Properties

Label 483.2.q.c.127.1
Level $483$
Weight $2$
Character 483.127
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 40 x^{18} - 117 x^{17} + 295 x^{16} - 575 x^{15} + 1777 x^{14} - 1560 x^{13} + 4383 x^{12} - 6446 x^{11} + 7261 x^{10} + 7700 x^{9} + 7852 x^{8} - 39430 x^{7} - 101709 x^{6} + 156742 x^{5} + 999838 x^{4} + 2029154 x^{3} + 3616480 x^{2} + 4299390 x + 2374681\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 127.1
Root \(-1.02673 - 0.659842i\) of defining polynomial
Character \(\chi\) \(=\) 483.127
Dual form 483.2.q.c.232.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.61435 + 1.03748i) q^{2} +(-0.142315 + 0.989821i) q^{3} +(0.698939 - 1.53046i) q^{4} +(-2.78540 + 0.817866i) q^{5} +(-0.797176 - 1.74557i) q^{6} +(-0.654861 - 0.755750i) q^{7} +(-0.0867074 - 0.603063i) q^{8} +(-0.959493 - 0.281733i) q^{9} +O(q^{10})\) \(q+(-1.61435 + 1.03748i) q^{2} +(-0.142315 + 0.989821i) q^{3} +(0.698939 - 1.53046i) q^{4} +(-2.78540 + 0.817866i) q^{5} +(-0.797176 - 1.74557i) q^{6} +(-0.654861 - 0.755750i) q^{7} +(-0.0867074 - 0.603063i) q^{8} +(-0.959493 - 0.281733i) q^{9} +(3.64809 - 4.21012i) q^{10} +(-1.01130 - 0.649920i) q^{11} +(1.41542 + 0.909632i) q^{12} +(2.65446 - 3.06341i) q^{13} +(1.84125 + 0.540641i) q^{14} +(-0.413138 - 2.87344i) q^{15} +(2.96926 + 3.42671i) q^{16} +(-0.185587 - 0.406379i) q^{17} +(1.84125 - 0.540641i) q^{18} +(-0.122970 + 0.269268i) q^{19} +(-0.695108 + 4.83458i) q^{20} +(0.841254 - 0.540641i) q^{21} +2.30687 q^{22} +(3.14576 + 3.61997i) q^{23} +0.609264 q^{24} +(2.88326 - 1.85296i) q^{25} +(-1.10700 + 7.69937i) q^{26} +(0.415415 - 0.909632i) q^{27} +(-1.61435 + 0.474017i) q^{28} +(-1.93907 - 4.24598i) q^{29} +(3.64809 + 4.21012i) q^{30} +(-0.518984 - 3.60962i) q^{31} +(-7.17941 - 2.10807i) q^{32} +(0.787227 - 0.908508i) q^{33} +(0.721214 + 0.463496i) q^{34} +(2.44215 + 1.56947i) q^{35} +(-1.10181 + 1.27155i) q^{36} +(5.35680 + 1.57290i) q^{37} +(-0.0808426 - 0.562273i) q^{38} +(2.65446 + 3.06341i) q^{39} +(0.734739 + 1.60885i) q^{40} +(1.51933 - 0.446116i) q^{41} +(-0.797176 + 1.74557i) q^{42} +(0.200691 - 1.39584i) q^{43} +(-1.70151 + 1.09349i) q^{44} +2.90299 q^{45} +(-8.83402 - 2.58025i) q^{46} -3.48129 q^{47} +(-3.81440 + 2.45137i) q^{48} +(-0.142315 + 0.989821i) q^{49} +(-2.73219 + 5.98266i) q^{50} +(0.428654 - 0.125864i) q^{51} +(-2.83313 - 6.20368i) q^{52} +(7.57328 + 8.74004i) q^{53} +(0.273100 + 1.89945i) q^{54} +(3.34841 + 0.983181i) q^{55} +(-0.398983 + 0.460451i) q^{56} +(-0.249026 - 0.160040i) q^{57} +(7.53547 + 4.84275i) q^{58} +(8.82892 - 10.1891i) q^{59} +(-4.68645 - 1.37607i) q^{60} +(-0.602744 - 4.19218i) q^{61} +(4.58274 + 5.28876i) q^{62} +(0.415415 + 0.909632i) q^{63} +(5.07616 - 1.49049i) q^{64} +(-4.88826 + 10.7038i) q^{65} +(-0.328302 + 2.28339i) q^{66} +(3.01093 - 1.93501i) q^{67} -0.751662 q^{68} +(-4.03082 + 2.59856i) q^{69} -5.57079 q^{70} +(10.0099 - 6.43295i) q^{71} +(-0.0867074 + 0.603063i) q^{72} +(4.65850 - 10.2007i) q^{73} +(-10.2796 + 3.01837i) q^{74} +(1.42377 + 3.11762i) q^{75} +(0.326155 + 0.376403i) q^{76} +(0.171081 + 1.18989i) q^{77} +(-7.46346 - 2.19147i) q^{78} +(-4.68236 + 5.40373i) q^{79} +(-11.0732 - 7.11628i) q^{80} +(0.841254 + 0.540641i) q^{81} +(-1.98990 + 2.29647i) q^{82} +(-0.0254587 - 0.00747534i) q^{83} +(-0.239446 - 1.66538i) q^{84} +(0.849297 + 0.980141i) q^{85} +(1.12417 + 2.46159i) q^{86} +(4.47872 - 1.31507i) q^{87} +(-0.304256 + 0.666228i) q^{88} +(1.50411 - 10.4613i) q^{89} +(-4.68645 + 3.01180i) q^{90} -4.05347 q^{91} +(7.73893 - 2.28432i) q^{92} +3.64673 q^{93} +(5.62003 - 3.61177i) q^{94} +(0.122296 - 0.850591i) q^{95} +(3.10835 - 6.80633i) q^{96} +(0.0741642 - 0.0217766i) q^{97} +(-0.797176 - 1.74557i) q^{98} +(0.787227 + 0.908508i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + O(q^{10}) \) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + 9q^{10} + 3q^{11} + 18q^{12} - 2q^{13} + 18q^{14} - q^{15} + 8q^{16} + 8q^{17} + 18q^{18} + 6q^{19} - 2q^{20} - 2q^{21} + 6q^{22} + 11q^{23} + 9q^{25} + 7q^{26} - 2q^{27} - 4q^{28} + 23q^{29} + 9q^{30} + q^{31} - 28q^{32} + 14q^{33} - 28q^{34} + 10q^{35} - 4q^{36} - 9q^{37} + 34q^{38} - 2q^{39} - 15q^{41} - 4q^{42} - 23q^{43} - 16q^{44} - 12q^{45} + 11q^{46} - 66q^{47} - 36q^{48} - 2q^{49} - 26q^{50} - 14q^{51} + 7q^{52} + 9q^{53} - 4q^{54} - 62q^{55} + 22q^{56} - 27q^{57} - 20q^{58} + 49q^{59} - 2q^{60} + 46q^{61} - 9q^{62} - 2q^{63} + 16q^{64} + 11q^{65} - 16q^{66} + 14q^{67} + 38q^{68} + 11q^{69} - 2q^{70} + 36q^{71} - q^{73} + 4q^{74} - 2q^{75} + 34q^{76} - 8q^{77} - 15q^{78} - 22q^{79} + 15q^{80} - 2q^{81} - 30q^{82} + 8q^{83} - 4q^{84} - 32q^{85} - 68q^{86} + q^{87} - 11q^{88} - 2q^{89} - 2q^{90} - 24q^{91} + 11q^{92} - 32q^{93} + 33q^{94} - 107q^{95} + 16q^{96} + 18q^{97} - 4q^{98} + 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{10}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61435 + 1.03748i −1.14152 + 0.733611i −0.967933 0.251208i \(-0.919172\pi\)
−0.173587 + 0.984818i \(0.555536\pi\)
\(3\) −0.142315 + 0.989821i −0.0821655 + 0.571474i
\(4\) 0.698939 1.53046i 0.349469 0.765231i
\(5\) −2.78540 + 0.817866i −1.24567 + 0.365761i −0.837142 0.546986i \(-0.815775\pi\)
−0.408525 + 0.912747i \(0.633957\pi\)
\(6\) −0.797176 1.74557i −0.325446 0.712626i
\(7\) −0.654861 0.755750i −0.247514 0.285646i
\(8\) −0.0867074 0.603063i −0.0306557 0.213215i
\(9\) −0.959493 0.281733i −0.319831 0.0939109i
\(10\) 3.64809 4.21012i 1.15363 1.33136i
\(11\) −1.01130 0.649920i −0.304917 0.195958i 0.379230 0.925302i \(-0.376189\pi\)
−0.684147 + 0.729344i \(0.739825\pi\)
\(12\) 1.41542 + 0.909632i 0.408595 + 0.262588i
\(13\) 2.65446 3.06341i 0.736214 0.849636i −0.256943 0.966427i \(-0.582715\pi\)
0.993157 + 0.116791i \(0.0372606\pi\)
\(14\) 1.84125 + 0.540641i 0.492096 + 0.144492i
\(15\) −0.413138 2.87344i −0.106672 0.741919i
\(16\) 2.96926 + 3.42671i 0.742315 + 0.856677i
\(17\) −0.185587 0.406379i −0.0450115 0.0985614i 0.885790 0.464086i \(-0.153617\pi\)
−0.930802 + 0.365524i \(0.880890\pi\)
\(18\) 1.84125 0.540641i 0.433988 0.127430i
\(19\) −0.122970 + 0.269268i −0.0282114 + 0.0617742i −0.923213 0.384288i \(-0.874447\pi\)
0.895002 + 0.446063i \(0.147174\pi\)
\(20\) −0.695108 + 4.83458i −0.155431 + 1.08105i
\(21\) 0.841254 0.540641i 0.183577 0.117977i
\(22\) 2.30687 0.491826
