Properties

Label 483.2.q.c.127.2
Level $483$
Weight $2$
Character 483.127
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 40 x^{18} - 117 x^{17} + 295 x^{16} - 575 x^{15} + 1777 x^{14} - 1560 x^{13} + 4383 x^{12} - 6446 x^{11} + 7261 x^{10} + 7700 x^{9} + 7852 x^{8} - 39430 x^{7} - 101709 x^{6} + 156742 x^{5} + 999838 x^{4} + 2029154 x^{3} + 3616480 x^{2} + 4299390 x + 2374681\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 127.2
Root \(3.28340 + 2.11011i\) of defining polynomial
Character \(\chi\) \(=\) 483.127
Dual form 483.2.q.c.232.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.61435 + 1.03748i) q^{2} +(-0.142315 + 0.989821i) q^{3} +(0.698939 - 1.53046i) q^{4} +(2.13054 - 0.625582i) q^{5} +(-0.797176 - 1.74557i) q^{6} +(-0.654861 - 0.755750i) q^{7} +(-0.0867074 - 0.603063i) q^{8} +(-0.959493 - 0.281733i) q^{9} +O(q^{10})\) \(q+(-1.61435 + 1.03748i) q^{2} +(-0.142315 + 0.989821i) q^{3} +(0.698939 - 1.53046i) q^{4} +(2.13054 - 0.625582i) q^{5} +(-0.797176 - 1.74557i) q^{6} +(-0.654861 - 0.755750i) q^{7} +(-0.0867074 - 0.603063i) q^{8} +(-0.959493 - 0.281733i) q^{9} +(-2.79041 + 3.22030i) q^{10} +(-1.39126 - 0.894108i) q^{11} +(1.41542 + 0.909632i) q^{12} +(-2.99062 + 3.45136i) q^{13} +(1.84125 + 0.540641i) q^{14} +(0.316007 + 2.19788i) q^{15} +(2.96926 + 3.42671i) q^{16} +(2.73620 + 5.99145i) q^{17} +(1.84125 - 0.540641i) q^{18} +(-2.49708 + 5.46784i) q^{19} +(0.531685 - 3.69795i) q^{20} +(0.841254 - 0.540641i) q^{21} +3.17361 q^{22} +(-0.317551 - 4.78531i) q^{23} +0.609264 q^{24} +(-0.0584382 + 0.0375559i) q^{25} +(1.24720 - 8.67443i) q^{26} +(0.415415 - 0.909632i) q^{27} +(-1.61435 + 0.474017i) q^{28} +(2.61680 + 5.73000i) q^{29} +(-2.79041 - 3.22030i) q^{30} +(1.43695 + 9.99423i) q^{31} +(-7.17941 - 2.10807i) q^{32} +(1.08300 - 1.24985i) q^{33} +(-10.6332 - 6.83356i) q^{34} +(-1.86799 - 1.20048i) q^{35} +(-1.10181 + 1.27155i) q^{36} +(-1.08170 - 0.317617i) q^{37} +(-1.64162 - 11.4177i) q^{38} +(-2.99062 - 3.45136i) q^{39} +(-0.561998 - 1.23060i) q^{40} +(2.60853 - 0.765934i) q^{41} +(-0.797176 + 1.74557i) q^{42} +(-0.992605 + 6.90372i) q^{43} +(-2.34080 + 1.50434i) q^{44} -2.22048 q^{45} +(5.47731 + 7.39572i) q^{46} -8.43638 q^{47} +(-3.81440 + 2.45137i) q^{48} +(-0.142315 + 0.989821i) q^{49} +(0.0553763 - 0.121257i) q^{50} +(-6.31987 + 1.85568i) q^{51} +(3.19192 + 6.98932i) q^{52} +(-1.03957 - 1.19972i) q^{53} +(0.273100 + 1.89945i) q^{54} +(-3.52346 - 1.03458i) q^{55} +(-0.398983 + 0.460451i) q^{56} +(-5.05681 - 3.24981i) q^{57} +(-10.1692 - 6.53536i) q^{58} +(6.51293 - 7.51632i) q^{59} +(3.58464 + 1.05255i) q^{60} +(-1.71185 - 11.9062i) q^{61} +(-12.6886 - 14.6434i) q^{62} +(0.415415 + 0.909632i) q^{63} +(5.07616 - 1.49049i) q^{64} +(-4.21252 + 9.22412i) q^{65} +(-0.451651 + 3.14130i) q^{66} +(6.90761 - 4.43925i) q^{67} +11.0821 q^{68} +(4.78179 + 0.366702i) q^{69} +4.26107 q^{70} +(-0.127308 + 0.0818157i) q^{71} +(-0.0867074 + 0.603063i) q^{72} +(-5.86431 + 12.8410i) q^{73} +(2.07577 - 0.609502i) q^{74} +(-0.0288570 - 0.0631881i) q^{75} +(6.62301 + 7.64336i) q^{76} +(0.235359 + 1.63696i) q^{77} +(8.40864 + 2.46900i) q^{78} +(6.85970 - 7.91652i) q^{79} +(8.46980 + 5.44321i) q^{80} +(0.841254 + 0.540641i) q^{81} +(-3.41645 + 3.94279i) q^{82} +(0.211247 + 0.0620278i) q^{83} +(-0.239446 - 1.66538i) q^{84} +(9.57772 + 11.0533i) q^{85} +(-5.56007 - 12.1749i) q^{86} +(-6.04409 + 1.77470i) q^{87} +(-0.418571 + 0.916543i) q^{88} +(-1.01376 + 7.05083i) q^{89} +(3.58464 - 2.30371i) q^{90} +4.56680 q^{91} +(-7.54568 - 2.85864i) q^{92} -10.0970 q^{93} +(13.6193 - 8.75260i) q^{94} +(-1.89953 + 13.2115i) q^{95} +(3.10835 - 6.80633i) q^{96} +(14.9531 - 4.39062i) q^{97} +(-0.797176 - 1.74557i) q^{98} +(1.08300 + 1.24985i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + O(q^{10}) \) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + 9q^{10} + 3q^{11} + 18q^{12} - 2q^{13} + 18q^{14} - q^{15} + 8q^{16} + 8q^{17} + 18q^{18} + 6q^{19} - 2q^{20} - 2q^{21} + 6q^{22} + 11q^{23} + 9q^{25} + 7q^{26} - 2q^{27} - 4q^{28} + 23q^{29} + 9q^{30} + q^{31} - 28q^{32} + 14q^{33} - 28q^{34} + 10q^{35} - 4q^{36} - 9q^{37} + 34q^{38} - 2q^{39} - 15q^{41} - 4q^{42} - 23q^{43} - 16q^{44} - 12q^{45} + 11q^{46} - 66q^{47} - 36q^{48} - 2q^{49} - 26q^{50} - 14q^{51} + 7q^{52} + 9q^{53} - 4q^{54} - 62q^{55} + 22q^{56} - 27q^{57} - 20q^{58} + 49q^{59} - 2q^{60} + 46q^{61} - 9q^{62} - 2q^{63} + 16q^{64} + 11q^{65} - 16q^{66} + 14q^{67} + 38q^{68} + 11q^{69} - 2q^{70} + 36q^{71} - q^{73} + 4q^{74} - 2q^{75} + 34q^{76} - 8q^{77} - 15q^{78} - 22q^{79} + 15q^{80} - 2q^{81} - 30q^{82} + 8q^{83} - 4q^{84} - 32q^{85} - 68q^{86} + q^{87} - 11q^{88} - 2q^{89} - 2q^{90} - 24q^{91} + 11q^{92} - 32q^{93} + 33q^{94} - 107q^{95} + 16q^{96} + 18q^{97} - 4q^{98} + 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{10}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61435 + 1.03748i −1.14152 + 0.733611i −0.967933 0.251208i \(-0.919172\pi\)
−0.173587 + 0.984818i \(0.555536\pi\)
\(3\) −0.142315 + 0.989821i −0.0821655 + 0.571474i
\(4\) 0.698939 1.53046i 0.349469 0.765231i
\(5\) 2.13054 0.625582i 0.952804 0.279769i 0.231850 0.972751i \(-0.425522\pi\)
0.720954 + 0.692983i \(0.243704\pi\)
\(6\) −0.797176 1.74557i −0.325446 0.712626i
\(7\) −0.654861 0.755750i −0.247514 0.285646i
\(8\) −0.0867074 0.603063i −0.0306557 0.213215i
\(9\) −0.959493 0.281733i −0.319831 0.0939109i
\(10\) −2.79041 + 3.22030i −0.882405 + 1.01835i
\(11\) −1.39126 0.894108i −0.419480 0.269584i 0.313828 0.949480i \(-0.398388\pi\)
−0.733308 + 0.679896i \(0.762025\pi\)
\(12\) 1.41542 + 0.909632i 0.408595 + 0.262588i
\(13\) −2.99062 + 3.45136i −0.829449 + 0.957235i −0.999603 0.0281823i \(-0.991028\pi\)
0.170154 + 0.985418i \(0.445574\pi\)
\(14\) 1.84125 + 0.540641i 0.492096 + 0.144492i
\(15\) 0.316007 + 2.19788i 0.0815927 + 0.567490i
\(16\) 2.96926 + 3.42671i 0.742315 + 0.856677i
\(17\) 2.73620 + 5.99145i 0.663627 + 1.45314i 0.879104 + 0.476631i \(0.158142\pi\)
−0.215477 + 0.976509i \(0.569131\pi\)
\(18\) 1.84125 0.540641i 0.433988 0.127430i
\(19\) −2.49708 + 5.46784i −0.572869 + 1.25441i 0.372387 + 0.928077i \(0.378539\pi\)
−0.945256 + 0.326330i \(0.894188\pi\)
\(20\) 0.531685 3.69795i 0.118888 0.826886i
\(21\) 0.841254 0.540641i 0.183577 0.117977i
\(22\) 3.17361 0.676615
