Properties

Label 483.2.q.c.169.1
Level $483$
Weight $2$
Character 483.169
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 40 x^{18} - 117 x^{17} + 295 x^{16} - 575 x^{15} + 1777 x^{14} - 1560 x^{13} + 4383 x^{12} - 6446 x^{11} + 7261 x^{10} + 7700 x^{9} + 7852 x^{8} - 39430 x^{7} - 101709 x^{6} + 156742 x^{5} + 999838 x^{4} + 2029154 x^{3} + 3616480 x^{2} + 4299390 x + 2374681\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 169.1
Root \(0.216617 + 1.50661i\) of defining polynomial
Character \(\chi\) \(=\) 483.169
Dual form 483.2.q.c.463.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.186393 - 1.29639i) q^{2} +(0.415415 + 0.909632i) q^{3} +(0.273100 + 0.0801894i) q^{4} +(-0.810370 - 0.935217i) q^{5} +(1.25667 - 0.368991i) q^{6} +(0.841254 + 0.540641i) q^{7} +(1.24302 - 2.72183i) q^{8} +(-0.654861 + 0.755750i) q^{9} +O(q^{10})\) \(q+(0.186393 - 1.29639i) q^{2} +(0.415415 + 0.909632i) q^{3} +(0.273100 + 0.0801894i) q^{4} +(-0.810370 - 0.935217i) q^{5} +(1.25667 - 0.368991i) q^{6} +(0.841254 + 0.540641i) q^{7} +(1.24302 - 2.72183i) q^{8} +(-0.654861 + 0.755750i) q^{9} +(-1.36345 + 0.876238i) q^{10} +(-0.722222 - 5.02317i) q^{11} +(0.0405070 + 0.281733i) q^{12} +(-1.31805 + 0.847057i) q^{13} +(0.857685 - 0.989821i) q^{14} +(0.514063 - 1.12564i) q^{15} +(-2.81797 - 1.81100i) q^{16} +(5.77863 - 1.69676i) q^{17} +(0.857685 + 0.989821i) q^{18} +(5.51952 + 1.62068i) q^{19} +(-0.146318 - 0.320391i) q^{20} +(-0.142315 + 0.989821i) q^{21} -6.64660 q^{22} +(2.46012 + 4.11677i) q^{23} +2.99223 q^{24} +(0.493643 - 3.43336i) q^{25} +(0.852443 + 1.86659i) q^{26} +(-0.959493 - 0.281733i) q^{27} +(0.186393 + 0.215109i) q^{28} +(-4.19162 + 1.23077i) q^{29} +(-1.36345 - 0.876238i) q^{30} +(1.03303 - 2.26202i) q^{31} +(1.04598 - 1.20712i) q^{32} +(4.26921 - 2.74365i) q^{33} +(-1.12257 - 7.80763i) q^{34} +(-0.176110 - 1.22487i) q^{35} +(-0.239446 + 0.153882i) q^{36} +(-5.56318 + 6.42026i) q^{37} +(3.12983 - 6.85337i) q^{38} +(-1.31805 - 0.847057i) q^{39} +(-3.55280 + 1.04320i) q^{40} +(3.91794 + 4.52155i) q^{41} +(1.25667 + 0.368991i) q^{42} +(-0.842640 - 1.84512i) q^{43} +(0.205566 - 1.42974i) q^{44} +1.23747 q^{45} +(5.79549 - 2.42195i) q^{46} -2.38197 q^{47} +(0.476716 - 3.31563i) q^{48} +(0.415415 + 0.909632i) q^{49} +(-4.35897 - 1.27991i) q^{50} +(3.94396 + 4.55157i) q^{51} +(-0.427884 + 0.125638i) q^{52} +(-5.44615 - 3.50003i) q^{53} +(-0.544078 + 1.19136i) q^{54} +(-4.11248 + 4.74606i) q^{55} +(2.51722 - 1.61772i) q^{56} +(0.818672 + 5.69399i) q^{57} +(0.814272 + 5.66339i) q^{58} +(-10.4019 + 6.68489i) q^{59} +(0.230655 - 0.266190i) q^{60} +(-1.36641 + 2.99203i) q^{61} +(-2.73991 - 1.76083i) q^{62} +(-0.959493 + 0.281733i) q^{63} +(-5.75714 - 6.64410i) q^{64} +(1.86029 + 0.546230i) q^{65} +(-2.76110 - 6.04596i) q^{66} +(-1.72856 + 12.0224i) q^{67} +1.71421 q^{68} +(-2.72277 + 3.94798i) q^{69} -1.62074 q^{70} +(1.16690 - 8.11596i) q^{71} +(1.24302 + 2.72183i) q^{72} +(-4.18826 - 1.22978i) q^{73} +(7.28622 + 8.40875i) q^{74} +(3.32816 - 0.977237i) q^{75} +(1.37742 + 0.885215i) q^{76} +(2.10816 - 4.61622i) q^{77} +(-1.34379 + 1.55082i) q^{78} +(-4.51918 + 2.90430i) q^{79} +(0.589921 + 4.10299i) q^{80} +(-0.142315 - 0.989821i) q^{81} +(6.59197 - 4.23640i) q^{82} +(2.21220 - 2.55301i) q^{83} +(-0.118239 + 0.258908i) q^{84} +(-6.26967 - 4.02927i) q^{85} +(-2.54906 + 0.748472i) q^{86} +(-2.86081 - 3.30155i) q^{87} +(-14.5699 - 4.27811i) q^{88} +(2.88880 + 6.32558i) q^{89} +(0.230655 - 1.60424i) q^{90} -1.56677 q^{91} +(0.341739 + 1.32157i) q^{92} +2.48674 q^{93} +(-0.443981 + 3.08796i) q^{94} +(-2.95717 - 6.47530i) q^{95} +(1.53255 + 0.449997i) q^{96} +(11.2146 + 12.9424i) q^{97} +(1.25667 - 0.368991i) q^{98} +(4.26921 + 2.74365i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + O(q^{10}) \) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + 9q^{10} + 3q^{11} + 18q^{12} - 2q^{13} + 18q^{14} - q^{15} + 8q^{16} + 8q^{17} + 18q^{18} + 6q^{19} - 2q^{20} - 2q^{21} + 6q^{22} + 11q^{23} + 9q^{25} + 7q^{26} - 2q^{27} - 4q^{28} + 23q^{29} + 9q^{30} + q^{31} - 28q^{32} + 14q^{33} - 28q^{34} + 10q^{35} - 4q^{36} - 9q^{37} + 34q^{38} - 2q^{39} - 15q^{41} - 4q^{42} - 23q^{43} - 16q^{44} - 12q^{45} + 11q^{46} - 66q^{47} - 36q^{48} - 2q^{49} - 26q^{50} - 14q^{51} + 7q^{52} + 9q^{53} - 4q^{54} - 62q^{55} + 22q^{56} - 27q^{57} - 20q^{58} + 49q^{59} - 2q^{60} + 46q^{61} - 9q^{62} - 2q^{63} + 16q^{64} + 11q^{65} - 16q^{66} + 14q^{67} + 38q^{68} + 11q^{69} - 2q^{70} + 36q^{71} - q^{73} + 4q^{74} - 2q^{75} + 34q^{76} - 8q^{77} - 15q^{78} - 22q^{79} + 15q^{80} - 2q^{81} - 30q^{82} + 8q^{83} - 4q^{84} - 32q^{85} - 68q^{86} + q^{87} - 11q^{88} - 2q^{89} - 2q^{90} - 24q^{91} + 11q^{92} - 32q^{93} + 33q^{94} - 107q^{95} + 16q^{96} + 18q^{97} - 4q^{98} + 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.186393 1.29639i 0.131800 0.916686i −0.811407 0.584481i \(-0.801298\pi\)
0.943207 0.332205i \(-0.107793\pi\)
\(3\) 0.415415 + 0.909632i 0.239840 + 0.525176i
\(4\) 0.273100 + 0.0801894i 0.136550 + 0.0400947i
\(5\) −0.810370 0.935217i −0.362408 0.418242i 0.545037 0.838412i \(-0.316516\pi\)
−0.907445 + 0.420171i \(0.861970\pi\)
\(6\) 1.25667 0.368991i 0.513033 0.150640i
\(7\) 0.841254 + 0.540641i 0.317964 + 0.204343i
\(8\) 1.24302 2.72183i 0.439473 0.962311i
\(9\) −0.654861 + 0.755750i −0.218287 + 0.251917i
\(10\) −1.36345 + 0.876238i −0.431162 + 0.277091i
\(11\) −0.722222 5.02317i −0.217758 1.51454i −0.746286 0.665625i \(-0.768165\pi\)
0.528528 0.848916i \(-0.322744\pi\)
\(12\) 0.0405070 + 0.281733i 0.0116934 + 0.0813292i
\(13\) −1.31805 + 0.847057i −0.365560 + 0.234931i −0.710506 0.703691i \(-0.751534\pi\)
0.344945 + 0.938623i \(0.387897\pi\)
\(14\) 0.857685 0.989821i 0.229226 0.264541i
\(15\) 0.514063 1.12564i 0.132731 0.290639i
\(16\) −2.81797 1.81100i −0.704492 0.452750i
\(17\) 5.77863 1.69676i 1.40152 0.411525i 0.508317 0.861170i \(-0.330268\pi\)
0.893207 + 0.449645i \(0.148450\pi\)
\(18\) 0.857685 + 0.989821i 0.202158 + 0.233303i
\(19\) 5.51952 + 1.62068i 1.26626 + 0.371809i 0.844823 0.535046i \(-0.179706\pi\)
0.421442 + 0.906855i \(0.361524\pi\)
\(20\) −0.146318 0.320391i −0.0327176 0.0716416i
\(21\) −0.142315 + 0.989821i −0.0310556 + 0.215997i
\(22\) −6.64660 −1.41706
\(23\) 2.46012 + 4.11677i 0.512971 + 0.858406i
\(24\) 2.99223 0.610786
