Properties

Label 483.2.q.c.211.2
Level $483$
Weight $2$
Character 483.211
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 40 x^{18} - 117 x^{17} + 295 x^{16} - 575 x^{15} + 1777 x^{14} - 1560 x^{13} + 4383 x^{12} - 6446 x^{11} + 7261 x^{10} + 7700 x^{9} + 7852 x^{8} - 39430 x^{7} - 101709 x^{6} + 156742 x^{5} + 999838 x^{4} + 2029154 x^{3} + 3616480 x^{2} + 4299390 x + 2374681\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 211.2
Root \(-0.820216 + 1.79602i\) of defining polynomial
Character \(\chi\) \(=\) 483.211
Dual form 483.2.q.c.190.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.698939 + 1.53046i) q^{2} +(-0.959493 + 0.281733i) q^{3} +(-0.544078 + 0.627899i) q^{4} +(2.35995 + 1.51665i) q^{5} +(-1.10181 - 1.27155i) q^{6} +(-0.142315 - 0.989821i) q^{7} +(1.88745 + 0.554206i) q^{8} +(0.841254 - 0.540641i) q^{9} +O(q^{10})\) \(q+(0.698939 + 1.53046i) q^{2} +(-0.959493 + 0.281733i) q^{3} +(-0.544078 + 0.627899i) q^{4} +(2.35995 + 1.51665i) q^{5} +(-1.10181 - 1.27155i) q^{6} +(-0.142315 - 0.989821i) q^{7} +(1.88745 + 0.554206i) q^{8} +(0.841254 - 0.540641i) q^{9} +(-0.671712 + 4.67186i) q^{10} +(-1.24422 + 2.72446i) q^{11} +(0.345139 - 0.755750i) q^{12} +(0.518088 - 3.60338i) q^{13} +(1.41542 - 0.909632i) q^{14} +(-2.69165 - 0.790339i) q^{15} +(0.707501 + 4.92078i) q^{16} +(4.22436 + 4.87517i) q^{17} +(1.41542 + 0.909632i) q^{18} +(1.48144 - 1.70967i) q^{19} +(-2.23630 + 0.656637i) q^{20} +(0.415415 + 0.909632i) q^{21} -5.03932 q^{22} +(-4.70814 + 0.912911i) q^{23} -1.96714 q^{24} +(1.19207 + 2.61028i) q^{25} +(5.87695 - 1.72563i) q^{26} +(-0.654861 + 0.755750i) q^{27} +(0.698939 + 0.449181i) q^{28} +(-0.423670 - 0.488942i) q^{29} +(-0.671712 - 4.67186i) q^{30} +(-3.99253 - 1.17231i) q^{31} +(-3.72685 + 2.39510i) q^{32} +(0.426251 - 2.96464i) q^{33} +(-4.50869 + 9.87266i) q^{34} +(1.16536 - 2.55177i) q^{35} +(-0.118239 + 0.822373i) q^{36} +(-0.667035 + 0.428678i) q^{37} +(3.65203 + 1.07233i) q^{38} +(0.518088 + 3.60338i) q^{39} +(3.61376 + 4.17051i) q^{40} +(-4.59234 - 2.95132i) q^{41} +(-1.10181 + 1.27155i) q^{42} +(-5.97713 + 1.75504i) q^{43} +(-1.03374 - 2.26357i) q^{44} +2.80528 q^{45} +(-4.68788 - 6.56756i) q^{46} +3.07437 q^{47} +(-2.06519 - 4.52213i) q^{48} +(-0.959493 + 0.281733i) q^{49} +(-3.16175 + 3.64885i) q^{50} +(-5.42674 - 3.48755i) q^{51} +(1.98068 + 2.28583i) q^{52} +(-0.101735 - 0.707584i) q^{53} +(-1.61435 - 0.474017i) q^{54} +(-7.06836 + 4.54256i) q^{55} +(0.279953 - 1.94711i) q^{56} +(-0.939762 + 2.05779i) q^{57} +(0.452187 - 0.990152i) q^{58} +(1.48955 - 10.3601i) q^{59} +(1.96072 - 1.26008i) q^{60} +(8.82559 + 2.59143i) q^{61} +(-0.996354 - 6.92979i) q^{62} +(-0.654861 - 0.755750i) q^{63} +(2.09394 + 1.34569i) q^{64} +(6.68772 - 7.71804i) q^{65} +(4.83519 - 1.41974i) q^{66} +(1.19092 + 2.60775i) q^{67} -5.35950 q^{68} +(4.26023 - 2.20237i) q^{69} +4.71990 q^{70} +(-0.858354 - 1.87953i) q^{71} +(1.88745 - 0.554206i) q^{72} +(8.75556 - 10.1045i) q^{73} +(-1.12229 - 0.721253i) q^{74} +(-1.87919 - 2.16870i) q^{75} +(0.267484 + 1.86039i) q^{76} +(2.87380 + 0.843825i) q^{77} +(-5.15272 + 3.31145i) q^{78} +(0.361531 - 2.51450i) q^{79} +(-5.79343 + 12.6858i) q^{80} +(0.415415 - 0.909632i) q^{81} +(1.30712 - 9.09119i) q^{82} +(13.8311 - 8.88870i) q^{83} +(-0.797176 - 0.234072i) q^{84} +(2.57536 + 17.9120i) q^{85} +(-6.86367 - 7.92110i) q^{86} +(0.544259 + 0.349774i) q^{87} +(-3.85832 + 4.45274i) q^{88} +(2.22425 - 0.653099i) q^{89} +(1.96072 + 4.29338i) q^{90} -3.64043 q^{91} +(1.98838 - 3.45293i) q^{92} +4.16108 q^{93} +(2.14879 + 4.70520i) q^{94} +(6.08911 - 1.78792i) q^{95} +(2.90111 - 3.34805i) q^{96} +(-11.9777 - 7.69758i) q^{97} +(-1.10181 - 1.27155i) q^{98} +(0.426251 + 2.96464i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + O(q^{10}) \) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + 9q^{10} + 3q^{11} + 18q^{12} - 2q^{13} + 18q^{14} - q^{15} + 8q^{16} + 8q^{17} + 18q^{18} + 6q^{19} - 2q^{20} - 2q^{21} + 6q^{22} + 11q^{23} + 9q^{25} + 7q^{26} - 2q^{27} - 4q^{28} + 23q^{29} + 9q^{30} + q^{31} - 28q^{32} + 14q^{33} - 28q^{34} + 10q^{35} - 4q^{36} - 9q^{37} + 34q^{38} - 2q^{39} - 15q^{41} - 4q^{42} - 23q^{43} - 16q^{44} - 12q^{45} + 11q^{46} - 66q^{47} - 36q^{48} - 2q^{49} - 26q^{50} - 14q^{51} + 7q^{52} + 9q^{53} - 4q^{54} - 62q^{55} + 22q^{56} - 27q^{57} - 20q^{58} + 49q^{59} - 2q^{60} + 46q^{61} - 9q^{62} - 2q^{63} + 16q^{64} + 11q^{65} - 16q^{66} + 14q^{67} + 38q^{68} + 11q^{69} - 2q^{70} + 36q^{71} - q^{73} + 4q^{74} - 2q^{75} + 34q^{76} - 8q^{77} - 15q^{78} - 22q^{79} + 15q^{80} - 2q^{81} - 30q^{82} + 8q^{83} - 4q^{84} - 32q^{85} - 68q^{86} + q^{87} - 11q^{88} - 2q^{89} - 2q^{90} - 24q^{91} + 11q^{92} - 32q^{93} + 33q^{94} - 107q^{95} + 16q^{96} + 18q^{97} - 4q^{98} + 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.698939 + 1.53046i 0.494224 + 1.08220i 0.978304 + 0.207176i \(0.0664273\pi\)
−0.484079 + 0.875024i \(0.660845\pi\)
\(3\) −0.959493 + 0.281733i −0.553964 + 0.162658i
\(4\) −0.544078 + 0.627899i −0.272039 + 0.313950i
\(5\) 2.35995 + 1.51665i 1.05540 + 0.678266i 0.948749 0.316030i \(-0.102350\pi\)
0.106653 + 0.994296i \(0.465986\pi\)
\(6\) −1.10181 1.27155i −0.449811 0.519110i
\(7\) −0.142315 0.989821i −0.0537900 0.374117i
\(8\) 1.88745 + 0.554206i 0.667316 + 0.195942i
\(9\) 0.841254 0.540641i 0.280418 0.180214i
\(10\) −0.671712 + 4.67186i −0.212414 + 1.47737i
\(11\) −1.24422 + 2.72446i −0.375147 + 0.821457i 0.624050 + 0.781384i \(0.285486\pi\)
−0.999197 + 0.0400722i \(0.987241\pi\)
\(12\) 0.345139 0.755750i 0.0996331 0.218166i
\(13\) 0.518088 3.60338i 0.143692 0.999397i −0.782582 0.622547i \(-0.786098\pi\)
0.926274 0.376850i \(-0.122993\pi\)
\(14\) 1.41542 0.909632i 0.378286 0.243109i
\(15\) −2.69165 0.790339i −0.694980 0.204065i
\(16\) 0.707501 + 4.92078i 0.176875 + 1.23020i
\(17\) 4.22436 + 4.87517i 1.02456 + 1.18240i 0.983064 + 0.183263i \(0.0586661\pi\)
0.0414935 + 0.999139i \(0.486788\pi\)
\(18\) 1.41542 + 0.909632i 0.333617 + 0.214402i
\(19\) 1.48144 1.70967i 0.339866 0.392226i −0.559928 0.828541i \(-0.689171\pi\)
0.899794 + 0.436315i \(0.143717\pi\)
\(20\) −2.23630 + 0.656637i −0.500052 + 0.146829i
\(21\) 0.415415 + 0.909632i 0.0906510 + 0.198498i
\(22\) −5.03932 −1.07439
\(23\) −4.70814 + 0.912911i −0.981715 + 0.190355i
\(24\) −1.96714 −0.401540