\(23\) 3.14576 + 3.61997i 0.655936 + 0.754817i
\(24\) 0.609264 0.124366
\(25\) 2.88326 1.85296i 0.576652 0.370592i
\(26\) −1.10700 + 7.69937i −0.217101 + 1.50997i
\(27\) 0.415415 0.909632i 0.0799467 0.175059i
\(28\) −1.61435 + 0.474017i −0.305084 + 0.0895808i
\(29\) −1.93907 4.24598i −0.360077 0.788458i −0.999803 0.0198550i \(-0.993680\pi\)
0.639726 0.768603i \(-0.279048\pi\)
\(30\) 3.64809 + 4.21012i 0.666048 + 0.768660i
\(31\) −0.518984 3.60962i −0.0932123 0.648306i −0.981845 0.189686i \(-0.939253\pi\)
0.888632 0.458620i \(-0.151656\pi\)
\(32\) −7.17941 2.10807i −1.26915 0.372657i
\(33\) 0.787227 0.908508i 0.137039 0.158151i
\(34\) 0.721214 + 0.463496i 0.123687 + 0.0794889i
\(35\) 2.44215 + 1.56947i 0.412798 + 0.265289i
\(36\) −1.10181 + 1.27155i −0.183635 + 0.211926i
\(37\) 5.35680 + 1.57290i 0.880652 + 0.258583i 0.690640 0.723199i \(-0.257329\pi\)
0.190012 + 0.981782i \(0.439147\pi\)
\(38\) −0.0808426 0.562273i −0.0131144 0.0912127i
\(39\) 2.65446 + 3.06341i 0.425053 + 0.490538i
\(40\) 0.734739 + 1.60885i 0.116172 + 0.254382i
\(41\) 1.51933 0.446116i 0.237280 0.0696716i −0.160931 0.986966i \(-0.551450\pi\)
0.398210 + 0.917294i \(0.369631\pi\)
\(42\) −0.797176 + 1.74557i −0.123007 + 0.269347i
\(43\) 0.200691 1.39584i 0.0306051 0.212863i −0.968780 0.247921i \(-0.920253\pi\)
0.999385 + 0.0350582i \(0.0111616\pi\)
\(44\) −1.70151 + 1.09349i −0.256512 + 0.164851i
\(45\) 2.90299 0.432752
\(46\) −8.83402 2.58025i −1.30251 0.380438i
\(47\) −3.48129 −0.507798 −0.253899 0.967231i \(-0.581713\pi\)
−0.253899 + 0.967231i \(0.581713\pi\)
\(48\) −3.81440 + 2.45137i −0.550561 + 0.353824i
\(49\) −0.142315 + 0.989821i −0.0203307 + 0.141403i
\(50\) −2.73219 + 5.98266i −0.386390 + 0.846076i
\(51\) 0.428654 0.125864i 0.0600236 0.0176245i
\(52\) −2.83313 6.20368i −0.392884 0.860295i
\(53\) 7.57328 + 8.74004i 1.04027 + 1.20054i 0.979304 + 0.202397i \(0.0648730\pi\)
0.0609670 + 0.998140i \(0.480582\pi\)
\(54\) 0.273100 + 1.89945i 0.0371642 + 0.258483i
\(55\) 3.34841 + 0.983181i 0.451499 + 0.132572i
\(56\) −0.398983 + 0.460451i −0.0533164 + 0.0615304i
\(57\) −0.249026 0.160040i −0.0329844 0.0211978i
\(58\) 7.53547 + 4.84275i 0.989456 + 0.635885i
\(59\) 8.82892 10.1891i 1.14943 1.32651i 0.212429 0.977177i \(-0.431863\pi\)
0.936999 0.349333i \(-0.113592\pi\)
\(60\) −4.68645 1.37607i −0.605018 0.177649i
\(61\) −0.602744 4.19218i −0.0771735 0.536753i −0.991330 0.131393i \(-0.958055\pi\)
0.914157 0.405361i \(-0.132854\pi\)
\(62\) 4.58274 + 5.28876i 0.582008 + 0.671673i
\(63\) 0.415415 + 0.909632i 0.0523374 + 0.114603i
\(64\) 5.07616 1.49049i 0.634520 0.186312i
\(65\) −4.88826 + 10.7038i −0.606314 + 1.32764i
\(66\) −0.328302 + 2.28339i −0.0404111 + 0.281066i
\(67\) 3.01093 1.93501i 0.367844 0.236399i −0.343640 0.939102i \(-0.611660\pi\)
0.711484 + 0.702703i \(0.248024\pi\)
\(68\) −0.751662 −0.0911523
\(69\) −4.03082 + 2.59856i −0.485253 + 0.312830i
\(70\) −5.57079 −0.665837
\(71\) 10.0099 6.43295i 1.18795 0.763451i 0.211121 0.977460i \(-0.432289\pi\)
0.976832 + 0.214009i \(0.0686522\pi\)
\(72\) −0.0867074 + 0.603063i −0.0102186 + 0.0710717i
\(73\) 4.65850 10.2007i 0.545236 1.19390i −0.413736 0.910397i \(-0.635776\pi\)
0.958971 0.283503i \(-0.0914965\pi\)
\(74\) −10.2796 + 3.01837i −1.19498 + 0.350878i
\(75\) 1.42377 + 3.11762i 0.164403 + 0.359991i
\(76\) 0.326155 + 0.376403i 0.0374126 + 0.0431764i
\(77\) 0.171081 + 1.18989i 0.0194965 + 0.135601i
\(78\) −7.46346 2.19147i −0.845071 0.248135i
\(79\) −4.68236 + 5.40373i −0.526807 + 0.607967i −0.955322 0.295567i \(-0.904491\pi\)
0.428515 + 0.903535i \(0.359037\pi\)
\(80\) −11.0732 7.11628i −1.23802 0.795625i
\(81\) 0.841254 + 0.540641i 0.0934726 + 0.0600712i
\(82\) −1.98990 + 2.29647i −0.219748 + 0.253602i
\(83\) −0.0254587 0.00747534i −0.00279445 0.000820525i 0.280335 0.959902i \(-0.409554\pi\)
−0.283129 + 0.959082i \(0.591373\pi\)
\(84\) −0.239446 1.66538i −0.0261257 0.181708i
\(85\) 0.849297 + 0.980141i 0.0921192 + 0.106311i
\(86\) 1.12417 + 2.46159i 0.121222 + 0.265440i
\(87\) 4.47872 1.31507i 0.480169 0.140990i
\(88\) −0.304256 + 0.666228i −0.0324338 + 0.0710201i
\(89\) 1.50411 10.4613i 0.159435 1.10890i −0.740242 0.672340i \(-0.765289\pi\)
0.899677 0.436555i \(-0.143802\pi\)
\(90\) −4.68645 + 3.01180i −0.493995 + 0.317471i
\(91\) −4.05347 −0.424919
\(92\) 7.73893 2.28432i 0.806839 0.238157i
\(93\) 3.64673 0.378149
\(94\) 5.62003 3.61177i 0.579662 0.372526i
\(95\) 0.122296 0.850591i 0.0125474 0.0872688i
\(96\) 3.10835 6.80633i 0.317244 0.694668i
\(97\) 0.0741642 0.0217766i 0.00753024 0.00221108i −0.277965 0.960591i \(-0.589660\pi\)
0.285496 + 0.958380i \(0.407842\pi\)
\(98\) −0.797176 1.74557i −0.0805269 0.176329i
\(99\) 0.787227 + 0.908508i 0.0791193 + 0.0913085i
\(100\) −0.820661 5.70783i −0.0820661 0.570783i
\(101\) −16.9464 4.97591i −1.68623 0.495122i −0.708628 0.705582i \(-0.750685\pi\)
−0.977602 + 0.210461i \(0.932504\pi\)
\(102\) −0.561418 + 0.647911i −0.0555886 + 0.0641527i
\(103\) 3.33681 + 2.14444i 0.328786 + 0.211298i 0.694611 0.719386i \(-0.255577\pi\)
−0.365825 + 0.930684i \(0.619213\pi\)
\(104\) −2.07759 1.33518i −0.203724 0.130926i
\(105\) −1.90105 + 2.19393i −0.185524 + 0.214106i
\(106\) −21.2936 6.25236i −2.06822 0.607283i
\(107\) 0.0744754 + 0.517988i 0.00719981 + 0.0500758i 0.993105 0.117231i \(-0.0374019\pi\)
−0.985905 + 0.167307i \(0.946493\pi\)
\(108\) −1.10181 1.27155i −0.106022 0.122355i
\(109\) −2.40391 5.26384i −0.230253 0.504184i 0.758876 0.651235i \(-0.225749\pi\)
−0.989129 + 0.147051i \(0.953022\pi\)
\(110\) −6.42554 + 1.88671i −0.612651 + 0.179891i
\(111\) −2.31924 + 5.07843i −0.220133 + 0.482023i
\(112\) 0.645282 4.48803i 0.0609734 0.424079i
\(113\) 15.2240 9.78385i 1.43215 0.920387i 0.432325 0.901718i \(-0.357693\pi\)
0.999826 0.0186690i \(-0.00594288\pi\)
\(114\) 0.568055 0.0532032
\(115\) −11.7228 7.51026i −1.09316 0.700335i
\(116\) −7.85360 −0.729188
\(117\) −3.40999 + 2.19147i −0.315254 + 0.202601i
\(118\) −3.68197 + 25.6087i −0.338953 + 2.35747i
\(119\) −0.185587 + 0.406379i −0.0170127 + 0.0372527i
\(120\) −1.69704 + 0.498297i −0.154918 + 0.0454881i
\(121\) −3.96924 8.69143i −0.360840 0.790130i
\(122\) 5.32235 + 6.14232i 0.481863 + 0.556100i
\(123\) 0.225352 + 1.56736i 0.0203193 + 0.141324i
\(124\) −5.88712 1.72861i −0.528679 0.155234i
\(125\) 2.98971 3.45031i 0.267408 0.308605i
\(126\) −1.61435 1.03748i −0.143818 0.0924263i
