
\(451\) −1.82643 + 0.536289i −0.0860033 + 0.0252528i
\(452\) −4.33319 + 30.1380i −0.203816 + 1.41757i
\(453\) 2.89891 3.34552i 0.136202 0.157186i
\(454\) −3.31435 + 7.25742i −0.155550 + 0.340607i
\(455\) 11.2905 + 3.31519i 0.529307 + 0.155419i
\(456\) −0.0749215 0.164055i −0.00350852 0.00768259i
\(457\) 1.91255 + 13.3021i 0.0894653 + 0.622245i 0.984386 + 0.176021i \(0.0563226\pi\)
−0.894921 + 0.446224i \(0.852768\pi\)
\(458\) −23.8189 15.3075i −1.11298 0.715272i
\(459\) −0.446751 −0.0208525
\(460\) −19.6877 12.6921i −0.917944 0.591774i
\(461\) −21.9771 −1.02357 −0.511787 0.859112i \(-0.671016\pi\)
−0.511787 + 0.859112i \(0.671016\pi\)
\(462\) 1.94066 + 1.24719i 0.0902877 + 0.0580244i
\(463\) 1.20109 + 8.35379i 0.0558196 + 0.388234i 0.998510 + 0.0545655i \(0.0173774\pi\)
−0.942691 + 0.333668i \(0.891714\pi\)
\(464\) 8.79211 + 19.2520i 0.408163 + 0.893753i
\(465\) −10.1576 2.98254i −0.471047 0.138312i
\(466\) −8.15400 + 17.8548i −0.377727 + 0.827106i
\(467\) 18.5490 21.4067i 0.858347 0.990586i −0.141652 0.989916i \(-0.545242\pi\)
1.00000 0.000669154i \(-0.000212998\pi\)
\(468\) 0.970585 6.75057i 0.0448653 0.312045i
\(469\) −3.43413 + 1.00835i −0.158573 + 0.0465613i
\(470\) −12.7001 14.6567i −0.585810 0.676061i
\(471\) −13.3461 + 8.57701i −0.614955 + 0.395208i
\(472\) −6.91021 + 4.44092i −0.318068 + 0.204410i
\(473\) −1.11014 1.28117i −0.0510443 0.0589083i
\(474\) 13.1653 3.86567i 0.604701 0.177556i
\(475\) 0.144386 1.00423i 0.00662489 0.0460771i
\(476\) 0.492234 0.568068i 0.0225615 0.0260373i
\(477\) −4.80416 + 10.5196i −0.219967 + 0.481661i
\(478\) −6.71358 1.97129i −0.307072 0.0901645i
\(479\) −13.9645 30.5781i −0.638056 1.39715i −0.901630 0.432508i \(-0.857629\pi\)
0.263575 0.964639i \(-0.415098\pi\)
\(480\) −3.09131 21.5005i −0.141098 0.981360i
\(481\) 19.0378 + 12.2349i 0.868050 + 0.557862i
\(482\) 30.0761 1.36993
\(483\) 4.60348 1.34459i 0.209466 0.0611811i
\(484\) −16.0762 −0.730735
\(485\) −0.188766 0.121313i −0.00857144 0.00550853i
\(486\) 0.273100 + 1.89945i 0.0123881 + 0.0861610i
\(487\) −3.75489 8.22206i −0.170150 0.372577i 0.805277 0.592899i \(-0.202017\pi\)
−0.975427 + 0.220322i \(0.929289\pi\)
\(488\) −2.47589 0.726986i −0.112078 0.0329091i
\(489\) 0.821254 1.79830i 0.0371384 0.0813218i
\(490\) 3.64809 4.21012i 0.164804 0.190194i
\(491\) −0.832831 + 5.79247i −0.0375852 + 0.261410i −0.999946 0.0103634i \(-0.996701\pi\)
0.962361 + 0.271774i \(0.0876103\pi\)
\(492\) 2.55628 0.750593i 0.115246 0.0338393i
\(493\) −1.36561 1.57600i −0.0615039 0.0709793i
\(494\) −1.93706 + 1.24488i −0.0871526 + 0.0560096i
\(495\) −2.93578 + 1.88671i −0.131953 + 0.0848013i
\(496\) 10.8281 + 12.4963i 0.486196 + 0.561100i