\(25\) 1.19207 + 2.61028i 0.238415 + 0.522056i
\(26\) 5.87695 1.72563i 1.15256 0.338423i
\(27\) −0.654861 + 0.755750i −0.126028 + 0.145444i
\(28\) 0.698939 + 0.449181i 0.132087 + 0.0848872i
\(29\) −0.423670 0.488942i −0.0786736 0.0907942i 0.715048 0.699075i \(-0.246405\pi\)
−0.793722 + 0.608281i \(0.791859\pi\)
\(30\) −0.671712 4.67186i −0.122637 0.852961i
\(31\) −3.99253 1.17231i −0.717080 0.210554i −0.0972162 0.995263i \(-0.530994\pi\)
−0.619863 + 0.784710i \(0.712812\pi\)
\(32\) −3.72685 + 2.39510i −0.658820 + 0.423398i
\(33\) 0.426251 2.96464i 0.0742008 0.516078i
\(34\) −4.50869 + 9.87266i −0.773235 + 1.69315i
\(35\) 1.16536 2.55177i 0.196981 0.431328i
\(36\) −0.118239 + 0.822373i −0.0197066 + 0.137062i
\(37\) −0.667035 + 0.428678i −0.109660 + 0.0704742i −0.594321 0.804228i \(-0.702579\pi\)
0.484661 + 0.874702i \(0.338943\pi\)
\(38\) 3.65203 + 1.07233i 0.592437 + 0.173955i
\(39\) 0.518088 + 3.60338i 0.0829604 + 0.577002i
\(40\) 3.61376 + 4.17051i 0.571386 + 0.659415i
\(41\) −4.59234 2.95132i −0.717203 0.460918i 0.130460 0.991454i \(-0.458355\pi\)
−0.847663 + 0.530535i \(0.821991\pi\)
\(42\) −1.10181 + 1.27155i −0.170013 + 0.196205i
\(43\) −5.97713 + 1.75504i −0.911503 + 0.267641i −0.703673 0.710524i \(-0.748458\pi\)
−0.207830 + 0.978165i \(0.566640\pi\)
\(44\) −1.03374 2.26357i −0.155842 0.341245i
\(45\) 2.80528 0.418187
\(46\) −4.68788 6.56756i −0.691190 0.968334i
\(47\) 3.07437 0.448443 0.224221 0.974538i \(-0.428016\pi\)
0.224221 + 0.974538i \(0.428016\pi\)
\(48\) −2.06519 4.52213i −0.298084 0.652713i
\(49\) −0.959493 + 0.281733i −0.137070 + 0.0402475i
\(50\) −3.16175 + 3.64885i −0.447138 + 0.516025i
\(51\) −5.42674 3.48755i −0.759895 0.488355i
\(52\) 1.98068 + 2.28583i 0.274671 + 0.316987i
\(53\) −0.101735 0.707584i −0.0139744 0.0971942i 0.981641 0.190740i \(-0.0610888\pi\)
−0.995615 + 0.0935461i \(0.970180\pi\)
\(54\) −1.61435 0.474017i −0.219686 0.0645055i
\(55\) −7.06836 + 4.54256i −0.953097 + 0.612518i
\(56\) 0.279953 1.94711i 0.0374103 0.260194i
\(57\) −0.939762 + 2.05779i −0.124474 + 0.272561i
\(58\) 0.452187 0.990152i 0.0593751 0.130013i
\(59\) 1.48955 10.3601i 0.193923 1.34877i −0.627575 0.778556i \(-0.715952\pi\)
0.821498 0.570211i \(-0.193139\pi\)
\(60\) 1.96072 1.26008i 0.253128 0.162675i
\(61\) 8.82559 + 2.59143i 1.13000 + 0.331798i 0.792708 0.609601i \(-0.208671\pi\)
0.337293 + 0.941400i \(0.390489\pi\)
\(62\) −0.996354 6.92979i −0.126537 0.880084i
\(63\) −0.654861 0.755750i −0.0825047 0.0952155i
\(64\) 2.09394 + 1.34569i 0.261742 + 0.168212i
\(65\) 6.68772 7.71804i 0.829510 0.957305i
\(66\) 4.83519 1.41974i 0.595171 0.174758i
\(67\) 1.19092 + 2.60775i 0.145494 + 0.318587i 0.968323 0.249702i \(-0.0803328\pi\)
−0.822829 + 0.568289i \(0.807605\pi\)
\(68\) −5.35950 −0.649934
\(69\) 4.26023 2.20237i 0.512872 0.265134i
\(70\) 4.71990 0.564136
\(71\) −0.858354 1.87953i −0.101868 0.223059i 0.851835 0.523810i \(-0.175490\pi\)
−0.953703 + 0.300751i \(0.902763\pi\)
\(72\) 1.88745 0.554206i 0.222439 0.0653139i
\(73\) 8.75556 10.1045i 1.02476 1.18264i 0.0417431 0.999128i \(-0.486709\pi\)
0.983018 0.183509i \(-0.0587457\pi\)
\(74\) −1.12229 0.721253i −0.130464 0.0838440i
\(75\) −1.87919 2.16870i −0.216990 0.250420i
\(76\) 0.267484 + 1.86039i 0.0306825 + 0.213402i
\(77\) 2.87380 + 0.843825i 0.327500 + 0.0961627i
\(78\) −5.15272 + 3.31145i −0.583431 + 0.374948i
\(79\) 0.361531 2.51450i 0.0406754 0.282903i −0.959324 0.282306i \(-0.908901\pi\)
1.00000 0.000597558i \(-0.000190208\pi\)
\(80\) −5.79343 + 12.6858i −0.647725 + 1.41832i
\(81\) 0.415415 0.909632i 0.0461572 0.101070i
\(82\) 1.30712 9.09119i 0.144347 1.00395i
\(83\) 13.8311 8.88870i 1.51816 0.975662i 0.526027 0.850468i \(-0.323681\pi\)
0.992132 0.125194i \(-0.0399554\pi\)
\(84\) −0.797176 0.234072i −0.0869790 0.0255393i
\(85\) 2.57536 + 17.9120i 0.279337 + 1.94283i
\(86\) −6.86367 7.92110i −0.740129 0.854154i
\(87\) 0.544259 + 0.349774i 0.0583507 + 0.0374997i
\(88\) −3.85832 + 4.45274i −0.411299 + 0.474664i
\(89\) 2.22425 0.653099i 0.235770 0.0692283i −0.161713 0.986838i \(-0.551702\pi\)
0.397483 + 0.917609i \(0.369884\pi\)
\(90\) 1.96072 + 4.29338i 0.206678 + 0.452562i
\(91\) −3.64043 −0.381621
\(92\) 1.98838 3.45293i 0.207303 0.359993i
\(93\) 4.16108 0.431484
\(94\) 2.14879 + 4.70520i 0.221631 + 0.485305i
\(95\) 6.08911 1.78792i 0.624729 0.183437i
\(96\) 2.90111 3.34805i 0.296093 0.341709i
\(97\) −11.9777 7.69758i −1.21615 0.781570i −0.234470 0.972123i \(-0.575336\pi\)
−0.981677 + 0.190553i \(0.938972\pi\)
\(98\) −1.10181 1.27155i −0.111299 0.128446i
\(99\) 0.426251 + 2.96464i 0.0428398 + 0.297958i
\(100\) −2.28757 0.671692i −0.228757 0.0671692i
\(101\) −3.96421 + 2.54764i −0.394453 + 0.253500i −0.722800 0.691058i \(-0.757145\pi\)
0.328346 + 0.944557i \(0.393509\pi\)
\(102\) 1.54461 10.7430i 0.152939 1.06372i
\(103\) 3.60737 7.89905i 0.355445 0.778316i −0.644461 0.764637i \(-0.722918\pi\)
0.999906 0.0136794i \(-0.00435441\pi\)
\(104\) 2.97488 6.51408i 0.291711 0.638758i
\(105\) −0.399233 + 2.77673i −0.0389612 + 0.270981i
\(106\) 1.01182 0.650260i 0.0982771 0.0631588i
\(107\) −10.1365 2.97634i −0.979930 0.287733i −0.247734 0.968828i \(-0.579686\pi\)
−0.732195 + 0.681095i \(0.761504\pi\)
\(108\) −0.118239 0.822373i −0.0113776 0.0791329i
\(109\) −1.93986 2.23872i −0.185805 0.214431i 0.655203 0.755453i \(-0.272583\pi\)
−0.841008 + 0.541022i \(0.818038\pi\)
\(110\) −11.8926 7.64288i −1.13391 0.728720i
\(111\) 0.519243 0.599239i 0.0492844 0.0568772i
\(112\) 4.77001 1.40060i 0.450723 0.132344i
\(113\) −4.01609 8.79401i −0.377802 0.827271i −0.999047 0.0436541i \(-0.986100\pi\)
0.621245 0.783617i \(-0.286627\pi\)
\(114\) −3.80621 −0.356484
\(115\) −12.4956 4.98617i −1.16522 0.464963i
\(116\) 0.537516 0.0499071
\(117\) −1.51229 3.31145i −0.139811 0.306144i
\(118\) 16.8968 4.96135i 1.55548 0.456730i
\(119\) 4.22436 4.87517i 0.387246 0.446906i
\(120\) −4.64235 2.98346i −0.423786 0.272351i
\(121\) 1.32885 + 1.53358i 0.120805 + 0.139416i
\(122\) 2.20247 + 15.3185i 0.199402 + 1.38687i
\(123\) 5.23780 + 1.53796i 0.472276 + 0.138673i
\(124\) 2.90834 1.86908i 0.261177 0.167848i
\(125\) 0.850527 5.91554i 0.0760734 0.529102i
\(126\) 0.698939 1.53046i 0.0622664 0.136344i
\(127\) −6.47915 + 14.1874i −0.574932 + 1.25892i 0.369198 + 0.929351i \(0.379632\pi\)