\(127\) −11.8527 7.61725i −1.05175 0.675922i −0.103888 0.994589i \(-0.533128\pi\)
−0.947867 + 0.318667i \(0.896765\pi\)
\(128\) 3.15165 3.63720i 0.278569 0.321486i
\(129\) 1.35307 + 0.397297i 0.119131 + 0.0349800i
\(130\) −3.21362 22.3512i −0.281853 1.96033i
\(131\) −10.3363 11.9287i −0.903085 1.04222i −0.998903 0.0468170i \(-0.985092\pi\)
0.0958183 0.995399i \(-0.469453\pi\)
\(132\) −0.840214 1.83981i −0.0731313 0.160135i
\(133\) 0.284027 0.0833980i 0.0246283 0.00723152i
\(134\) −2.85317 + 6.24758i −0.246477 + 0.539709i
\(135\) −0.413138 + 2.87344i −0.0355573 + 0.247306i
\(136\) −0.228980 + 0.147157i −0.0196349 + 0.0126186i
\(137\) 3.02092 0.258095 0.129047 0.991638i \(-0.458808\pi\)
0.129047 + 0.991638i \(0.458808\pi\)
\(138\) 3.81120 8.37690i 0.324431 0.713089i
\(139\) −11.3664 −0.964085 −0.482043 0.876148i \(-0.660105\pi\)
−0.482043 + 0.876148i \(0.660105\pi\)
\(140\) 4.10893 2.64065i 0.347268 0.223176i
\(141\) 0.495439 3.44585i 0.0417235 0.290193i
\(142\) −9.48539 + 20.7701i −0.795997 + 1.74299i
\(143\) −4.67541 + 1.37282i −0.390977 + 0.114801i
\(144\) −1.88357 4.12444i −0.156964 0.343703i
\(145\) 8.87372 + 10.2408i 0.736923 + 0.850454i
\(146\) 3.06257 + 21.3006i 0.253460 + 1.76285i
\(147\) −0.959493 0.281733i −0.0791376 0.0232369i
\(148\) 6.15133 7.09902i 0.505637 0.583536i
\(149\) −15.2467 9.79845i −1.24906 0.802720i −0.262309 0.964984i \(-0.584484\pi\)
−0.986747 + 0.162264i \(0.948120\pi\)
\(150\) −5.53294 3.55580i −0.451762 0.290330i
\(151\) 2.89891 3.34552i 0.235910 0.272254i −0.625434 0.780277i \(-0.715078\pi\)
0.861344 + 0.508023i \(0.169623\pi\)
\(152\) 0.173048 + 0.0508114i 0.0140360 + 0.00412135i
\(153\) 0.0635793 + 0.442204i 0.00514008 + 0.0357500i
\(154\) −1.51068 1.74341i −0.121734 0.140488i
\(155\) 4.39776 + 9.62975i 0.353237 + 0.773480i
\(156\) 6.54373 1.92141i 0.523918 0.153836i
\(157\) −6.59036 + 14.4309i −0.525968 + 1.15171i 0.441162 + 0.897427i \(0.354566\pi\)
−0.967130 + 0.254282i \(0.918161\pi\)
\(158\) 1.95271 13.5814i 0.155349 1.08048i
\(159\) −9.72887 + 6.25236i −0.771549 + 0.495845i
\(160\) 21.7216 1.71725
\(161\) 0.675762 4.74798i 0.0532575 0.374194i
\(162\) −1.91899 −0.150770
\(163\) 1.66312 1.06882i 0.130265 0.0837164i −0.473885 0.880587i \(-0.657149\pi\)
0.604151 + 0.796870i \(0.293513\pi\)
\(164\) 0.379156 2.63709i 0.0296071 0.205922i
\(165\) −1.44970 + 3.17440i −0.112859 + 0.247127i
\(166\) 0.0488548 0.0143451i 0.00379187 0.00111339i
\(167\) 5.83085 + 12.7678i 0.451204 + 0.988000i 0.989405 + 0.145183i \(0.0463771\pi\)
−0.538200 + 0.842817i \(0.680896\pi\)
\(168\) −0.398983 0.460451i −0.0307822 0.0355246i
\(169\) −0.488225 3.39568i −0.0375558 0.261206i
\(170\) −2.38794 0.701164i −0.183147 0.0537768i
\(171\) 0.193851 0.223716i 0.0148241 0.0171080i
\(172\) −1.99601 1.28275i −0.152194 0.0978091i
\(173\) −5.56630 3.57724i −0.423198 0.271973i 0.311660 0.950194i \(-0.399115\pi\)
−0.734858 + 0.678221i \(0.762751\pi\)
\(174\) −5.86587 + 6.76958i −0.444690 + 0.513200i
\(175\) −3.28851 0.965593i −0.248588 0.0729919i
\(176\) −0.775712 5.39519i −0.0584715 0.406678i
\(177\) 8.82892 + 10.1891i 0.663622 + 0.765861i
\(178\) 8.42525 + 18.4487i 0.631499 + 1.38279i
\(179\) 21.6136 6.34632i 1.61548 0.474347i 0.655678 0.755040i \(-0.272383\pi\)
0.959797 + 0.280694i \(0.0905645\pi\)
\(180\) 2.02901 4.44291i 0.151234 0.331155i
\(181\) 1.20178 8.35854i 0.0893274 0.621286i −0.895149 0.445767i \(-0.852931\pi\)
0.984476 0.175518i \(-0.0561601\pi\)
\(182\) 6.54373 4.20540i 0.485054 0.311725i
\(183\) 4.23529 0.313081
\(184\) 1.91031 2.21097i 0.140830 0.162995i
\(185\) −16.2072 −1.19158
\(186\) −5.88712 + 3.78342i −0.431664 + 0.277414i
\(187\) −0.0764305 + 0.531586i −0.00558915 + 0.0388734i
\(188\) −2.43321 + 5.32798i −0.177460 + 0.388583i
\(189\) −0.959493 + 0.281733i −0.0697928 + 0.0204930i
\(190\) 0.685043 + 1.50003i 0.0496982 + 0.108824i
\(191\) 14.1995 + 16.3872i 1.02744 + 1.18573i 0.982408 + 0.186747i \(0.0597946\pi\)
0.0450353 + 0.998985i \(0.485660\pi\)
\(192\) 0.752911 + 5.23661i 0.0543366 + 0.377920i
\(193\) 18.6865 + 5.48686i 1.34509 + 0.394953i 0.873482 0.486857i \(-0.161857\pi\)
0.471605 + 0.881810i \(0.343675\pi\)
\(194\) −0.0971345 + 0.112099i −0.00697385 + 0.00804825i
\(195\) −9.89917 6.36181i −0.708894 0.455579i
\(196\) 1.41542 + 0.909632i 0.101101 + 0.0649737i
\(197\) 6.61609 7.63537i 0.471377 0.543998i −0.469417 0.882976i \(-0.655536\pi\)
0.940794 + 0.338979i \(0.110081\pi\)
\(198\) −2.21342 0.649920i −0.157301 0.0461878i
\(199\) 0.584439 + 4.06486i 0.0414298 + 0.288151i 0.999995 + 0.00327615i \(0.00104283\pi\)
−0.958565 + 0.284874i \(0.908048\pi\)
\(200\) −1.36745 1.57812i −0.0966934 0.111590i
\(201\) 1.48681 + 3.25567i 0.104872 + 0.229637i
\(202\) 32.5199 9.54871i 2.28809 0.671845i
\(203\) −1.93907 + 4.24598i −0.136096 + 0.298009i
\(204\) 0.106973 0.744011i 0.00748958 0.0520912i
\(205\) −3.86708 + 2.48522i −0.270088 + 0.173575i
\(206\) −7.61161 −0.530326
\(207\) −1.99847 4.35960i −0.138903 0.303013i
\(208\) 18.3792 1.27437
\(209\) 0.299362 0.192388i 0.0207073 0.0133078i
\(210\) 0.792806 5.51409i 0.0547088 0.380508i
\(211\) −9.46499 + 20.7254i −0.651597 + 1.42680i 0.238553 + 0.971129i \(0.423327\pi\)
−0.890150 + 0.455668i \(0.849400\pi\)
\(212\) 18.6696 5.48188i 1.28223 0.376497i
\(213\) 4.94292 + 10.8235i 0.338683 + 0.741613i
\(214\) −0.657632 0.758948i −0.0449548 0.0518806i
\(215\) 0.582604 + 4.05210i 0.0397332 + 0.276351i
\(216\) −0.584585 0.171650i −0.0397760 0.0116793i
\(217\) −2.38810 + 2.75602i −0.162115 + 0.187091i
\(218\) 9.34190 + 6.00368i 0.632713 + 0.406620i
\(219\) 9.43388 + 6.06279i 0.637483 + 0.409685i
\(220\) 3.84505 4.43743i 0.259233 0.299171i
\(221\) −1.73754 0.510187i −0.116879 0.0343189i
\(222\) −1.52470 10.6045i −0.102331 0.711731i
\(223\) 10.5014 + 12.1192i 0.703224 + 0.811564i 0.989184 0.146678i \(-0.0468580\pi\)
−0.285960 + 0.958242i \(0.592313\pi\)
\(224\) 3.10835 + 6.80633i 0.207685 + 0.454767i
\(225\) −3.28851 + 0.965593i −0.219234 + 0.0643728i
\(226\) −14.4263 + 31.5892i −0.959623 + 2.10128i
\(227\) −0.591691 + 4.11530i −0.0392719 + 0.273142i −0.999990 0.00438268i \(-0.998605\pi\)
0.960719 + 0.277525i \(0.0895140\pi\)
\(228\) −0.418989 + 0.269268i −0.0277482 + 0.0178327i
\(229\) 14.7545 0.975002 0.487501 0.873122i \(-0.337909\pi\)
0.487501 + 0.873122i \(0.337909\pi\)