\(497\) −11.4168 + 3.35227i −0.512112 + 0.150370i
\(498\) 0.00724629 0.0503991i 0.000324714 0.00225844i
\(499\) 24.7024 28.5080i 1.10583 1.27620i 0.147959 0.988993i \(-0.452730\pi\)
0.957870 0.287202i \(-0.0927250\pi\)
\(500\) −3.19095 + 6.98720i −0.142704 + 0.312477i
\(501\) −13.4676 3.95445i −0.601689 0.176672i
\(502\) 9.92809 + 21.7395i 0.443112 + 0.970280i
\(503\) −2.80101 19.4815i −0.124891 0.868636i −0.951892 0.306435i \(-0.900864\pi\)
0.827001 0.562201i \(-0.190045\pi\)
\(504\) 0.512546 + 0.329393i 0.0228306 + 0.0146723i
\(505\) 51.2721 2.28158
\(506\) 7.25685 8.35080i 0.322606 0.371239i
\(507\) 3.43060 0.152358
\(508\) −19.9422 12.8161i −0.884792 0.568621i
\(509\) 4.29334 + 29.8608i 0.190299 + 1.32356i 0.831217 + 0.555948i \(0.187645\pi\)
−0.640918 + 0.767609i \(0.721446\pi\)
\(510\) 1.03387 + 2.26385i 0.0457804 + 0.100245i
\(511\) −10.7598 3.15937i −0.475987 0.139762i
\(512\) −11.7986 + 25.8354i −0.521431 + 1.14177i
\(513\) 0.193851 0.223716i 0.00855872 0.00987729i
\(514\) 6.05578 42.1189i 0.267109 1.85779i
\(515\) −11.0482 + 3.24405i −0.486842 + 0.142950i
\(516\) 1.55376 + 1.79313i 0.0684004 + 0.0789383i
\(517\) 3.52061 2.26256i 0.154836 0.0995072i
\(518\) 9.01285 5.79221i 0.396002 0.254495i
\(519\) 4.33300 + 5.00054i 0.190197 + 0.219500i
\(520\) 6.87891 2.01983i 0.301660 0.0885754i
\(521\) 2.26432 15.7487i 0.0992019 0.689964i −0.878157 0.478373i \(-0.841227\pi\)
0.977358 0.211591i \(-0.0678644\pi\)
\(522\) −5.86587 + 6.76958i −0.256742 + 0.296296i
\(523\) −13.5710 + 29.7164i −0.593420 + 1.29941i 0.339933 + 0.940450i \(0.389596\pi\)
−0.933353 + 0.358959i \(0.883132\pi\)
\(524\) −25.4809 7.48186i −1.11314 0.326846i
\(525\) 1.42377 + 3.11762i 0.0621383 + 0.136064i
\(526\) 2.35166 + 16.3561i 0.102537 + 0.713162i
\(527\) −1.37055 0.880802i −0.0597023 0.0383683i
\(528\) 5.45067 0.237210
\(529\) −3.20843 22.7751i −0.139497 0.990222i
\(530\) 64.4247 2.79843
\(531\) −11.3419 7.28899i −0.492196 0.316315i
\(532\) 0.0708803 + 0.492983i 0.00307305 + 0.0213735i
\(533\) 2.66636 + 5.83852i 0.115493 + 0.252894i
\(534\) −19.4600 5.71396i −0.842115 0.247267i
\(535\) −0.631088 + 1.38189i −0.0272843 + 0.0597443i
\(536\) −1.42800 + 1.64800i −0.0616803 + 0.0711829i
\(537\) 3.20579 22.2968i 0.138340 0.962177i
\(538\) 41.6426 12.2274i 1.79534 0.527159i
\(539\) 0.787227 + 0.908508i 0.0339083 + 0.0391322i
\(540\) 4.10893 2.64065i 0.176820 0.113636i
\(541\) −20.0450 + 12.8821i −0.861801 + 0.553846i −0.895235 0.445595i \(-0.852992\pi\)
0.0334337 + 0.999441i \(0.489356\pi\)
\(542\) 18.6946 + 21.5747i 0.803000 + 0.926712i
\(543\) 8.10243 2.37909i 0.347709 0.102096i
\(544\) 0.475732 3.30879i 0.0203969 0.141863i