\(23\) −0.317551 4.78531i −0.0662139 0.997805i
\(24\) 0.609264 0.124366
\(25\) −0.0584382 + 0.0375559i −0.0116876 + 0.00751118i
\(26\) 1.24720 8.67443i 0.244595 1.70120i
\(27\) 0.415415 0.909632i 0.0799467 0.175059i
\(28\) −1.61435 + 0.474017i −0.305084 + 0.0895808i
\(29\) 2.61680 + 5.73000i 0.485928 + 1.06403i 0.980791 + 0.195063i \(0.0624912\pi\)
−0.494862 + 0.868971i \(0.664781\pi\)
\(30\) −2.79041 3.22030i −0.509457 0.587944i
\(31\) 1.43695 + 9.99423i 0.258085 + 1.79502i 0.546445 + 0.837495i \(0.315981\pi\)
−0.288360 + 0.957522i \(0.593110\pi\)
\(32\) −7.17941 2.10807i −1.26915 0.372657i
\(33\) 1.08300 1.24985i 0.188527 0.217572i
\(34\) −10.6332 6.83356i −1.82358 1.17195i
\(35\) −1.86799 1.20048i −0.315747 0.202919i
\(36\) −1.10181 + 1.27155i −0.183635 + 0.211926i
\(37\) −1.08170 0.317617i −0.177831 0.0522159i 0.191605 0.981472i \(-0.438631\pi\)
−0.369436 + 0.929256i \(0.620449\pi\)
\(38\) −1.64162 11.4177i −0.266305 1.85219i
\(39\) −2.99062 3.45136i −0.478883 0.552660i
\(40\) −0.561998 1.23060i −0.0888597 0.194576i
\(41\) 2.60853 0.765934i 0.407384 0.119619i −0.0716187 0.997432i \(-0.522816\pi\)
0.479003 + 0.877813i \(0.340998\pi\)
\(42\) −0.797176 + 1.74557i −0.123007 + 0.269347i
\(43\) −0.992605 + 6.90372i −0.151371 + 1.05281i 0.762554 + 0.646925i \(0.223945\pi\)
−0.913925 + 0.405883i \(0.866964\pi\)
\(44\) −2.34080 + 1.50434i −0.352889 + 0.226788i
\(45\) −2.22048 −0.331010
\(46\) 5.47731 + 7.39572i 0.807585 + 1.09044i
\(47\) −8.43638 −1.23057 −0.615286 0.788304i \(-0.710960\pi\)
−0.615286 + 0.788304i \(0.710960\pi\)
\(48\) −3.81440 + 2.45137i −0.550561 + 0.353824i
\(49\) −0.142315 + 0.989821i −0.0203307 + 0.141403i
\(50\) 0.0553763 0.121257i 0.00783138 0.0171483i
\(51\) −6.31987 + 1.85568i −0.884958 + 0.259847i
\(52\) 3.19192 + 6.98932i 0.442639 + 0.969245i
\(53\) −1.03957 1.19972i −0.142795 0.164795i 0.679847 0.733354i \(-0.262046\pi\)
−0.822642 + 0.568560i \(0.807501\pi\)
\(54\) 0.273100 + 1.89945i 0.0371642 + 0.258483i
\(55\) −3.52346 1.03458i −0.475104 0.139503i
\(56\) −0.398983 + 0.460451i −0.0533164 + 0.0615304i
\(57\) −5.05681 3.24981i −0.669791 0.430448i
\(58\) −10.1692 6.53536i −1.33528 0.858135i
\(59\) 6.51293 7.51632i 0.847911 0.978541i −0.152041 0.988374i \(-0.548585\pi\)
0.999952 + 0.00983316i \(0.00313004\pi\)
\(60\) 3.58464 + 1.05255i 0.462775 + 0.135883i
\(61\) −1.71185 11.9062i −0.219180 1.52443i −0.741074 0.671423i \(-0.765683\pi\)
0.521894 0.853010i \(-0.325226\pi\)
\(62\) −12.6886 14.6434i −1.61145 1.85972i
\(63\) 0.415415 + 0.909632i 0.0523374 + 0.114603i
\(64\) 5.07616 1.49049i 0.634520 0.186312i
\(65\) −4.21252 + 9.22412i −0.522498 + 1.14411i
\(66\) −0.451651 + 3.14130i −0.0555944 + 0.386668i
\(67\) 6.90761 4.43925i 0.843899 0.542341i −0.0457675 0.998952i \(-0.514573\pi\)
0.889666 + 0.456611i \(0.150937\pi\)
\(68\) 11.0821 1.34390
\(69\) 4.78179 + 0.366702i 0.575660 + 0.0441457i
\(70\) 4.26107 0.509295
\(71\) −0.127308 + 0.0818157i −0.0151086 + 0.00970973i −0.548173 0.836365i \(-0.684677\pi\)
0.533065 + 0.846074i \(0.321040\pi\)
\(72\) −0.0867074 + 0.603063i −0.0102186 + 0.0710717i
\(73\) −5.86431 + 12.8410i −0.686365 + 1.50293i 0.169389 + 0.985549i \(0.445820\pi\)
−0.855755 + 0.517381i \(0.826907\pi\)
\(74\) 2.07577 0.609502i 0.241304 0.0708532i
\(75\) −0.0288570 0.0631881i −0.00333212 0.00729633i
\(76\) 6.62301 + 7.64336i 0.759712 + 0.876754i
\(77\) 0.235359 + 1.63696i 0.0268217 + 0.186549i
\(78\) 8.40864 + 2.46900i 0.952092 + 0.279559i
\(79\) 6.85970 7.91652i 0.771777 0.890678i −0.224710 0.974426i \(-0.572144\pi\)
0.996487 + 0.0837479i \(0.0266890\pi\)
\(80\) 8.46980 + 5.44321i 0.946952 + 0.608569i
\(81\) 0.841254 + 0.540641i 0.0934726 + 0.0600712i
\(82\) −3.41645 + 3.94279i −0.377284 + 0.435409i
\(83\) 0.211247 + 0.0620278i 0.0231874 + 0.00680844i 0.293306 0.956019i \(-0.405245\pi\)
−0.270118 + 0.962827i \(0.587063\pi\)
\(84\) −0.239446 1.66538i −0.0261257 0.181708i
\(85\) 9.57772 + 11.0533i 1.03885 + 1.19890i
\(86\) −5.56007 12.1749i −0.599558 1.31285i
\(87\) −6.04409 + 1.77470i −0.647994 + 0.190268i
\(88\) −0.418571 + 0.916543i −0.0446198 + 0.0977038i
\(89\) −1.01376 + 7.05083i −0.107458 + 0.747386i 0.862841 + 0.505476i \(0.168683\pi\)
−0.970299 + 0.241910i \(0.922226\pi\)
\(90\) 3.58464 2.30371i 0.377854 0.242832i
\(91\) 4.56680 0.478731
\(92\) −7.54568 2.85864i −0.786692 0.298033i
\(93\) −10.0970 −1.04701
\(94\) 13.6193 8.75260i 1.40472 0.902761i
\(95\) −1.89953 + 13.2115i −0.194888 + 1.35548i
\(96\) 3.10835 6.80633i 0.317244 0.694668i
\(97\) 14.9531 4.39062i 1.51826 0.445800i 0.586824 0.809715i \(-0.300378\pi\)
0.931432 + 0.363914i \(0.118560\pi\)
\(98\) −0.797176 1.74557i −0.0805269 0.176329i
\(99\) 1.08300 + 1.24985i 0.108846 + 0.125615i
\(100\) 0.0166332 + 0.115687i 0.00166332 + 0.0115687i
\(101\) 12.6694 + 3.72008i 1.26066 + 0.370162i 0.842739 0.538323i \(-0.180942\pi\)
0.417918 + 0.908485i \(0.362760\pi\)
\(102\) 8.27726 9.55247i 0.819571 0.945836i
\(103\) −14.0682 9.04111i −1.38618 0.890847i −0.386677 0.922215i \(-0.626377\pi\)
−0.999508 + 0.0313686i \(0.990013\pi\)
\(104\) 2.34070 + 1.50427i 0.229524 + 0.147506i
\(105\) 1.45411 1.67813i 0.141906 0.163768i
\(106\) 2.92292 + 0.858246i 0.283899 + 0.0833602i
\(107\) −1.75650 12.2167i −0.169807 1.18104i −0.879281 0.476304i \(-0.841976\pi\)
0.709474 0.704732i \(-0.248933\pi\)
\(108\) −1.10181 1.27155i −0.106022 0.122355i
\(109\) 8.56880 + 18.7631i 0.820742 + 1.79718i 0.551689 + 0.834050i \(0.313983\pi\)
0.269053 + 0.963125i \(0.413289\pi\)
\(110\) 6.76148 1.98535i 0.644682 0.189296i
\(111\) 0.468326 1.02549i 0.0444516 0.0973354i
\(112\) 0.645282 4.48803i 0.0609734 0.424079i
\(113\) 0.951797 0.611683i 0.0895375 0.0575423i −0.495106 0.868833i \(-0.664871\pi\)
0.584643 + 0.811290i \(0.301234\pi\)
\(114\) 11.5351 1.08036
\(115\) −3.67015 9.99661i −0.342244 0.932189i
\(116\) 10.5985 0.984050
\(117\) 3.84184 2.46900i 0.355178 0.228259i
\(118\) −2.71612 + 18.8910i −0.250039 + 1.73906i
\(119\) 2.73620 5.99145i 0.250827 0.549235i
\(120\) 1.29806 0.381145i 0.118496 0.0347936i
\(121\) −3.43339 7.51808i −0.312127 0.683462i
\(122\) 15.1160 + 17.4448i 1.36854 + 1.57938i
\(123\) 0.386905 + 2.69098i 0.0348861 + 0.242638i
\(124\) 16.3001 + 4.78615i 1.46380 + 0.429809i
\(125\) −7.37154 + 8.50721i −0.659330 + 0.760908i
\(126\) −1.61435 1.03748i −0.143818 0.0924263i