\(230\) 26.7166 0.0380204i 1.76164 0.00250699i
\(231\) −1.20213 −0.0790943
\(232\) −2.39246 + 1.53754i −0.157073 + 0.100944i
\(233\) −1.45568 + 10.1245i −0.0953650 + 0.663278i 0.884928 + 0.465728i \(0.154208\pi\)
−0.980293 + 0.197550i \(0.936702\pi\)
\(234\) 3.23133 7.07562i 0.211238 0.462547i
\(235\) 9.69677 2.84723i 0.632547 0.185733i
\(236\) −9.42318 20.6339i −0.613397 1.34315i
\(237\) −4.68236 5.40373i −0.304152 0.351010i
\(238\) −0.122008 0.848582i −0.00790859 0.0550054i
\(239\) 3.49850 + 1.02725i 0.226299 + 0.0664475i 0.392916 0.919574i \(-0.371466\pi\)
−0.166617 + 0.986022i \(0.553284\pi\)
\(240\) 8.61972 9.94769i 0.556401 0.642121i
\(241\) −13.1849 8.47343i −0.849315 0.545822i 0.0420461 0.999116i \(-0.486612\pi\)
−0.891361 + 0.453294i \(0.850249\pi\)
\(242\) 15.4250 + 9.91302i 0.991554 + 0.637233i
\(243\) −0.654861 + 0.755750i −0.0420093 + 0.0484814i
\(244\) −6.83725 2.00760i −0.437710 0.128523i
\(245\) −0.413138 2.87344i −0.0263944 0.183577i
\(246\) −1.98990 2.29647i −0.126871 0.146417i
\(247\) 0.498457 + 1.09147i 0.0317160 + 0.0694484i
\(248\) −2.13183 + 0.625961i −0.135371 + 0.0397485i
\(249\) 0.0110224 0.0241357i 0.000698516 0.00152954i
\(250\) −1.24682 + 8.67180i −0.0788556 + 0.548453i
\(251\) −10.4770 + 6.73318i −0.661305 + 0.424995i −0.827781 0.561051i \(-0.810397\pi\)
0.166477 + 0.986045i \(0.446761\pi\)
\(252\) 1.68251 0.105988
\(253\) −0.828595 5.70535i −0.0520933 0.358692i
\(254\) 27.0372 1.69646
\(255\) −1.09103 + 0.701164i −0.0683231 + 0.0439086i
\(256\) −2.82017 + 19.6147i −0.176261 + 1.22592i
\(257\) 9.21150 20.1704i 0.574598 1.25819i −0.369715 0.929145i \(-0.620545\pi\)
0.944313 0.329049i \(-0.106728\pi\)
\(258\) −2.59652 + 0.762407i −0.161652 + 0.0474654i
\(259\) −2.31924 5.07843i −0.144111 0.315558i
\(260\) 12.9652 + 14.9626i 0.804065 + 0.927940i
\(261\) 0.664296 + 4.62028i 0.0411189 + 0.285988i
\(262\) 29.0622 + 8.53344i 1.79547 + 0.527198i
\(263\) −5.63899 + 6.50774i −0.347715 + 0.401285i −0.902486 0.430718i \(-0.858260\pi\)
0.554771 + 0.832003i \(0.312806\pi\)
\(264\) −0.616146 0.395973i −0.0379212 0.0243705i
\(265\) −28.2428 18.1505i −1.73494 1.11498i
\(266\) −0.371997 + 0.429307i −0.0228086 + 0.0263225i
\(267\) 10.1408 + 2.97760i 0.620604 + 0.182226i
\(268\) −0.857001 5.96057i −0.0523497 0.364100i
\(269\) −14.8106 17.0924i −0.903019 1.04214i −0.998907 0.0467472i \(-0.985114\pi\)
0.0958879 0.995392i \(-0.469431\pi\)
\(270\) −2.31419 5.06737i −0.140837 0.308390i
\(271\) −14.2737 + 4.19113i −0.867065 + 0.254593i −0.684867 0.728668i \(-0.740140\pi\)
−0.182199 + 0.983262i \(0.558321\pi\)
\(272\) 0.841486 1.84260i 0.0510226 0.111724i
\(273\) 0.576869 4.01221i 0.0349137 0.242830i
\(274\) −4.87683 + 3.13415i −0.294620 + 0.189341i
\(275\) −4.12010 −0.248451
\(276\) 1.15971 + 7.98525i 0.0698061 + 0.480655i
\(277\) −26.3243 −1.58167 −0.790837 0.612027i \(-0.790354\pi\)
−0.790837 + 0.612027i \(0.790354\pi\)
\(278\) 18.3494 11.7924i 1.10052 0.707263i
\(279\) −0.518984 + 3.60962i −0.0310708 + 0.216102i
\(280\) 0.734739 1.60885i 0.0439091 0.0961475i
\(281\) 18.2275 5.35207i 1.08736 0.319278i 0.311540 0.950233i \(-0.399155\pi\)
0.775819 + 0.630955i \(0.217337\pi\)
\(282\) 2.77520 + 6.07684i 0.165261 + 0.361870i
\(283\) 13.7978 + 15.9235i 0.820194 + 0.946554i 0.999305 0.0372750i \(-0.0118678\pi\)
−0.179112 + 0.983829i \(0.557322\pi\)
\(284\) −2.84911 19.8160i −0.169063 1.17586i
\(285\) 0.824528 + 0.242103i 0.0488408 + 0.0143410i
\(286\) 6.12348 7.06688i 0.362089 0.417873i
\(287\) −1.33210 0.856090i −0.0786315 0.0505334i
\(288\) 6.29469 + 4.04535i 0.370918 + 0.238374i
\(289\) 11.0019 12.6969i 0.647172 0.746877i
\(290\) −24.9500 7.32598i −1.46511 0.430196i
\(291\) 0.0110003 + 0.0765085i 0.000644847 + 0.00448501i
\(292\) −12.3558 14.2593i −0.723066 0.834463i
\(293\) −11.5235 25.2329i −0.673209 1.47412i −0.869682 0.493612i \(-0.835676\pi\)
0.196474 0.980509i \(-0.437051\pi\)
\(294\) 1.84125 0.540641i 0.107384 0.0315308i
\(295\) −16.2587 + 35.6016i −0.946618 + 2.07281i
\(296\) 0.484083 3.36687i 0.0281367 0.195695i
\(297\) −1.01130 + 0.649920i −0.0586813 + 0.0377122i
\(298\) 34.7792 2.01471
\(299\) 19.4397 0.0276647i 1.12423 0.00159989i
\(300\) 5.76652 0.332930
\(301\) −1.18633 + 0.762407i −0.0683788 + 0.0439444i
\(302\) −1.20895 + 8.40841i −0.0695671 + 0.483850i
\(303\) 7.33699 16.0658i 0.421499 0.922954i
\(304\) −1.28783 + 0.378142i −0.0738623 + 0.0216879i
\(305\) 5.10752 + 11.1839i 0.292456 + 0.640389i
\(306\) −0.561418 0.647911i −0.0320941 0.0370386i
\(307\) 1.09159 + 7.59220i 0.0623005 + 0.433310i 0.996970 + 0.0777911i \(0.0247867\pi\)
−0.934669 + 0.355519i \(0.884304\pi\)
\(308\) 1.94066 + 0.569830i 0.110579 + 0.0324691i
\(309\) −2.59749 + 2.99766i −0.147766 + 0.170531i
\(310\) −17.0902 10.9832i −0.970660 0.623805i
\(311\) −12.1727 7.82290i −0.690249 0.443596i 0.147925 0.988999i \(-0.452740\pi\)
−0.838174 + 0.545402i \(0.816377\pi\)
\(312\) 1.61727 1.86642i 0.0915597 0.105665i
\(313\) −13.5303 3.97286i −0.764779 0.224560i −0.123998 0.992283i \(-0.539572\pi\)
−0.640782 + 0.767723i \(0.721390\pi\)
\(314\) −4.33260 30.1339i −0.244503 1.70056i
\(315\) −1.90105 2.19393i −0.107112 0.123614i
\(316\) 4.99753 + 10.9431i 0.281133 + 0.615595i
\(317\) −22.9933 + 6.75144i −1.29143 + 0.379199i −0.854104 0.520103i \(-0.825894\pi\)
−0.437329 + 0.899302i \(0.644075\pi\)
\(318\) 9.21912 20.1870i 0.516982 1.13203i
\(319\) −0.798570 + 5.55418i −0.0447113 + 0.310974i
\(320\) −12.9201 + 8.30323i −0.722255 + 0.464165i
\(321\) −0.523314 −0.0292085
\(322\) 3.83503 + 8.36602i 0.213718 + 0.466220i
\(323\) 0.132246 0.00735839
\(324\) 1.41542 0.909632i 0.0786342 0.0505351i
\(325\) 1.97712 13.7512i 0.109671 0.762779i
\(326\) −1.57598 + 3.45090i −0.0872852 + 0.191128i
\(327\) 5.55237 1.63032i 0.307047 0.0901571i
\(328\) −0.400773 0.877571i −0.0221290 0.0484557i
\(329\) 2.27976 + 2.63098i 0.125687 + 0.145051i
\(330\) −0.953056 6.62865i −0.0524640 0.364895i
\(331\) −20.0779 5.89539i −1.10358 0.324040i −0.321306 0.946975i \(-0.604122\pi\)
−0.782273 + 0.622935i \(0.785940\pi\)
\(332\) −0.0292348 + 0.0337387i −0.00160447 + 0.00185165i
\(333\) −4.69667 3.01837i −0.257376 0.165406i
\(334\) −22.6594 14.5623i −1.23987 0.796814i
\(335\) −6.80407 + 7.85231i −0.371746 + 0.429018i
\(336\) 4.35052 + 1.27743i 0.237340 + 0.0696894i
\(337\) 2.03640 + 14.1634i 0.110930 + 0.771532i 0.967019 + 0.254704i \(0.0819782\pi\)