−0.944130 + 0.329574i \(0.893095\pi\)
\(128\) −1.85694 + 12.9153i −0.164132 + 1.14156i
\(129\) 5.24056 3.36790i 0.461405 0.296527i
\(130\) 16.4865 + 4.84087i 1.44596 + 0.424572i
\(131\) 2.58908 + 18.0074i 0.226209 + 1.57332i 0.713867 + 0.700281i \(0.246942\pi\)
−0.487659 + 0.873034i \(0.662149\pi\)
\(132\) 1.62958 + 1.88064i 0.141837 + 0.163689i
\(133\) −1.90310 1.22305i −0.165020 0.106052i
\(134\) −3.15868 + 3.64531i −0.272868 + 0.314907i
\(135\) −2.69165 + 0.790339i −0.231660 + 0.0680215i
\(136\) 5.27143 + 11.5428i 0.452021 + 0.989789i
\(137\) 7.97935 0.681722 0.340861 0.940114i \(-0.389281\pi\)
0.340861 + 0.940114i \(0.389281\pi\)
\(138\) 6.34828 + 4.98080i 0.540402 + 0.423994i
\(139\) −3.89879 −0.330691 −0.165346 0.986236i \(-0.552874\pi\)
−0.165346 + 0.986236i \(0.552874\pi\)
\(140\) 0.968212 + 2.12009i 0.0818289 + 0.179180i
\(141\) −2.94983 + 0.866149i −0.248421 + 0.0729429i
\(142\) 2.27662 2.62736i 0.191049 0.220483i
\(143\) 9.17266 + 5.89491i 0.767056 + 0.492957i
\(144\) 3.25556 + 3.75712i 0.271297 + 0.313093i
\(145\) −0.258289 1.79644i −0.0214497 0.149186i
\(146\) 21.5841 + 6.33766i 1.78631 + 0.524509i
\(147\) 0.841254 0.540641i 0.0693854 0.0445913i
\(148\) 0.0937528 0.652065i 0.00770644 0.0535994i
\(149\) 0.638475 1.39807i 0.0523059 0.114534i −0.881675 0.471858i \(-0.843584\pi\)
0.933981 + 0.357324i \(0.116311\pi\)
\(150\) 2.00567 4.39181i 0.163763 0.358590i
\(151\) −2.20367 + 15.3269i −0.179332 + 1.24728i 0.678981 + 0.734156i \(0.262422\pi\)
−0.858313 + 0.513127i \(0.828487\pi\)
\(152\) 3.74367 2.40591i 0.303651 0.195145i
\(153\) 6.18947 + 1.81739i 0.500389 + 0.146928i
\(154\) 0.717170 + 4.98803i 0.0577912 + 0.401947i
\(155\) −7.64419 8.82187i −0.613996 0.708590i
\(156\) −2.54444 1.63521i −0.203718 0.130922i
\(157\) 10.9336 12.6180i 0.872595 1.00703i −0.127290 0.991866i \(-0.540628\pi\)
0.999885 0.0151626i \(-0.00482659\pi\)
\(158\) 4.10104 1.20417i 0.326261 0.0957988i
\(159\) 0.296964 + 0.650260i 0.0235508 + 0.0515690i
\(160\) −12.4277 −0.982496
\(161\) 1.57366 + 4.53030i 0.124022 + 0.357038i
\(162\) 1.68251 0.132190
\(163\) −9.58788 20.9945i −0.750981 1.64442i −0.764595 0.644511i \(-0.777061\pi\)
0.0136147 0.999907i \(-0.495666\pi\)
\(164\) 4.35172 1.27778i 0.339812 0.0997779i
\(165\) 5.50225 6.34994i 0.428350 0.494342i
\(166\) 23.2709 + 14.9553i 1.80617 + 1.16076i
\(167\) −11.4971 13.2684i −0.889672 1.02674i −0.999463 0.0327816i \(-0.989563\pi\)
0.109790 0.993955i \(-0.464982\pi\)
\(168\) 0.279953 + 1.94711i 0.0215988 + 0.150223i
\(169\) −0.242512 0.0712078i −0.0186547 0.00547752i
\(170\) −25.6137 + 16.4609i −1.96448 + 1.26249i
\(171\) 0.321948 2.23920i 0.0246200 0.171236i
\(172\) 2.15003 4.70791i 0.163938 0.358975i
\(173\) −8.36840 + 18.3242i −0.636237 + 1.39317i 0.266862 + 0.963735i \(0.414013\pi\)
−0.903100 + 0.429431i \(0.858714\pi\)
\(174\) −0.154912 + 1.07744i −0.0117439 + 0.0816805i
\(175\) 2.41406 1.55142i 0.182486 0.117276i
\(176\) −14.2868 4.19497i −1.07691 0.316208i
\(177\) 1.48955 + 10.3601i 0.111962 + 0.778711i
\(178\) 2.55416 + 2.94765i 0.191442 + 0.220936i
\(179\) −20.8736 13.4147i −1.56017 1.00266i −0.982473 0.186405i \(-0.940316\pi\)
−0.577694 0.816254i \(-0.696047\pi\)
\(180\) −1.52629 + 1.76143i −0.113763 + 0.131290i
\(181\) −15.6568 + 4.59726i −1.16376 + 0.341712i −0.805894 0.592060i \(-0.798315\pi\)
−0.357870 + 0.933772i \(0.616497\pi\)
\(182\) −2.54444 5.57154i −0.188606 0.412990i
\(183\) −9.19818 −0.679949
\(184\) −9.39234 0.886205i −0.692413 0.0653319i
\(185\) −2.22433 −0.163536
\(186\) 2.90834 + 6.36838i 0.213250 + 0.466952i
\(187\) −18.5383 + 5.44332i −1.35565 + 0.398055i
\(188\) −1.67270 + 1.93039i −0.121994 + 0.140788i
\(189\) 0.841254 + 0.540641i 0.0611922 + 0.0393258i
\(190\) 6.99226 + 8.06950i 0.507272 + 0.585423i
\(191\) 2.47616 + 17.2220i 0.179168 + 1.24614i 0.858693 + 0.512490i \(0.171277\pi\)
−0.679525 + 0.733653i \(0.737814\pi\)
\(192\) −2.38825 0.701252i −0.172357 0.0506085i
\(193\) 4.22821 2.71731i 0.304353 0.195596i −0.379545 0.925173i \(-0.623919\pi\)
0.683899 + 0.729577i \(0.260283\pi\)
\(194\) 3.40920 23.7115i 0.244766 1.70239i
\(195\) −4.24240 + 9.28956i −0.303804 + 0.665239i
\(196\) 0.345139 0.755750i 0.0246528 0.0539821i
\(197\) 1.99682 13.8882i 0.142267 0.989491i −0.786172 0.618008i \(-0.787940\pi\)
0.928439 0.371484i \(-0.121151\pi\)
\(198\) −4.23935 + 2.72446i −0.301277 + 0.193619i
\(199\) 7.48704 + 2.19839i 0.530743 + 0.155840i 0.536114 0.844146i \(-0.319892\pi\)
−0.00537162 + 0.999986i \(0.501710\pi\)
\(200\) 0.803352 + 5.58743i 0.0568056 + 0.395091i
\(201\) −1.87736 2.16659i −0.132419 0.152820i
\(202\) −6.66981 4.28642i −0.469286 0.301592i
\(203\) −0.423670 + 0.488942i −0.0297358 + 0.0343170i
\(204\) 5.14240 1.50994i 0.360040 0.105717i
\(205\) −6.36159 13.9299i −0.444313 0.972909i
\(206\) 14.6105 1.01796
\(207\) −3.46718 + 3.31340i −0.240986 + 0.230297i
\(208\) 18.0980 1.25487
\(209\) 2.81471 + 6.16335i 0.194697 + 0.426328i
\(210\) −4.52871 + 1.32975i −0.312511 + 0.0917615i
\(211\) 7.86982 9.08226i 0.541781 0.625249i −0.417167 0.908830i \(-0.636977\pi\)
0.958948 + 0.283581i \(0.0915225\pi\)
\(212\) 0.499644 + 0.321102i 0.0343157 + 0.0220533i
\(213\) 1.35311 + 1.56157i 0.0927136 + 0.106997i
\(214\) −2.52960 17.5938i −0.172920 1.20268i
\(215\) −16.7675 4.92339i −1.14353 0.335772i
\(216\) −1.65486 + 1.06351i −0.112599 + 0.0723630i
\(217\) −0.592184 + 4.11873i −0.0402001 + 0.279598i
\(218\) 2.07043 4.53362i 0.140227 0.307055i
\(219\) −5.55415 + 12.1619i −0.375314 + 0.821824i
\(220\) 0.993468 6.90972i 0.0669796 0.465853i
\(221\) 19.7557 12.6962i 1.32891 0.854039i
\(222\) 1.28003 + 0.375851i 0.0859101 + 0.0252255i
\(223\) 0.138412 + 0.962678i 0.00926876 + 0.0644657i 0.993931 0.110007i \(-0.0350872\pi\)
−0.984662 + 0.174472i \(0.944178\pi\)
\(224\) 2.90111 + 3.34805i 0.193838 + 0.223701i
\(225\) 2.41406 + 1.55142i 0.160937 + 0.103428i
\(226\) 10.6519 12.2929i 0.708554 0.817715i
\(227\) −16.6125 + 4.87788i −1.10261 + 0.323756i −0.781890 0.623417i \(-0.785744\pi\)
−0.320723 + 0.947173i \(0.603926\pi\)
\(228\) −0.780782 1.70967i −0.0517086 0.113226i
\(229\) −10.4674 −0.691706 −0.345853 0.938289i \(-0.612410\pi\)
−0.345853 + 0.938289i \(0.612410\pi\)
\(230\) −1.10248 22.6090i −0.0726951 1.49079i
\(231\) −2.99513 −0.197065
\(232\) −0.528684 1.15766i −0.0347098 0.0760038i