\(127\) −13.1102 8.42544i −1.16335 0.747637i −0.191094 0.981572i \(-0.561203\pi\)
−0.972252 + 0.233935i \(0.924840\pi\)
\(128\) 3.15165 3.63720i 0.278569 0.321486i
\(129\) −6.69219 1.96500i −0.589214 0.173009i
\(130\) −2.76937 19.2614i −0.242890 1.68934i
\(131\) 7.56009 + 8.72481i 0.660528 + 0.762290i 0.982863 0.184335i \(-0.0590132\pi\)
−0.322335 + 0.946626i \(0.604468\pi\)
\(132\) −1.15590 2.53107i −0.100608 0.220301i
\(133\) 5.76755 1.69351i 0.500110 0.146846i
\(134\) −6.54568 + 14.3330i −0.565461 + 1.23819i
\(135\) 0.316007 2.19788i 0.0271976 0.189163i
\(136\) 3.37597 2.16961i 0.289487 0.186042i
\(137\) 3.36578 0.287558 0.143779 0.989610i \(-0.454075\pi\)
0.143779 + 0.989610i \(0.454075\pi\)
\(138\) −8.09995 + 4.36904i −0.689513 + 0.371917i
\(139\) 2.14198 0.181680 0.0908400 0.995866i \(-0.471045\pi\)
0.0908400 + 0.995866i \(0.471045\pi\)
\(140\) −3.14290 + 2.01982i −0.265624 + 0.170706i
\(141\) 1.20062 8.35051i 0.101111 0.703240i
\(142\) 0.120637 0.264159i 0.0101237 0.0221677i
\(143\) 7.24662 2.12780i 0.605993 0.177935i
\(144\) −1.88357 4.12444i −0.156964 0.343703i
\(145\) 9.15978 + 10.5709i 0.760678 + 0.877870i
\(146\) −3.85529 26.8141i −0.319066 2.21915i
\(147\) −0.959493 0.281733i −0.0791376 0.0232369i
\(148\) −1.24214 + 1.43351i −0.102104 + 0.117834i
\(149\) 3.04390 + 1.95620i 0.249366 + 0.160258i 0.659353 0.751834i \(-0.270830\pi\)
−0.409987 + 0.912091i \(0.634467\pi\)
\(150\) 0.112142 + 0.0720693i 0.00915636 + 0.00588443i
\(151\) 3.41646 3.94281i 0.278028 0.320861i −0.599511 0.800366i \(-0.704638\pi\)
0.877539 + 0.479505i \(0.159184\pi\)
\(152\) 3.51396 + 1.03179i 0.285020 + 0.0836895i
\(153\) −0.937381 6.51963i −0.0757828 0.527081i
\(154\) −2.07827 2.39845i −0.167472 0.193273i
\(155\) 9.31369 + 20.3941i 0.748094 + 1.63810i
\(156\) −7.37244 + 2.16474i −0.590267 + 0.173318i
\(157\) −5.14677 + 11.2699i −0.410757 + 0.899432i 0.585308 + 0.810811i \(0.300973\pi\)
−0.996065 + 0.0886215i \(0.971754\pi\)
\(158\) −2.86074 + 19.8969i −0.227588 + 1.58291i
\(159\) 1.33546 0.858246i 0.105909 0.0680633i
\(160\) −16.6148 −1.31351
\(161\) −3.40854 + 3.37370i −0.268631 + 0.265885i
\(162\) −1.91899 −0.150770
\(163\) −7.44527 + 4.78478i −0.583159 + 0.374773i −0.798707 0.601720i \(-0.794482\pi\)
0.215549 + 0.976493i \(0.430846\pi\)
\(164\) 0.650971 4.52760i 0.0508323 0.353546i
\(165\) 1.52549 3.34036i 0.118759 0.260047i
\(166\) −0.405381 + 0.119031i −0.0314636 + 0.00923856i
\(167\) 1.00006 + 2.18983i 0.0773869 + 0.169454i 0.944371 0.328882i \(-0.106672\pi\)
−0.866984 + 0.498336i \(0.833945\pi\)
\(168\) −0.398983 0.460451i −0.0307822 0.0355246i
\(169\) −1.11798 7.77574i −0.0859987 0.598134i
\(170\) −26.9294 7.90719i −2.06539 0.606453i
\(171\) 3.93639 4.54284i 0.301024 0.347400i
\(172\) 9.87212 + 6.34442i 0.752742 + 0.483758i
\(173\) −1.68792 1.08476i −0.128330 0.0824726i 0.474901 0.880039i \(-0.342484\pi\)
−0.603231 + 0.797567i \(0.706120\pi\)
\(174\) 7.91607 9.13564i 0.600116 0.692571i
\(175\) 0.0666517 + 0.0195707i 0.00503840 + 0.00147941i
\(176\) −1.06716 7.42228i −0.0804404 0.559475i
\(177\) 6.51293 + 7.51632i 0.489541 + 0.564961i
\(178\) −5.67855 12.4343i −0.425625 0.931989i
\(179\) −15.2099 + 4.46604i −1.13684 + 0.333808i −0.795394 0.606092i \(-0.792736\pi\)
−0.341450 + 0.939900i \(0.610918\pi\)
\(180\) −1.55198 + 3.39836i −0.115678 + 0.253299i
\(181\) 1.59855 11.1182i 0.118820 0.826409i −0.840039 0.542526i \(-0.817468\pi\)
0.958859 0.283883i \(-0.0916227\pi\)
\(182\) −7.37244 + 4.73798i −0.546481 + 0.351202i
\(183\) 12.0286 0.889183
\(184\) −2.85831 + 0.606425i −0.210717 + 0.0447062i
\(185\) −2.50330 −0.184046
\(186\) 16.3001 10.4755i 1.19518 0.768098i
\(187\) 1.55023 10.7821i 0.113364 0.788467i
\(188\) −5.89651 + 12.9116i −0.430048 + 0.941673i
\(189\) −0.959493 + 0.281733i −0.0697928 + 0.0204930i
\(190\) −10.6402 23.2988i −0.771923 1.69028i
\(191\) −3.57685 4.12790i −0.258811 0.298684i 0.611441 0.791290i \(-0.290590\pi\)
−0.870253 + 0.492605i \(0.836045\pi\)
\(192\) 0.752911 + 5.23661i 0.0543366 + 0.377920i
\(193\) 0.746975 + 0.219332i 0.0537685 + 0.0157878i 0.308506 0.951222i \(-0.400171\pi\)
−0.254738 + 0.967010i \(0.581989\pi\)
\(194\) −19.5844 + 22.6016i −1.40608 + 1.62270i
\(195\) −8.53073 5.48237i −0.610898 0.392601i
\(196\) 1.41542 + 0.909632i 0.101101 + 0.0649737i
\(197\) 0.725272 0.837008i 0.0516735 0.0596344i −0.729324 0.684168i \(-0.760165\pi\)
0.780998 + 0.624534i \(0.214711\pi\)
\(198\) −3.04505 0.894108i −0.216402 0.0635415i
\(199\) 0.0277213 + 0.192806i 0.00196511 + 0.0136676i 0.990780 0.135478i \(-0.0432569\pi\)
−0.988815 + 0.149145i \(0.952348\pi\)
\(200\) 0.0277156 + 0.0319855i 0.00195979 + 0.00226172i
\(201\) 3.41101 + 7.46907i 0.240594 + 0.526828i
\(202\) −24.3125 + 7.13879i −1.71062 + 0.502283i
\(203\) 2.61680 5.73000i 0.183664 0.402167i
\(204\) −1.57715 + 10.9693i −0.110423 + 0.768006i
\(205\) 5.07842 3.26370i 0.354692 0.227947i
\(206\) 32.0911 2.23589
\(207\) −1.04349 + 4.68093i −0.0725275 + 0.325347i
\(208\) −20.7067 −1.43575
\(209\) 8.36292 5.37452i 0.578475 0.371763i
\(210\) −0.606414 + 4.21770i −0.0418465 + 0.291049i
\(211\) 1.79959 3.94056i 0.123889 0.271279i −0.837518 0.546410i \(-0.815994\pi\)
0.961407 + 0.275131i \(0.0887212\pi\)
\(212\) −2.56272 + 0.752484i −0.176009 + 0.0516808i
\(213\) −0.0628651 0.137655i −0.00430745 0.00943199i
\(214\) 15.5103 + 17.8998i 1.06026 + 1.22360i
\(215\) 2.20406 + 15.3296i 0.150316 + 1.04547i
\(216\) −0.584585 0.171650i −0.0397760 0.0116793i
\(217\) 6.61213 7.63081i 0.448861 0.518013i
\(218\) −33.2994 21.4002i −2.25532 1.44941i
\(219\) −11.8758 7.63209i −0.802490 0.515729i
\(220\) −4.04608 + 4.66942i −0.272786 + 0.314812i
\(221\) −28.8616 8.47453i −1.94144 0.570058i
\(222\) 0.307885 + 2.14139i 0.0206639 + 0.143720i
\(223\) 0.767942 + 0.886252i 0.0514252 + 0.0593478i 0.780879 0.624682i \(-0.214771\pi\)
−0.729454 + 0.684030i \(0.760226\pi\)
\(224\) 3.10835 + 6.80633i 0.207685 + 0.454767i
\(225\) 0.0666517 0.0195707i 0.00444345 0.00130471i
\(226\) −0.901927 + 1.97494i −0.0599953 + 0.131371i
\(227\) 3.25591 22.6453i 0.216102 1.50302i −0.536136 0.844132i \(-0.680116\pi\)
0.752238 0.658892i \(-0.228974\pi\)
\(228\) −8.50812 + 5.46784i −0.563464 + 0.362116i
\(229\) 8.02239 0.530135 0.265067 0.964230i \(-0.414606\pi\)
0.265067 + 0.964230i \(0.414606\pi\)