\(25\) 0.493643 3.43336i 0.0987287 0.686673i
\(26\) 0.852443 + 1.86659i 0.167178 + 0.366068i
\(27\) −0.959493 0.281733i −0.184655 0.0542195i
\(28\) 0.186393 + 0.215109i 0.0352249 + 0.0406517i
\(29\) −4.19162 + 1.23077i −0.778365 + 0.228548i −0.646699 0.762746i \(-0.723851\pi\)
−0.131666 + 0.991294i \(0.542033\pi\)
\(30\) −1.36345 0.876238i −0.248931 0.159978i
\(31\) 1.03303 2.26202i 0.185538 0.406271i −0.793891 0.608060i \(-0.791948\pi\)
0.979429 + 0.201789i \(0.0646755\pi\)
\(32\) 1.04598 1.20712i 0.184904 0.213391i
\(33\) 4.26921 2.74365i 0.743174 0.477609i
\(34\) −1.12257 7.80763i −0.192519 1.33900i
\(35\) −0.176110 1.22487i −0.0297681 0.207041i
\(36\) −0.239446 + 0.153882i −0.0399076 + 0.0256471i
\(37\) −5.56318 + 6.42026i −0.914582 + 1.05548i 0.0836769 + 0.996493i \(0.473334\pi\)
−0.998259 + 0.0589905i \(0.981212\pi\)
\(38\) 3.12983 6.85337i 0.507725 1.11176i
\(39\) −1.31805 0.847057i −0.211056 0.135638i
\(40\) −3.55280 + 1.04320i −0.561747 + 0.164944i
\(41\) 3.91794 + 4.52155i 0.611880 + 0.706147i 0.974144 0.225929i \(-0.0725416\pi\)
−0.362264 + 0.932075i \(0.617996\pi\)
\(42\) 1.25667 + 0.368991i 0.193908 + 0.0569366i
\(43\) −0.842640 1.84512i −0.128501 0.281379i 0.834435 0.551106i \(-0.185794\pi\)
−0.962937 + 0.269727i \(0.913067\pi\)
\(44\) 0.205566 1.42974i 0.0309902 0.215542i
\(45\) 1.23747 0.184471
\(46\) 5.79549 2.42195i 0.854498 0.357096i
\(47\) −2.38197 −0.347446 −0.173723 0.984795i \(-0.555580\pi\)
−0.173723 + 0.984795i \(0.555580\pi\)
\(48\) 0.476716 3.31563i 0.0688080 0.478570i
\(49\) 0.415415 + 0.909632i 0.0593450 + 0.129947i
\(50\) −4.35897 1.27991i −0.616451 0.181006i
\(51\) 3.94396 + 4.55157i 0.552265 + 0.637347i
\(52\) −0.427884 + 0.125638i −0.0593368 + 0.0174229i
\(53\) −5.44615 3.50003i −0.748086 0.480766i 0.110218 0.993907i \(-0.464845\pi\)
−0.858304 + 0.513142i \(0.828482\pi\)
\(54\) −0.544078 + 1.19136i −0.0740396 + 0.162124i
\(55\) −4.11248 + 4.74606i −0.554527 + 0.639958i
\(56\) 2.51722 1.61772i 0.336378 0.216177i
\(57\) 0.818672 + 5.69399i 0.108436 + 0.754187i
\(58\) 0.814272 + 5.66339i 0.106919 + 0.743639i
\(59\) −10.4019 + 6.68489i −1.35421 + 0.870299i −0.997944 0.0640850i \(-0.979587\pi\)
−0.356267 + 0.934384i \(0.615951\pi\)
\(60\) 0.230655 0.266190i 0.0297775 0.0343650i
\(61\) −1.36641 + 2.99203i −0.174951 + 0.383090i −0.976712 0.214556i \(-0.931170\pi\)
0.801760 + 0.597645i \(0.203897\pi\)
\(62\) −2.73991 1.76083i −0.347969 0.223626i
\(63\) −0.959493 + 0.281733i −0.120885 + 0.0354950i
\(64\) −5.75714 6.64410i −0.719643 0.830512i
\(65\) 1.86029 + 0.546230i 0.230740 + 0.0677515i
\(66\) −2.76110 6.04596i −0.339868 0.744206i
\(67\) −1.72856 + 12.0224i −0.211178 + 1.46877i 0.558055 + 0.829804i \(0.311548\pi\)
−0.769232 + 0.638969i \(0.779361\pi\)
\(68\) 1.71421 0.207878
\(69\) −2.72277 + 3.94798i −0.327783 + 0.475280i
\(70\) −1.62074 −0.193715
\(71\) 1.16690 8.11596i 0.138485 0.963187i −0.795520 0.605928i \(-0.792802\pi\)
0.934005 0.357260i \(-0.116289\pi\)
\(72\) 1.24302 + 2.72183i 0.146491 + 0.320770i
\(73\) −4.18826 1.22978i −0.490199 0.143935i 0.0272863 0.999628i \(-0.491313\pi\)
−0.517485 + 0.855692i \(0.673132\pi\)
\(74\) 7.28622 + 8.40875i 0.847006 + 0.977497i
\(75\) 3.32816 0.977237i 0.384303 0.112842i
\(76\) 1.37742 + 0.885215i 0.158001 + 0.101541i
\(77\) 2.10816 4.61622i 0.240247 0.526067i
\(78\) −1.34379 + 1.55082i −0.152154 + 0.175596i
\(79\) −4.51918 + 2.90430i −0.508447 + 0.326759i −0.769587 0.638542i \(-0.779538\pi\)
0.261140 + 0.965301i \(0.415902\pi\)
\(80\) 0.589921 + 4.10299i 0.0659552 + 0.458728i
\(81\) −0.142315 0.989821i −0.0158128 0.109980i
\(82\) 6.59197 4.23640i 0.727961 0.467832i
\(83\) 2.21220 2.55301i 0.242820 0.280229i −0.621237 0.783622i \(-0.713370\pi\)
0.864058 + 0.503393i \(0.167915\pi\)
\(84\) −0.118239 + 0.258908i −0.0129010 + 0.0282492i
\(85\) −6.26967 4.02927i −0.680041 0.437036i
\(86\) −2.54906 + 0.748472i −0.274873 + 0.0807099i
\(87\) −2.86081 3.30155i −0.306711 0.353964i
\(88\) −14.5699 4.27811i −1.55316 0.456049i
\(89\) 2.88880 + 6.32558i 0.306212 + 0.670510i 0.998703 0.0509161i \(-0.0162141\pi\)
−0.692491 + 0.721426i \(0.743487\pi\)
\(90\) 0.230655 1.60424i 0.0243132 0.169102i
\(91\) −1.56677 −0.164242
\(92\) 0.341739 + 1.32157i 0.0356288 + 0.137783i
\(93\) 2.48674 0.257863
\(94\) −0.443981 + 3.08796i −0.0457932 + 0.318499i
\(95\) −2.95717 6.47530i −0.303399 0.664351i
\(96\) 1.53255 + 0.449997i 0.156415 + 0.0459276i
\(97\) 11.2146 + 12.9424i 1.13867 + 1.31410i 0.942758 + 0.333479i \(0.108223\pi\)
0.195916 + 0.980621i \(0.437232\pi\)
\(98\) 1.25667 0.368991i 0.126943 0.0372737i
\(99\) 4.26921 + 2.74365i 0.429072 + 0.275748i
\(100\) 0.410134 0.898067i 0.0410134 0.0898067i
\(101\) −3.26390 + 3.76674i −0.324770 + 0.374805i −0.894531 0.447006i \(-0.852490\pi\)
0.569761 + 0.821810i \(0.307036\pi\)
\(102\) 6.63574 4.26453i 0.657036 0.422251i
\(103\) −0.861017 5.98851i −0.0848385 0.590065i −0.987249 0.159187i \(-0.949113\pi\)
0.902410 0.430878i \(-0.141796\pi\)
\(104\) 0.667189 + 4.64040i 0.0654233 + 0.455029i
\(105\) 1.04103 0.669026i 0.101594 0.0652903i
\(106\) −5.55253 + 6.40796i −0.539309 + 0.622396i
\(107\) −7.01150 + 15.3531i −0.677828 + 1.48424i 0.187101 + 0.982341i \(0.440091\pi\)
−0.864929 + 0.501895i \(0.832636\pi\)
\(108\) −0.239446 0.153882i −0.0230407 0.0148073i
\(109\) 8.59687 2.52427i 0.823430 0.241781i 0.157238 0.987561i \(-0.449741\pi\)
0.666193 + 0.745780i \(0.267923\pi\)
\(110\) 5.38620 + 6.21601i 0.513554 + 0.592673i
\(111\) −8.15110 2.39338i −0.773668 0.227169i
\(112\) −1.39153 3.04702i −0.131487 0.287916i
\(113\) 2.43496 16.9355i 0.229062 1.59316i −0.473012 0.881056i \(-0.656833\pi\)
0.702074 0.712104i \(-0.252258\pi\)
\(114\) 7.53422 0.705645
\(115\) 1.85646 5.63686i 0.173116 0.525639i
\(116\) −1.24343 −0.115449
\(117\) 0.222974 1.55082i 0.0206140 0.143373i
\(118\) 6.72739 + 14.7309i 0.619307 + 1.35609i
\(119\) 5.77863 + 1.69676i 0.529727 + 0.155542i
\(120\) −2.42481 2.79838i −0.221354 0.255456i
\(121\) −14.1562 + 4.15662i −1.28692 + 0.377875i
\(122\) 3.62415 + 2.32910i 0.328115 + 0.210867i
\(123\) −2.48537 + 5.44220i −0.224098 + 0.490707i
\(124\) 0.463511 0.534920i 0.0416245 0.0480372i
\(125\) −8.81610 + 5.66576i −0.788536 + 0.506761i
\(126\) 0.186393 + 1.29639i 0.0166052 + 0.115492i
\(127\) 0.941452 + 6.54794i 0.0835404 + 0.581036i 0.987997 + 0.154471i \(0.0493673\pi\)