−0.856089 + 0.516828i \(0.827113\pi\)
\(338\) 4.31112 + 4.97530i 0.234494 + 0.270621i
\(339\) 7.51767 + 16.4614i 0.408304 + 0.894060i
\(340\) 2.09368 0.614759i 0.113545 0.0333400i
\(341\) −1.82111 + 3.98768i −0.0986189 + 0.215945i
\(342\) −0.0808426 + 0.562273i −0.00437147 + 0.0304042i
\(343\) 0.841254 0.540641i 0.0454234 0.0291919i
\(344\) −0.859179 −0.0463238
\(345\) 9.10215 10.5347i 0.490043 0.567169i
\(346\) 12.6973 0.682611
\(347\) 16.2732 10.4582i 0.873591 0.561423i −0.0252580 0.999681i \(-0.508041\pi\)
0.898849 + 0.438258i \(0.144404\pi\)
\(348\) 1.11768 7.77366i 0.0599141 0.416712i
\(349\) 0.384187 0.841253i 0.0205651 0.0450312i −0.899071 0.437803i \(-0.855757\pi\)
0.919636 + 0.392772i \(0.128484\pi\)
\(350\) 6.31060 1.85296i 0.337316 0.0990448i
\(351\) −1.68387 3.68716i −0.0898784 0.196806i
\(352\) 5.89043 + 6.79792i 0.313961 + 0.362330i
\(353\) 2.65353 + 18.4557i 0.141233 + 0.982297i 0.929988 + 0.367590i \(0.119817\pi\)
−0.788755 + 0.614708i \(0.789274\pi\)
\(354\) −24.8240 7.28899i −1.31938 0.387405i
\(355\) −22.6202 + 26.1051i −1.20055 + 1.38551i
\(356\) −14.9593 9.61378i −0.792844 0.509530i
\(357\) −0.375831 0.241532i −0.0198911 0.0127832i
\(358\) −28.3078 + 32.6689i −1.49611 + 1.72661i
\(359\) −1.19924 0.352130i −0.0632937 0.0185847i 0.249932 0.968263i \(-0.419592\pi\)
−0.313226 + 0.949679i \(0.601410\pi\)
\(360\) −0.251710 1.75068i −0.0132663 0.0922692i
\(361\) 12.3850 + 14.2930i 0.651841 + 0.752264i
\(362\) 6.73175 + 14.7405i 0.353813 + 0.774742i
\(363\) 9.16785 2.69192i 0.481187 0.141289i
\(364\) −2.83313 + 6.20368i −0.148496 + 0.325161i
\(365\) −4.63296 + 32.2230i −0.242500 + 1.68663i
\(366\) −6.83725 + 4.39404i −0.357389 + 0.229680i
\(367\) 18.0114 0.940185 0.470093 0.882617i \(-0.344221\pi\)
0.470093 + 0.882617i \(0.344221\pi\)
\(368\) −3.06403 + 21.5282i −0.159724 + 1.12224i
\(369\) −1.58347 −0.0824323
\(370\) 26.1642 16.8147i 1.36021 0.874155i
\(371\) 1.64583 11.4470i 0.0854473 0.594299i
\(372\) 2.54884 5.58119i 0.132151 0.289371i
\(373\) 20.7698 6.09857i 1.07542 0.315772i 0.304375 0.952552i \(-0.401552\pi\)
0.771045 + 0.636780i \(0.219734\pi\)
\(374\) −0.428125 0.937463i −0.0221378 0.0484750i
\(375\) 2.98971 + 3.45031i 0.154388 + 0.178173i
\(376\) 0.301853 + 2.09944i 0.0155669 + 0.108270i
\(377\) −18.1543 5.33059i −0.934996 0.274539i
\(378\) 1.25667 1.45027i 0.0646361 0.0745940i
\(379\) 11.4115 + 7.33373i 0.586170 + 0.376709i 0.799854 0.600194i \(-0.204910\pi\)
−0.213684 + 0.976903i \(0.568546\pi\)
\(380\) −1.21632 0.781681i −0.0623959 0.0400994i
\(381\) 9.22653 10.6480i 0.472689 0.545513i
\(382\) −39.9245 11.7229i −2.04271 0.599795i
\(383\) 1.21662 + 8.46177i 0.0621663 + 0.432376i 0.997007 + 0.0773091i \(0.0246328\pi\)
−0.934841 + 0.355067i \(0.884458\pi\)
\(384\) 3.15165 + 3.63720i 0.160832 + 0.185610i
\(385\) −1.44970 3.17440i −0.0738836 0.161783i
\(386\) −35.8592 + 10.5292i −1.82519 + 0.535923i
\(387\) −0.585814 + 1.28275i −0.0297786 + 0.0652061i
\(388\) 0.0185080 0.128726i 0.000939602 0.00653508i
\(389\) −0.165993 + 0.106677i −0.00841618 + 0.00540875i −0.544842 0.838539i \(-0.683410\pi\)
0.536426 + 0.843947i \(0.319774\pi\)
\(390\) 22.5810 1.14343
\(391\) 0.887270 1.95019i 0.0448712 0.0986253i
\(392\) 0.609264 0.0307725
\(393\) 13.2783 8.53344i 0.669801 0.430455i
\(394\) −2.75914 + 19.1903i −0.139004 + 0.966792i
\(395\) 8.62270 18.8811i 0.433855 0.950010i
\(396\) 1.94066 0.569830i 0.0975219 0.0286350i
\(397\) −13.6949 29.9876i −0.687326 1.50503i −0.854690 0.519139i \(-0.826253\pi\)
0.167363 0.985895i \(-0.446475\pi\)
\(398\) −5.16072 5.95578i −0.258683 0.298537i
\(399\) 0.0421278 + 0.293005i 0.00210903 + 0.0146686i
\(400\) 14.9107 + 4.37817i 0.745535 + 0.218909i
\(401\) −17.5850 + 20.2942i −0.878154 + 1.01344i 0.121628 + 0.992576i \(0.461189\pi\)
−0.999782 + 0.0208683i \(0.993357\pi\)
\(402\) −5.77794 3.71326i −0.288177 0.185200i
\(403\) −12.4353 7.99171i −0.619448 0.398095i
\(404\) −19.4599 + 22.4580i −0.968168 + 1.11733i
\(405\) −2.78540 0.817866i −0.138407 0.0406401i
\(406\) −1.27478 8.86626i −0.0632660 0.440025i
\(407\) −4.39505 5.07215i −0.217854 0.251417i
\(408\) −0.113072 0.247592i −0.00559788 0.0122576i
\(409\) 6.43959 1.89084i 0.318417 0.0934958i −0.118618 0.992940i \(-0.537847\pi\)
0.437036 + 0.899444i \(0.356028\pi\)
\(410\) 3.66446 8.02404i 0.180975 0.396279i
\(411\) −0.429922 + 2.99017i −0.0212065 + 0.147494i
\(412\) 5.61421 3.60803i 0.276592 0.177755i
\(413\) −13.4821 −0.663412
\(414\) 7.74924 + 4.96457i 0.380854 + 0.243995i
\(415\) 0.0770263 0.00378107
\(416\) −25.5153 + 16.3977i −1.25099 + 0.803963i
\(417\) 1.61761 11.2507i 0.0792146 0.550949i
\(418\) −0.283677 + 0.621165i −0.0138751 + 0.0303822i
\(419\) 4.30211 1.26321i 0.210172 0.0617120i −0.174952 0.984577i \(-0.555977\pi\)
0.385124 + 0.922865i \(0.374159\pi\)
\(420\) 2.02901 + 4.44291i 0.0990056 + 0.216792i
\(421\) −26.7489 30.8698i −1.30366 1.50450i −0.724459 0.689318i \(-0.757910\pi\)
−0.579200 0.815185i \(-0.696635\pi\)
\(422\) −6.22243 43.2779i −0.302903 2.10674i
\(423\) 3.34027 + 0.980792i 0.162410 + 0.0476878i
\(424\) 4.61413 5.32499i 0.224082 0.258605i
\(425\) −1.28810 0.827811i −0.0624820 0.0401547i
\(426\) −19.2088 12.3447i −0.930669 0.598105i
\(427\) −2.77352 + 3.20082i −0.134220 + 0.154898i
\(428\) 0.844814 + 0.248060i 0.0408356 + 0.0119904i
\(429\) −0.693470 4.82319i −0.0334811 0.232866i
\(430\) −5.14451 5.93708i −0.248090 0.286311i
\(431\) 16.9646 + 37.1474i 0.817158 + 1.78933i 0.572922 + 0.819610i \(0.305810\pi\)
0.244236 + 0.969716i \(0.421463\pi\)
\(432\) 4.35052 1.27743i 0.209314 0.0614602i
\(433\) 16.3503 35.8022i 0.785746 1.72054i 0.0973023 0.995255i \(-0.468979\pi\)
0.688444 0.725290i \(-0.258294\pi\)
\(434\) 0.995924 6.92680i 0.0478059 0.332497i
\(435\) −11.3994 + 7.32598i −0.546562 + 0.351254i
\(436\) −9.73629 −0.466284
\(437\) −1.36158 + 0.401901i −0.0651331 + 0.0192255i
\(438\) −21.5197 −1.02825
\(439\) 16.5106 10.6107i 0.788007 0.506421i −0.0836753 0.996493i \(-0.526666\pi\)
0.871682 + 0.490072i \(0.163029\pi\)
\(440\) 0.302588 2.10455i 0.0144253 0.100330i
\(441\) 0.415415 0.909632i 0.0197817 0.0433158i
\(442\) 3.33431 0.979041i 0.158597 0.0465682i
\(443\) −9.85390 21.5770i −0.468173 1.02516i −0.985548 0.169397i \(-0.945818\pi\)
0.517375 0.855759i \(-0.326909\pi\)
\(444\) 6.15133 + 7.09902i 0.291929 + 0.336905i