\(233\) −15.2821 + 4.48724i −1.00117 + 0.293969i −0.740934 0.671578i \(-0.765617\pi\)
−0.260231 + 0.965546i \(0.583799\pi\)
\(234\) 4.01106 4.62901i 0.262211 0.302608i
\(235\) 7.25536 + 4.66274i 0.473288 + 0.304163i
\(236\) 5.69465 + 6.57198i 0.370690 + 0.427799i
\(237\) 0.361531 + 2.51450i 0.0234839 + 0.163334i
\(238\) 10.4138 + 3.05778i 0.675028 + 0.198206i
\(239\) 7.16103 4.60211i 0.463208 0.297686i −0.288144 0.957587i \(-0.593038\pi\)
0.751352 + 0.659901i \(0.229402\pi\)
\(240\) 1.98474 13.8042i 0.128114 0.891055i
\(241\) 3.48615 7.63360i 0.224562 0.491723i −0.763494 0.645815i \(-0.776518\pi\)
0.988057 + 0.154092i \(0.0492451\pi\)
\(242\) −1.41830 + 3.10564i −0.0911716 + 0.199638i
\(243\) −0.142315 + 0.989821i −0.00912950 + 0.0634971i
\(244\) −6.42896 + 4.13164i −0.411572 + 0.264501i
\(245\) −2.69165 0.790339i −0.171963 0.0504929i
\(246\) 1.30712 + 9.09119i 0.0833387 + 0.579633i
\(247\) −5.39309 6.22396i −0.343154 0.396021i
\(248\) −6.88601 4.42537i −0.437262 0.281011i
\(249\) −10.7666 + 12.4253i −0.682305 + 0.787422i
\(250\) 9.64798 2.83290i 0.610192 0.179169i
\(251\) 10.6179 + 23.2500i 0.670199 + 1.46753i 0.872704 + 0.488249i \(0.162364\pi\)
−0.202506 + 0.979281i \(0.564909\pi\)
\(252\) 0.830830 0.0523374
\(253\) 3.37077 13.9630i 0.211919 0.877847i
\(254\) −26.2418 −1.64655
\(255\) −7.51744 16.4609i −0.470761 1.03082i
\(256\) −16.2878 + 4.78252i −1.01798 + 0.298907i
\(257\) −0.691712 + 0.798278i −0.0431478 + 0.0497952i −0.776913 0.629608i \(-0.783216\pi\)
0.733765 + 0.679403i \(0.237761\pi\)
\(258\) 8.81727 + 5.66652i 0.548940 + 0.352782i
\(259\) 0.519243 + 0.599239i 0.0322642 + 0.0372349i
\(260\) 1.20751 + 8.39843i 0.0748867 + 0.520849i
\(261\) −0.620756 0.182270i −0.0384238 0.0112823i
\(262\) −25.7501 + 16.5486i −1.59084 + 1.02237i
\(263\) 0.601965 4.18676i 0.0371188 0.258167i −0.962809 0.270183i \(-0.912916\pi\)
0.999928 + 0.0120161i \(0.00382494\pi\)
\(264\) 2.44755 5.35939i 0.150636 0.329848i
\(265\) 0.833067 1.82416i 0.0511749 0.112057i
\(266\) 0.541680 3.76747i 0.0332125 0.230998i
\(267\) −1.95015 + 1.25329i −0.119347 + 0.0766999i
\(268\) −2.28535 0.671040i −0.139600 0.0409903i
\(269\) 4.45448 + 30.9816i 0.271594 + 1.88898i 0.431912 + 0.901916i \(0.357839\pi\)
−0.160318 + 0.987065i \(0.551252\pi\)
\(270\) −3.09088 3.56707i −0.188105 0.217085i
\(271\) 10.2407 + 6.58128i 0.622077 + 0.399784i 0.813369 0.581749i \(-0.197631\pi\)
−0.191292 + 0.981533i \(0.561268\pi\)
\(272\) −21.0009 + 24.2363i −1.27337 + 1.46954i
\(273\) 3.49297 1.02563i 0.211404 0.0620739i
\(274\) 5.57708 + 12.2121i 0.336924 + 0.737760i
\(275\) −8.59481 −0.518286
\(276\) −0.935033 + 3.87326i −0.0562823 + 0.233143i
\(277\) −22.9841 −1.38098 −0.690491 0.723341i \(-0.742606\pi\)
−0.690491 + 0.723341i \(0.742606\pi\)
\(278\) −2.72502 5.96696i −0.163436 0.357874i
\(279\) −3.99253 + 1.17231i −0.239027 + 0.0701845i
\(280\) 3.61376 4.17051i 0.215964 0.249235i
\(281\) 17.3278 + 11.1359i 1.03369 + 0.664311i 0.943418 0.331606i \(-0.107591\pi\)
0.0902702 + 0.995917i \(0.471227\pi\)
\(282\) −3.38736 3.90922i −0.201714 0.232791i
\(283\) −3.59227 24.9848i −0.213539 1.48519i −0.761213 0.648502i \(-0.775396\pi\)
0.547675 0.836691i \(-0.315513\pi\)
\(284\) 1.64717 + 0.483652i 0.0977415 + 0.0286995i
\(285\) −5.33874 + 3.43100i −0.316240 + 0.203235i
\(286\) −2.61081 + 18.1586i −0.154380 + 1.07374i
\(287\) −2.26772 + 4.96561i −0.133859 + 0.293111i
\(288\) −1.84033 + 4.02977i −0.108443 + 0.237457i
\(289\) −3.50272 + 24.3620i −0.206042 + 1.43306i
\(290\) 2.56885 1.65090i 0.150848 0.0969443i
\(291\) 13.6611 + 4.01127i 0.800830 + 0.235145i
\(292\) 1.58087 + 10.9952i 0.0925137 + 0.643447i
\(293\) −10.5071 12.1258i −0.613830 0.708397i 0.360693 0.932684i \(-0.382540\pi\)
−0.974523 + 0.224287i \(0.927995\pi\)
\(294\) 1.41542 + 0.909632i 0.0825487 + 0.0530508i
\(295\) 19.2279 22.1902i 1.11949 1.29196i
\(296\) −1.49657 + 0.439434i −0.0869866 + 0.0255416i
\(297\) −1.24422 2.72446i −0.0721970 0.158089i
\(298\) 2.58594 0.149800
\(299\) 0.850333 + 17.4382i 0.0491760 + 1.00848i
\(300\) 2.38415 0.137649
\(301\) 2.58781 + 5.66652i 0.149159 + 0.326613i
\(302\) −24.9974 + 7.33991i −1.43844 + 0.422364i
\(303\) 3.08588 3.56129i 0.177279 0.204591i
\(304\) 9.46106 + 6.08025i 0.542629 + 0.348726i
\(305\) 16.8977 + 19.5010i 0.967559 + 1.11662i
\(306\) 1.54461 + 10.7430i 0.0882995 + 0.614136i
\(307\) −13.1501 3.86123i −0.750518 0.220372i −0.115967 0.993253i \(-0.536997\pi\)
−0.634551 + 0.772881i \(0.718815\pi\)
\(308\) −2.09341 + 1.34535i −0.119283 + 0.0766586i
\(309\) −1.23583 + 8.59540i −0.0703040 + 0.488975i
\(310\) 8.15872 17.8651i 0.463384 1.01467i
\(311\) 7.25145 15.8785i 0.411192 0.900385i −0.584820 0.811163i \(-0.698835\pi\)
0.996012 0.0892219i \(-0.0284380\pi\)
\(312\) −1.01915 + 7.08834i −0.0576980 + 0.401298i
\(313\) −15.6706 + 10.0709i −0.885755 + 0.569240i −0.902534 0.430619i \(-0.858295\pi\)
0.0167788 + 0.999859i \(0.494659\pi\)
\(314\) 26.9533 + 7.91421i 1.52106 + 0.446625i
\(315\) −0.399233 2.77673i −0.0224942 0.156451i
\(316\) 1.38215 + 1.59509i 0.0777522 + 0.0897308i
\(317\) 23.1319 + 14.8660i 1.29922 + 0.834956i 0.993126 0.117046i \(-0.0373426\pi\)
0.306091 + 0.952002i \(0.400979\pi\)
\(318\) −0.787639 + 0.908984i −0.0441686 + 0.0509733i
\(319\) 1.85924 0.545923i 0.104098 0.0305658i
\(320\) 2.90065 + 6.35154i 0.162151 + 0.355062i
\(321\) 10.5644 0.589647
\(322\) −5.83356 + 5.57482i −0.325092 + 0.310673i
\(323\) 14.5931 0.811981
\(324\) 0.345139 + 0.755750i 0.0191744 + 0.0419861i
\(325\) 10.0234 2.94314i 0.555999 0.163256i
\(326\) 25.4300 29.3478i 1.40844 1.62542i
\(327\) 2.49201 + 1.60152i 0.137808 + 0.0885640i
\(328\) −7.03219 8.11558i −0.388288 0.448108i
\(329\) −0.437528 3.04308i −0.0241217 0.167770i
\(330\) 13.5641 + 3.98277i 0.746678 + 0.219244i
\(331\) −15.2433 + 9.79628i −0.837848 + 0.538452i −0.887763 0.460301i \(-0.847741\pi\)
0.0499145 + 0.998753i \(0.484105\pi\)
\(332\) −1.94398 + 13.5207i −0.106690 + 0.742044i
\(333\) −0.329385 + 0.721253i −0.0180502 + 0.0395244i
\(334\) 12.2710 26.8696i 0.671437 1.47024i
\(335\) −1.14453 + 7.96036i −0.0625322 + 0.434921i
\(336\) −4.18219 + 2.68773i −0.228157 + 0.146628i
\(337\) 6.19673 + 1.81952i 0.337557 + 0.0991158i 0.446118 0.894974i \(-0.352806\pi\)
−0.108561 + 0.994090i \(0.534624\pi\)