−0.904457 + 0.426565i \(0.859724\pi\)
\(128\) −6.99906 + 4.49802i −0.618635 + 0.397573i
\(129\) 1.32834 1.53298i 0.116954 0.134972i
\(130\) 1.05487 2.30985i 0.0925183 0.202587i
\(131\) 2.84475 + 1.82821i 0.248547 + 0.159731i 0.658983 0.752158i \(-0.270987\pi\)
−0.410436 + 0.911890i \(0.634623\pi\)
\(132\) 1.38593 0.406947i 0.120630 0.0354202i
\(133\) 3.76711 + 4.34748i 0.326650 + 0.376974i
\(134\) 15.2636 + 4.48179i 1.31857 + 0.387168i
\(135\) 0.514063 + 1.12564i 0.0442435 + 0.0968798i
\(136\) 2.56465 17.8375i 0.219917 1.52956i
\(137\) 13.7505 1.17478 0.587392 0.809302i \(-0.300155\pi\)
0.587392 + 0.809302i \(0.300155\pi\)
\(138\) 4.61061 + 4.26565i 0.392481 + 0.363116i
\(139\) 3.33313 0.282712 0.141356 0.989959i \(-0.454854\pi\)
0.141356 + 0.989959i \(0.454854\pi\)
\(140\) 0.0501262 0.348635i 0.00423644 0.0294651i
\(141\) −0.989505 2.16671i −0.0833313 0.182470i
\(142\) −10.3040 3.02551i −0.864688 0.253895i
\(143\) 5.20683 + 6.00900i 0.435417 + 0.502498i
\(144\) 3.21404 0.943727i 0.267837 0.0786439i
\(145\) 4.54780 + 2.92270i 0.377674 + 0.242717i
\(146\) −2.37494 + 5.20039i −0.196551 + 0.430388i
\(147\) −0.654861 + 0.755750i −0.0540120 + 0.0623332i
\(148\) −2.03414 + 1.30726i −0.167206 + 0.107456i
\(149\) 2.40658 + 16.7381i 0.197154 + 1.37124i 0.812491 + 0.582974i \(0.198111\pi\)
−0.615337 + 0.788265i \(0.710980\pi\)
\(150\) −0.646535 4.49675i −0.0527894 0.367158i
\(151\) −10.3876 + 6.67573i −0.845334 + 0.543263i −0.890116 0.455734i \(-0.849377\pi\)
0.0447823 + 0.998997i \(0.485741\pi\)
\(152\) 11.2721 13.0086i 0.914285 1.05514i
\(153\) −2.50188 + 5.47834i −0.202265 + 0.442898i
\(154\) −5.59148 3.59342i −0.450574 0.289566i
\(155\) −2.95261 + 0.866966i −0.237160 + 0.0696364i
\(156\) −0.292034 0.337025i −0.0233814 0.0269836i
\(157\) 19.5221 + 5.73221i 1.55803 + 0.457480i 0.943490 0.331402i \(-0.107522\pi\)
0.614545 + 0.788882i \(0.289340\pi\)
\(158\) 2.92276 + 6.39996i 0.232522 + 0.509153i
\(159\) 0.921325 6.40796i 0.0730658 0.508184i
\(160\) −1.97655 −0.156260
\(161\) −0.156105 + 4.79329i −0.0123028 + 0.377764i
\(162\) −1.30972 −0.102901
\(163\) 1.11633 7.76423i 0.0874376 0.608142i −0.898241 0.439504i \(-0.855154\pi\)
0.985678 0.168638i \(-0.0539367\pi\)
\(164\) 0.707410 + 1.54901i 0.0552395 + 0.120958i
\(165\) −6.02555 1.76926i −0.469089 0.137737i
\(166\) −2.89736 3.34373i −0.224879 0.259524i
\(167\) −1.92671 + 0.565732i −0.149093 + 0.0437777i −0.355427 0.934704i \(-0.615665\pi\)
0.206334 + 0.978482i \(0.433847\pi\)
\(168\) 2.51722 + 1.61772i 0.194208 + 0.124810i
\(169\) −4.38065 + 9.59229i −0.336973 + 0.737869i
\(170\) −6.39213 + 7.37691i −0.490254 + 0.565783i
\(171\) −4.83934 + 3.11006i −0.370074 + 0.237832i
\(172\) −0.0821656 0.571475i −0.00626507 0.0435745i
\(173\) 0.342875 + 2.38475i 0.0260683 + 0.181309i 0.998695 0.0510621i \(-0.0162607\pi\)
−0.972627 + 0.232371i \(0.925352\pi\)
\(174\) −4.81334 + 3.09334i −0.364898 + 0.234506i
\(175\) 2.27150 2.62145i 0.171709 0.198163i
\(176\) −7.06175 + 15.4631i −0.532299 + 1.16557i
\(177\) −10.4019 6.68489i −0.781855 0.502467i
\(178\) 8.73887 2.56596i 0.655006 0.192327i
\(179\) −16.8898 19.4919i −1.26240 1.45689i −0.832510 0.554010i \(-0.813097\pi\)
−0.429892 0.902880i \(-0.641448\pi\)
\(180\) 0.337953 + 0.0992320i 0.0251895 + 0.00739631i
\(181\) 4.56559 + 9.99726i 0.339358 + 0.743090i 0.999971 0.00763653i \(-0.00243081\pi\)
−0.660613 + 0.750727i \(0.729704\pi\)
\(182\) −0.292034 + 2.03114i −0.0216470 + 0.150558i
\(183\) −3.28927 −0.243150
\(184\) 14.2631 1.57882i 1.05149 0.116392i
\(185\) 10.5126 0.772899
\(186\) 0.463511 3.22379i 0.0339863 0.236380i
\(187\) −12.6966 27.8016i −0.928465 2.03305i
\(188\) −0.650516 0.191009i −0.0474437 0.0139307i
\(189\) −0.654861 0.755750i −0.0476341 0.0549727i
\(190\) −8.94571 + 2.62670i −0.648990 + 0.190561i
\(191\) −9.28500 5.96711i −0.671839 0.431765i 0.159749 0.987158i \(-0.448931\pi\)
−0.831588 + 0.555393i \(0.812568\pi\)
\(192\) 3.65208 7.99694i 0.263566 0.577130i
\(193\) 12.4297 14.3446i 0.894706 1.03255i −0.104570 0.994517i \(-0.533347\pi\)
0.999277 0.0380285i \(-0.0121078\pi\)
\(194\) 18.8687 12.1262i 1.35469 0.870609i
\(195\) 0.275923 + 1.91909i 0.0197593 + 0.137429i
\(196\) 0.0405070 + 0.281733i 0.00289336 + 0.0201238i
\(197\) 10.7634 6.91721i 0.766859 0.492830i −0.0977897 0.995207i \(-0.531177\pi\)
0.864649 + 0.502377i \(0.167541\pi\)
\(198\) 4.35260 5.02317i 0.309326 0.356981i
\(199\) −0.519802 + 1.13821i −0.0368478 + 0.0806854i −0.927161 0.374664i \(-0.877758\pi\)
0.890313 + 0.455349i \(0.150486\pi\)
\(200\) −8.73142 5.61134i −0.617404 0.396782i
\(201\) −11.6541 + 3.42194i −0.822014 + 0.241365i
\(202\) 4.27480 + 4.93338i 0.300774 + 0.347111i
\(203\) −4.19162 1.23077i −0.294194 0.0863832i
\(204\) 0.712108 + 1.55930i 0.0498575 + 0.109173i
\(205\) 1.05364 7.32825i 0.0735896 0.511827i
\(206\) −7.92393 −0.552086
\(207\) −4.72229 0.836672i −0.328222 0.0581528i
\(208\) 5.24824 0.363900
\(209\) 4.15461 28.8960i 0.287380 1.99877i
\(210\) −0.673280 1.47428i −0.0464607 0.101735i
\(211\) −2.23052 0.654941i −0.153556 0.0450880i 0.204051 0.978960i \(-0.434589\pi\)
−0.357607 + 0.933872i \(0.616407\pi\)
\(212\) −1.20668 1.39258i −0.0828751 0.0956429i
\(213\) 7.86728 2.31004i 0.539057 0.158282i
\(214\) 18.5967 + 11.9513i 1.27124 + 0.816977i
\(215\) −1.04274 + 2.28328i −0.0711143 + 0.155719i
\(216\) −1.95949 + 2.26138i −0.133327 + 0.153867i
\(217\) 2.09198 1.34443i 0.142013 0.0912661i
\(218\) −1.67004 11.6154i −0.113110 0.786694i
\(219\) −0.621215 4.32064i −0.0419778 0.291962i
\(220\) −1.50370 + 0.966371i −0.101380 + 0.0651527i
\(221\) −6.17926 + 7.13124i −0.415662 + 0.479699i
\(222\) −4.62206 + 10.1209i −0.310212 + 0.679270i
\(223\) −16.7091 10.7383i −1.11893 0.719090i −0.155706 0.987803i \(-0.549765\pi\)
−0.963220 + 0.268713i \(0.913402\pi\)
\(224\) 1.53255 0.449997i 0.102398 0.0300667i
\(225\) 2.27150 + 2.62145i 0.151433 + 0.174763i
\(226\) −21.5012 6.31332i −1.43024 0.419956i
\(227\) 6.45719 + 14.1393i 0.428579 + 0.938457i 0.993555 + 0.113350i \(0.0361581\pi\)
−0.564976 + 0.825107i \(0.691115\pi\)
\(228\) −0.233018 + 1.62068i −0.0154320 + 0.107332i
\(229\) −4.10506 −0.271270 −0.135635 0.990759i \(-0.543307\pi\)
−0.135635 + 0.990759i \(0.543307\pi\)
\(230\) −6.96153 3.45737i −0.459030 0.227972i