\(445\) 4.36641 + 30.3690i 0.206987 + 1.43963i
\(446\) −29.5264 8.66974i −1.39812 0.410524i
\(447\) 11.8685 13.6970i 0.561363 0.647847i
\(448\) −4.45062 2.86024i −0.210272 0.135133i
\(449\) 14.5774 + 9.36836i 0.687952 + 0.442120i 0.837357 0.546656i \(-0.184099\pi\)
−0.149405 + 0.988776i \(0.547736\pi\)
\(450\) 4.30703 4.97057i 0.203035 0.234315i
\(451\) −1.82643 0.536289i −0.0860033 0.0252528i
\(452\) −4.33319 30.1380i −0.203816 1.41757i
\(453\) 2.89891 + 3.34552i 0.136202 + 0.157186i
\(454\) −3.31435 7.25742i −0.155550 0.340607i
\(455\) 11.2905 3.31519i 0.529307 0.155419i
\(456\) −0.0749215 + 0.164055i −0.00350852 + 0.00768259i
\(457\) 1.91255 13.3021i 0.0894653 0.622245i −0.894921 0.446224i \(-0.852768\pi\)
0.984386 0.176021i \(-0.0563226\pi\)
\(458\) −23.8189 + 15.3075i −1.11298 + 0.715272i
\(459\) −0.446751 −0.0208525
\(460\) −19.6877 + 12.6921i −0.917944 + 0.591774i
\(461\) −21.9771 −1.02357 −0.511787 0.859112i \(-0.671016\pi\)
−0.511787 + 0.859112i \(0.671016\pi\)
\(462\) 1.94066 1.24719i 0.0902877 0.0580244i
\(463\) 1.20109 8.35379i 0.0558196 0.388234i −0.942691 0.333668i \(-0.891714\pi\)
0.998510 0.0545655i \(-0.0173774\pi\)
\(464\) 8.79211 19.2520i 0.408163 0.893753i
\(465\) −10.1576 + 2.98254i −0.471047 + 0.138312i
\(466\) −8.15400 17.8548i −0.377727 0.827106i
\(467\) 18.5490 + 21.4067i 0.858347 + 0.990586i 1.00000 0.000669154i \(0.000212998\pi\)
−0.141652 + 0.989916i \(0.545242\pi\)
\(468\) 0.970585 + 6.75057i 0.0448653 + 0.312045i
\(469\) −3.43413 1.00835i −0.158573 0.0465613i
\(470\) −12.7001 + 14.6567i −0.585810 + 0.676061i
\(471\) −13.3461 8.57701i −0.614955 0.395208i
\(472\) −6.91021 4.44092i −0.318068 0.204410i
\(473\) −1.11014 + 1.28117i −0.0510443 + 0.0589083i
\(474\) 13.1653 + 3.86567i 0.604701 + 0.177556i
\(475\) 0.144386 + 1.00423i 0.00662489 + 0.0460771i
\(476\) 0.492234 + 0.568068i 0.0225615 + 0.0260373i
\(477\) −4.80416 10.5196i −0.219967 0.481661i
\(478\) −6.71358 + 1.97129i −0.307072 + 0.0901645i
\(479\) −13.9645 + 30.5781i −0.638056 + 1.39715i 0.263575 + 0.964639i \(0.415098\pi\)
−0.901630 + 0.432508i \(0.857629\pi\)
\(480\) −3.09131 + 21.5005i −0.141098 + 0.981360i
\(481\) 19.0378 12.2349i 0.868050 0.557862i
\(482\) 30.0761 1.36993
\(483\) 4.60348 + 1.34459i 0.209466 + 0.0611811i
\(484\) −16.0762 −0.730735
\(485\) −0.188766 + 0.121313i −0.00857144 + 0.00550853i
\(486\) 0.273100 1.89945i 0.0123881 0.0861610i
\(487\) −3.75489 + 8.22206i −0.170150 + 0.372577i −0.975427 0.220322i \(-0.929289\pi\)
0.805277 + 0.592899i \(0.202017\pi\)
\(488\) −2.47589 + 0.726986i −0.112078 + 0.0329091i
\(489\) 0.821254 + 1.79830i 0.0371384 + 0.0813218i
\(490\) 3.64809 + 4.21012i 0.164804 + 0.190194i
\(491\) −0.832831 5.79247i −0.0375852 0.261410i 0.962361 0.271774i \(-0.0876103\pi\)
−0.999946 + 0.0103634i \(0.996701\pi\)
\(492\) 2.55628 + 0.750593i 0.115246 + 0.0338393i
\(493\) −1.36561 + 1.57600i −0.0615039 + 0.0709793i
\(494\) −1.93706 1.24488i −0.0871526 0.0560096i
\(495\) −2.93578 1.88671i −0.131953 0.0848013i
\(496\) 10.8281 12.4963i 0.486196 0.561100i
\(497\) −11.4168 3.35227i −0.512112 0.150370i
\(498\) 0.00724629 + 0.0503991i 0.000324714 + 0.00225844i
\(499\) 24.7024 + 28.5080i 1.10583 + 1.27620i 0.957870 + 0.287202i \(0.0927250\pi\)
0.147959 + 0.988993i \(0.452730\pi\)
\(500\) −3.19095 6.98720i −0.142704 0.312477i
\(501\) −13.4676 + 3.95445i −0.601689 + 0.176672i
\(502\) 9.92809 21.7395i 0.443112 0.970280i
\(503\) −2.80101 + 19.4815i −0.124891 + 0.868636i 0.827001 + 0.562201i \(0.190045\pi\)
−0.951892 + 0.306435i \(0.900864\pi\)
\(504\) 0.512546 0.329393i 0.0228306 0.0146723i
\(505\) 51.2721 2.28158
\(506\) 7.25685 + 8.35080i 0.322606 + 0.371239i
\(507\) 3.43060 0.152358
\(508\) −19.9422 + 12.8161i −0.884792 + 0.568621i
\(509\) 4.29334 29.8608i 0.190299 1.32356i −0.640918 0.767609i \(-0.721446\pi\)
0.831217 0.555948i \(-0.187645\pi\)
\(510\) 1.03387 2.26385i 0.0457804 0.100245i
\(511\) −10.7598 + 3.15937i −0.475987 + 0.139762i
\(512\) −11.7986 25.8354i −0.521431 1.14177i
\(513\) 0.193851 + 0.223716i 0.00855872 + 0.00987729i
\(514\) 6.05578 + 42.1189i 0.267109 + 1.85779i
\(515\) −11.0482 3.24405i −0.486842 0.142950i
\(516\) 1.55376 1.79313i 0.0684004 0.0789383i
\(517\) 3.52061 + 2.26256i 0.154836 + 0.0995072i
\(518\) 9.01285 + 5.79221i 0.396002 + 0.254495i
\(519\) 4.33300 5.00054i 0.190197 0.219500i
\(520\) 6.87891 + 2.01983i 0.301660 + 0.0885754i
\(521\) 2.26432 + 15.7487i 0.0992019 + 0.689964i 0.977358 + 0.211591i \(0.0678644\pi\)
−0.878157 + 0.478373i \(0.841227\pi\)
\(522\) −5.86587 6.76958i −0.256742 0.296296i
\(523\) −13.5710 29.7164i −0.593420 1.29941i −0.933353 0.358959i \(-0.883132\pi\)
0.339933 0.940450i \(-0.389596\pi\)
\(524\) −25.4809 + 7.48186i −1.11314 + 0.326846i
\(525\) 1.42377 3.11762i 0.0621383 0.136064i
\(526\) 2.35166 16.3561i 0.102537 0.713162i
\(527\) −1.37055 + 0.880802i −0.0597023 + 0.0383683i
\(528\) 5.45067 0.237210
\(529\) −3.20843 + 22.7751i −0.139497 + 0.990222i
\(530\) 64.4247 2.79843
\(531\) −11.3419 + 7.28899i −0.492196 + 0.316315i
\(532\) 0.0708803 0.492983i 0.00307305 0.0213735i
\(533\) 2.66636 5.83852i 0.115493 0.252894i
\(534\) −19.4600 + 5.71396i −0.842115 + 0.247267i
\(535\) −0.631088 1.38189i −0.0272843 0.0597443i
\(536\) −1.42800 1.64800i −0.0616803 0.0711829i
\(537\) 3.20579 + 22.2968i 0.138340 + 0.962177i
\(538\) 41.6426 + 12.2274i 1.79534 + 0.527159i
\(539\) 0.787227 0.908508i 0.0339083 0.0391322i
\(540\) 4.10893 + 2.64065i 0.176820 + 0.113636i
\(541\) −20.0450 12.8821i −0.861801 0.553846i 0.0334337 0.999441i \(-0.489356\pi\)
−0.895235 + 0.445595i \(0.852992\pi\)
\(542\) 18.6946 21.5747i 0.803000 0.926712i
\(543\) 8.10243 + 2.37909i 0.347709 + 0.102096i
\(544\) 0.475732 + 3.30879i 0.0203969 + 0.141863i
\(545\) 11.0010 + 12.6958i 0.471229 + 0.543828i
\(546\) 3.23133 + 7.07562i 0.138288 + 0.302808i
\(547\) −20.9981 + 6.16561i −0.897816 + 0.263622i −0.697904 0.716191i \(-0.745884\pi\)
−0.199912 + 0.979814i \(0.564066\pi\)
\(548\) 2.11144 4.62340i 0.0901962 0.197502i
\(549\) −0.602744 + 4.19218i −0.0257245 + 0.178918i
\(550\) 6.65130 4.27453i 0.283612 0.182267i
\(551\) 1.38175 0.0588646
\(552\) 1.91660 + 2.20552i 0.0815758 + 0.0938732i
\(553\) 7.15016 0.304056
\(554\) 42.4967 27.3110i 1.80551 1.16033i
\(555\) 2.30653 16.0423i 0.0979067 0.680956i
\(556\) −7.94442 + 17.3958i −0.336918 + 0.737748i