\(338\) −0.0605198 0.420925i −0.00329184 0.0228953i
\(339\) 6.33097 + 7.30633i 0.343851 + 0.396825i
\(340\) −12.6482 8.12847i −0.685942 0.440828i
\(341\) 8.16151 9.41889i 0.441971 0.510061i
\(342\) 3.65203 1.07233i 0.197479 0.0579851i
\(343\) 0.415415 + 0.909632i 0.0224303 + 0.0491155i
\(344\) −12.2542 −0.660702
\(345\) 13.3942 + 1.26379i 0.721117 + 0.0680404i
\(346\) −33.8935 −1.82213
\(347\) 7.17185 + 15.7042i 0.385005 + 0.843044i 0.998573 + 0.0534017i \(0.0170064\pi\)
−0.613568 + 0.789642i \(0.710266\pi\)
\(348\) −0.515743 + 0.151436i −0.0276467 + 0.00811781i
\(349\) −23.6433 + 27.2858i −1.26560 + 1.46058i −0.438286 + 0.898836i \(0.644414\pi\)
−0.827312 + 0.561742i \(0.810131\pi\)
\(350\) 4.06167 + 2.61028i 0.217105 + 0.139525i
\(351\) 2.38398 + 2.75126i 0.127247 + 0.146851i
\(352\) −1.88834 13.1337i −0.100649 0.700028i
\(353\) 5.24142 + 1.53902i 0.278973 + 0.0819138i 0.418226 0.908343i \(-0.362652\pi\)
−0.139253 + 0.990257i \(0.544470\pi\)
\(354\) −14.8146 + 9.52077i −0.787387 + 0.506023i
\(355\) 0.824918 5.73743i 0.0437821 0.304511i
\(356\) −0.800085 + 1.75194i −0.0424044 + 0.0928527i
\(357\) −2.67975 + 5.86783i −0.141827 + 0.310558i
\(358\) 5.94125 41.3223i 0.314005 2.18395i
\(359\) 17.2991 11.1175i 0.913014 0.586758i 0.00239112 0.999997i \(-0.499239\pi\)
0.910623 + 0.413239i \(0.135603\pi\)
\(360\) 5.29484 + 1.55470i 0.279062 + 0.0819401i
\(361\) 1.97566 + 13.7410i 0.103982 + 0.723213i
\(362\) −17.9791 20.7490i −0.944961 1.09054i
\(363\) −1.70709 1.09708i −0.0895987 0.0575816i
\(364\) 1.98068 2.28583i 0.103816 0.119810i
\(365\) 35.9876 10.5669i 1.88368 0.553098i
\(366\) −6.42896 14.0775i −0.336047 0.735841i
\(367\) −2.08076 −0.108615 −0.0543075 0.998524i \(-0.517295\pi\)
−0.0543075 + 0.998524i \(0.517295\pi\)
\(368\) −7.82325 22.5218i −0.407815 1.17403i
\(369\) −5.45892 −0.284180
\(370\) −1.55467 3.40425i −0.0808233 0.176978i
\(371\) −0.685904 + 0.201400i −0.0356103 + 0.0104561i
\(372\) −2.26395 + 2.61274i −0.117381 + 0.135464i
\(373\) 23.6103 + 15.1734i 1.22250 + 0.785651i 0.982706 0.185173i \(-0.0592845\pi\)
0.239792 + 0.970824i \(0.422921\pi\)
\(374\) −21.2879 24.5675i −1.10077 1.27036i
\(375\) 0.850527 + 5.91554i 0.0439210 + 0.305477i
\(376\) 5.80273 + 1.70383i 0.299253 + 0.0878686i
\(377\) −1.98134 + 1.27333i −0.102044 + 0.0655798i
\(378\) −0.239446 + 1.66538i −0.0123158 + 0.0856580i
\(379\) 8.42907 18.4571i 0.432972 0.948077i −0.559863 0.828585i \(-0.689146\pi\)
0.992835 0.119492i \(-0.0381266\pi\)
\(380\) −2.19031 + 4.79612i −0.112361 + 0.246036i
\(381\) 2.21966 15.4381i 0.113717 0.790916i
\(382\) −24.6270 + 15.8268i −1.26003 + 0.809770i
\(383\) 36.7800 + 10.7996i 1.87937 + 0.551833i 0.996636 + 0.0819587i \(0.0261176\pi\)
0.882734 + 0.469874i \(0.155701\pi\)
\(384\) −1.85694 12.9153i −0.0947615 0.659081i
\(385\) 5.50225 + 6.34994i 0.280421 + 0.323623i
\(386\) 7.11400 + 4.57189i 0.362093 + 0.232703i
\(387\) −4.07943 + 4.70791i −0.207369 + 0.239317i
\(388\) 11.3501 3.33269i 0.576213 0.169191i
\(389\) 14.8428 + 32.5012i 0.752560 + 1.64788i 0.761710 + 0.647918i \(0.224360\pi\)
−0.00915090 + 0.999958i \(0.502913\pi\)
\(390\) −17.1825 −0.870069
\(391\) −24.3395 19.0965i −1.23090 0.965753i
\(392\) −1.96714 −0.0993554
\(393\) −7.55747 16.5486i −0.381224 0.834764i
\(394\) 22.6510 6.65093i 1.14114 0.335069i
\(395\) 4.66681 5.38579i 0.234813 0.270988i
\(396\) −2.09341 1.34535i −0.105198 0.0676065i
\(397\) −22.4797 25.9429i −1.12822 1.30204i −0.947949 0.318422i \(-0.896847\pi\)
−0.180274 0.983617i \(-0.557698\pi\)
\(398\) 1.86843 + 12.9952i 0.0936557 + 0.651390i
\(399\) 2.17059 + 0.637342i 0.108665 + 0.0319070i
\(400\) −12.0012 + 7.71271i −0.600061 + 0.385635i
\(401\) −5.06130 + 35.2021i −0.252749 + 1.75791i 0.328800 + 0.944400i \(0.393356\pi\)
−0.581549 + 0.813511i \(0.697553\pi\)
\(402\) 2.00373 4.38755i 0.0999368 0.218831i
\(403\) −6.29277 + 13.7792i −0.313465 + 0.686393i
\(404\) 0.557175 3.87524i 0.0277205 0.192800i
\(405\) 2.35995 1.51665i 0.117267 0.0753629i
\(406\) −1.04443 0.306671i −0.0518340 0.0152198i
\(407\) −0.337977 2.35068i −0.0167529 0.116519i
\(408\) −8.30989 9.59012i −0.411401 0.474782i
\(409\) 12.6220 + 8.11166i 0.624117 + 0.401096i 0.814127 0.580686i \(-0.197216\pi\)
−0.190010 + 0.981782i \(0.560852\pi\)
\(410\) 16.8729 19.4723i 0.833292 0.961670i
\(411\) −7.65613 + 2.24804i −0.377649 + 0.110888i
\(412\) 2.99711 + 6.56277i 0.147657 + 0.323324i
\(413\) −10.4666 −0.515028
\(414\) −7.49439 2.99053i −0.368329 0.146976i
\(415\) 46.1218 2.26403
\(416\) 6.69961 + 14.6701i 0.328476 + 0.719261i
\(417\) 3.74087 1.09842i 0.183191 0.0537897i
\(418\) −7.46546 + 8.61560i −0.365148 + 0.421403i
\(419\) −9.42331 6.05599i −0.460359 0.295855i 0.289830 0.957078i \(-0.406401\pi\)
−0.750189 + 0.661223i \(0.770038\pi\)
\(420\) −1.52629 1.76143i −0.0744754 0.0859492i
\(421\) −5.11445 35.5718i −0.249263 1.73366i −0.602492 0.798125i \(-0.705825\pi\)
0.353229 0.935537i \(-0.385084\pi\)
\(422\) 19.4006 + 5.69653i 0.944406 + 0.277303i
\(423\) 2.58632 1.66213i 0.125751 0.0808155i
\(424\) 0.200127 1.39192i 0.00971904 0.0675974i
\(425\) −7.68980 + 16.8383i −0.373010 + 0.816778i
\(426\) −1.44419 + 3.16233i −0.0699711 + 0.153215i
\(427\) 1.30904 9.10456i 0.0633488 0.440600i
\(428\) 7.38387 4.74533i 0.356913 0.229374i
\(429\) −10.4619 3.07189i −0.505105 0.148312i
\(430\) −4.18441 29.1032i −0.201790 1.40348i
\(431\) −6.35246 7.33112i −0.305987 0.353128i 0.581842 0.813302i \(-0.302332\pi\)
−0.887829 + 0.460174i \(0.847787\pi\)
\(432\) −4.18219 2.68773i −0.201216 0.129314i
\(433\) 2.07072 2.38973i 0.0995123 0.114843i −0.703809 0.710389i \(-0.748519\pi\)
0.803321 + 0.595546i \(0.203064\pi\)
\(434\) −6.71746 + 1.97242i −0.322448 + 0.0946794i
\(435\) 0.753941 + 1.65090i 0.0361487 + 0.0791547i
\(436\) 2.46113 0.117867
\(437\) −5.41406 + 9.40181i −0.258989 + 0.449750i
\(438\) −22.4953 −1.07487
\(439\) 0.0810899 + 0.177562i 0.00387021 + 0.00847458i 0.911557 0.411173i \(-0.134881\pi\)
−0.907687 + 0.419648i \(0.862154\pi\)
\(440\) −15.8587 + 4.65654i −0.756034 + 0.221992i
\(441\) −0.654861 + 0.755750i −0.0311838 + 0.0359881i
\(442\) 33.2390 + 21.3614i 1.58102 + 1.01606i
\(443\) −13.2572 15.2996i −0.629869 0.726907i 0.347681 0.937613i \(-0.386969\pi\)
−0.977550 + 0.210706i \(0.932424\pi\)
\(444\) 0.0937528 + 0.652065i 0.00444931 + 0.0309456i