\(545\) 11.0010 12.6958i 0.471229 0.543828i
\(546\) 3.23133 7.07562i 0.138288 0.302808i
\(547\) −20.9981 6.16561i −0.897816 0.263622i −0.199912 0.979814i \(-0.564066\pi\)
−0.697904 + 0.716191i \(0.745884\pi\)
\(548\) 2.11144 + 4.62340i 0.0901962 + 0.197502i
\(549\) −0.602744 4.19218i −0.0257245 0.178918i
\(550\) 6.65130 + 4.27453i 0.283612 + 0.182267i
\(551\) 1.38175 0.0588646
\(552\) 1.91660 2.20552i 0.0815758 0.0938732i
\(553\) 7.15016 0.304056
\(554\) 42.4967 + 27.3110i 1.80551 + 1.16033i
\(555\) 2.30653 + 16.0423i 0.0979067 + 0.680956i
\(556\) −7.94442 17.3958i −0.336918 0.737748i
\(557\) −34.7233 10.1957i −1.47127 0.432004i −0.554760 0.832011i \(-0.687190\pi\)
−0.916512 + 0.400006i \(0.869008\pi\)
\(558\) −2.90709 + 6.36563i −0.123067 + 0.269479i
\(559\) −3.74329 + 4.31999i −0.158324 + 0.182716i
\(560\) 1.87324 13.0287i 0.0791590 0.550563i
\(561\) −0.515298 + 0.151305i −0.0217559 + 0.00638811i
\(562\) −23.8729 27.5508i −1.00702 1.16216i
\(563\) 32.5347 20.9088i 1.37117 0.881201i 0.372276 0.928122i \(-0.378577\pi\)
0.998899 + 0.0469213i \(0.0149410\pi\)
\(564\) −4.92747 + 3.16669i −0.207484 + 0.133342i
\(565\) −34.4029 39.7031i −1.44734 1.67032i
\(566\) −38.7949 + 11.3912i −1.63067 + 0.478808i
\(567\) −0.142315 + 0.989821i −0.00597666 + 0.0415686i
\(568\) −4.74740 + 5.47880i −0.199197 + 0.229885i
\(569\) 3.78035 8.27782i 0.158481 0.347024i −0.813690 0.581300i \(-0.802544\pi\)
0.972170 + 0.234275i \(0.0752717\pi\)
\(570\) −1.58226 0.464593i −0.0662735 0.0194597i
\(571\) 14.9750 + 32.7907i 0.626685 + 1.37225i 0.910556 + 0.413385i \(0.135654\pi\)
−0.283872 + 0.958862i \(0.591619\pi\)
\(572\) −1.16677 8.11505i −0.0487851 0.339307i
\(573\) −18.2412 11.7229i −0.762035 0.489730i
\(574\) 3.03866 0.126831
\(575\) 15.7777 4.60837i 0.657975 0.192182i
\(576\) −5.29046 −0.220436
\(577\) 28.8955 + 18.5700i 1.20294 + 0.773081i 0.979462 0.201629i \(-0.0646235\pi\)
0.223475 + 0.974710i \(0.428260\pi\)
\(578\) −4.58820 31.9116i −0.190844 1.32735i
\(579\) −8.09039 17.7155i −0.336225 0.736230i
\(580\) 21.8754 + 6.42319i 0.908326 + 0.266709i
\(581\) 0.0110224 0.0241357i 0.000457286 0.00100132i
\(582\) −0.0971345 + 0.112099i −0.00402635 + 0.00464666i
\(583\) −1.97850 + 13.7608i −0.0819412 + 0.569913i
\(584\) −6.55558 + 1.92489i −0.271272 + 0.0796526i
\(585\) 7.70586 + 8.89303i 0.318598 + 0.367682i
\(586\) 44.7816 28.7794i 1.84991 1.18887i
\(587\) −6.87638 + 4.41918i −0.283818 + 0.182399i −0.674802 0.737998i \(-0.735771\pi\)
0.390984 + 0.920397i \(0.372135\pi\)
\(588\) −1.10181 1.27155i −0.0454378 0.0524380i
\(589\) 1.03577 0.304130i 0.0426783 0.0125315i
\(590\) −10.6887 + 74.3417i −0.440048 + 3.06060i