\(230\) 16.2962 + 12.3303i 1.07454 + 0.813039i
\(231\) −1.65379 −0.108812
\(232\) 3.22866 2.07493i 0.211972 0.136226i
\(233\) −3.48466 + 24.2364i −0.228288 + 1.58778i 0.477031 + 0.878886i \(0.341713\pi\)
−0.705319 + 0.708890i \(0.749196\pi\)
\(234\) −3.64054 + 7.97168i −0.237990 + 0.521125i
\(235\) −17.9740 + 5.27765i −1.17250 + 0.344276i
\(236\) −6.95130 15.2212i −0.452491 0.990818i
\(237\) 6.85970 + 7.91652i 0.445585 + 0.514233i
\(238\) 1.79882 + 12.5111i 0.116600 + 0.810973i
\(239\) −15.6263 4.58829i −1.01078 0.296792i −0.265907 0.963999i \(-0.585672\pi\)
−0.744872 + 0.667207i \(0.767490\pi\)
\(240\) −6.59318 + 7.60894i −0.425588 + 0.491155i
\(241\) 18.3461 + 11.7903i 1.18178 + 0.759481i 0.975712 0.219057i \(-0.0702982\pi\)
0.206064 + 0.978539i \(0.433935\pi\)
\(242\) 13.3426 + 8.57476i 0.857694 + 0.551206i
\(243\) −0.654861 + 0.755750i −0.0420093 + 0.0484814i
\(244\) −19.4185 5.70178i −1.24314 0.365019i
\(245\) 0.316007 + 2.19788i 0.0201890 + 0.140417i
\(246\) −3.41645 3.94279i −0.217825 0.251383i
\(247\) −11.4037 24.9705i −0.725598 1.58884i
\(248\) 5.90256 1.73315i 0.374813 0.110055i
\(249\) −0.0914601 + 0.200270i −0.00579605 + 0.0126916i
\(250\) 3.07419 21.3815i 0.194429 1.35228i
\(251\) 3.97710 2.55592i 0.251032 0.161328i −0.409073 0.912502i \(-0.634148\pi\)
0.660105 + 0.751173i \(0.270512\pi\)
\(252\) 1.68251 0.105988
\(253\) −3.83679 + 6.94153i −0.241217 + 0.436410i
\(254\) 29.9058 1.87646
\(255\) −12.3038 + 7.90719i −0.770495 + 0.495167i
\(256\) −2.82017 + 19.6147i −0.176261 + 1.22592i
\(257\) 8.40154 18.3968i 0.524074 1.14756i −0.443800 0.896126i \(-0.646370\pi\)
0.967874 0.251436i \(-0.0809027\pi\)
\(258\) 12.8422 3.77082i 0.799522 0.234761i
\(259\) 0.468326 + 1.02549i 0.0291004 + 0.0637209i
\(260\) 11.1729 + 12.8942i 0.692913 + 0.799664i
\(261\) −0.896477 6.23514i −0.0554905 0.385945i
\(262\) −21.2565 6.24147i −1.31323 0.385599i
\(263\) −9.97309 + 11.5096i −0.614967 + 0.709710i −0.974743 0.223329i \(-0.928308\pi\)
0.359776 + 0.933039i \(0.382853\pi\)
\(264\) −0.847645 0.544748i −0.0521689 0.0335269i
\(265\) −2.96536 1.90572i −0.182160 0.117067i
\(266\) −7.55389 + 8.71765i −0.463158 + 0.534513i
\(267\) −6.83479 2.00688i −0.418282 0.122819i
\(268\) −1.96611 13.6746i −0.120099 0.835309i
\(269\) −14.1946 16.3815i −0.865462 0.998796i −0.999969 0.00788335i \(-0.997491\pi\)
0.134507 0.990913i \(-0.457055\pi\)
\(270\) 1.77011 + 3.87601i 0.107726 + 0.235886i
\(271\) 22.4856 6.60236i 1.36590 0.401065i 0.485061 0.874480i \(-0.338797\pi\)
0.880839 + 0.473415i \(0.156979\pi\)
\(272\) −12.4064 + 27.1663i −0.752251 + 1.64720i
\(273\) −0.649924 + 4.52032i −0.0393352 + 0.273582i
\(274\) −5.43355 + 3.49193i −0.328253 + 0.210955i
\(275\) 0.114882 0.00692763
\(276\) 3.90340 7.06205i 0.234957 0.425085i
\(277\) −13.3919 −0.804643 −0.402321 0.915498i \(-0.631797\pi\)
−0.402321 + 0.915498i \(0.631797\pi\)
\(278\) −3.45791 + 2.22226i −0.207391 + 0.133282i
\(279\) 1.43695 9.99423i 0.0860282 0.598339i
\(280\) −0.561998 + 1.23060i −0.0335858 + 0.0735427i
\(281\) 12.4131 3.64480i 0.740501 0.217431i 0.110338 0.993894i \(-0.464807\pi\)
0.630162 + 0.776463i \(0.282988\pi\)
\(282\) 6.72528 + 14.7263i 0.400484 + 0.876939i
\(283\) 5.90666 + 6.81665i 0.351115 + 0.405208i 0.903643 0.428286i \(-0.140882\pi\)
−0.552529 + 0.833494i \(0.686337\pi\)
\(284\) 0.0362355 + 0.252024i 0.00215018 + 0.0149549i
\(285\) −12.8067 3.76040i −0.758606 0.222747i
\(286\) −9.49105 + 10.9533i −0.561218 + 0.647680i
\(287\) −2.28708 1.46982i −0.135002 0.0867605i
\(288\) 6.29469 + 4.04535i 0.370918 + 0.238374i
\(289\) −17.2780 + 19.9399i −1.01635 + 1.17293i
\(290\) −25.7543 7.56214i −1.51234 0.444064i
\(291\) 2.21789 + 15.4257i 0.130015 + 0.904273i
\(292\) 15.5539 + 17.9502i 0.910226 + 1.05046i
\(293\) 4.97609 + 10.8961i 0.290706 + 0.636558i 0.997485 0.0708765i \(-0.0225796\pi\)
−0.706779 + 0.707435i \(0.749852\pi\)
\(294\) 1.84125 0.540641i 0.107384 0.0315308i
\(295\) 9.17395 20.0881i 0.534128 1.16958i
\(296\) −0.0977513 + 0.679875i −0.00568168 + 0.0395169i
\(297\) −1.39126 + 0.894108i −0.0807290 + 0.0518814i
\(298\) −6.94345 −0.402223
\(299\) 17.4655 + 13.2151i 1.01006 + 0.764246i
\(300\) −0.116876 −0.00674786
\(301\) 5.86750 3.77082i 0.338197 0.217346i
\(302\) −1.42479 + 9.90960i −0.0819872 + 0.570234i
\(303\) −5.48527 + 12.0111i −0.315120 + 0.690018i
\(304\) −26.1511 + 7.67867i −1.49987 + 0.440402i
\(305\) −11.0955 24.2957i −0.635325 1.39117i
\(306\) 8.27726 + 9.55247i 0.473180 + 0.546079i
\(307\) 4.21571 + 29.3209i 0.240603 + 1.67343i 0.649123 + 0.760684i \(0.275136\pi\)
−0.408519 + 0.912750i \(0.633955\pi\)
\(308\) 2.66981 + 0.783926i 0.152126 + 0.0446683i
\(309\) 10.9512 12.6384i 0.622992 0.718971i
\(310\) −36.1941 23.2606i −2.05569 1.32111i
\(311\) −6.58395 4.23125i −0.373342 0.239932i 0.340492 0.940247i \(-0.389406\pi\)
−0.713834 + 0.700315i \(0.753043\pi\)
\(312\) −1.82208 + 2.10279i −0.103155 + 0.119047i
\(313\) 13.0261 + 3.82482i 0.736281 + 0.216192i 0.628311 0.777963i \(-0.283747\pi\)
0.107970 + 0.994154i \(0.465565\pi\)
\(314\) −3.38356 23.5332i −0.190946 1.32806i
\(315\) 1.45411 + 1.67813i 0.0819296 + 0.0945518i
\(316\) −7.32142 16.0317i −0.411862 0.901852i
\(317\) 3.11670 0.915147i 0.175051 0.0513998i −0.193032 0.981192i \(-0.561832\pi\)
0.368084 + 0.929793i \(0.380014\pi\)
\(318\) −1.26549 + 2.77103i −0.0709649 + 0.155391i
\(319\) 1.48259 10.3116i 0.0830090 0.577340i
\(320\) 9.88251 6.35110i 0.552449 0.355037i
\(321\) 12.3424 0.688883
\(322\) 2.00244 8.98264i 0.111592 0.500583i
\(323\) −39.5928 −2.20300
\(324\) 1.41542 0.909632i 0.0786342 0.0505351i
\(325\) 0.0451473 0.314007i 0.00250432 0.0174180i
\(326\) 7.05517 15.4487i 0.390750 0.855623i
\(327\) −19.7915 + 5.81132i −1.09447 + 0.321367i
\(328\) −0.688086 1.50670i −0.0379932 0.0831934i
\(329\) 5.52466 + 6.37579i 0.304584 + 0.351509i
\(330\) 1.00288 + 6.97520i 0.0552069 + 0.383972i
\(331\) 21.8924 + 6.42819i 1.20332 + 0.353325i 0.821120 0.570756i \(-0.193350\pi\)
0.382196 + 0.924081i \(0.375168\pi\)
\(332\) 0.242580 0.279952i 0.0133133 0.0153644i
\(333\) 0.948404 + 0.609502i 0.0519722 + 0.0334005i
\(334\) −3.88635 2.49761i −0.212652 0.136663i
\(335\) 11.9398 13.7793i 0.652341 0.752841i
\(336\) 4.35052 + 1.27743i 0.237340 + 0.0696894i
\(337\) −1.07754 7.49448i −0.0586975 0.408250i −0.997894 0.0648693i \(-0.979337\pi\)