\(231\) 5.07482 0.333899
\(232\) −1.86031 + 12.9387i −0.122135 + 0.849470i
\(233\) −6.40472 14.0244i −0.419587 0.918768i −0.994903 0.100837i \(-0.967848\pi\)
0.575316 0.817931i \(-0.304879\pi\)
\(234\) −1.96890 0.578123i −0.128711 0.0377931i
\(235\) 1.93027 + 2.22766i 0.125917 + 0.145316i
\(236\) −3.37682 + 0.991523i −0.219812 + 0.0645427i
\(237\) −4.51918 2.90430i −0.293552 0.188654i
\(238\) 3.27676 7.17510i 0.212401 0.465093i
\(239\) −13.6319 + 15.7321i −0.881775 + 1.01762i 0.117923 + 0.993023i \(0.462376\pi\)
−0.999697 + 0.0245994i \(0.992169\pi\)
\(240\) −3.48715 + 2.24106i −0.225095 + 0.144659i
\(241\) −3.99284 27.7708i −0.257202 1.78888i −0.552543 0.833485i \(-0.686342\pi\)
0.295341 0.955392i \(-0.404567\pi\)
\(242\) 2.75000 + 19.1267i 0.176777 + 1.22951i
\(243\) 0.841254 0.540641i 0.0539664 0.0346821i
\(244\) −0.613097 + 0.707551i −0.0392495 + 0.0452963i
\(245\) 0.514063 1.12564i 0.0328423 0.0719146i
\(246\) 6.59197 + 4.23640i 0.420288 + 0.270103i
\(247\) −8.64779 + 2.53922i −0.550246 + 0.161567i
\(248\) −4.87275 5.62346i −0.309420 0.357090i
\(249\) 3.24128 + 0.951726i 0.205408 + 0.0603132i
\(250\) 5.70178 + 12.4852i 0.360612 + 0.789631i
\(251\) 0.502591 3.49560i 0.0317233 0.220640i −0.967793 0.251748i \(-0.918995\pi\)
0.999516 + 0.0311081i \(0.00990360\pi\)
\(252\) −0.284630 −0.0179300
\(253\) 18.9025 15.3308i 1.18839 0.963841i
\(254\) 8.66417 0.543638
\(255\) 1.06064 7.37691i 0.0664198 0.461960i
\(256\) −2.77755 6.08198i −0.173597 0.380124i
\(257\) −20.2053 5.93280i −1.26037 0.370078i −0.417737 0.908568i \(-0.637177\pi\)
−0.842632 + 0.538490i \(0.818995\pi\)
\(258\) −1.73975 2.00778i −0.108312 0.124999i
\(259\) −8.15110 + 2.39338i −0.506485 + 0.148717i
\(260\) 0.464243 + 0.298351i 0.0287911 + 0.0185029i
\(261\) 1.81477 3.97380i 0.112332 0.245972i
\(262\) 2.90031 3.34714i 0.179182 0.206787i
\(263\) 20.8890 13.4245i 1.28807 0.827793i 0.296211 0.955123i \(-0.404277\pi\)
0.991860 + 0.127329i \(0.0406405\pi\)
\(264\) −2.16105 15.0305i −0.133004 0.925061i
\(265\) 1.14011 + 7.92965i 0.0700365 + 0.487115i
\(266\) 6.33819 4.07331i 0.388619 0.249751i
\(267\) −4.55390 + 5.25548i −0.278694 + 0.321630i
\(268\) −1.43614 + 3.14471i −0.0877264 + 0.192094i
\(269\) −21.5571 13.8539i −1.31436 0.844687i −0.319662 0.947532i \(-0.603569\pi\)
−0.994697 + 0.102844i \(0.967206\pi\)
\(270\) 1.55509 0.456615i 0.0946397 0.0277887i
\(271\) 2.53472 + 2.92523i 0.153973 + 0.177695i 0.827496 0.561472i \(-0.189765\pi\)
−0.673522 + 0.739167i \(0.735219\pi\)
\(272\) −19.3568 5.68368i −1.17368 0.344624i
\(273\) −0.650858 1.42518i −0.0393917 0.0862558i
\(274\) 2.56299 17.8260i 0.154836 1.07691i
\(275\) −17.6029 −1.06149
\(276\) −1.06018 + 0.859855i −0.0638151 + 0.0517572i
\(277\) 22.2525 1.33702 0.668512 0.743701i \(-0.266931\pi\)
0.668512 + 0.743701i \(0.266931\pi\)
\(278\) 0.621271 4.32103i 0.0372614 0.259158i
\(279\) 1.03303 + 2.26202i 0.0618459 + 0.135424i
\(280\) −3.55280 1.04320i −0.212320 0.0623429i
\(281\) −5.21094 6.01375i −0.310859 0.358750i 0.578725 0.815523i \(-0.303551\pi\)
−0.889583 + 0.456773i \(0.849005\pi\)
\(282\) −2.99334 + 0.878925i −0.178251 + 0.0523392i
\(283\) 18.1352 + 11.6548i 1.07803 + 0.692807i 0.954101 0.299485i \(-0.0968148\pi\)
0.123927 + 0.992291i \(0.460451\pi\)
\(284\) 0.969495 2.12290i 0.0575289 0.125971i
\(285\) 4.66168 5.37987i 0.276134 0.318676i
\(286\) 8.76053 5.63005i 0.518021 0.332912i
\(287\) 0.851450 + 5.92197i 0.0502595 + 0.349563i
\(288\) 0.227312 + 1.58099i 0.0133945 + 0.0931608i
\(289\) 16.2123 10.4190i 0.953665 0.612884i
\(290\) 4.63663 5.35096i 0.272272 0.314219i
\(291\) −7.11408 + 15.5777i −0.417034 + 0.913178i
\(292\) −1.04520 0.671708i −0.0611656 0.0393087i
\(293\) −27.7947 + 8.16126i −1.62378 + 0.476786i −0.962032 0.272937i \(-0.912005\pi\)
−0.661752 + 0.749723i \(0.730187\pi\)
\(294\) 0.857685 + 0.989821i 0.0500212 + 0.0577276i
\(295\) 14.6812 + 4.31079i 0.854773 + 0.250984i
\(296\) 10.5597 + 23.1225i 0.613770 + 1.34397i
\(297\) −0.722222 + 5.02317i −0.0419076 + 0.291474i
\(298\) 22.1477 1.28298
\(299\) −6.72970 3.34223i −0.389189 0.193286i
\(300\) 0.987287 0.0570010
\(301\) 0.288676 2.00778i 0.0166390 0.115727i
\(302\) 6.71817 + 14.7107i 0.386587 + 0.846508i
\(303\) −4.78222 1.40419i −0.274731 0.0806684i
\(304\) −12.6188 14.5629i −0.723738 0.835238i
\(305\) 3.90549 1.14676i 0.223628 0.0656631i
\(306\) 6.63574 + 4.26453i 0.379340 + 0.243787i
\(307\) −5.49019 + 12.0218i −0.313342 + 0.686123i −0.999131 0.0416775i \(-0.986730\pi\)
0.685789 + 0.727800i \(0.259457\pi\)
\(308\) 0.945910 1.09164i 0.0538982 0.0622019i
\(309\) 5.08966 3.27092i 0.289540 0.186076i
\(310\) 0.573580 + 3.98934i 0.0325772 + 0.226579i
\(311\) 2.29477 + 15.9605i 0.130124 + 0.905034i 0.945389 + 0.325945i \(0.105683\pi\)
−0.815264 + 0.579089i \(0.803408\pi\)
\(312\) −3.94390 + 2.53459i −0.223279 + 0.143493i
\(313\) 4.28466 4.94476i 0.242183 0.279495i −0.621625 0.783315i \(-0.713527\pi\)
0.863808 + 0.503820i \(0.168073\pi\)
\(314\) 11.0700 24.2398i 0.624714 1.36793i
\(315\) 1.04103 + 0.669026i 0.0586551 + 0.0376954i
\(316\) −1.46708 + 0.430774i −0.0825298 + 0.0242329i
\(317\) 10.5478 + 12.1728i 0.592424 + 0.683694i 0.970228 0.242192i \(-0.0778663\pi\)
−0.377804 + 0.925885i \(0.623321\pi\)
\(318\) −8.13549 2.38879i −0.456215 0.133957i
\(319\) 9.20965 + 20.1663i 0.515641 + 1.12910i
\(320\) −1.54826 + 10.7684i −0.0865501 + 0.601969i
\(321\) −16.8783 −0.942055
\(322\) 6.18488 + 1.09581i 0.344670 + 0.0610670i
\(323\) 34.6452 1.92771
\(324\) 0.0405070 0.281733i 0.00225039 0.0156518i
\(325\) 2.25761 + 4.94348i 0.125230 + 0.274215i
\(326\) −9.85740 2.89439i −0.545951 0.160306i
\(327\) 5.86742 + 6.77137i 0.324469 + 0.374457i
\(328\) 17.1769 5.04360i 0.948438 0.278486i
\(329\) −2.00384 1.28779i −0.110475 0.0709981i
\(330\) −3.41677 + 7.48169i −0.188087 + 0.411853i
\(331\) −6.68170 + 7.71110i −0.367260 + 0.423840i −0.909059 0.416668i \(-0.863198\pi\)
0.541799 + 0.840508i \(0.317743\pi\)
\(332\) 0.808876 0.519833i 0.0443928 0.0285295i
\(333\) −1.20900 8.40875i −0.0662525 0.460796i
\(334\) 0.374285 + 2.60321i 0.0204800 + 0.142441i
\(335\) 12.6444 8.12603i 0.690835 0.443973i
\(336\) 2.19360 2.53155i 0.119671 0.138108i
\(337\) 10.0645 22.0381i 0.548246 1.20049i −0.409351 0.912377i \(-0.634245\pi\)
0.957596 0.288113i \(-0.0930280\pi\)