\(557\) −34.7233 + 10.1957i −1.47127 + 0.432004i −0.916512 0.400006i \(-0.869008\pi\)
−0.554760 + 0.832011i \(0.687190\pi\)
\(558\) −2.90709 6.36563i −0.123067 0.269479i
\(559\) −3.74329 4.31999i −0.158324 0.182716i
\(560\) 1.87324 + 13.0287i 0.0791590 + 0.550563i
\(561\) −0.515298 0.151305i −0.0217559 0.00638811i
\(562\) −23.8729 + 27.5508i −1.00702 + 1.16216i
\(563\) 32.5347 + 20.9088i 1.37117 + 0.881201i 0.998899 0.0469213i \(-0.0149410\pi\)
0.372276 + 0.928122i \(0.378577\pi\)
\(564\) −4.92747 3.16669i −0.207484 0.133342i
\(565\) −34.4029 + 39.7031i −1.44734 + 1.67032i
\(566\) −38.7949 11.3912i −1.63067 0.478808i
\(567\) −0.142315 0.989821i −0.00597666 0.0415686i
\(568\) −4.74740 5.47880i −0.199197 0.229885i
\(569\) 3.78035 + 8.27782i 0.158481 + 0.347024i 0.972170 0.234275i \(-0.0752717\pi\)
−0.813690 + 0.581300i \(0.802544\pi\)
\(570\) −1.58226 + 0.464593i −0.0662735 + 0.0194597i
\(571\) 14.9750 32.7907i 0.626685 1.37225i −0.283872 0.958862i \(-0.591619\pi\)
0.910556 0.413385i \(-0.135654\pi\)
\(572\) −1.16677 + 8.11505i −0.0487851 + 0.339307i
\(573\) −18.2412 + 11.7229i −0.762035 + 0.489730i
\(574\) 3.03866 0.126831
\(575\) 15.7777 + 4.60837i 0.657975 + 0.192182i
\(576\) −5.29046 −0.220436
\(577\) 28.8955 18.5700i 1.20294 0.773081i 0.223475 0.974710i \(-0.428260\pi\)
0.979462 + 0.201629i \(0.0646235\pi\)
\(578\) −4.58820 + 31.9116i −0.190844 + 1.32735i
\(579\) −8.09039 + 17.7155i −0.336225 + 0.736230i
\(580\) 21.8754 6.42319i 0.908326 0.266709i
\(581\) 0.0110224 + 0.0241357i 0.000457286 + 0.00100132i
\(582\) −0.0971345 0.112099i −0.00402635 0.00464666i
\(583\) −1.97850 13.7608i −0.0819412 0.569913i
\(584\) −6.55558 1.92489i −0.271272 0.0796526i
\(585\) 7.70586 8.89303i 0.318598 0.367682i
\(586\) 44.7816 + 28.7794i 1.84991 + 1.18887i
\(587\) −6.87638 4.41918i −0.283818 0.182399i 0.390984 0.920397i \(-0.372135\pi\)
−0.674802 + 0.737998i \(0.735771\pi\)
\(588\) −1.10181 + 1.27155i −0.0454378 + 0.0524380i
\(589\) 1.03577 + 0.304130i 0.0426783 + 0.0125315i
\(590\) −10.6887 74.3417i −0.440048 3.06060i
\(591\) 6.61609 + 7.63537i 0.272150 + 0.314077i
\(592\) 10.5159 + 23.0265i 0.432199 + 0.946384i
\(593\) 25.4459 7.47159i 1.04494 0.306821i 0.286167 0.958180i \(-0.407619\pi\)
0.758770 + 0.651359i \(0.225801\pi\)
\(594\) 0.958308 2.09840i 0.0393198 0.0860984i
\(595\) 0.184570 1.28371i 0.00756663 0.0526270i
\(596\) −25.6526 + 16.4860i −1.05077 + 0.675291i
\(597\) −4.10666 −0.168075
\(598\) −31.3539 + 20.2130i −1.28216 + 0.826572i
\(599\) 19.5398 0.798375 0.399188 0.916869i \(-0.369292\pi\)
0.399188 + 0.916869i \(0.369292\pi\)
\(600\) 1.75667 1.12894i 0.0717157 0.0460889i
\(601\) −2.83902 + 19.7458i −0.115806 + 0.805448i 0.846287 + 0.532727i \(0.178833\pi\)
−0.962093 + 0.272721i \(0.912076\pi\)
\(602\) 1.12417 2.46159i 0.0458177 0.100327i
\(603\) −3.43413 + 1.00835i −0.139848 + 0.0410632i
\(604\) −3.09403 6.77498i −0.125894 0.275670i
\(605\) 18.1643 + 20.9628i 0.738486 + 0.852258i
\(606\) 4.82345 + 33.5478i 0.195939 + 1.36279i
\(607\) −29.2282 8.58218i −1.18634 0.348340i −0.371723 0.928344i \(-0.621233\pi\)
−0.814614 + 0.580004i \(0.803051\pi\)
\(608\) 1.45049 1.67395i 0.0588251 0.0678878i
\(609\) −3.92680 2.52360i −0.159122 0.102261i
\(610\) −19.8485 12.7558i −0.803641 0.516468i
\(611\) −9.24093 + 10.6646i −0.373848 + 0.431444i
\(612\) 0.721214 + 0.211768i 0.0291533 + 0.00856019i
\(613\) 2.23998 + 15.5794i 0.0904721 + 0.629247i 0.983723 + 0.179690i \(0.0575093\pi\)
−0.893251 + 0.449558i \(0.851582\pi\)
\(614\) −9.63899 11.1240i −0.388998 0.448928i
\(615\) −1.90958 4.18140i −0.0770017 0.168610i
\(616\) 0.702746 0.206345i 0.0283145 0.00831388i
\(617\) −6.18378 + 13.5406i −0.248950 + 0.545124i −0.992311 0.123766i \(-0.960503\pi\)
0.743362 + 0.668890i \(0.233230\pi\)
\(618\) 1.08325 7.53414i 0.0435745 0.303068i
\(619\) 20.7947 13.3639i 0.835810 0.537142i −0.0513094 0.998683i \(-0.516339\pi\)
0.887119 + 0.461540i \(0.152703\pi\)
\(620\) 17.8117 0.715336
\(621\) 4.59964 1.35769i 0.184577 0.0544822i
\(622\) 27.7671 1.11336
\(623\) −8.89110 + 5.71396i −0.356214 + 0.228925i
\(624\) −2.61563 + 18.1921i −0.104709 + 0.728267i
\(625\) −12.6245 + 27.6438i −0.504979 + 1.10575i
\(626\) 25.9645 7.62387i 1.03775 0.304711i
\(627\) 0.147826 + 0.323694i 0.00590361 + 0.0129271i
\(628\) 17.4797 + 20.1726i 0.697514 + 0.804974i
\(629\) −0.354960 2.46880i −0.0141532 0.0984375i
\(630\) 5.34514 + 1.56947i 0.212955 + 0.0625293i
\(631\) 7.82029 9.02509i 0.311321 0.359283i −0.578428 0.815733i \(-0.696334\pi\)
0.889749 + 0.456450i \(0.150879\pi\)
\(632\) 3.66479 + 2.35522i 0.145777 + 0.0936854i
\(633\) −19.1675 12.3182i −0.761838 0.489604i
\(634\) 30.1148 34.7544i 1.19601 1.38027i
\(635\) 39.2443 + 11.5232i 1.55736 + 0.457283i
\(636\) 2.76912 + 19.2597i 0.109803 + 0.763696i
\(637\) 2.65446 + 3.06341i 0.105173 + 0.121377i
\(638\) −4.47318 9.79491i −0.177095 0.387784i
\(639\) −11.4168 + 3.35227i −0.451640 + 0.132614i
\(640\) −5.80385 + 12.7087i −0.229417 + 0.502354i
\(641\) −2.31863 + 16.1264i −0.0915802 + 0.636954i 0.891397 + 0.453224i \(0.149726\pi\)
−0.982977 + 0.183730i \(0.941183\pi\)
\(642\) 0.844814 0.542929i 0.0333422 0.0214277i
\(643\) −34.3064 −1.35291 −0.676455 0.736484i \(-0.736485\pi\)
−0.676455 + 0.736484i \(0.736485\pi\)
\(644\) −6.79429 4.35278i −0.267733 0.171523i
\(645\) −4.09377 −0.161192
\(646\) −0.213492 + 0.137203i −0.00839975 + 0.00539819i
\(647\) 0.710436 4.94119i 0.0279301 0.194258i −0.971079 0.238757i \(-0.923260\pi\)
0.999009 + 0.0444989i \(0.0141691\pi\)
\(648\) 0.253098 0.554206i 0.00994261 0.0217713i
\(649\) −15.5508 + 4.56611i −0.610420 + 0.179236i
\(650\) 11.0748 + 24.2505i 0.434391 + 0.951184i
\(651\) −2.38810 2.75602i −0.0935971 0.108017i
\(652\) −0.473372 3.29237i −0.0185387 0.128939i
\(653\) 15.9815 + 4.69258i 0.625403 + 0.183635i 0.579052 0.815290i \(-0.303423\pi\)
0.0463505 + 0.998925i \(0.485241\pi\)
\(654\) −7.27206 + 8.39240i −0.284360 + 0.328169i
\(655\) 38.5467 + 24.7725i 1.50615 + 0.967941i
\(656\) 6.04000 + 3.88167i 0.235822 + 0.151554i
\(657\) −7.34366 + 8.47503i −0.286503 + 0.330643i
\(658\) −6.40993 1.88213i −0.249885 0.0733729i
\(659\) −1.74111 12.1097i −0.0678240 0.471726i −0.995221 0.0976477i \(-0.968868\pi\)
0.927397 0.374078i \(-0.122041\pi\)
\(660\) 3.84505 + 4.43743i 0.149668 + 0.172727i