\(591\) 6.61609 7.63537i 0.272150 0.314077i
\(592\) 10.5159 23.0265i 0.432199 0.946384i
\(593\) 25.4459 + 7.47159i 1.04494 + 0.306821i 0.758770 0.651359i \(-0.225801\pi\)
0.286167 + 0.958180i \(0.407619\pi\)
\(594\) 0.958308 + 2.09840i 0.0393198 + 0.0860984i
\(595\) 0.184570 + 1.28371i 0.00756663 + 0.0526270i
\(596\) −25.6526 16.4860i −1.05077 0.675291i
\(597\) −4.10666 −0.168075
\(598\) −31.3539 20.2130i −1.28216 0.826572i
\(599\) 19.5398 0.798375 0.399188 0.916869i \(-0.369292\pi\)
0.399188 + 0.916869i \(0.369292\pi\)
\(600\) 1.75667 + 1.12894i 0.0717157 + 0.0460889i
\(601\) −2.83902 19.7458i −0.115806 0.805448i −0.962093 0.272721i \(-0.912076\pi\)
0.846287 0.532727i \(-0.178833\pi\)
\(602\) 1.12417 + 2.46159i 0.0458177 + 0.100327i
\(603\) −3.43413 1.00835i −0.139848 0.0410632i
\(604\) −3.09403 + 6.77498i −0.125894 + 0.275670i
\(605\) 18.1643 20.9628i 0.738486 0.852258i
\(606\) 4.82345 33.5478i 0.195939 1.36279i
\(607\) −29.2282 + 8.58218i −1.18634 + 0.348340i −0.814614 0.580004i \(-0.803051\pi\)
−0.371723 + 0.928344i \(0.621233\pi\)
\(608\) 1.45049 + 1.67395i 0.0588251 + 0.0678878i
\(609\) −3.92680 + 2.52360i −0.159122 + 0.102261i
\(610\) −19.8485 + 12.7558i −0.803641 + 0.516468i
\(611\) −9.24093 10.6646i −0.373848 0.431444i
\(612\) 0.721214 0.211768i 0.0291533 0.00856019i
\(613\) 2.23998 15.5794i 0.0904721 0.629247i −0.893251 0.449558i \(-0.851582\pi\)
0.983723 0.179690i \(-0.0575093\pi\)
\(614\) −9.63899 + 11.1240i −0.388998 + 0.448928i
\(615\) −1.90958 + 4.18140i −0.0770017 + 0.168610i
\(616\) 0.702746 + 0.206345i 0.0283145 + 0.00831388i
\(617\) −6.18378 13.5406i −0.248950 0.545124i 0.743362 0.668890i \(-0.233230\pi\)
−0.992311 + 0.123766i \(0.960503\pi\)
\(618\) 1.08325 + 7.53414i 0.0435745 + 0.303068i
\(619\) 20.7947 + 13.3639i 0.835810 + 0.537142i 0.887119 0.461540i \(-0.152703\pi\)
−0.0513094 + 0.998683i \(0.516339\pi\)
\(620\) 17.8117 0.715336
\(621\) 4.59964 + 1.35769i 0.184577 + 0.0544822i
\(622\) 27.7671 1.11336
\(623\) −8.89110 5.71396i −0.356214 0.228925i
\(624\) −2.61563 18.1921i −0.104709 0.728267i
\(625\) −12.6245 27.6438i −0.504979 1.10575i
\(626\) 25.9645 + 7.62387i 1.03775 + 0.304711i
\(627\) 0.147826 0.323694i 0.00590361 0.0129271i
\(628\) 17.4797 20.1726i 0.697514 0.804974i
\(629\) −0.354960 + 2.46880i −0.0141532 + 0.0984375i
\(630\) 5.34514 1.56947i 0.212955 0.0625293i
\(631\) 7.82029 + 9.02509i 0.311321 + 0.359283i 0.889749 0.456450i \(-0.150879\pi\)
−0.578428 + 0.815733i \(0.696334\pi\)
\(632\) 3.66479 2.35522i 0.145777 0.0936854i
\(633\) −19.1675 + 12.3182i −0.761838 + 0.489604i
\(634\) 30.1148 + 34.7544i 1.19601 + 1.38027i
\(635\) 39.2443 11.5232i 1.55736 0.457283i