0.939196 0.343381i \(-0.111572\pi\)
\(338\) 9.87201 + 11.3929i 0.536967 + 0.619693i
\(339\) 0.470002 + 1.02916i 0.0255270 + 0.0558963i
\(340\) 23.6109 6.93277i 1.28048 0.375982i
\(341\) 6.93675 15.1894i 0.375646 0.822550i
\(342\) −1.64162 + 11.4177i −0.0887684 + 0.617398i
\(343\) 0.841254 0.540641i 0.0454234 0.0291919i
\(344\) 4.24945 0.229115
\(345\) 10.4172 2.21013i 0.560842 0.118989i
\(346\) 3.85031 0.206994
\(347\) 17.6081 11.3161i 0.945255 0.607478i 0.0253746 0.999678i \(-0.491922\pi\)
0.919880 + 0.392200i \(0.128286\pi\)
\(348\) −1.50833 + 10.4907i −0.0808549 + 0.562358i
\(349\) 7.08754 15.5196i 0.379387 0.830743i −0.619563 0.784947i \(-0.712690\pi\)
0.998951 0.0457959i \(-0.0145824\pi\)
\(350\) −0.127904 + 0.0375559i −0.00683674 + 0.00200745i
\(351\) 1.89712 + 4.15411i 0.101261 + 0.221730i
\(352\) 8.10359 + 9.35204i 0.431923 + 0.498465i
\(353\) −3.76323 26.1738i −0.200296 1.39309i −0.803405 0.595433i \(-0.796981\pi\)
0.603109 0.797659i \(-0.293928\pi\)
\(354\) −18.3122 5.37695i −0.973283 0.285782i
\(355\) −0.220051 + 0.253952i −0.0116791 + 0.0134784i
\(356\) 10.0825 + 6.47961i 0.534370 + 0.343419i
\(357\) 5.54106 + 3.56102i 0.293264 + 0.188469i
\(358\) 19.9208 22.9898i 1.05285 1.21505i
\(359\) 14.1513 + 4.15518i 0.746875 + 0.219302i 0.632956 0.774188i \(-0.281841\pi\)
0.113919 + 0.993490i \(0.463660\pi\)
\(360\) 0.192532 + 1.33909i 0.0101473 + 0.0705762i
\(361\) −11.2195 12.9480i −0.590499 0.681472i
\(362\) 8.95429 + 19.6072i 0.470627 + 1.03053i
\(363\) 7.93018 2.32851i 0.416226 0.122215i
\(364\) 3.19192 6.98932i 0.167302 0.366340i
\(365\) −4.46100 + 31.0269i −0.233499 + 1.62402i
\(366\) −19.4185 + 12.4795i −1.01502 + 0.652314i
\(367\) 5.98625 0.312479 0.156240 0.987719i \(-0.450063\pi\)
0.156240 + 0.987719i \(0.450063\pi\)
\(368\) 15.4550 15.2970i 0.805645 0.797410i
\(369\) −2.71866 −0.141528
\(370\) 4.04122 2.59713i 0.210093 0.135018i
\(371\) −0.225919 + 1.57130i −0.0117291 + 0.0815780i
\(372\) −7.05719 + 15.4531i −0.365898 + 0.801205i
\(373\) 11.5151 3.38114i 0.596230 0.175069i 0.0303258 0.999540i \(-0.490346\pi\)
0.565904 + 0.824471i \(0.308527\pi\)
\(374\) 8.68363 + 19.0145i 0.449020 + 0.983216i
\(375\) −7.37154 8.50721i −0.380665 0.439310i
\(376\) 0.731497 + 5.08767i 0.0377241 + 0.262377i
\(377\) −27.6022 8.10473i −1.42158 0.417415i
\(378\) 1.25667 1.45027i 0.0646361 0.0745940i
\(379\) 16.1324 + 10.3677i 0.828665 + 0.532551i 0.884854 0.465869i \(-0.154258\pi\)
−0.0561882 + 0.998420i \(0.517895\pi\)
\(380\) 18.8921 + 12.1412i 0.969145 + 0.622832i
\(381\) 10.2055 11.7777i 0.522842 0.603392i
\(382\) 10.0569 + 2.95298i 0.514557 + 0.151087i
\(383\) 0.635938 + 4.42305i 0.0324949 + 0.226007i 0.999597 0.0283808i \(-0.00903509\pi\)
−0.967102 + 0.254388i \(0.918126\pi\)
\(384\) 3.15165 + 3.63720i 0.160832 + 0.185610i
\(385\) 1.52549 + 3.34036i 0.0777463 + 0.170241i
\(386\) −1.43344 + 0.420895i −0.0729599 + 0.0214230i
\(387\) 2.89740 6.34442i 0.147283 0.322505i
\(388\) 3.73161 25.9539i 0.189444 1.31761i
\(389\) 6.70426 4.30857i 0.339920 0.218453i −0.359532 0.933133i \(-0.617064\pi\)
0.699452 + 0.714679i \(0.253427\pi\)
\(390\) 19.4595 0.985369
\(391\) 27.8020 14.9962i 1.40601 0.758388i
\(392\) 0.609264 0.0307725
\(393\) −9.71192 + 6.24147i −0.489902 + 0.314841i
\(394\) −0.302464 + 2.10368i −0.0152379 + 0.105982i
\(395\) 9.66241 21.1577i 0.486169 1.06456i
\(396\) 2.66981 0.783926i 0.134163 0.0393938i
\(397\) 3.68150 + 8.06136i 0.184769 + 0.404588i 0.979237 0.202718i \(-0.0649774\pi\)
−0.794468 + 0.607306i \(0.792250\pi\)
\(398\) −0.244785 0.282497i −0.0122699 0.0141603i
\(399\) 0.855460 + 5.94986i 0.0428266 + 0.297865i
\(400\) −0.302211 0.0887372i −0.0151106 0.00443686i
\(401\) 12.2732 14.1640i 0.612894 0.707317i −0.361447 0.932392i \(-0.617717\pi\)
0.974341 + 0.225075i \(0.0722628\pi\)
\(402\) −13.2556 8.51886i −0.661130 0.424882i
\(403\) −38.7911 24.9295i −1.93232 1.24183i
\(404\) 14.5486 16.7900i 0.723821 0.835333i
\(405\) 2.13054 + 0.625582i 0.105867 + 0.0310854i
\(406\) 1.72033 + 11.9651i 0.0853784 + 0.593820i
\(407\) 1.22095 + 1.40905i 0.0605200 + 0.0698439i
\(408\) 1.66707 + 3.65038i 0.0825323 + 0.180721i
\(409\) 10.5400 3.09482i 0.521168 0.153029i −0.0105593 0.999944i \(-0.503361\pi\)
0.531728 + 0.846915i \(0.321543\pi\)
\(410\) −4.81233 + 10.5375i −0.237664 + 0.520412i
\(411\) −0.479000 + 3.33152i −0.0236273 + 0.164332i
\(412\) −23.6699 + 15.2117i −1.16613 + 0.749428i
\(413\) −9.94551 −0.489387
\(414\) −3.17182 8.63928i −0.155887 0.424598i
\(415\) 0.488874 0.0239979
\(416\) 28.7466 18.4743i 1.40942 0.905778i
\(417\) −0.304835 + 2.12017i −0.0149278 + 0.103825i
\(418\) −7.92474 + 17.3528i −0.387612 + 0.848751i
\(419\) −15.6334 + 4.59039i −0.763743 + 0.224255i −0.640330 0.768100i \(-0.721202\pi\)
−0.123413 + 0.992355i \(0.539384\pi\)
\(420\) −1.55198 3.39836i −0.0757289 0.165823i
\(421\) −10.8050 12.4697i −0.526606 0.607735i 0.428667 0.903463i \(-0.358983\pi\)
−0.955272 + 0.295727i \(0.904438\pi\)
\(422\) 1.18308 + 8.22850i 0.0575914 + 0.400557i
\(423\) 8.09465 + 2.37680i 0.393575 + 0.115564i
\(424\) −0.633371 + 0.730949i −0.0307592 + 0.0354980i
\(425\) −0.384913 0.247369i −0.0186710 0.0119991i
\(426\) 0.244302 + 0.157003i 0.0118365 + 0.00760682i
\(427\) −7.87708 + 9.09064i −0.381199 + 0.439927i
\(428\) −19.9249 5.85049i −0.963108 0.282794i
\(429\) 1.07484 + 7.47567i 0.0518938 + 0.360929i
\(430\) −19.4623 22.4607i −0.938556 1.08315i
\(431\) −3.10329 6.79526i −0.149480 0.327316i 0.820048 0.572294i \(-0.193947\pi\)
−0.969529 + 0.244978i \(0.921219\pi\)
\(432\) 4.35052 1.27743i 0.209314 0.0614602i
\(433\) −6.55130 + 14.3453i −0.314835 + 0.689393i −0.999210 0.0397373i \(-0.987348\pi\)
0.684375 + 0.729130i \(0.260075\pi\)
\(434\) −2.75749 + 19.1788i −0.132364 + 0.920612i
\(435\) −11.7669 + 7.56214i −0.564181 + 0.362577i
\(436\) 34.7052 1.66208
\(437\) 26.9582 + 10.2130i 1.28959 + 0.488552i
\(438\) 27.0898 1.29440
\(439\) −3.20867 + 2.06209i −0.153142 + 0.0984181i −0.614967 0.788553i \(-0.710831\pi\)
0.461826 + 0.886971i \(0.347194\pi\)
\(440\) −0.318408 + 2.21458i −0.0151795 + 0.105576i
\(441\) 0.415415 0.909632i 0.0197817 0.0433158i
\(442\) 55.3850 16.2625i 2.63440 0.773528i
\(443\) −8.78350 19.2332i −0.417317 0.913796i −0.995217 0.0976885i \(-0.968855\pi\)
0.577901 0.816107i \(-0.303872\pi\)