\(338\) 11.6188 + 7.46697i 0.631981 + 0.406150i
\(339\) 16.4166 4.82035i 0.891628 0.261806i
\(340\) −1.38914 1.60316i −0.0753368 0.0869434i
\(341\) −12.1086 3.55540i −0.655716 0.192536i
\(342\) 3.12983 + 6.85337i 0.169242 + 0.370588i
\(343\) −0.142315 + 0.989821i −0.00768428 + 0.0534453i
\(344\) −6.06952 −0.327247
\(345\) 5.89867 0.652938i 0.317573 0.0351530i
\(346\) 3.15548 0.169639
\(347\) 0.640065 4.45175i 0.0343605 0.238983i −0.965402 0.260765i \(-0.916025\pi\)
0.999763 + 0.0217828i \(0.00693422\pi\)
\(348\) −0.516538 1.13106i −0.0276894 0.0606313i
\(349\) 20.2000 + 5.93127i 1.08128 + 0.317493i 0.773392 0.633928i \(-0.218558\pi\)
0.307891 + 0.951422i \(0.400377\pi\)
\(350\) −2.97503 3.43336i −0.159022 0.183521i
\(351\) 1.50330 0.441409i 0.0802402 0.0235607i
\(352\) −6.81899 4.38230i −0.363453 0.233577i
\(353\) 12.7699 27.9622i 0.679675 1.48828i −0.183313 0.983055i \(-0.558682\pi\)
0.862987 0.505225i \(-0.168591\pi\)
\(354\) −10.6051 + 12.2389i −0.563653 + 0.650490i
\(355\) −8.53580 + 5.48563i −0.453033 + 0.291147i
\(356\) 0.281686 + 1.95917i 0.0149293 + 0.103836i
\(357\) 0.857104 + 5.96129i 0.0453628 + 0.315505i
\(358\) −28.4172 + 18.2626i −1.50190 + 0.965210i
\(359\) −8.50587 + 9.81630i −0.448923 + 0.518084i −0.934429 0.356149i \(-0.884090\pi\)
0.485507 + 0.874233i \(0.338635\pi\)
\(360\) 1.53819 3.36818i 0.0810700 0.177518i
\(361\) 11.8547 + 7.61855i 0.623931 + 0.400976i
\(362\) 13.8113 4.05538i 0.725908 0.213146i
\(363\) −9.66168 11.1502i −0.507107 0.585232i
\(364\) −0.427884 0.125638i −0.0224272 0.00658522i
\(365\) 2.24392 + 4.91351i 0.117452 + 0.257185i
\(366\) −0.613097 + 4.26418i −0.0320471 + 0.222892i
\(367\) −5.19518 −0.271186 −0.135593 0.990765i \(-0.543294\pi\)
−0.135593 + 0.990765i \(0.543294\pi\)
\(368\) 0.522909 16.0562i 0.0272585 0.836988i
\(369\) −5.98286 −0.311455
\(370\) 1.95947 13.6284i 0.101868 0.708506i
\(371\) −2.68934 5.88882i −0.139623 0.305732i
\(372\) 0.679130 + 0.199410i 0.0352112 + 0.0103389i
\(373\) −7.20454 8.31448i −0.373037 0.430507i 0.537928 0.842991i \(-0.319207\pi\)
−0.910965 + 0.412483i \(0.864662\pi\)
\(374\) −38.4083 + 11.2777i −1.98604 + 0.583155i
\(375\) −8.81610 5.66576i −0.455261 0.292579i
\(376\) −2.96082 + 6.48330i −0.152693 + 0.334351i
\(377\) 4.48222 5.17276i 0.230846 0.266411i
\(378\) −1.10181 + 0.708089i −0.0566709 + 0.0364202i
\(379\) 3.36674 + 23.4162i 0.172938 + 1.20281i 0.872636 + 0.488371i \(0.162409\pi\)
−0.699698 + 0.714438i \(0.746682\pi\)
\(380\) −0.288353 2.00554i −0.0147922 0.102882i
\(381\) −5.56512 + 3.57649i −0.285110 + 0.183229i
\(382\) −9.46636 + 10.9248i −0.484341 + 0.558959i
\(383\) −8.94526 + 19.5874i −0.457081 + 1.00087i 0.531062 + 0.847333i \(0.321793\pi\)
−0.988143 + 0.153536i \(0.950934\pi\)
\(384\) −6.99906 4.49802i −0.357169 0.229539i
\(385\) −6.02555 + 1.76926i −0.307091 + 0.0901699i
\(386\) −16.2794 18.7874i −0.828599 0.956254i
\(387\) 1.94626 + 0.571475i 0.0989341 + 0.0290497i
\(388\) 2.02488 + 4.43386i 0.102798 + 0.225095i
\(389\) 4.91397 34.1774i 0.249148 1.73286i −0.354010 0.935242i \(-0.615182\pi\)
0.603158 0.797621i \(-0.293909\pi\)
\(390\) 2.53932 0.128583
\(391\) 21.2013 + 19.6151i 1.07220 + 0.991976i
\(392\) 2.99223 0.151130
\(393\) −0.481246 + 3.34714i −0.0242757 + 0.168841i
\(394\) −6.96118 15.2429i −0.350699 0.767924i
\(395\) 6.37835 + 1.87285i 0.320930 + 0.0942335i
\(396\) 0.945910 + 1.09164i 0.0475338 + 0.0548569i
\(397\) 16.4741 4.83725i 0.826814 0.242774i 0.159166 0.987252i \(-0.449119\pi\)
0.667648 + 0.744477i \(0.267301\pi\)
\(398\) 1.37867 + 0.886021i 0.0691067 + 0.0444122i
\(399\) −2.38969 + 5.23269i −0.119634 + 0.261962i
\(400\) −7.60889 + 8.78113i −0.380445 + 0.439056i
\(401\) 8.84134 5.68199i 0.441516 0.283745i −0.300936 0.953644i \(-0.597299\pi\)
0.742452 + 0.669899i \(0.233663\pi\)
\(402\) 2.26394 + 15.7460i 0.112915 + 0.785341i
\(403\) 0.554479 + 3.85648i 0.0276206 + 0.192105i
\(404\) −1.19342 + 0.766967i −0.0593751 + 0.0381580i
\(405\) −0.810370 + 0.935217i −0.0402676 + 0.0464713i
\(406\) −2.37685 + 5.20457i −0.117961 + 0.258299i
\(407\) 36.2679 + 23.3079i 1.79773 + 1.15533i
\(408\) 17.2910 5.07709i 0.856032 0.251354i
\(409\) 20.8200 + 24.0276i 1.02948 + 1.18809i 0.981935 + 0.189217i \(0.0605950\pi\)
0.0475471 + 0.998869i \(0.484860\pi\)
\(410\) −9.30388 2.73187i −0.459486 0.134917i
\(411\) 5.71216 + 12.5079i 0.281760 + 0.616969i
\(412\) 0.245071 1.70451i 0.0120738 0.0839750i
\(413\) −12.3648 −0.608430
\(414\) −1.96485 + 5.96598i −0.0965673 + 0.293212i
\(415\) −4.18032 −0.205204
\(416\) −0.356145 + 2.47704i −0.0174614 + 0.121447i
\(417\) 1.38463 + 3.03192i 0.0678057 + 0.148474i
\(418\) −36.6860 10.7720i −1.79437 0.526876i
\(419\) −9.00481 10.3921i −0.439914 0.507687i 0.491886 0.870659i \(-0.336308\pi\)
−0.931800 + 0.362972i \(0.881762\pi\)
\(420\) 0.337953 0.0992320i 0.0164904 0.00484202i
\(421\) 9.14507 + 5.87718i 0.445704 + 0.286436i 0.744178 0.667981i \(-0.232841\pi\)
−0.298474 + 0.954418i \(0.596478\pi\)
\(422\) −1.26481 + 2.76955i −0.0615701 + 0.134820i
\(423\) 1.55986 1.80017i 0.0758428 0.0875273i
\(424\) −16.2961 + 10.4729i −0.791410 + 0.508608i
\(425\) −2.97301 20.6778i −0.144212 1.00302i
\(426\) −1.52831 10.6296i −0.0740470 0.515008i
\(427\) −2.76711 + 1.77832i −0.133910 + 0.0860587i
\(428\) −3.14600 + 3.63067i −0.152067 + 0.175495i
\(429\) −3.30299 + 7.23253i −0.159470 + 0.349190i
\(430\) 2.76567 + 1.77739i 0.133372 + 0.0857132i
\(431\) −7.39486 + 2.17133i −0.356198 + 0.104589i −0.454935 0.890524i \(-0.650338\pi\)
0.0987377 + 0.995113i \(0.468520\pi\)
\(432\) 2.19360 + 2.53155i 0.105540 + 0.121799i
\(433\) 34.7859 + 10.2141i 1.67170 + 0.490856i 0.974192 0.225719i \(-0.0724731\pi\)
0.697510 + 0.716575i \(0.254291\pi\)
\(434\) −1.35298 2.96262i −0.0649452 0.142210i
\(435\) −0.769352 + 5.35096i −0.0368876 + 0.256559i
\(436\) 2.55023 0.122134
\(437\) 6.90675 + 26.7097i 0.330395 + 1.27770i
\(438\) −5.71703 −0.273170
\(439\) 5.05375 35.1496i 0.241202 1.67760i −0.404911 0.914356i \(-0.632698\pi\)
0.646113 0.763242i \(-0.276393\pi\)
\(440\) 7.80606 + 17.0929i 0.372139 + 0.814872i
\(441\) −0.959493 0.281733i −0.0456901 0.0134158i
\(442\) 8.09311 + 9.33994i 0.384950 + 0.444256i
\(443\) 16.0351 4.70833i 0.761850 0.223699i 0.122347 0.992487i \(-0.460958\pi\)
0.639504 + 0.768788i \(0.279140\pi\)
\(444\) −2.03414 1.30726i −0.0965362 0.0620400i