\(445\) 6.23964 + 1.83213i 0.295788 + 0.0868511i
\(446\) −1.37660 + 0.884687i −0.0651839 + 0.0418912i
\(447\) −0.218732 + 1.52131i −0.0103457 + 0.0719556i
\(448\) 1.03400 2.26414i 0.0488518 0.106970i
\(449\) 10.6964 23.4217i 0.504792 1.10534i −0.470090 0.882618i \(-0.655779\pi\)
0.974882 0.222722i \(-0.0714942\pi\)
\(450\) −0.687113 + 4.77898i −0.0323908 + 0.225283i
\(451\) 13.7546 8.83957i 0.647681 0.416239i
\(452\) 7.70682 + 2.26293i 0.362498 + 0.106439i
\(453\) −2.20367 15.3269i −0.103537 0.720119i
\(454\) −19.0766 22.0155i −0.895307 1.03324i
\(455\) −8.59125 5.52126i −0.402764 0.258841i
\(456\) −2.91420 + 3.36316i −0.136470 + 0.157495i
\(457\) 2.61991 0.769275i 0.122554 0.0359852i −0.219880 0.975527i \(-0.570567\pi\)
0.342435 + 0.939542i \(0.388748\pi\)
\(458\) −7.31608 16.0200i −0.341858 0.748564i
\(459\) −6.45077 −0.301096
\(460\) 9.92937 5.13308i 0.462959 0.239331i
\(461\) 22.0973 1.02917 0.514586 0.857439i \(-0.327946\pi\)
0.514586 + 0.857439i \(0.327946\pi\)
\(462\) −2.09341 4.58393i −0.0973942 0.213264i
\(463\) 29.2710 8.59474i 1.36034 0.399431i 0.481456 0.876470i \(-0.340108\pi\)
0.878882 + 0.477039i \(0.158290\pi\)
\(464\) 2.10623 2.43072i 0.0977791 0.112843i
\(465\) 9.81996 + 6.31090i 0.455390 + 0.292661i
\(466\) −17.5488 20.2524i −0.812933 0.938175i
\(467\) 6.03472 + 41.9724i 0.279254 + 1.94225i 0.331098 + 0.943596i \(0.392581\pi\)
−0.0518441 + 0.998655i \(0.516510\pi\)
\(468\) 2.90206 + 0.852123i 0.134148 + 0.0393894i
\(469\) 2.41172 1.54992i 0.111363 0.0715685i
\(470\) −2.06509 + 14.3630i −0.0952555 + 0.662517i
\(471\) −6.93579 + 15.1873i −0.319584 + 0.699792i
\(472\) 8.55309 18.7286i 0.393688 0.862056i
\(473\) 2.65531 18.4681i 0.122091 0.849165i
\(474\) −3.59566 + 2.31079i −0.165154 + 0.106138i
\(475\) 6.22871 + 1.82892i 0.285793 + 0.0839164i
\(476\) 0.762736 + 5.30494i 0.0349599 + 0.243152i
\(477\) −0.468134 0.540256i −0.0214344 0.0247366i
\(478\) 12.0485 + 7.74309i 0.551084 + 0.354160i
\(479\) −16.0626 + 18.5373i −0.733920 + 0.846989i −0.992907 0.118892i \(-0.962066\pi\)
0.258987 + 0.965881i \(0.416611\pi\)
\(480\) 11.9243 3.50129i 0.544267 0.159811i
\(481\) 1.19910 + 2.62567i 0.0546745 + 0.119720i
\(482\) 14.1195 0.643127
\(483\) −2.78625 3.90344i −0.126779 0.177613i
\(484\) −1.68593 −0.0766334
\(485\) −16.5922 36.3318i −0.753412 1.64974i
\(486\) −1.61435 + 0.474017i −0.0732286 + 0.0215018i
\(487\) −6.06571 + 7.00020i −0.274864 + 0.317209i −0.876351 0.481673i \(-0.840029\pi\)
0.601488 + 0.798882i \(0.294575\pi\)
\(488\) 15.2217 + 9.78240i 0.689054 + 0.442828i
\(489\) 15.1143 + 17.4429i 0.683494 + 0.788794i
\(490\) −0.671712 4.67186i −0.0303449 0.211053i
\(491\) −32.6383 9.58348i −1.47295 0.432496i −0.555891 0.831255i \(-0.687623\pi\)
−0.917056 + 0.398759i \(0.869441\pi\)
\(492\) −3.81545 + 2.45204i −0.172014 + 0.110547i
\(493\) 0.593938 4.13093i 0.0267496 0.186048i
\(494\) 5.75609 12.6041i 0.258979 0.567084i
\(495\) −3.49039 + 7.64288i −0.156881 + 0.343522i
\(496\) 2.94397 20.4758i 0.132188 0.919389i
\(497\) −1.73825 + 1.11710i −0.0779710 + 0.0501089i
\(498\) −26.5417 7.79334i −1.18936 0.349228i
\(499\) 5.63435 + 39.1877i 0.252228 + 1.75428i 0.584773 + 0.811197i \(0.301184\pi\)
−0.332545 + 0.943087i \(0.607907\pi\)
\(500\) 3.25161 + 3.75256i 0.145417 + 0.167820i
\(501\) 14.7695 + 9.49179i 0.659853 + 0.424062i
\(502\) −28.1620 + 32.5007i −1.25693 + 1.45058i
\(503\) 11.5578 3.39368i 0.515337 0.151317i −0.0137150 0.999906i \(-0.504366\pi\)
0.529052 + 0.848589i \(0.322548\pi\)
\(504\) −0.817178 1.78937i −0.0364000 0.0797049i
\(505\) −13.2192 −0.588247
\(506\) 23.7258 4.60045i 1.05474 0.204515i
\(507\) 0.252750 0.0112250
\(508\) −5.38307 11.7873i −0.238835 0.522976i
\(509\) −26.3524 + 7.73777i −1.16805 + 0.342971i −0.807556 0.589791i \(-0.799210\pi\)
−0.360495 + 0.932761i \(0.617392\pi\)
\(510\) 19.9386 23.0103i 0.882894 1.01891i
\(511\) −11.2477 7.22843i −0.497567 0.319767i
\(512\) −1.61423 1.86292i −0.0713396 0.0823303i
\(513\) 0.321948 + 2.23920i 0.0142144 + 0.0988630i
\(514\) −1.70520 0.500691i −0.0752131 0.0220845i
\(515\) 20.4933 13.1703i 0.903043 0.580351i
\(516\) −0.736568 + 5.12294i −0.0324256 + 0.225525i
\(517\) −3.82519 + 8.37600i −0.168232 + 0.368376i
\(518\) −0.554193 + 1.21351i −0.0243498 + 0.0533187i
\(519\) 2.86688 19.9396i 0.125842 0.875252i
\(520\) 16.9002 10.8611i 0.741121 0.476289i
\(521\) −3.84155 1.12798i −0.168301 0.0494178i 0.196496 0.980505i \(-0.437044\pi\)
−0.364798 + 0.931087i \(0.618862\pi\)
\(522\) −0.154912 1.07744i −0.00678033 0.0471582i
\(523\) 1.44466 + 1.66722i 0.0631705 + 0.0729027i 0.786455 0.617647i \(-0.211914\pi\)
−0.723285 + 0.690550i \(0.757369\pi\)
\(524\) −12.7155 8.17176i −0.555479 0.356985i
\(525\) −1.87919 + 2.16870i −0.0820144 + 0.0946497i
\(526\) 6.82842 2.00500i 0.297733 0.0874223i
\(527\) −11.1507 24.4165i −0.485730 1.06360i
\(528\) 14.8899 0.648000
\(529\) 21.3332 8.59623i 0.927530 0.373749i
\(530\) 3.37407 0.146560
\(531\) −4.34799 9.52077i −0.188687 0.413166i
\(532\) 1.80339 0.529523i 0.0781869 0.0229577i
\(533\) −13.0139 + 15.0189i −0.563697 + 0.650541i
\(534\) −3.28115 2.10866i −0.141989 0.0912508i
\(535\) −19.4075 22.3975i −0.839061 0.968327i
\(536\) 0.802572 + 5.58201i 0.0346658 + 0.241106i
\(537\) 23.8074 + 6.99049i 1.02737 + 0.301662i
\(538\) −44.3028 + 28.4717i −1.91003 + 1.22750i
\(539\) 0.426251 2.96464i 0.0183599 0.127696i
\(540\) 0.968212 2.12009i 0.0416652 0.0912341i
\(541\) −8.74718 + 19.1537i −0.376071 + 0.823480i 0.623075 + 0.782162i \(0.285883\pi\)
−0.999146 + 0.0413180i \(0.986844\pi\)
\(542\) −2.91480 + 20.2729i −0.125201 + 0.870795i
\(543\) 13.7274 8.82208i 0.589100 0.378592i
\(544\) −27.4200 8.05125i −1.17562 0.345195i
\(545\) −1.18263 8.22537i −0.0506583 0.352336i
\(546\) 4.01106 + 4.62901i 0.171657 + 0.198103i
\(547\) −15.9010 10.2190i −0.679878 0.436931i 0.154597 0.987978i \(-0.450592\pi\)
−0.834474 + 0.551047i \(0.814229\pi\)
\(548\) −4.34139 + 5.01023i −0.185455 + 0.214026i
\(549\) 8.82559 2.59143i 0.376667 0.110599i
\(550\) −6.00724 13.1540i −0.256150 0.560890i
\(551\) −1.46357 −0.0623503
\(552\) 9.26156 1.79582i 0.394198 0.0764352i
\(553\) −2.54036 −0.108027
\(554\) −16.0645 35.1764i −0.682515 1.49450i
\(555\) 2.13422 0.626665i 0.0905928 0.0266004i
\(556\) 2.12125 2.44805i 0.0899609 0.103820i