\(636\) 2.76912 19.2597i 0.109803 0.763696i
\(637\) 2.65446 3.06341i 0.105173 0.121377i
\(638\) −4.47318 + 9.79491i −0.177095 + 0.387784i
\(639\) −11.4168 3.35227i −0.451640 0.132614i
\(640\) −5.80385 12.7087i −0.229417 0.502354i
\(641\) −2.31863 16.1264i −0.0915802 0.636954i −0.982977 0.183730i \(-0.941183\pi\)
0.891397 0.453224i \(-0.149726\pi\)
\(642\) 0.844814 + 0.542929i 0.0333422 + 0.0214277i
\(643\) −34.3064 −1.35291 −0.676455 0.736484i \(-0.736485\pi\)
−0.676455 + 0.736484i \(0.736485\pi\)
\(644\) −6.79429 + 4.35278i −0.267733 + 0.171523i
\(645\) −4.09377 −0.161192
\(646\) −0.213492 0.137203i −0.00839975 0.00539819i
\(647\) 0.710436 + 4.94119i 0.0279301 + 0.194258i 0.999009 0.0444989i \(-0.0141691\pi\)
−0.971079 + 0.238757i \(0.923260\pi\)
\(648\) 0.253098 + 0.554206i 0.00994261 + 0.0217713i
\(649\) −15.5508 4.56611i −0.610420 0.179236i
\(650\) 11.0748 24.2505i 0.434391 0.951184i
\(651\) −2.38810 + 2.75602i −0.0935971 + 0.108017i
\(652\) −0.473372 + 3.29237i −0.0185387 + 0.128939i
\(653\) 15.9815 4.69258i 0.625403 0.183635i 0.0463505 0.998925i \(-0.485241\pi\)
0.579052 + 0.815290i \(0.303423\pi\)
\(654\) −7.27206 8.39240i −0.284360 0.328169i
\(655\) 38.5467 24.7725i 1.50615 0.967941i
\(656\) 6.04000 3.88167i 0.235822 0.151554i
\(657\) −7.34366 8.47503i −0.286503 0.330643i
\(658\) −6.40993 + 1.88213i −0.249885 + 0.0733729i
\(659\) −1.74111 + 12.1097i −0.0678240 + 0.471726i 0.927397 + 0.374078i \(0.122041\pi\)
−0.995221 + 0.0976477i \(0.968868\pi\)
\(660\) 3.84505 4.43743i 0.149668 0.172727i
\(661\) −13.2195 + 28.9467i −0.514179 + 1.12590i 0.457417 + 0.889252i \(0.348775\pi\)
−0.971597 + 0.236644i \(0.923953\pi\)
\(662\) 38.5291 + 11.3132i 1.49748 + 0.439699i
\(663\) 0.752271 + 1.64724i 0.0292158 + 0.0639736i
\(664\) −0.00230065 0.0160013i −8.92824e−5 0.000620973i
\(665\) −0.722921 0.464593i −0.0280337 0.0180161i
\(666\) 10.7136 0.415143
\(667\) 9.27047 + 20.3762i 0.358954 + 0.788969i
\(668\) 23.6160 0.913730
\(669\) −13.4904 8.66974i −0.521568 0.335192i
\(670\) 2.83754 + 19.7355i 0.109624 + 0.762449i
\(671\) −2.11503 4.63127i −0.0816497 0.178788i
\(672\) −7.17941 2.10807i −0.276952 0.0813204i
\(673\) −21.0071 + 45.9991i −0.809764 + 1.77314i −0.201345 + 0.979520i \(0.564531\pi\)
−0.608419 + 0.793616i \(0.708196\pi\)
\(674\) −17.9818 + 20.7521i −0.692633 + 0.799341i
\(675\) −0.487761 + 3.39245i −0.0187739 + 0.130576i
\(676\) −5.53820 + 1.62616i −0.213008 + 0.0625447i
\(677\) −8.38542 9.67728i −0.322278 0.371928i 0.571374 0.820690i \(-0.306411\pi\)
−0.893651 + 0.448762i \(0.851865\pi\)
\(678\) −29.2146 + 18.7751i −1.12198 + 0.721052i
\(679\) −0.0650249 + 0.0417890i −0.00249543 + 0.00160371i
