Properties

Label 483.2.q.b
Level $483$
Weight $2$
Character orbit 483.q
Analytic conductor $3.857$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(64,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 0, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.q (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{22}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{22}^{7} - \zeta_{22}^{6} + \cdots + \zeta_{22}) q^{2}+ \cdots - \zeta_{22}^{9} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{22}^{7} - \zeta_{22}^{6} + \cdots + \zeta_{22}) q^{2}+ \cdots + ( - \zeta_{22}^{9} - \zeta_{22}^{7} + \cdots - \zeta_{22}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 5 q^{2} - q^{3} - q^{4} - 5 q^{5} - 6 q^{6} - q^{7} + 6 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q + 5 q^{2} - q^{3} - q^{4} - 5 q^{5} - 6 q^{6} - q^{7} + 6 q^{8} - q^{9} + 3 q^{10} + 9 q^{11} - 12 q^{12} - 15 q^{13} - 6 q^{14} + 6 q^{15} + 5 q^{16} + q^{17} - 6 q^{18} - 19 q^{19} - 5 q^{20} - q^{21} - 12 q^{22} - 21 q^{23} + 6 q^{24} + 2 q^{25} - 13 q^{26} - q^{27} - q^{28} + 3 q^{30} + 2 q^{31} + 7 q^{32} - 2 q^{33} - 5 q^{34} - 5 q^{35} + 10 q^{36} - 27 q^{37} + 18 q^{38} - 15 q^{39} - 3 q^{40} + 10 q^{41} - 6 q^{42} + 15 q^{43} + 9 q^{44} + 6 q^{45} - 5 q^{46} - 18 q^{47} + 5 q^{48} - q^{49} + 34 q^{50} + q^{51} + 18 q^{52} + 19 q^{53} + 5 q^{54} - 21 q^{55} - 5 q^{56} + 3 q^{57} - 13 q^{59} + 6 q^{60} - 18 q^{61} - 10 q^{62} - q^{63} + 54 q^{64} + 2 q^{65} + 10 q^{66} - 18 q^{67} - 10 q^{68} + q^{69} - 8 q^{70} + 38 q^{71} + 6 q^{72} + 14 q^{73} + 14 q^{74} + 2 q^{75} + 3 q^{76} - 13 q^{77} + 9 q^{78} + 25 q^{79} + 25 q^{80} - q^{81} - 72 q^{82} - 19 q^{83} - q^{84} + 5 q^{85} + 2 q^{86} + 33 q^{87} + q^{88} - 17 q^{89} + 14 q^{90} - 4 q^{91} + 67 q^{92} - 20 q^{93} + 13 q^{94} + 37 q^{95} + 18 q^{96} - 49 q^{97} - 6 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(\zeta_{22}^{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
64.1
0.654861 + 0.755750i
−0.841254 0.540641i
0.142315 + 0.989821i
−0.415415 + 0.909632i
0.959493 0.281733i
0.959493 + 0.281733i
0.142315 0.989821i
−0.841254 + 0.540641i
0.654861 0.755750i
−0.415415 0.909632i
2.30075 + 0.675560i −0.654861 + 0.755750i 3.15455 + 2.02730i −0.195368 + 1.35881i −2.01722 + 1.29639i 0.415415 + 0.909632i 2.74769 + 3.17101i −0.142315 0.989821i −1.36745 + 2.99430i
85.1 1.01255 1.16854i 0.841254 0.540641i −0.0556075 0.386758i 0.996114 + 2.18119i 0.220047 1.53046i −0.959493 + 0.281733i 2.09325 + 1.34525i 0.415415 0.909632i 3.55742 + 1.04455i
127.1 0.0741615 0.0476607i −0.142315 + 0.989821i −0.827602 + 1.81219i −1.48357 + 0.435615i 0.0366213 + 0.0801894i −0.654861 0.755750i 0.0500861 + 0.348356i −0.959493 0.281733i −0.0892619 + 0.103014i
169.1 −0.317178 + 2.20602i 0.415415 + 0.909632i −2.84695 0.835939i 0.0577299 + 0.0666238i −2.13843 + 0.627899i 0.841254 + 0.540641i 0.895412 1.96068i −0.654861 + 0.755750i −0.165284 + 0.106222i
190.1 −0.570276 + 1.24873i −0.959493 0.281733i 0.0756100 + 0.0872586i −1.87491 + 1.20493i 0.898983 1.03748i −0.142315 + 0.989821i −2.78644 + 0.818172i 0.841254 + 0.540641i −0.435418 3.02840i
211.1 −0.570276 1.24873i −0.959493 + 0.281733i 0.0756100 0.0872586i −1.87491 1.20493i 0.898983 + 1.03748i −0.142315 0.989821i −2.78644 0.818172i 0.841254 0.540641i −0.435418 + 3.02840i