\(445\) 3.57480 7.82771i 0.169462 0.371069i
\(446\) −17.0355 + 19.6600i −0.806655 + 0.930929i
\(447\) −14.2258 + 9.14236i −0.672856 + 0.432419i
\(448\) −1.25115 8.70192i −0.0591111 0.411127i
\(449\) 3.04200 + 21.1575i 0.143561 + 0.998486i 0.926475 + 0.376357i \(0.122823\pi\)
−0.782914 + 0.622130i \(0.786268\pi\)
\(450\) 3.82181 2.45613i 0.180162 0.115783i
\(451\) 19.8829 22.9460i 0.936247 1.08049i
\(452\) 2.02304 4.42984i 0.0951557 0.208362i
\(453\) −10.3876 6.67573i −0.488054 0.313653i
\(454\) 19.5336 5.73558i 0.916757 0.269184i
\(455\) 1.26966 + 1.46527i 0.0595226 + 0.0686927i
\(456\) 16.5157 + 4.84944i 0.773417 + 0.227096i
\(457\) −4.45265 9.74994i −0.208286 0.456083i 0.776441 0.630191i \(-0.217023\pi\)
−0.984727 + 0.174108i \(0.944296\pi\)
\(458\) −0.765154 + 5.32177i −0.0357533 + 0.248670i
\(459\) −6.02259 −0.281111
\(460\) 0.959016 1.39056i 0.0447144 0.0648351i
\(461\) −33.0490 −1.53924 −0.769622 0.638500i \(-0.779555\pi\)
−0.769622 + 0.638500i \(0.779555\pi\)
\(462\) 0.945910 6.57895i 0.0440077 0.306080i
\(463\) −0.336321 0.736440i −0.0156301 0.0342253i 0.901656 0.432454i \(-0.142352\pi\)
−0.917286 + 0.398229i \(0.869625\pi\)
\(464\) 14.0408 + 4.12275i 0.651827 + 0.191394i
\(465\) −2.01518 2.32564i −0.0934518 0.107849i
\(466\) −19.3749 + 5.68898i −0.897524 + 0.263537i
\(467\) −0.800368 0.514365i −0.0370366 0.0238020i 0.521992 0.852951i \(-0.325189\pi\)
−0.559028 + 0.829149i \(0.688826\pi\)
\(468\) 0.185253 0.405649i 0.00856335 0.0187511i
\(469\) −7.95398 + 9.17938i −0.367280 + 0.423864i
\(470\) 3.24770 2.08717i 0.149805 0.0962740i
\(471\) 2.89558 + 20.1392i 0.133421 + 0.927965i
\(472\) 5.26539 + 36.6216i 0.242359 + 1.68565i
\(473\) −8.65979 + 5.56531i −0.398178 + 0.255893i
\(474\) −4.60745 + 5.31728i −0.211627 + 0.244231i
\(475\) 8.28905 18.1505i 0.380328 0.832802i
\(476\) 1.44208 + 0.926771i 0.0660978 + 0.0424785i
\(477\) 6.21162 1.82389i 0.284410 0.0835104i
\(478\) 17.8540 + 20.6046i 0.816623 + 0.942433i
\(479\) −9.99872 2.93589i −0.456853 0.134144i 0.0452055 0.998978i \(-0.485606\pi\)
−0.502059 + 0.864833i \(0.667424\pi\)
\(480\) −0.821087 1.79793i −0.0374773 0.0820638i
\(481\) 1.89421 13.1745i 0.0863686 0.600707i
\(482\) −36.7461 −1.67374
\(483\) −4.42498 + 1.84921i −0.201343 + 0.0841418i
\(484\) −4.19937 −0.190880
\(485\) 3.01593 20.9762i 0.136946 0.952482i
\(486\) −0.544078 1.19136i −0.0246799 0.0540414i
\(487\) −14.8598 4.36324i −0.673364 0.197717i −0.0728634 0.997342i \(-0.523214\pi\)
−0.600500 + 0.799625i \(0.705032\pi\)
\(488\) 6.44531 + 7.43828i 0.291765 + 0.336715i
\(489\) 7.52633 2.20993i 0.340353 0.0999365i
\(490\) −1.36345 0.876238i −0.0615945 0.0395844i
\(491\) 0.509450 1.11554i 0.0229911 0.0503436i −0.897788 0.440428i \(-0.854827\pi\)
0.920779 + 0.390084i \(0.127554\pi\)
\(492\) −1.11516 + 1.28697i −0.0502754 + 0.0580209i
\(493\) −22.1335 + 14.2244i −0.996844 + 0.640633i
\(494\) 1.67994 + 11.6842i 0.0755839 + 0.525697i
\(495\) −0.893728 6.21601i −0.0401701 0.279389i
\(496\) −7.00756 + 4.50349i −0.314649 + 0.202213i
\(497\) 5.36948 6.19671i 0.240854 0.277960i
\(498\) 1.83796 4.02457i 0.0823609 0.180345i
\(499\) −3.32849 2.13909i −0.149004 0.0957588i 0.464015 0.885827i \(-0.346408\pi\)
−0.613018 + 0.790069i \(0.710045\pi\)
\(500\) −2.86201 + 0.840363i −0.127993 + 0.0375822i
\(501\) −1.31499 1.51758i −0.0587495 0.0678005i
\(502\) −4.43798 1.30311i −0.198077 0.0581606i
\(503\) −1.25095 2.73920i −0.0557771 0.122135i 0.879691 0.475545i \(-0.157749\pi\)
−0.935468 + 0.353410i \(0.885022\pi\)
\(504\) −0.425839 + 2.96177i −0.0189684 + 0.131928i
\(505\) 6.16768 0.274458
\(506\) −16.3515 27.3625i −0.726911 1.21641i
\(507\) −10.5452 −0.468331
\(508\) −0.267965 + 1.86374i −0.0118890 + 0.0826900i
\(509\) 10.4783 + 22.9444i 0.464444 + 1.01699i 0.986452 + 0.164051i \(0.0524560\pi\)
−0.522008 + 0.852941i \(0.674817\pi\)
\(510\) −9.36566 2.75001i −0.414719 0.121772i
\(511\) −2.85852 3.29890i −0.126453 0.145935i
\(512\) −24.3679 + 7.15506i −1.07692 + 0.316212i
\(513\) −4.83934 3.11006i −0.213662 0.137312i
\(514\) −11.4573 + 25.0881i −0.505361 + 1.10659i
\(515\) −4.90281 + 5.65814i −0.216044 + 0.249328i
\(516\) 0.485699 0.312140i 0.0213817 0.0137412i
\(517\) 1.72031 + 11.9650i 0.0756591 + 0.526221i
\(518\) 1.58345 + 11.0131i 0.0695727 + 0.483889i
\(519\) −2.02681 + 1.30255i −0.0889670 + 0.0571756i
\(520\) 3.79911 4.38441i 0.166602 0.192269i
\(521\) −9.68150 + 21.1995i −0.424154 + 0.928768i 0.570085 + 0.821586i \(0.306910\pi\)
−0.994239 + 0.107183i \(0.965817\pi\)
\(522\) −4.81334 3.09334i −0.210674 0.135392i
\(523\) −43.0007 + 12.6261i −1.88029 + 0.552103i −0.883851 + 0.467768i \(0.845058\pi\)
−0.996437 + 0.0843350i \(0.973123\pi\)
\(524\) 0.630299 + 0.727403i 0.0275347 + 0.0317768i
\(525\) 3.32816 + 0.977237i 0.145253 + 0.0426501i
\(526\) −13.5099 29.5825i −0.589059 1.28986i
\(527\) 2.13140 14.8242i 0.0928451 0.645752i
\(528\) −16.9993 −0.739798
\(529\) −10.8956 + 20.2555i −0.473721 + 0.880675i
\(530\) 10.4924 0.455762
\(531\) 1.75969 12.2389i 0.0763640 0.531123i
\(532\) 0.680177 + 1.48938i 0.0294894 + 0.0645728i
\(533\) −8.99404 2.64089i −0.389575 0.114390i
\(534\) 5.96434 + 6.88322i 0.258102 + 0.297866i
\(535\) 20.0403 5.88438i 0.866420 0.254404i
\(536\) 30.5743 + 19.6489i 1.32061 + 0.848705i
\(537\) 10.7141 23.4607i 0.462350 1.01240i
\(538\) −21.9782 + 25.3641i −0.947545 + 1.09353i
\(539\) 4.26921 2.74365i 0.183888 0.118178i
\(540\) 0.0501262 + 0.348635i 0.00215709 + 0.0150029i
\(541\) −3.08437 21.4522i −0.132607 0.922304i −0.942138 0.335226i \(-0.891187\pi\)
0.809531 0.587078i \(-0.199722\pi\)
\(542\) 4.26469 2.74075i 0.183184 0.117725i
\(543\) −7.19721 + 8.30602i −0.308862 + 0.356445i
\(544\) 3.99612 8.75027i 0.171332 0.375165i
\(545\) −9.32738 5.99434i −0.399541 0.256769i
\(546\) −1.96890 + 0.578123i −0.0842614 + 0.0247414i
\(547\) −16.6646 19.2319i −0.712525 0.822298i 0.277862 0.960621i \(-0.410374\pi\)
−0.990387 + 0.138323i \(0.955829\pi\)
\(548\) 3.75526 + 1.10264i 0.160417 + 0.0471027i
\(549\) −1.36641 2.99203i −0.0583171 0.127697i
\(550\) −3.28105 + 22.8202i −0.139904 + 0.973057i
\(551\) −25.1304 −1.07059
\(552\) 7.36125 + 12.3183i 0.313316 + 0.524302i
\(553\) −5.37195 −0.228439
\(554\) 4.14771 28.8480i 0.176219 1.22563i
\(555\) 4.36708 + 9.56257i 0.185372 + 0.405908i
\(556\) 0.910278 + 0.267282i 0.0386044 + 0.0113353i