\(444\) −1.24214 1.43351i −0.0589496 0.0680314i
\(445\) 2.25103 + 15.6562i 0.106709 + 0.742177i
\(446\) −2.15920 0.633998i −0.102241 0.0300207i
\(447\) −2.36948 + 2.73452i −0.112072 + 0.129338i
\(448\) −4.45062 2.86024i −0.210272 0.135133i
\(449\) −19.5553 12.5674i −0.922872 0.593094i −0.00938215 0.999956i \(-0.502986\pi\)
−0.913489 + 0.406862i \(0.866623\pi\)
\(450\) −0.0872952 + 0.100744i −0.00411513 + 0.00474912i
\(451\) −4.31397 1.26670i −0.203137 0.0596464i
\(452\) −0.270910 1.88422i −0.0127425 0.0886261i
\(453\) 3.41646 + 3.94281i 0.160519 + 0.185249i
\(454\) 18.2379 + 39.9355i 0.855949 + 1.87427i
\(455\) 9.72974 2.85691i 0.456137 0.133934i
\(456\) −1.52138 + 3.33136i −0.0712451 + 0.156005i
\(457\) 2.01232 13.9960i 0.0941323 0.654705i −0.887057 0.461659i \(-0.847254\pi\)
0.981190 0.193046i \(-0.0618365\pi\)
\(458\) −12.9510 + 8.32309i −0.605159 + 0.388912i
\(459\) 6.58667 0.307440
\(460\) −17.8647 1.36999i −0.832944 0.0638760i
\(461\) 31.1928 1.45279 0.726397 0.687275i \(-0.241193\pi\)
0.726397 + 0.687275i \(0.241193\pi\)
\(462\) 2.66981 1.71578i 0.124211 0.0798253i
\(463\) −1.88819 + 13.1326i −0.0877516 + 0.610326i 0.897730 + 0.440545i \(0.145215\pi\)
−0.985482 + 0.169780i \(0.945694\pi\)
\(464\) −11.8651 + 25.9809i −0.550822 + 1.20613i
\(465\) −21.5120 + 6.31650i −0.997597 + 0.292921i
\(466\) −19.5193 42.7413i −0.904214 1.97995i
\(467\) 16.9423 + 19.5524i 0.783995 + 0.904779i 0.997391 0.0721868i \(-0.0229978\pi\)
−0.213396 + 0.976966i \(0.568452\pi\)
\(468\) −1.09350 7.60547i −0.0505471 0.351563i
\(469\) −7.87848 2.31333i −0.363795 0.106820i
\(470\) 23.5410 27.1677i 1.08586 1.25315i
\(471\) −10.4227 6.69825i −0.480252 0.308639i
\(472\) −5.09753 3.27598i −0.234633 0.150789i
\(473\) 7.55364 8.71737i 0.347317 0.400825i
\(474\) −19.2872 5.66324i −0.885892 0.260121i
\(475\) −0.0594250 0.413310i −0.00272661 0.0189640i
\(476\) −7.25725 8.37531i −0.332635 0.383882i
\(477\) 0.659455 + 1.44401i 0.0301944 + 0.0661165i
\(478\) 29.9866 8.80486i 1.37156 0.402725i
\(479\) −16.0348 + 35.1113i −0.732648 + 1.60428i 0.0626349 + 0.998037i \(0.480050\pi\)
−0.795283 + 0.606239i \(0.792678\pi\)
\(480\) 2.36453 16.4456i 0.107925 0.750638i
\(481\) 4.33117 2.78348i 0.197485 0.126916i
\(482\) −41.8493 −1.90618
\(483\) −2.85427 3.85398i −0.129874 0.175362i
\(484\) −13.9059 −0.632085
\(485\) 29.1114 18.7088i 1.32188 0.849521i
\(486\) 0.273100 1.89945i 0.0123881 0.0861610i
\(487\) 0.820898 1.79752i 0.0371984 0.0814532i −0.890121 0.455725i \(-0.849380\pi\)
0.927319 + 0.374272i \(0.122107\pi\)
\(488\) −7.03176 + 2.06471i −0.318313 + 0.0934651i
\(489\) −3.67651 8.05043i −0.166258 0.364053i
\(490\) −2.79041 3.22030i −0.126058 0.145478i
\(491\) −1.93627 13.4671i −0.0873828 0.607761i −0.985712 0.168438i \(-0.946128\pi\)
0.898329 0.439323i \(-0.144782\pi\)
\(492\) 4.38887 + 1.28869i 0.197866 + 0.0580986i
\(493\) −27.1709 + 31.3569i −1.22372 + 1.41224i
\(494\) 44.3160 + 28.4802i 1.99387 + 1.28138i
\(495\) 3.08926 + 1.98535i 0.138852 + 0.0892348i
\(496\) −29.9806 + 34.5995i −1.34617 + 1.55356i
\(497\) 0.145201 + 0.0426348i 0.00651315 + 0.00191243i
\(498\) −0.0601273 0.418194i −0.00269437 0.0187397i
\(499\) 27.8761 + 32.1707i 1.24790 + 1.44016i 0.853395 + 0.521265i \(0.174540\pi\)
0.394509 + 0.918892i \(0.370915\pi\)
\(500\) 7.86771 + 17.2279i 0.351855 + 0.770454i
\(501\) −2.30986 + 0.678236i −0.103197 + 0.0303013i
\(502\) −3.76871 + 8.25233i −0.168206 + 0.368320i
\(503\) 1.21335 8.43900i 0.0541004 0.376277i −0.944727 0.327859i \(-0.893673\pi\)
0.998827 0.0484178i \(-0.0154179\pi\)
\(504\) 0.512546 0.329393i 0.0228306 0.0146723i
\(505\) 29.3199 1.30472
\(506\) −1.00778 15.1867i −0.0448013 0.675130i
\(507\) 7.85570 0.348884
\(508\) −22.0581 + 14.1759i −0.978669 + 0.628952i
\(509\) 2.60165 18.0949i 0.115316 0.802041i −0.847289 0.531132i \(-0.821767\pi\)
0.962605 0.270909i \(-0.0873241\pi\)
\(510\) 11.6592 25.5300i 0.516276 1.13049i
\(511\) 13.5449 3.97715i 0.599192 0.175939i
\(512\) −11.7986 25.8354i −0.521431 1.14177i
\(513\) 3.93639 + 4.54284i 0.173796 + 0.200571i
\(514\) 5.52330 + 38.4154i 0.243622 + 1.69443i
\(515\) −35.6288 10.4616i −1.56999 0.460992i
\(516\) −7.68480 + 8.86873i −0.338304 + 0.390424i
\(517\) 11.7372 + 7.54304i 0.516201 + 0.331742i
\(518\) −1.81997 1.16963i −0.0799650 0.0513904i
\(519\) 1.31393 1.51636i 0.0576752 0.0665607i
\(520\) 5.92798 + 1.74061i 0.259959 + 0.0763309i
\(521\) 2.86801 + 19.9474i 0.125650 + 0.873913i 0.950978 + 0.309259i \(0.100081\pi\)
−0.825328 + 0.564654i \(0.809010\pi\)
\(522\) 7.91607 + 9.13564i 0.346477 + 0.399856i
\(523\) 0.242100 + 0.530124i 0.0105863 + 0.0231807i 0.914851 0.403791i \(-0.132308\pi\)
−0.904265 + 0.426972i \(0.859580\pi\)
\(524\) 18.6370 5.47233i 0.814163 0.239060i
\(525\) −0.0288570 + 0.0631881i −0.00125942 + 0.00275775i
\(526\) 4.15913 28.9274i 0.181347 1.26129i
\(527\) −55.9481 + 35.9557i −2.43714 + 1.56625i
\(528\) 7.49860 0.326335
\(529\) −22.7983 + 3.03916i −0.991231 + 0.132137i
\(530\) 6.76428 0.293822
\(531\) −8.36670 + 5.37695i −0.363084 + 0.233340i
\(532\) 1.43932 10.0107i 0.0624023 0.434018i
\(533\) −5.15762 + 11.2936i −0.223401 + 0.489180i
\(534\) 13.1159 3.85117i 0.567579 0.166656i
\(535\) −11.3848 24.9293i −0.492210 1.07779i
\(536\) −3.27609 3.78081i −0.141505 0.163306i
\(537\) −2.25598 15.6907i −0.0973529 0.677104i
\(538\) 39.9106 + 11.7188i 1.72067 + 0.505234i
\(539\) 1.08300 1.24985i 0.0466483 0.0538350i
\(540\) −3.14290 2.01982i −0.135249 0.0869192i
\(541\) −16.5386 10.6287i −0.711052 0.456965i 0.134462 0.990919i \(-0.457069\pi\)
−0.845514 + 0.533954i \(0.820706\pi\)
\(542\) −29.4498 + 33.9869i −1.26498 + 1.45986i
\(543\) 10.7775 + 3.16457i 0.462508 + 0.135805i
\(544\) −7.01396 48.7832i −0.300721 2.09156i
\(545\) 29.9940 + 34.6149i 1.28480 + 1.48274i
\(546\) −3.64054 7.97168i −0.155801 0.341156i
\(547\) −9.83884 + 2.88894i −0.420678 + 0.123522i −0.485219 0.874393i \(-0.661260\pi\)
0.0645404 + 0.997915i \(0.479442\pi\)
\(548\) 2.35247 5.15119i 0.100493 0.220048i
\(549\) −1.71185 + 11.9062i −0.0730601 + 0.508144i
\(550\) −0.185460 + 0.119188i −0.00790803 + 0.00508218i
\(551\) −37.8651 −1.61311
\(552\) −0.193472 2.91552i −0.00823473 0.124093i
\(553\) −10.4751 −0.445445
\(554\) 21.6193 13.8939i 0.918516 0.590295i
\(555\) 0.356257 2.47782i 0.0151223 0.105178i
\(556\) 1.49711 3.27821i 0.0634916 0.139027i