\(661\) −13.2195 28.9467i −0.514179 1.12590i −0.971597 0.236644i \(-0.923953\pi\)
0.457417 0.889252i \(-0.348775\pi\)
\(662\) 38.5291 11.3132i 1.49748 0.439699i
\(663\) 0.752271 1.64724i 0.0292158 0.0639736i
\(664\) −0.00230065 + 0.0160013i −8.92824e−5 + 0.000620973i
\(665\) −0.722921 + 0.464593i −0.0280337 + 0.0180161i
\(666\) 10.7136 0.415143
\(667\) 9.27047 20.3762i 0.358954 0.788969i
\(668\) 23.6160 0.913730
\(669\) −13.4904 + 8.66974i −0.521568 + 0.335192i
\(670\) 2.83754 19.7355i 0.109624 0.762449i
\(671\) −2.11503 + 4.63127i −0.0816497 + 0.178788i
\(672\) −7.17941 + 2.10807i −0.276952 + 0.0813204i
\(673\) −21.0071 45.9991i −0.809764 1.77314i −0.608419 0.793616i \(-0.708196\pi\)
−0.201345 0.979520i \(-0.564531\pi\)
\(674\) −17.9818 20.7521i −0.692633 0.799341i
\(675\) −0.487761 3.39245i −0.0187739 0.130576i
\(676\) −5.53820 1.62616i −0.213008 0.0625447i
\(677\) −8.38542 + 9.67728i −0.322278 + 0.371928i −0.893651 0.448762i \(-0.851865\pi\)
0.571374 + 0.820690i \(0.306411\pi\)
\(678\) −29.2146 18.7751i −1.12198 0.721052i
\(679\) −0.0650249 0.0417890i −0.00249543 0.00160371i
\(680\) 0.517446 0.597165i 0.0198432 0.0229002i
\(681\) −3.98921 1.17134i −0.152867 0.0448857i
\(682\) −1.19723 8.32691i −0.0458442 0.318854i
\(683\) −0.436006 0.503178i −0.0166833 0.0192536i 0.747347 0.664434i \(-0.231327\pi\)
−0.764030 + 0.645181i \(0.776782\pi\)
\(684\) −0.206899 0.453045i −0.00791097 0.0173226i
\(685\) −8.41446 + 2.47071i −0.321500 + 0.0944009i
\(686\) −0.797176 + 1.74557i −0.0304363 + 0.0666462i
\(687\) −2.09978 + 14.6043i −0.0801115 + 0.557188i
\(688\) 5.37903 3.45689i 0.205074 0.131793i
\(689\) 46.8772 1.78588
\(690\) −3.76453 + 26.4500i −0.143313 + 1.00694i
\(691\) −26.3499 −1.00240 −0.501198 0.865333i \(-0.667107\pi\)
−0.501198 + 0.865333i \(0.667107\pi\)
\(692\) −9.36533 + 6.01873i −0.356017 + 0.228798i
\(693\) 0.171081 1.18989i 0.00649882 0.0452003i
\(694\) −15.4206 + 33.7663i −0.585356 + 1.28175i
\(695\) 31.6599 9.29619i 1.20093 0.352625i
\(696\) −1.18141 2.58692i −0.0447811 0.0980570i
\(697\) −0.463260 0.534631i −0.0175472 0.0202506i
\(698\) 0.252571 + 1.75667i 0.00955994 + 0.0664908i
\(699\) −9.81428 2.88173i −0.371210 0.108997i
\(700\) −3.77627 + 4.35805i −0.142729 + 0.164719i
\(701\) 13.0382 + 8.37915i 0.492447 + 0.316476i 0.763189 0.646176i \(-0.223633\pi\)
−0.270742 + 0.962652i \(0.587269\pi\)
\(702\) 6.54373 + 4.20540i 0.246977 + 0.158723i
\(703\) −1.08226 + 1.24899i −0.0408181 + 0.0471067i
\(704\) −6.10219 1.79177i −0.229985 0.0675297i
\(705\) 1.43825 + 10.0033i 0.0541678 + 0.376745i
\(706\) −23.4312 27.0410i −0.881844 1.01770i
\(707\) 7.33699 + 16.0658i 0.275936 + 0.604215i
\(708\) 21.7649 6.39076i 0.817976 0.240179i
\(709\) 9.65095 21.1326i 0.362449 0.793653i −0.637286 0.770628i \(-0.719943\pi\)
0.999735 0.0230254i \(-0.00732985\pi\)
\(710\) 9.43341 65.6108i 0.354029 2.46233i
\(711\) 6.01510 3.86567i 0.225584 0.144974i
\(712\) −6.43924 −0.241321
\(713\) 11.4341 13.2337i 0.428211 0.495605i
\(714\) 0.857309 0.0320840
\(715\) 11.9001 7.64772i 0.445038 0.286008i
\(716\) 5.39377 37.5145i 0.201575 1.40198i
\(717\) −1.51469 + 3.31670i −0.0565670 + 0.123864i
\(718\) 2.30133 0.675732i 0.0858850 0.0252181i
\(719\) −5.36515 11.7480i −0.200086 0.438128i 0.782817 0.622252i \(-0.213782\pi\)
−0.982903 + 0.184125i \(0.941055\pi\)
\(720\) 8.61972 + 9.94769i 0.321238 + 0.370729i
\(721\) −0.564489 3.92610i −0.0210227 0.146216i
\(722\) −34.8225 10.2248i −1.29596 0.380528i
\(723\) 10.2636 11.8448i 0.381707 0.440513i
\(724\) −11.9525 7.68138i −0.444210 0.285476i
\(725\) −13.4585 8.64923i −0.499835 0.321224i
\(726\) −12.0073 + 13.8572i −0.445634 + 0.514289i
\(727\) 39.9866 + 11.7411i 1.48302 + 0.435454i 0.920307 0.391197i \(-0.127939\pi\)
0.562714 + 0.826652i \(0.309757\pi\)
\(728\) 0.351466 + 2.44450i 0.0130262 + 0.0905991i
\(729\) −0.654861 0.755750i −0.0242541 0.0279907i
\(730\) −25.9515 56.8259i −0.960509 2.10322i
\(731\) −0.604484 + 0.177493i −0.0223577 + 0.00656480i
\(732\) 2.96021 6.48195i 0.109412 0.239580i
\(733\) 0.137962 0.959545i 0.00509573 0.0354416i −0.987115 0.160013i \(-0.948846\pi\)
0.992211 + 0.124571i \(0.0397555\pi\)
\(734\) −29.0767 + 18.6865i −1.07324 + 0.689730i
\(735\) 2.90299 0.107078
\(736\) −14.9535 32.6208i −0.551195 1.20242i
\(737\) −4.30254 −0.158486
\(738\) 2.55628 1.64282i 0.0940981 0.0604732i
\(739\) 3.45488 24.0292i 0.127090 0.883930i −0.822126 0.569305i \(-0.807212\pi\)
0.949216 0.314625i \(-0.101879\pi\)
\(740\) −11.3279 + 24.8045i −0.416420 + 0.911833i
\(741\) −1.15130 + 0.338051i −0.0422939 + 0.0124186i
\(742\) 9.21912 + 20.1870i 0.338444 + 0.741090i
\(743\) −24.2420 27.9767i −0.889352 1.02637i −0.999473 0.0324492i \(-0.989669\pi\)
0.110121 0.993918i \(-0.464876\pi\)
\(744\) −0.316199 2.19921i −0.0115924 0.0806270i
\(745\) 50.4819 + 14.8228i 1.84951 + 0.543066i
\(746\) −27.2027 + 31.3936i −0.995961 + 1.14940i
\(747\) 0.0223214 + 0.0143451i 0.000816696 + 0.000524859i
\(748\) 0.760152 + 0.488520i 0.0277939 + 0.0178621i
\(749\) 0.342698 0.395494i 0.0125219 0.0144511i
\(750\) −8.40609 2.46825i −0.306947 0.0901278i
\(751\) −0.791946 5.50811i −0.0288985 0.200994i 0.970257 0.242076i \(-0.0778284\pi\)
−0.999156 + 0.0410826i \(0.986919\pi\)
\(752\) −10.3368 11.9294i −0.376946 0.435019i
\(753\) −5.17361 11.3286i −0.188537 0.412838i
\(754\) 34.8379 10.2293i 1.26872 0.372530i
\(755\) −5.33842 + 11.6895i −0.194285 + 0.425425i
\(756\) −0.239446 + 1.66538i −0.00870856 + 0.0605693i
\(757\) −11.6133 + 7.46341i −0.422093 + 0.271262i −0.734398 0.678719i \(-0.762535\pi\)
0.312305 + 0.949982i \(0.398899\pi\)
\(758\) −26.0308 −0.945482
\(759\) 5.76520 0.00820448i 0.209264 0.000297804i
\(760\) −0.523564 −0.0189917
\(761\) 14.4210 9.26784i 0.522762 0.335959i −0.252501 0.967597i \(-0.581253\pi\)
0.775264 + 0.631638i \(0.217617\pi\)
\(762\) −3.84779 + 26.7620i −0.139391 + 0.969484i
\(763\) −2.40391 + 5.26384i −0.0870275 + 0.190564i
\(764\) 35.0045 10.2783i 1.26642 0.371854i
\(765\) −0.538757 1.17971i −0.0194788 0.0426526i
\(766\) −10.7430 12.3981i −0.388160 0.447960i
\(767\) −7.77742 54.0931i −0.280826 1.95319i
\(768\) −19.0137 5.58293i −0.686098 0.201457i
\(769\) −5.31096 + 6.12917i −0.191518 + 0.221024i −0.843385 0.537310i \(-0.819441\pi\)
0.651867 + 0.758333i \(0.273986\pi\)
\(770\) 5.63372 + 3.62057i 0.203025 + 0.130476i
\(771\) 18.6541 + 11.9883i 0.671813 +