\(557\) −33.1320 21.2926i −1.40385 0.902197i −0.403926 0.914792i \(-0.632355\pi\)
−0.999921 + 0.0125943i \(0.995991\pi\)
\(558\) −4.58471 5.29104i −0.194086 0.223988i
\(559\) 3.22741 + 22.4471i 0.136505 + 0.949412i
\(560\) 13.3812 + 3.92908i 0.565459 + 0.166034i
\(561\) 16.2538 10.4457i 0.686234 0.441016i
\(562\) −4.93200 + 34.3028i −0.208044 + 1.44698i
\(563\) −10.2200 + 22.3786i −0.430720 + 0.943146i 0.562489 + 0.826805i \(0.309844\pi\)
−0.993209 + 0.116341i \(0.962883\pi\)
\(564\) 1.06109 2.32345i 0.0446797 0.0978350i
\(565\) 3.85965 26.8444i 0.162377 1.12935i
\(566\) 35.7275 22.9607i 1.50174 0.965110i
\(567\) −0.959493 0.281733i −0.0402949 0.0118317i
\(568\) −0.578454 4.02324i −0.0242714 0.168811i
\(569\) −11.3466 13.0947i −0.475674 0.548958i 0.466307 0.884623i \(-0.345584\pi\)
−0.941981 + 0.335666i \(0.891039\pi\)
\(570\) −8.98247 5.77268i −0.376234 0.241791i
\(571\) 21.8137 25.1743i 0.912875 1.05351i −0.0854894 0.996339i \(-0.527245\pi\)
0.998364 0.0571745i \(-0.0182092\pi\)
\(572\) −8.69205 + 2.55222i −0.363433 + 0.106714i
\(573\) −7.22786 15.8268i −0.301948 0.661175i
\(574\) −9.18468 −0.383361
\(575\) −7.99540 11.2013i −0.333431 0.467127i
\(576\) 2.48907 0.103711
\(577\) −6.95839 15.2367i −0.289682 0.634314i 0.707709 0.706504i \(-0.249729\pi\)
−0.997391 + 0.0721896i \(0.977001\pi\)
\(578\) −39.7332 + 11.6667i −1.65268 + 0.485272i
\(579\) −3.29139 + 3.79846i −0.136785 + 0.157859i
\(580\) 1.26851 + 0.815223i 0.0526721 + 0.0338503i
\(581\) −10.7666 12.4253i −0.446674 0.515489i
\(582\) 3.40920 + 23.7115i 0.141316 + 0.982873i
\(583\) 2.05437 + 0.603217i 0.0850833 + 0.0249827i
\(584\) 22.1257 14.2193i 0.915567 0.588399i
\(585\) 1.45338 10.1085i 0.0600899 0.417934i
\(586\) 11.2143 24.5559i 0.463258 1.01439i
\(587\) 8.10597 17.7496i 0.334569 0.732604i −0.665334 0.746546i \(-0.731711\pi\)
0.999903 + 0.0139419i \(0.00443799\pi\)
\(588\) −0.118239 + 0.822373i −0.00487611 + 0.0339141i
\(589\) −7.91897 + 5.08922i −0.326296 + 0.209697i
\(590\) 47.4003 + 13.9180i 1.95144 + 0.572994i
\(591\) 1.99682 + 13.8882i 0.0821381 + 0.571283i
\(592\) −2.58136 2.97904i −0.106093 0.122438i
\(593\) 4.60262 + 2.95793i 0.189007 + 0.121467i 0.631722 0.775195i \(-0.282348\pi\)
−0.442715 + 0.896662i \(0.645985\pi\)
\(594\) 3.30005 3.80847i 0.135403 0.156263i
\(595\) 17.3632 5.09830i 0.711822 0.209010i
\(596\) 0.530464 + 1.16155i 0.0217287 + 0.0475791i
\(597\) −7.80313 −0.319361
\(598\) −26.0941 + 13.4896i −1.06707 + 0.551632i
\(599\) −43.5518 −1.77948 −0.889739 0.456470i \(-0.849114\pi\)
−0.889739 + 0.456470i \(0.849114\pi\)
\(600\) −2.34497 5.13477i −0.0957331 0.209626i
\(601\) −10.0764 + 2.95869i −0.411024 + 0.120688i −0.480706 0.876882i \(-0.659620\pi\)
0.0696822 + 0.997569i \(0.477801\pi\)
\(602\) −6.86367 + 7.92110i −0.279742 + 0.322840i
\(603\) 2.41172 + 1.54992i 0.0982127 + 0.0631175i
\(604\) −8.42476 9.72269i −0.342799 0.395611i
\(605\) 0.810130 + 5.63458i 0.0329365 + 0.229078i
\(606\) 7.60726 + 2.23369i 0.309024 + 0.0907376i
\(607\) −9.24487 + 5.94132i −0.375238 + 0.241151i −0.714643 0.699490i \(-0.753411\pi\)
0.339405 + 0.940640i \(0.389774\pi\)
\(608\) −1.42627 + 9.91989i −0.0578427 + 0.402305i
\(609\) 0.268758 0.588498i 0.0108906 0.0238471i
\(610\) −18.0350 + 39.4912i −0.730218 + 1.59895i
\(611\) 1.59279 11.0781i 0.0644375 0.448172i
\(612\) −4.50869 + 2.89756i −0.182253 + 0.117127i
\(613\) 9.89525 + 2.90551i 0.399665 + 0.117352i 0.475387 0.879777i \(-0.342308\pi\)
−0.0757219 + 0.997129i \(0.524126\pi\)
\(614\) −3.28168 22.8246i −0.132438 0.921124i
\(615\) 10.0284 + 11.5734i 0.404385 + 0.466685i
\(616\) 4.95652 + 3.18536i 0.199704 + 0.128342i
\(617\) −7.75094 + 8.94507i −0.312041 + 0.360115i −0.890008 0.455946i \(-0.849301\pi\)
0.577966 + 0.816061i \(0.303847\pi\)
\(618\) −14.0187 + 4.11626i −0.563915 + 0.165580i
\(619\) 13.0960 + 28.6763i 0.526374 + 1.15260i 0.966970 + 0.254892i \(0.0820399\pi\)
−0.440596 + 0.897706i \(0.645233\pi\)
\(620\) 9.69828 0.389492
\(621\) 2.39324 4.15601i 0.0960376 0.166775i
\(622\) 29.3697 1.17762
\(623\) −0.962995 2.10866i −0.0385816 0.0844819i
\(624\) −17.3649 + 5.09879i −0.695152 + 0.204115i
\(625\) 20.3749 23.5139i 0.814998 0.940557i
\(626\) −26.3659 16.9443i −1.05379 0.677232i
\(627\) −4.43711 5.12069i −0.177201 0.204501i
\(628\) 1.97413 + 13.7304i 0.0787764 + 0.547902i
\(629\) −4.90767 1.44102i −0.195682 0.0574573i
\(630\) 3.97064 2.55177i 0.158194 0.101665i
\(631\) −4.77499 + 33.2108i −0.190090 + 1.32210i 0.641677 + 0.766975i \(0.278239\pi\)
−0.831766 + 0.555126i \(0.812670\pi\)
\(632\) 2.07592 4.54564i 0.0825759 0.180816i
\(633\) −4.99227 + 10.9316i −0.198425 + 0.434490i
\(634\) −6.58403 + 45.7929i −0.261485 + 1.81867i
\(635\) −36.8077 + 23.6549i −1.46067 + 0.938716i
\(636\) −0.569869 0.167329i −0.0225968 0.00663502i
\(637\) 0.518088 + 3.60338i 0.0205274 + 0.142771i
\(638\) 2.13501 + 2.46393i 0.0845259 + 0.0975481i
\(639\) −1.73825 1.11710i −0.0687639 0.0441919i
\(640\) −23.9702 + 27.6631i −0.947507 + 1.09348i
\(641\) 39.2630 11.5287i 1.55080 0.455355i 0.609458 0.792819i \(-0.291387\pi\)
0.941338 + 0.337464i \(0.109569\pi\)
\(642\) 7.38387 + 16.1684i 0.291418 + 0.638117i
\(643\) 40.9456 1.61474 0.807369 0.590047i \(-0.200891\pi\)
0.807369 + 0.590047i \(0.200891\pi\)
\(644\) −3.70076 1.47674i −0.145831 0.0581916i
\(645\) 17.4754 0.688093
\(646\) 10.1997 + 22.3342i 0.401301 + 0.878726i
\(647\) 20.5292 6.02793i 0.807088 0.236982i 0.147941 0.988996i \(-0.452736\pi\)
0.659147 + 0.752014i \(0.270917\pi\)
\(648\) 1.28820 1.48666i 0.0506053 0.0584016i
\(649\) 26.3723 + 16.9485i 1.03520 + 0.665285i
\(650\) 11.5101 + 13.2834i 0.451464 + 0.521017i
\(651\) −0.592184 4.11873i −0.0232095 0.161426i
\(652\) 18.3990 + 5.40243i 0.720561 + 0.211576i
\(653\) 7.06744 4.54197i 0.276570 0.177741i −0.395001 0.918681i \(-0.629256\pi\)
0.671572 + 0.740940i \(0.265620\pi\)
\(654\) −0.709299 + 4.93328i −0.0277358 + 0.192907i
\(655\) −21.2008 + 46.4234i −0.828385 + 1.81391i
\(656\) 11.2737 24.6860i 0.440164 0.963824i
\(657\) 1.90277 13.2340i 0.0742340 0.516309i
\(658\) 4.35151 2.79654i 0.169639 0.109021i
\(659\) 25.1447 + 7.38316i 0.979499 + 0.287607i 0.732018 0.681286i \(-0.238579\pi\)
0.247482 + 0.968893i \(0.420397\pi\)
\(660\) 0.993468 + 6.90972i 0.0386707 + 0.268961i
\(661\) 6.08908 + 7.02717i 0.236838 + 0.273325i 0.861709 0.507402i \(-0.169394\pi\)