\(557\) −4.68482 5.40657i −0.198502 0.229084i 0.647768 0.761838i \(-0.275703\pi\)
−0.846270 + 0.532754i \(0.821157\pi\)
\(558\) 3.12501 0.917586i 0.132292 0.0388445i
\(559\) 2.67356 + 1.71820i 0.113080 + 0.0726719i
\(560\) −1.72197 + 3.77059i −0.0727666 + 0.159337i
\(561\) 20.0149 23.0984i 0.845029 0.975215i
\(562\) −8.76744 + 5.63449i −0.369832 + 0.237677i
\(563\) 0.493281 + 3.43085i 0.0207893 + 0.144593i 0.997572 0.0696382i \(-0.0221845\pi\)
−0.976783 + 0.214231i \(0.931275\pi\)
\(564\) −0.0964864 0.671078i −0.00406281 0.0282575i
\(565\) −17.8116 + 11.4468i −0.749340 + 0.481572i
\(566\) 18.4895 21.3380i 0.777170 0.896902i
\(567\) 0.415415 0.909632i 0.0174458 0.0382010i
\(568\) −20.6398 13.2644i −0.866025 0.556561i
\(569\) 10.7227 3.14847i 0.449520 0.131991i −0.0491341 0.998792i \(-0.515646\pi\)
0.498654 + 0.866801i \(0.333828\pi\)
\(570\) −6.10551 7.04613i −0.255732 0.295130i
\(571\) −36.1496 10.6145i −1.51281 0.444202i −0.583074 0.812419i \(-0.698150\pi\)
−0.929740 + 0.368217i \(0.879968\pi\)
\(572\) 0.940128 + 2.05859i 0.0393087 + 0.0860741i
\(573\) 1.57074 10.9248i 0.0656187 0.456388i
\(574\) 7.83588 0.327064
\(575\) 15.3488 6.41429i 0.640089 0.267494i
\(576\) 8.79140 0.366308
\(577\) 4.40027 30.6045i 0.183185 1.27408i −0.665986 0.745965i \(-0.731989\pi\)
0.849171 0.528118i \(-0.177102\pi\)
\(578\) −10.4853 22.9595i −0.436129 0.954990i
\(579\) 18.2118 + 5.34746i 0.756855 + 0.222233i
\(580\) 1.00764 + 1.16287i 0.0418398 + 0.0482857i
\(581\) 3.24128 0.951726i 0.134471 0.0394842i
\(582\) 18.8687 + 12.1262i 0.782133 + 0.502646i
\(583\) −13.6479 + 29.8847i −0.565238 + 1.23770i
\(584\) −8.55333 + 9.87107i −0.353939 + 0.408468i
\(585\) −1.63104 + 1.04821i −0.0674353 + 0.0433380i
\(586\) 5.39945 + 37.5540i 0.223049 + 1.55134i
\(587\) 1.92027 + 13.3557i 0.0792579 + 0.551251i 0.990301 + 0.138939i \(0.0443693\pi\)
−0.911043 + 0.412311i \(0.864722\pi\)
\(588\) −0.239446 + 0.153882i −0.00987458 + 0.00634600i
\(589\) 9.36783 10.8111i 0.385995 0.445462i
\(590\) 8.32494 18.2291i 0.342732 0.750479i
\(591\) 10.7634 + 6.91721i 0.442746 + 0.284536i
\(592\) 27.3040 8.01716i 1.12219 0.329503i
\(593\) 17.6057 + 20.3180i 0.722978 + 0.834361i 0.991662 0.128867i \(-0.0411342\pi\)
−0.268684 + 0.963228i \(0.586589\pi\)
\(594\) 6.37737 + 1.87256i 0.261667 + 0.0768322i
\(595\) −3.09599 6.77928i −0.126923 0.277923i
\(596\) −0.684983 + 4.76416i −0.0280580 + 0.195148i
\(597\) −1.25128 −0.0512117
\(598\) −5.58720 + 8.10135i −0.228478 + 0.331289i
\(599\) 3.51729 0.143713 0.0718563 0.997415i \(-0.477108\pi\)
0.0718563 + 0.997415i \(0.477108\pi\)
\(600\) 1.47709 10.2734i 0.0603021 0.419410i
\(601\) −14.9738 32.7881i −0.610796 1.33746i −0.922028 0.387123i \(-0.873469\pi\)
0.311232 0.950334i \(-0.399258\pi\)
\(602\) −2.54906 0.748472i −0.103892 0.0305055i
\(603\) −7.95398 9.17938i −0.323911 0.373813i
\(604\) −3.37219 + 0.990164i −0.137212 + 0.0402892i
\(605\) 15.3591 + 9.87068i 0.624435 + 0.401300i
\(606\) −2.71174 + 5.93789i −0.110157 + 0.241210i
\(607\) −4.59837 + 5.30680i −0.186642 + 0.215396i −0.841357 0.540479i \(-0.818243\pi\)
0.654715 + 0.755875i \(0.272788\pi\)
\(608\) 7.72963 4.96753i 0.313478 0.201460i
\(609\) −0.621714 4.32411i −0.0251931 0.175222i
\(610\) −0.758688 5.27679i −0.0307184 0.213651i
\(611\) 3.13954 2.01766i 0.127012 0.0816259i
\(612\) −1.12257 + 1.29551i −0.0453771 + 0.0523680i
\(613\) 14.0309 30.7233i 0.566701 1.24090i −0.381834 0.924231i \(-0.624707\pi\)
0.948535 0.316672i \(-0.102565\pi\)
\(614\) 14.5617 + 9.35821i 0.587661 + 0.377667i
\(615\) 7.10371 2.08584i 0.286449 0.0841091i
\(616\) −9.94407 11.4761i −0.400658 0.462384i
\(617\) −9.96521 2.92605i −0.401184 0.117798i 0.0749150 0.997190i \(-0.476131\pi\)
−0.476099 + 0.879392i \(0.657950\pi\)
\(618\) −3.29172 7.20786i −0.132412 0.289943i
\(619\) 1.10133 7.65991i 0.0442661 0.307878i −0.955645 0.294522i \(-0.904840\pi\)
0.999911 0.0133556i \(-0.00425136\pi\)
\(620\) −0.875881 −0.0351762
\(621\) −1.20064 4.64311i −0.0481802 0.186322i
\(622\) 21.1187 0.846783
\(623\) −0.989657 + 6.88322i −0.0396498 + 0.275770i
\(624\) 2.18020 + 4.77396i 0.0872777 + 0.191111i
\(625\) −4.19781 1.23259i −0.167912 0.0493035i
\(626\) −5.61172 6.47626i −0.224289 0.258844i
\(627\) 28.0106 8.22465i 1.11863 0.328461i
\(628\) 4.87183 + 3.13094i 0.194407 + 0.124938i
\(629\) −21.2540 + 46.5397i −0.847451 + 1.85566i
\(630\) 1.06136 1.22487i 0.0422855 0.0488001i
\(631\) 8.27780 5.31982i 0.329534 0.211779i −0.365403 0.930849i \(-0.619069\pi\)
0.694937 + 0.719071i \(0.255432\pi\)
\(632\) 2.28759 + 15.9105i 0.0909953 + 0.632886i
\(633\) −0.330838 2.30103i −0.0131496 0.0914577i
\(634\) 17.7468 11.4052i 0.704814 0.452957i
\(635\) 5.36082 6.18672i 0.212738 0.245512i
\(636\) 0.765465 1.67613i 0.0303526 0.0664630i
\(637\) −1.31805 0.847057i −0.0522229 0.0335616i
\(638\) 27.8600 8.18045i 1.10299 0.323867i
\(639\) 5.36948 + 6.19671i 0.212413 + 0.245138i
\(640\) 9.87845 + 2.90057i 0.390480 + 0.114655i
\(641\) 15.2971 + 33.4960i 0.604200 + 1.32301i 0.926471 + 0.376366i \(0.122827\pi\)
−0.322271 + 0.946647i \(0.604446\pi\)
\(642\) −3.14600 + 21.8809i −0.124163 + 0.863569i
\(643\) 35.9019 1.41583 0.707916 0.706297i \(-0.249636\pi\)
0.707916 + 0.706297i \(0.249636\pi\)
\(644\) −0.427004 + 1.29653i −0.0168263 + 0.0510905i
\(645\) −2.51012 −0.0988358
\(646\) 6.45761 44.9137i 0.254071 1.76711i
\(647\) −2.90327 6.35727i −0.114139 0.249930i 0.843938 0.536441i \(-0.180232\pi\)
−0.958077 + 0.286511i \(0.907504\pi\)
\(648\) −2.87102 0.843008i −0.112784 0.0331165i
\(649\) 41.0918 + 47.4225i 1.61299 + 1.86149i
\(650\) 6.82948 2.00532i 0.267874 0.0786550i
\(651\) 2.09198 + 1.34443i 0.0819912 + 0.0526925i
\(652\) 0.927479 2.03090i 0.0363229 0.0795360i
\(653\) 9.32812 10.7652i 0.365038 0.421276i −0.543284 0.839549i \(-0.682819\pi\)
0.908321 + 0.418273i \(0.137365\pi\)
\(654\) 9.87198 6.34434i 0.386025 0.248083i
\(655\) −0.595527 4.14198i −0.0232692 0.161841i
\(656\) −2.85213 19.8370i −0.111357 0.774503i
\(657\) 3.67213 2.35994i 0.143264 0.0920699i
\(658\) −2.04298 + 2.35772i −0.0796436 + 0.0919136i
\(659\) 4.94239 10.8223i 0.192528 0.421578i −0.788608 0.614896i \(-0.789198\pi\)
0.981136 + 0.193319i \(0.0619251\pi\)
\(660\) −1.50370 0.966371i −0.0585316 0.0376159i
\(661\) −22.0859 + 6.48502i −0.859044 + 0.252238i −0.681449 0.731866i \(-0.738650\pi\)