\(680\) 0.517446 + 0.597165i 0.0198432 + 0.0229002i
\(681\) −3.98921 + 1.17134i −0.152867 + 0.0448857i
\(682\) −1.19723 + 8.32691i −0.0458442 + 0.318854i
\(683\) −0.436006 + 0.503178i −0.0166833 + 0.0192536i −0.764030 0.645181i \(-0.776782\pi\)
0.747347 + 0.664434i \(0.231327\pi\)
\(684\) −0.206899 + 0.453045i −0.00791097 + 0.0173226i
\(685\) −8.41446 2.47071i −0.321500 0.0944009i
\(686\) −0.797176 1.74557i −0.0304363 0.0666462i
\(687\) −2.09978 14.6043i −0.0801115 0.557188i
\(688\) 5.37903 + 3.45689i 0.205074 + 0.131793i
\(689\) 46.8772 1.78588
\(690\) −3.76453 26.4500i −0.143313 1.00694i
\(691\) −26.3499 −1.00240 −0.501198 0.865333i \(-0.667107\pi\)
−0.501198 + 0.865333i \(0.667107\pi\)
\(692\) −9.36533 6.01873i −0.356017 0.228798i
\(693\) 0.171081 + 1.18989i 0.00649882 + 0.0452003i
\(694\) −15.4206 33.7663i −0.585356 1.28175i
\(695\) 31.6599 + 9.29619i 1.20093 + 0.352625i
\(696\) −1.18141 + 2.58692i −0.0447811 + 0.0980570i
\(697\) −0.463260 + 0.534631i −0.0175472 + 0.0202506i
\(698\) 0.252571 1.75667i 0.00955994 0.0664908i
\(699\) −9.81428 + 2.88173i −0.371210 + 0.108997i
\(700\) −3.77627 4.35805i −0.142729 0.164719i
\(701\) 13.0382 8.37915i 0.492447 0.316476i −0.270742 0.962652i \(-0.587269\pi\)
0.763189 + 0.646176i \(0.223633\pi\)
\(702\) 6.54373 4.20540i 0.246977 0.158723i
\(703\) −1.08226 1.24899i −0.0408181 0.0471067i
\(704\) −6.10219 + 1.79177i −0.229985 + 0.0675297i
\(705\) 1.43825 10.0033i 0.0541678 0.376745i
\(706\) −23.4312 + 27.0410i −0.881844 + 1.01770i
\(707\) 7.33699 16.0658i 0.275936 0.604215i
\(708\) 21.7649 + 6.39076i 0.817976 + 0.240179i
\(709\) 9.65095 + 21.1326i 0.362449 + 0.793653i 0.999735 + 0.0230254i \(0.00732985\pi\)
−0.637286 + 0.770628i \(0.719943\pi\)
\(710\) 9.43341 + 65.6108i 0.354029 + 2.46233i
\(711\) 6.01510 + 3.86567i 0.225584 + 0.144974i
\(712\) −6.43924 −0.241321
\(713\) 11.4341 + 13.2337i 0.428211 + 0.495605i
\(714\) 0.857309 0.0320840
\(715\) 11.9001 + 7.64772i 0.445038 + 0.286008i
\(716\) 5.39377 + 37.5145i 0.201575 + 1.40198i
\(717\) −1.51469 3.31670i −0.0565670 0.123864i
\(718\) 2.30133 + 0.675732i 0.0858850 + 0.0252181i
\(719\) −5.36515 + 11.7480i −0.200086 + 0.438128i −0.982903 0.184125i \(-0.941055\pi\)
0.782817 + 0.622252i \(0.213782\pi\)
\(720\) 8.61972 9.94769i 0.321238 0.370729i
\(721\) −0.564489 + 3.92610i −0.0210227 + 0.146216i
\(722\) −34.8225 + 10.2248i −1.29596 + 0.380528i
\(723\) 10.2636 + 11.8448i 0.381707 + 0.440513i
\(724\) −11.9525 + 7.68138i −0.444210 + 0.285476i
\(725\) −13.4585 + 8.64923i −0.499835 + 0.321224i
\(726\) −12.0073 13.8572i −0.445634 0.514289i
\(727\) 39.9866 11.7411i 1.48302 0.435454i 0.562714 0.826652i \(-0.309757\pi\)