232.1 0.0741615 + 0.0476607i −0.142315 0.989821i −0.827602 1.81219i −1.48357 0.435615i 0.0366213 0.0801894i −0.654861 + 0.755750i 0.0500861 0.348356i −0.959493 + 0.281733i −0.0892619 0.103014i
358.1 1.01255 + 1.16854i 0.841254 + 0.540641i −0.0556075 + 0.386758i 0.996114 2.18119i 0.220047 + 1.53046i −0.959493 0.281733i 2.09325 1.34525i 0.415415 + 0.909632i 3.55742 1.04455i
400.1 2.30075 0.675560i −0.654861 0.755750i 3.15455 2.02730i −0.195368 1.35881i −2.01722 1.29639i 0.415415 0.909632i 2.74769 3.17101i −0.142315 + 0.989821i −1.36745 2.99430i
463.1 −0.317178 2.20602i 0.415415 0.909632i −2.84695 + 0.835939i 0.0577299 0.0666238i −2.13843 0.627899i 0.841254 0.540641i 0.895412 + 1.96068i −0.654861 0.755750i −0.165284 0.106222i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 64.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.c even 11 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 483.2.q.b 10
23.c even 11 1 inner 483.2.q.b 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
483.2.q.b 10 1.a even 1 1 trivial
483.2.q.b 10 23.c even 11 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{10} - 5T_{2}^{9} + 14T_{2}^{8} - 37T_{2}^{7} + 75T_{2}^{6} - 100T_{2}^{5} + 126T_{2}^{4} - 135T_{2}^{3} + 147T_{2}^{2} - 20T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(483, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} - 5 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{10} + T^{9} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{10} + 5 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{10} + T^{9} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{10} - 9 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{10} + 15 T^{9} + \cdots + 529 \) Copy content Toggle raw display
$17$ \( T^{10} - T^{9} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{10} + 19 T^{9} + \cdots + 1849 \) Copy content Toggle raw display
$23$ \( T^{10} + 21 T^{9} + \cdots + 6436343 \) Copy content Toggle raw display
$29$ \( T^{10} + 22 T^{8} + \cdots + 121 \) Copy content Toggle raw display
$31$ \( T^{10} - 2 T^{9} + \cdots + 1024 \) Copy content Toggle raw display
$37$ \( T^{10} + 27 T^{9} + \cdots + 17161 \) Copy content Toggle raw display
$41$ \( T^{10} - 10 T^{9} + \cdots + 58081 \) Copy content Toggle raw display
$43$ \( T^{10} - 15 T^{9} + \cdots + 1849 \) Copy content Toggle raw display
$47$ \( (T^{5} + 9 T^{4} - 5 T^{3} + \cdots + 1)^{2} \) Copy content Toggle raw display
$53$ \( T^{10} - 19 T^{9} + \cdots + 6285049 \) Copy content Toggle raw display
$59$ \( T^{10} + \cdots + 549011761 \) Copy content Toggle raw display
$61$ \( T^{10} + \cdots + 389825536 \) Copy content Toggle raw display
$67$ \( T^{10} + 18 T^{9} + \cdots + 529 \) Copy content Toggle raw display
$71$ \( T^{10} - 38 T^{9} + \cdots + 12538681 \) Copy content Toggle raw display
$73$ \( T^{10} - 14 T^{9} + \cdots + 51739249 \) Copy content Toggle raw display
$79$ \( T^{10} - 25 T^{9} + \cdots + 9765625 \) Copy content Toggle raw display
$83$ \( T^{10} + 19 T^{9} + \cdots + 69169 \) Copy content Toggle raw display
$89$ \( T^{10} + \cdots + 570875449 \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots + 2220577129 \) Copy content Toggle raw display
show more
show less