\(557\) 39.3703 11.5602i 1.66817 0.489820i 0.694830 0.719174i \(-0.255479\pi\)
0.973343 + 0.229354i \(0.0736613\pi\)
\(558\) 8.04909 + 17.6250i 0.340745 + 0.746128i
\(559\) −20.8587 24.0723i −0.882230 1.01815i
\(560\) −1.43284 9.96559i −0.0605484 0.421123i
\(561\) 10.4518 + 3.06891i 0.441273 + 0.129570i
\(562\) −16.2576 + 18.7623i −0.685787 + 0.791441i
\(563\) −5.40046 3.47066i −0.227602 0.146271i 0.421870 0.906656i \(-0.361374\pi\)
−0.649472 + 0.760385i \(0.725010\pi\)
\(564\) −11.9410 7.67400i −0.502806 0.323134i
\(565\) 1.64518 1.89864i 0.0692132 0.0798763i
\(566\) −16.6076 4.87643i −0.698070 0.204972i
\(567\) −0.142315 0.989821i −0.00597666 0.0415686i
\(568\) 0.0603785 + 0.0696805i 0.00253343 + 0.00292373i
\(569\) −6.44667 14.1162i −0.270259 0.591784i 0.725032 0.688715i \(-0.241825\pi\)
−0.995291 + 0.0969308i \(0.969097\pi\)
\(570\) 24.5759 7.21615i 1.02937 0.302251i
\(571\) −6.92831 + 15.1709i −0.289941 + 0.634881i −0.997415 0.0718577i \(-0.977107\pi\)
0.707474 + 0.706739i \(0.249835\pi\)
\(572\) 1.80843 12.5779i 0.0756141 0.525907i
\(573\) 4.59492 2.95298i 0.191956 0.123362i
\(574\) 5.21706 0.217756
\(575\) 0.198274 + 0.267719i 0.00826858 + 0.0111646i
\(576\) −5.29046 −0.220436
\(577\) 10.9293 7.02381i 0.454991 0.292405i −0.293001 0.956112i \(-0.594654\pi\)
0.747993 + 0.663707i \(0.231018\pi\)
\(578\) 7.20555 50.1157i 0.299711 2.08454i
\(579\) −0.323405 + 0.708158i −0.0134403 + 0.0294300i
\(580\) 22.5806 6.63025i 0.937607 0.275306i
\(581\) −0.0914601 0.200270i −0.00379440 0.00830859i
\(582\) −19.5844 22.6016i −0.811799 0.936866i
\(583\) 0.373624 + 2.59861i 0.0154739 + 0.107623i
\(584\) 8.25244 + 2.42313i 0.341488 + 0.100270i
\(585\) 6.64062 7.66368i 0.274556 0.316854i
\(586\) −19.3377 12.4276i −0.798833 0.513379i
\(587\) 2.48862 + 1.59934i 0.102716 + 0.0660119i 0.590991 0.806678i \(-0.298737\pi\)
−0.488274 + 0.872690i \(0.662373\pi\)
\(588\) −1.10181 + 1.27155i −0.0454378 + 0.0524380i
\(589\) −58.2350 17.0993i −2.39953 0.704566i
\(590\) 6.03109 + 41.9472i 0.248296 + 1.72694i
\(591\) 0.725272 + 0.837008i 0.0298337 + 0.0344299i
\(592\) −2.12348 4.64977i −0.0872744 0.191104i
\(593\) −36.5268 + 10.7252i −1.49998 + 0.440433i −0.925709 0.378236i \(-0.876531\pi\)
−0.574266 + 0.818669i \(0.694713\pi\)
\(594\) 1.31836 2.88681i 0.0540931 0.118447i
\(595\) 2.08144 14.4767i 0.0853306 0.593487i
\(596\) 5.12139 3.29131i 0.209780 0.134817i
\(597\) −0.194789 −0.00797217
\(598\) −41.9059 3.21364i −1.71366 0.131415i
\(599\) −19.9298 −0.814311 −0.407155 0.913359i \(-0.633479\pi\)
−0.407155 + 0.913359i \(0.633479\pi\)
\(600\) −0.0356043 + 0.0228815i −0.00145354 + 0.000934133i
\(601\) −1.61954 + 11.2642i −0.0660626 + 0.459475i 0.929760 + 0.368166i \(0.120014\pi\)
−0.995823 + 0.0913091i \(0.970895\pi\)
\(602\) −5.56007 + 12.1749i −0.226612 + 0.496210i
\(603\) −7.87848 + 2.31333i −0.320837 + 0.0942062i
\(604\) −3.64642 7.98455i −0.148371 0.324887i
\(605\) −12.0181 13.8697i −0.488607 0.563882i
\(606\) −3.60610 25.0810i −0.146488 1.01884i
\(607\) −7.43277 2.18246i −0.301687 0.0885832i 0.127386 0.991853i \(-0.459341\pi\)
−0.429073 + 0.903270i \(0.641160\pi\)
\(608\) 29.4541 33.9918i 1.19452 1.37855i
\(609\) 5.29927 + 3.40563i 0.214737 + 0.138003i
\(610\) 43.1184 + 27.7105i 1.74581 + 1.12196i
\(611\) 25.2300 29.1170i 1.02070 1.17795i
\(612\) −10.6332 3.12219i −0.429822 0.126207i
\(613\) 5.34148 + 37.1508i 0.215740 + 1.50051i 0.753522 + 0.657423i \(0.228353\pi\)
−0.537781 + 0.843084i \(0.680737\pi\)
\(614\) −37.2256 42.9606i −1.50230 1.73375i
\(615\) 2.50775 + 5.49120i 0.101122 + 0.221426i
\(616\) 0.966783 0.283873i 0.0389528 0.0114376i
\(617\) −18.0325 + 39.4857i −0.725961 + 1.58963i 0.0793968 + 0.996843i \(0.474701\pi\)
−0.805358 + 0.592789i \(0.798027\pi\)
\(618\) −4.56704 + 31.7645i −0.183713 + 1.27775i
\(619\) −13.1217 + 8.43283i −0.527407 + 0.338944i −0.777096 0.629382i \(-0.783308\pi\)
0.249689 + 0.968326i \(0.419672\pi\)
\(620\) 37.7222 1.51496
\(621\) −4.48478 1.69903i −0.179968 0.0681799i
\(622\) 15.0187 0.602194
\(623\) 5.99253 3.85117i 0.240086 0.154294i
\(624\) 2.94688 20.4960i 0.117969 0.820495i
\(625\) −10.2391 + 22.4205i −0.409563 + 0.896819i
\(626\) −24.9970 + 7.33977i −0.999080 + 0.293356i
\(627\) 4.12965 + 9.04267i 0.164922 + 0.361129i
\(628\) 13.6508 + 15.7539i 0.544727 + 0.628648i
\(629\) −1.05678 7.35003i −0.0421364 0.293065i
\(630\) −4.08847 1.20048i −0.162888 0.0478284i
\(631\) −0.181754 + 0.209755i −0.00723550 + 0.00835021i −0.759356 0.650676i \(-0.774486\pi\)
0.752120 + 0.659026i \(0.229031\pi\)
\(632\) −5.36895 3.45041i −0.213565 0.137250i
\(633\) 3.64434 + 2.34208i 0.144850 + 0.0930891i
\(634\) −4.08201 + 4.71089i −0.162117 + 0.187093i
\(635\) −33.2026 9.74918i −1.31761 0.386884i
\(636\) −0.380111 2.64373i −0.0150724 0.104831i
\(637\) −2.99062 3.45136i −0.118493 0.136748i
\(638\) 8.30470 + 18.1848i 0.328786 + 0.719942i
\(639\) 0.145201 0.0426348i 0.00574406 0.00168661i
\(640\) 4.43934 9.72079i 0.175480 0.384248i
\(641\) 0.583637 4.05929i 0.0230523 0.160332i −0.975044 0.222013i \(-0.928737\pi\)
0.998096 + 0.0616812i \(0.0196462\pi\)
\(642\) −19.9249 + 12.8050i −0.786374 + 0.505372i
\(643\) −10.8401 −0.427491 −0.213745 0.976889i \(-0.568566\pi\)
−0.213745 + 0.976889i \(0.568566\pi\)
\(644\) 2.78096 + 7.57465i 0.109585 + 0.298483i
\(645\) −15.4872 −0.609809
\(646\) 63.9167 41.0768i 2.51477 1.61614i
\(647\) 6.14973 42.7723i 0.241771 1.68155i −0.401456 0.915878i \(-0.631496\pi\)
0.643227 0.765675i \(-0.277595\pi\)
\(648\) 0.253098 0.554206i 0.00994261 0.0217713i
\(649\) −15.7816 + 4.63389i −0.619481 + 0.181896i
\(650\) 0.252893 + 0.553757i 0.00991926 + 0.0217202i
\(651\) 6.61213 + 7.63081i 0.259150 + 0.299075i
\(652\) 2.11914 + 14.7390i 0.0829921 + 0.577223i
\(653\) 12.5539 + 3.68617i 0.491274 + 0.144251i 0.517981 0.855392i \(-0.326684\pi\)
−0.0267069 + 0.999643i \(0.508502\pi\)
\(654\) 25.9214 29.9149i 1.01361 1.16977i
\(655\) 21.5651 + 13.8591i 0.842619 + 0.541519i
\(656\) 10.3700 + 6.66442i 0.404882 + 0.260202i
\(657\) 9.24450 10.6687i 0.360662 0.416227i
\(658\) −15.5335 4.56105i −0.605560 0.177808i
\(659\) 5.32669 + 37.0480i 0.207498 + 1.44318i 0.781283 + 0.624177i \(0.214566\pi\)
−0.573784 + 0.819006i \(0.694525\pi\)
\(660\) −4.04608 4.66942i −0.157493 0.181757i
\(661\) 4.90335 + 10.7368i 0.190718 + 0.417615i 0.980701 0.195515i \(-0.0626377\pi\)