−0.624872 + 0.780727i \(0.714849\pi\)
\(662\) −25.6470 16.4823i −0.996798 0.640603i
\(663\) −15.3785 + 17.7477i −0.597251 + 0.689265i
\(664\) 31.0317 9.11174i 1.20426 0.353604i
\(665\) −2.63630 5.77268i −0.102231 0.223855i
\(666\) −1.33407 −0.0516942
\(667\) 2.44106 + 1.91523i 0.0945182 + 0.0741581i
\(668\) 14.5865 0.564369
\(669\) −0.404023 0.884687i −0.0156204 0.0342040i
\(670\) −12.9830 + 3.81215i −0.501576 + 0.147276i
\(671\) −18.0412 + 20.8207i −0.696474 + 0.803774i
\(672\) −3.72685 2.39510i −0.143766 0.0923929i
\(673\) −6.25819 7.22234i −0.241236 0.278401i 0.622202 0.782857i \(-0.286238\pi\)
−0.863437 + 0.504456i \(0.831693\pi\)
\(674\) 1.54642 + 10.7556i 0.0595659 + 0.414290i
\(675\) −2.75336 0.808459i −0.105977 0.0311176i
\(676\) 0.176657 0.113530i 0.00679448 0.00436655i
\(677\) 5.60426 38.9785i 0.215389 1.49806i −0.539373 0.842067i \(-0.681339\pi\)
0.754763 0.655998i \(-0.227752\pi\)
\(678\) −6.75710 + 14.7960i −0.259505 + 0.568236i
\(679\) −5.91463 + 12.9512i −0.226983 + 0.497022i
\(680\) −5.06609 + 35.2354i −0.194276 + 1.35122i
\(681\) 14.5654 9.36059i 0.558146 0.358698i
\(682\) 20.1196 + 5.90766i 0.770421 + 0.226216i
\(683\) 2.25056 + 15.6530i 0.0861152 + 0.598944i 0.986489 + 0.163827i \(0.0523839\pi\)
−0.900374 + 0.435117i \(0.856707\pi\)
\(684\) 1.23083 + 1.42045i 0.0470618 + 0.0543122i
\(685\) 18.8309 + 12.1019i 0.719491 + 0.462389i
\(686\) −1.10181 + 1.27155i −0.0420672 + 0.0485482i
\(687\) 10.0434 2.94901i 0.383180 0.112512i
\(688\) −12.8650 28.1704i −0.490474 1.07399i
\(689\) −2.60240 −0.0991436
\(690\) 7.42751 + 21.3826i 0.282760 + 0.814021i
\(691\) 10.0050 0.380610 0.190305 0.981725i \(-0.439052\pi\)
0.190305 + 0.981725i \(0.439052\pi\)
\(692\) −6.95272 15.2243i −0.264303 0.578742i
\(693\) 2.87380 0.843825i 0.109167 0.0320542i
\(694\) −19.0219 + 21.9525i −0.722063 + 0.833305i
\(695\) −9.20097 5.91310i −0.349013 0.224297i
\(696\) 0.833417 + 0.961815i 0.0315906 + 0.0364575i
\(697\) −5.01151 34.8559i −0.189825 1.32026i
\(698\) −58.2852 17.1141i −2.20613 0.647777i
\(699\) 13.3989 8.61094i 0.506793 0.325696i
\(700\) −0.339300 + 2.35988i −0.0128243 + 0.0891951i
\(701\) −18.2670 + 39.9992i −0.689936 + 1.51075i 0.161826 + 0.986819i \(0.448262\pi\)
−0.851762 + 0.523929i \(0.824466\pi\)
\(702\) −2.54444 + 5.57154i −0.0960337 + 0.210284i
\(703\) −0.255275 + 1.77547i −0.00962787 + 0.0669633i
\(704\) −6.27161 + 4.03052i −0.236370 + 0.151906i
\(705\) −8.27511 2.42979i −0.311659 0.0915113i
\(706\) 1.30802 + 9.09748i 0.0492280 + 0.342388i
\(707\) 3.08588 + 3.56129i 0.116056 + 0.133936i
\(708\) −7.31552 4.70140i −0.274934 0.176689i
\(709\) −23.1150 + 26.6762i −0.868103 + 1.00184i 0.131841 + 0.991271i \(0.457911\pi\)
−0.999944 + 0.0105731i \(0.996634\pi\)
\(710\) 9.35748 2.74761i 0.351180 0.103116i
\(711\) −1.05530 2.31079i −0.0395769 0.0866614i
\(712\) 4.56012 0.170898
\(713\) 19.8676 + 1.87459i 0.744048 + 0.0702039i
\(714\) −10.8535 −0.406181
\(715\) 12.7065 + 27.8234i 0.475197 + 1.04054i
\(716\) 19.7799 5.80791i 0.739210 0.217052i
\(717\) −5.57439 + 6.43319i −0.208179 + 0.240252i
\(718\) 29.1059 + 18.7052i 1.08622 + 0.698074i
\(719\) 2.25397 + 2.60123i 0.0840591 + 0.0970094i 0.796221 0.605006i \(-0.206829\pi\)
−0.712162 + 0.702015i \(0.752284\pi\)
\(720\) 1.98474 + 13.8042i 0.0739669 + 0.514451i
\(721\) −8.33203 2.44650i −0.310301 0.0911126i
\(722\) −19.6493 + 12.6278i −0.731270 + 0.469959i
\(723\) −1.19430 + 8.30654i −0.0444165 + 0.308924i
\(724\) 5.63192 12.3322i 0.209309 0.458322i
\(725\) 0.771227 1.68875i 0.0286427 0.0627187i
\(726\) 0.485887 3.37942i 0.0180330 0.125422i
\(727\) −22.2696 + 14.3118i −0.825934 + 0.530795i −0.883983 0.467518i \(-0.845148\pi\)
0.0580496 + 0.998314i \(0.481512\pi\)
\(728\) −6.87115 2.01755i −0.254662 0.0747754i
\(729\) −0.142315 0.989821i −0.00527092 0.0366601i
\(730\) 41.3254 + 47.6921i 1.52952 + 1.76516i
\(731\) −33.8056 21.7256i −1.25035 0.803549i
\(732\) 5.00453 5.77553i 0.184973 0.213470i
\(733\) 1.21195 0.355861i 0.0447645 0.0131440i −0.259274 0.965804i \(-0.583483\pi\)
0.304038 + 0.952660i \(0.401665\pi\)
\(734\) −1.45433 3.18453i −0.0536801 0.117543i
\(735\) 2.80528 0.103474
\(736\) 15.3600 14.6787i 0.566177 0.541066i
\(737\) −8.58647 −0.316287
\(738\) −3.81545 8.35468i −0.140449 0.307540i
\(739\) −8.59003 + 2.52226i −0.315989 + 0.0927829i −0.435882 0.900004i \(-0.643563\pi\)
0.119892 + 0.992787i \(0.461745\pi\)
\(740\) 1.21021 1.39665i 0.0444881 0.0513420i
\(741\) 6.92812 + 4.45243i 0.254511 + 0.163564i
\(742\) −0.787639 0.908984i −0.0289151 0.0333698i
\(743\) −0.252593 1.75683i −0.00926676 0.0644517i 0.984663 0.174465i \(-0.0558197\pi\)
−0.993930 + 0.110014i \(0.964911\pi\)
\(744\) 7.85385 + 2.30610i 0.287936 + 0.0845457i
\(745\) 3.62714 2.33102i 0.132888 0.0854021i
\(746\) −6.72021 + 46.7401i −0.246044 + 1.71128i
\(747\) 6.82986 14.9553i 0.249891 0.547186i
\(748\) 6.66840 14.6017i 0.243821 0.533893i
\(749\) −1.50347 + 10.4569i −0.0549356 + 0.382086i
\(750\) −8.45905 + 5.43630i −0.308881 + 0.198506i
\(751\) 31.4571 + 9.23665i 1.14789 + 0.337050i 0.799715 0.600380i \(-0.204984\pi\)
0.348173 + 0.937430i \(0.386802\pi\)
\(752\) 2.17512 + 15.1283i 0.0793184 + 0.551672i
\(753\) −16.7381 19.3168i −0.609972 0.703945i
\(754\) −3.33362 2.14239i −0.121403 0.0780211i
\(755\) −28.4460 + 32.8285i −1.03526 + 1.19475i
\(756\) −0.797176 + 0.234072i −0.0289930 + 0.00851311i
\(757\) 9.88885 + 21.6536i 0.359416 + 0.787012i 0.999820 + 0.0189735i \(0.00603980\pi\)
−0.640404 + 0.768039i \(0.721233\pi\)
\(758\) 34.1393 1.24000
\(759\) 0.699603 + 14.3471i 0.0253940 + 0.520766i
\(760\) 12.4838 0.452835
\(761\) −1.86075 4.07447i −0.0674521 0.147700i 0.872903 0.487893i \(-0.162235\pi\)
−0.940355 + 0.340194i \(0.889507\pi\)
\(762\) 25.1788 7.39316i 0.912131 0.267826i
\(763\) −1.93986 + 2.23872i −0.0702278 + 0.0810472i
\(764\) −12.1609 7.81536i −0.439967 0.282750i
\(765\) 11.8505 + 13.6762i 0.428456 + 0.494465i
\(766\) 9.17861 + 63.8386i 0.331637 + 2.30658i
\(767\) −36.5596 10.7349i −1.32009 0.387613i
\(768\) 14.2806 9.17758i 0.515307 0.331168i
\(769\) 1.35653 9.43485i 0.0489176 0.340229i −0.950635 0.310312i \(-0.899566\pi\)
0.999552 0.0299174i \(-0.00952441\pi\)
\(770\) −5.87260 + 12.8592i −0.211634 + 0.463414i
\(771\) 0.438792 0.960820i 0.0158027 0.0346031i
\(772\) −0.594282 + 4.13332i