0.920307 + 0.391197i \(0.127939\pi\)
\(728\) 0.351466 2.44450i 0.0130262 0.0905991i
\(729\) −0.654861 + 0.755750i −0.0242541 + 0.0279907i
\(730\) −25.9515 + 56.8259i −0.960509 + 2.10322i
\(731\) −0.604484 0.177493i −0.0223577 0.00656480i
\(732\) 2.96021 + 6.48195i 0.109412 + 0.239580i
\(733\) 0.137962 + 0.959545i 0.00509573 + 0.0354416i 0.992211 0.124571i \(-0.0397555\pi\)
−0.987115 + 0.160013i \(0.948846\pi\)
\(734\) −29.0767 18.6865i −1.07324 0.689730i
\(735\) 2.90299 0.107078
\(736\) −14.9535 + 32.6208i −0.551195 + 1.20242i
\(737\) −4.30254 −0.158486
\(738\) 2.55628 + 1.64282i 0.0940981 + 0.0604732i
\(739\) 3.45488 + 24.0292i 0.127090 + 0.883930i 0.949216 + 0.314625i \(0.101879\pi\)
−0.822126 + 0.569305i \(0.807212\pi\)
\(740\) −11.3279 24.8045i −0.416420 0.911833i
\(741\) −1.15130 0.338051i −0.0422939 0.0124186i
\(742\) 9.21912 20.1870i 0.338444 0.741090i
\(743\) −24.2420 + 27.9767i −0.889352 + 1.02637i 0.110121 + 0.993918i \(0.464876\pi\)
−0.999473 + 0.0324492i \(0.989669\pi\)
\(744\) −0.316199 + 2.19921i −0.0115924 + 0.0806270i
\(745\) 50.4819 14.8228i 1.84951 0.543066i
\(746\) −27.2027 31.3936i −0.995961 1.14940i
\(747\) 0.0223214 0.0143451i 0.000816696 0.000524859i
\(748\) 0.760152 0.488520i 0.0277939 0.0178621i
\(749\) 0.342698 + 0.395494i 0.0125219 + 0.0144511i
\(750\) −8.40609 + 2.46825i −0.306947 + 0.0901278i
\(751\) −0.791946 + 5.50811i −0.0288985 + 0.200994i −0.999156 0.0410826i \(-0.986919\pi\)
0.970257 + 0.242076i \(0.0778284\pi\)
\(752\) −10.3368 + 11.9294i −0.376946 + 0.435019i
\(753\) −5.17361 + 11.3286i −0.188537 + 0.412838i
\(754\) 34.8379 + 10.2293i 1.26872 + 0.372530i
\(755\) −5.33842 11.6895i −0.194285 0.425425i
\(756\) −0.239446 1.66538i −0.00870856 0.0605693i
\(757\) −11.6133 7.46341i −0.422093 0.271262i 0.312305 0.949982i \(-0.398899\pi\)
−0.734398 + 0.678719i \(0.762535\pi\)
\(758\) −26.0308 −0.945482
\(759\) 5.76520 + 0.00820448i 0.209264 + 0.000297804i
\(760\) −0.523564 −0.0189917
\(761\) 14.4210 + 9.26784i 0.522762 + 0.335959i 0.775264 0.631638i \(-0.217617\pi\)
−0.252501 + 0.967597i \(0.581253\pi\)
\(762\) −3.84779 26.7620i −0.139391 0.969484i
\(763\) −2.40391 5.26384i −0.0870275 0.190564i
\(764\) 35.0045 + 10.2783i 1.26642 + 0.371854i
\(765\) −0.538757 + 1.17971i −0.0194788 + 0.0426526i
\(766\) −10.7430 + 12.3981i −0.388160 + 0.447960i
\(767\) −7.77742 + 54.0931i −0.280826 + 1.95319i
\(768\) −19.0137 + 5.58293i −0.686098 + 0.201457i
\(769\) −5.31096 6.12917i −0.191518 0.221024i 0.651867 0.758333i \(-0.273986\pi\)
−0.843385 + 0.537310i \(0.819441\pi\)
\(770\) 5.63372 3.62057i 0.203025 0.130476i
\(771\) 18.6541 11.9883i 0.671813 0.431748i