−0.177595 + 0.984104i \(0.556832\pi\)
\(662\) 8.75117 + 10.0994i 0.340124 + 0.392524i
\(663\) −9.05377 2.65843i −0.351619 0.103245i
\(664\) −4.19906 9.19465i −0.162955 0.356822i
\(665\) 1.01308 7.04613i 0.0392856 0.273237i
\(666\) −11.1264 −0.431138
\(667\) −15.3787 14.2281i −0.595466 0.550914i
\(668\) −0.571550 −0.0221139
\(669\) 2.82668 19.6600i 0.109286 0.760100i
\(670\) −8.17769 17.9066i −0.315932 0.691794i
\(671\) 16.0163 + 4.70281i 0.618303 + 0.181550i
\(672\) 1.04598 + 1.20712i 0.0403494 + 0.0465657i
\(673\) 0.725833 0.213124i 0.0279788 0.00821532i −0.267713 0.963499i \(-0.586268\pi\)
0.295692 + 0.955283i \(0.404450\pi\)
\(674\) −26.6940 17.1552i −1.02821 0.660793i
\(675\) −1.44094 + 3.15521i −0.0554617 + 0.121444i
\(676\) −1.96556 + 2.26837i −0.0755984 + 0.0872452i
\(677\) 20.2601 13.0204i 0.778659 0.500413i −0.0899296 0.995948i \(-0.528664\pi\)
0.868588 + 0.495535i \(0.165028\pi\)
\(678\) −3.18912 22.1808i −0.122477 0.851849i
\(679\) 2.43717 + 16.9509i 0.0935301 + 0.650516i
\(680\) −18.7603 + 12.0565i −0.719424 + 0.462346i
\(681\) −10.1791 + 11.7473i −0.390065 + 0.450159i
\(682\) −6.86614 + 15.0347i −0.262918 + 0.575710i
\(683\) 11.9849 + 7.70225i 0.458591 + 0.294718i 0.749466 0.662042i \(-0.230310\pi\)
−0.290875 + 0.956761i \(0.593947\pi\)
\(684\) −1.57102 + 0.461293i −0.0600694 + 0.0176380i
\(685\) −11.1430 12.8597i −0.425752 0.491344i
\(686\) 1.25667 + 0.368991i 0.0479798 + 0.0140881i
\(687\) −1.70531 3.73410i −0.0650615 0.142465i
\(688\) −0.966984 + 6.72552i −0.0368659 + 0.256408i
\(689\) 10.1430 0.386418
\(690\) 0.253006 7.76868i 0.00963176 0.295748i
\(691\) −42.3183 −1.60986 −0.804932 0.593367i \(-0.797798\pi\)
−0.804932 + 0.593367i \(0.797798\pi\)
\(692\) −0.0975925 + 0.678771i −0.00370991 + 0.0258030i
\(693\) 2.10816 + 4.61622i 0.0800822 + 0.175356i
\(694\) −5.65190 1.65955i −0.214543 0.0629956i
\(695\) −2.70107 3.11720i −0.102457 0.118242i
\(696\) −12.5423 + 3.68275i −0.475414 + 0.139594i
\(697\) 30.3123 + 19.4806i 1.14816 + 0.737879i
\(698\) 11.4544 25.0816i 0.433555 0.949352i
\(699\) 10.0964 11.6519i 0.381881 0.440715i
\(700\) 0.830558 0.533767i 0.0313922 0.0201745i
\(701\) −1.87982 13.0744i −0.0709998 0.493815i −0.994032 0.109091i \(-0.965206\pi\)
0.923032 0.384723i \(-0.125703\pi\)
\(702\) −0.292034 2.03114i −0.0110221 0.0766604i
\(703\) −41.1113 + 26.4206i −1.55054 + 0.996472i
\(704\) −29.2165 + 33.7176i −1.10114 + 1.27078i
\(705\) −1.22448 + 2.68124i −0.0461166 + 0.100981i
\(706\) −33.8698 21.7668i −1.27471 0.819203i
\(707\) −4.78222 + 1.40419i −0.179854 + 0.0528099i
\(708\) −2.30470 2.65977i −0.0866160 0.0999602i
\(709\) 22.9380 + 6.73521i 0.861456 + 0.252946i 0.682477 0.730907i \(-0.260903\pi\)
0.178978 + 0.983853i \(0.442721\pi\)
\(710\) 5.52050 + 12.0882i 0.207181 + 0.453663i
\(711\) 0.764509 5.31728i 0.0286713 0.199413i
\(712\) 20.8080 0.779811
\(713\) 11.8536 1.31210i 0.443921 0.0491387i
\(714\) 7.88792 0.295198
\(715\) 1.40026 9.73903i 0.0523668 0.364219i
\(716\) −3.04956 6.67761i −0.113968 0.249554i
\(717\) −19.9733 5.86468i −0.745916 0.219021i
\(718\) 11.1403 + 12.8566i 0.415753 + 0.479805i
\(719\) −25.4193 + 7.46378i −0.947980 + 0.278352i −0.718946 0.695066i \(-0.755375\pi\)
−0.229035 + 0.973418i \(0.573557\pi\)
\(720\) −3.48715 2.24106i −0.129958 0.0835192i
\(721\) 2.51330 5.50335i 0.0936001 0.204956i
\(722\) 12.0862 13.9483i 0.449803 0.519101i
\(723\) 23.6025 15.1684i 0.877788 0.564120i
\(724\) 0.445190 + 3.09636i 0.0165454 + 0.115075i
\(725\) 2.15652 + 14.9989i 0.0800911 + 0.557046i
\(726\) −16.2558 + 10.4470i −0.603311 + 0.387725i
\(727\) 12.7965 14.7680i 0.474596 0.547713i −0.467088 0.884211i \(-0.654697\pi\)
0.941684 + 0.336498i \(0.109242\pi\)
\(728\) −1.94752 + 4.26446i −0.0721797 + 0.158052i
\(729\) 0.841254 + 0.540641i 0.0311575 + 0.0200237i
\(730\) 6.78808 1.99316i 0.251238 0.0737701i
\(731\) −8.00004 9.23254i −0.295892 0.341478i
\(732\) −0.898301 0.263765i −0.0332022 0.00974903i
\(733\) −3.10247 6.79347i −0.114592 0.250922i 0.843642 0.536906i \(-0.180407\pi\)
−0.958235 + 0.285984i \(0.907680\pi\)
\(734\) −0.968344 + 6.73498i −0.0357422 + 0.248593i
\(735\) 1.23747 0.0456447
\(736\) 7.54266 + 1.33637i 0.278026 + 0.0492594i
\(737\) 61.6391 2.27050
\(738\) −1.11516 + 7.75613i −0.0410497 + 0.285507i
\(739\) −15.0021 32.8501i −0.551862 1.20841i −0.955907 0.293670i \(-0.905123\pi\)
0.404045 0.914739i \(-0.367604\pi\)
\(740\) 2.87098 + 0.842997i 0.105539 + 0.0309892i
\(741\) −5.90218 6.81148i −0.216822 0.250226i
\(742\) −8.13549 + 2.38879i −0.298663 + 0.0876954i
\(743\) 8.48702 + 5.45428i 0.311358 + 0.200098i 0.686982 0.726674i \(-0.258935\pi\)
−0.375624 + 0.926772i \(0.622571\pi\)
\(744\) 3.09106 6.76848i 0.113324 0.248145i
\(745\) 13.7035 15.8147i 0.502059 0.579407i
\(746\) −12.1217 + 7.79013i −0.443806 + 0.285217i
\(747\) 0.480756 + 3.34373i 0.0175899 + 0.122341i
\(748\) −1.23804 8.61075i −0.0452672 0.314840i
\(749\) −14.1989 + 9.12510i −0.518818 + 0.333424i
\(750\) −8.98830 + 10.3730i −0.328206 + 0.378770i
\(751\) 7.04358 15.4233i 0.257024 0.562804i −0.736499 0.676439i \(-0.763522\pi\)
0.993523 + 0.113635i \(0.0362494\pi\)
\(752\) 6.71231 + 4.31374i 0.244773 + 0.157306i
\(753\) 3.38849 0.994951i 0.123484 0.0362580i
\(754\) −5.87046 6.77487i −0.213790 0.246726i
\(755\) 14.6611 + 4.30488i 0.533571 + 0.156671i
\(756\) −0.118239 0.258908i −0.00430033 0.00941640i
\(757\) −0.718352 + 4.99625i −0.0261090 + 0.181592i −0.998703 0.0509189i \(-0.983785\pi\)
0.972594 + 0.232511i \(0.0746941\pi\)
\(758\) 30.9841 1.12539
\(759\) 21.7978 + 10.8256i 0.791209 + 0.392945i
\(760\) −21.3004 −0.772648
\(761\) −5.22083 + 36.3117i −0.189255 + 1.31630i 0.644688 + 0.764446i \(0.276987\pi\)
−0.833943 + 0.551851i \(0.813922\pi\)
\(762\) 3.59923 + 7.88121i 0.130386 + 0.285506i
\(763\) 8.59687 + 2.52427i 0.311227 + 0.0913846i
\(764\) −2.05724 2.37418i −0.0744282 0.0858947i
\(765\) 7.15088 2.09969i 0.258541 0.0759144i
\(766\) 23.7256 + 15.2475i 0.857240 + 0.550915i
\(767\) 8.04770 17.6220i 0.290586 0.636294i
\(768\) 4.37853 5.05309i 0.157996 0.182338i
\(769\) −4.44668 + 2.85771i −0.160351 + 0.103052i −0.618356 0.785898i \(-0.712201\pi\)
0.458004 + 0.888950i \(0.348564\pi\)
\(770\) 1.17053 + 8.14124i 0.0421831 + 0.293390i
\(771\) −2.99690 20.8439i −0.107931 0.750675i
\(772\) 4.54483