−0.789982 + 0.613129i \(0.789910\pi\)
\(662\) −42.0112 + 12.3356i −1.63281 + 0.479437i
\(663\) 12.4957 27.3618i 0.485293 1.06264i
\(664\) 0.0190900 0.132774i 0.000740835 0.00515262i
\(665\) 11.2285 7.21615i 0.435424 0.279830i
\(666\) −2.16341 −0.0838303
\(667\) 26.5889 14.3418i 1.02952 0.555316i
\(668\) 4.05043 0.156716
\(669\) −0.986520 + 0.633998i −0.0381411 + 0.0245118i
\(670\) −4.97932 + 34.6319i −0.192368 + 1.33795i
\(671\) −8.26380 + 18.0952i −0.319020 + 0.698557i
\(672\) −7.17941 + 2.10807i −0.276952 + 0.0813204i
\(673\) 9.79518 + 21.4485i 0.377576 + 0.826777i 0.999060 + 0.0433499i \(0.0138030\pi\)
−0.621484 + 0.783427i \(0.713470\pi\)
\(674\) 9.51492 + 10.9808i 0.366501 + 0.422965i
\(675\) 0.00988598 + 0.0687585i 0.000380512 + 0.00264652i
\(676\) −12.6819 3.72374i −0.487765 0.143221i
\(677\) −3.01064 + 3.47447i −0.115708 + 0.133535i −0.810649 0.585533i \(-0.800885\pi\)
0.694940 + 0.719067i \(0.255431\pi\)
\(678\) −1.82648 1.17381i −0.0701457 0.0450799i
\(679\) −13.1104 8.42554i −0.503131 0.323343i
\(680\) 5.83536 6.73437i 0.223776 0.258251i
\(681\) 21.9515 + 6.44553i 0.841182 + 0.246993i
\(682\) 4.56032 + 31.7178i 0.174624 + 1.21454i
\(683\) 1.28101 + 1.47837i 0.0490166 + 0.0565681i 0.779728 0.626118i \(-0.215357\pi\)
−0.730712 + 0.682686i \(0.760812\pi\)
\(684\) −4.20135 9.19967i −0.160643 0.351758i
\(685\) 7.17090 2.10557i 0.273986 0.0804496i
\(686\) −0.797176 + 1.74557i −0.0304363 + 0.0666462i
\(687\) −1.14171 + 7.94073i −0.0435588 + 0.302958i
\(688\) −26.6043 + 17.0976i −1.01428 + 0.651839i
\(689\) 7.24962 0.276189
\(690\) −14.5240 + 14.3756i −0.552921 + 0.547269i
\(691\) 41.1852 1.56676 0.783379 0.621544i \(-0.213494\pi\)
0.783379 + 0.621544i \(0.213494\pi\)
\(692\) −2.83993 + 1.82511i −0.107958 + 0.0693804i
\(693\) 0.235359 1.63696i 0.00894056 0.0621830i
\(694\) −16.6856 + 36.5363i −0.633375 + 1.38690i
\(695\) 4.56356 1.33998i 0.173106 0.0508284i
\(696\) 1.59433 + 3.49109i 0.0604328 + 0.132329i
\(697\) 11.7265 + 13.5331i 0.444174 + 0.512604i
\(698\) 4.65946 + 32.4072i 0.176363 + 1.22663i
\(699\) −23.4937 6.89839i −0.888615 0.260921i
\(700\) 0.0765377 0.0883292i 0.00289285 0.00333853i
\(701\) −13.4752 8.66000i −0.508952 0.327084i 0.260836 0.965383i \(-0.416002\pi\)
−0.769788 + 0.638299i \(0.779638\pi\)
\(702\) −7.37244 4.73798i −0.278255 0.178823i
\(703\) 4.43777 5.12146i 0.167374 0.193160i
\(704\) −8.39491 2.46497i −0.316395 0.0929020i
\(705\) −2.66596 18.5422i −0.100406 0.698338i
\(706\) 33.2300 + 38.3495i 1.25063 + 1.44330i
\(707\) −5.48527 12.0111i −0.206295 0.451723i
\(708\) 16.0556 4.71434i 0.603405 0.177176i
\(709\) −2.95328 + 6.46677i −0.110913 + 0.242865i −0.956946 0.290264i \(-0.906257\pi\)
0.846034 + 0.533129i \(0.178984\pi\)
\(710\) 0.0917691 0.638268i 0.00344403 0.0239538i
\(711\) −8.81218 + 5.66324i −0.330482 + 0.212388i
\(712\) 4.33999 0.162648
\(713\) 47.3692 10.0499i 1.77399 0.376373i
\(714\) −12.6397 −0.473030
\(715\) 14.1081 9.06670i 0.527612 0.339075i
\(716\) −3.79571 + 26.3997i −0.141852 + 0.986604i
\(717\) 6.76544 14.8142i 0.252660 0.553248i
\(718\) −27.1561 + 7.97374i −1.01345 + 0.297577i
\(719\) 12.2303 + 26.7806i 0.456113 + 0.998747i 0.988356 + 0.152156i \(0.0486217\pi\)
−0.532244 + 0.846591i \(0.678651\pi\)
\(720\) −6.59318 7.60894i −0.245713 0.283568i
\(721\) 2.37992 + 16.5527i 0.0886330 + 0.616456i
\(722\) 31.5455 + 9.26259i 1.17400 + 0.344718i
\(723\) −14.2812 + 16.4814i −0.531125 + 0.612951i
\(724\) −15.8987 10.2175i −0.590870 0.379729i
\(725\) −0.368117 0.236574i −0.0136715 0.00878615i
\(726\) −10.3863 + 11.9865i −0.385473 + 0.444859i
\(727\) −23.0402 6.76520i −0.854513 0.250908i −0.174997 0.984569i \(-0.555992\pi\)
−0.679515 + 0.733661i \(0.737810\pi\)
\(728\) −0.395976 2.75407i −0.0146758 0.102073i
\(729\) −0.654861 0.755750i −0.0242541 0.0279907i
\(730\) −24.9882 54.7166i −0.924856 2.02515i
\(731\) −44.0793 + 12.9428i −1.63033 + 0.478708i
\(732\) 8.40728 18.4094i 0.310742 0.680430i
\(733\) 5.54102 38.5387i 0.204662 1.42346i −0.585556 0.810632i \(-0.699124\pi\)
0.790218 0.612826i \(-0.209967\pi\)
\(734\) −9.66392 + 6.21062i −0.356702 + 0.229238i
\(735\) −2.22048 −0.0819037
\(736\) −7.80791 + 35.0251i −0.287803 + 1.29104i
\(737\) −13.5794 −0.500205
\(738\) 4.38887 2.82056i 0.161557 0.103826i
\(739\) −1.83148 + 12.7382i −0.0673720 + 0.468583i 0.928007 + 0.372562i \(0.121521\pi\)
−0.995379 + 0.0960208i \(0.969388\pi\)
\(740\) −1.74966 + 3.83121i −0.0643186 + 0.140838i
\(741\) 26.3393 7.73391i 0.967598 0.284112i
\(742\) −1.26549 2.77103i −0.0464574 0.101728i
\(743\) −7.20669 8.31696i −0.264388 0.305120i 0.607997 0.793939i \(-0.291973\pi\)
−0.872385 + 0.488819i \(0.837428\pi\)
\(744\) 0.875485 + 6.08913i 0.0320968 + 0.223238i
\(745\) 7.70890 + 2.26354i 0.282432 + 0.0829296i
\(746\) −15.0816 + 17.4051i −0.552176 + 0.637245i
\(747\) −0.185215 0.119031i −0.00677667 0.00435510i
\(748\) −15.4181 9.90861i −0.563742 0.362295i
\(749\) −8.08252 + 9.32773i −0.295329 + 0.340828i
\(750\) 20.7263 + 6.08580i 0.756819 + 0.222222i
\(751\) −0.846691 5.88886i −0.0308962 0.214888i 0.968525 0.248918i \(-0.0800749\pi\)
−0.999421 + 0.0340301i \(0.989166\pi\)
\(752\) −25.0498 28.9090i −0.913472 1.05420i
\(753\) 1.96391 + 4.30036i 0.0715688 + 0.156714i
\(754\) 52.9682 15.5529i 1.92899 0.566402i
\(755\) 4.81234 10.5376i 0.175139 0.383501i
\(756\) −0.239446 + 1.66538i −0.00870856 + 0.0605693i
\(757\) 28.3983 18.2505i 1.03215 0.663324i 0.0891190 0.996021i \(-0.471595\pi\)
0.943034 + 0.332697i \(0.107958\pi\)
\(758\) −36.7996 −1.33662
\(759\) −6.32484 4.78561i −0.229577 0.173707i
\(760\) 8.13210 0.294982
\(761\) −10.3884 + 6.67619i −0.376578 + 0.242012i −0.715214 0.698906i \(-0.753671\pi\)
0.338636 + 0.940917i \(0.390034\pi\)
\(762\) −4.25604 + 29.6014i −0.154180 + 1.07235i
\(763\) 8.56880 18.7631i 0.310211 0.679268i
\(764\) −8.81759 + 2.58908i −0.319009 + 0.0936696i
\(765\) −6.07569 13.3039i −0.219667 0.481003i
\(766\) −5.61546 6.48059i −0.202895 0.234153i
\(767\) 6.46383 + 44.9569i 0.233395 + 1.62330i
\(768\) −19.0137 5.58293i −0.686098 0.201457i
\(769\) 10.7760 12.4362i 0.388593 0.448460i −0.527423 0.849603i \(-0.676842\pi\)
0.916015 + 0.401143i \(0.131387\pi\)
\(770\) −5.92825 3.80986i −0.213639 0.137298i
\(771\) 17.0139 + 10.9342i 0.612740 + 0.393784i
\(772\) 0.857769