Properties

Label 483.2.q.a
Level $483$
Weight $2$
Character orbit 483.q
Analytic conductor $3.857$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(64,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 0, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.q (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{22}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{22}^{6} + \cdots - \zeta_{22}^{2}) q^{2} + (\zeta_{22}^{9} - \zeta_{22}^{8} + \cdots - 1) q^{3} + ( - \zeta_{22}^{9} + \zeta_{22}^{8} + \cdots + 1) q^{4} - \zeta_{22}^{2} q^{5} + (\zeta_{22}^{5} - \zeta_{22}^{4} + \cdots + \zeta_{22}) q^{6} + \cdots + (\zeta_{22}^{8} + \cdots + \zeta_{22}^{2}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{2} - q^{3} + 8 q^{4} + q^{5} + 4 q^{6} - q^{7} - 7 q^{8} - q^{9} - 4 q^{10} - q^{11} - 3 q^{12} + 15 q^{13} - 7 q^{14} + q^{15} - 10 q^{16} - 24 q^{17} - 7 q^{18} + 5 q^{19} - 8 q^{20}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(\zeta_{22}^{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
64.1
0.654861 + 0.755750i
−0.841254 0.540641i
0.142315 + 0.989821i
−0.415415 + 0.909632i
0.959493 0.281733i
0.959493 + 0.281733i
0.142315 0.989821i
−0.841254 + 0.540641i
0.654861 0.755750i
−0.415415 0.909632i
−1.52977 0.449181i −0.654861 + 0.755750i 0.455922 + 0.293003i 0.142315 0.989821i 1.34125 0.861971i 0.415415 + 0.909632i 1.52231 + 1.75684i −0.142315 0.989821i −0.662317 + 1.45027i
85.1 1.64589 1.89945i 0.841254 0.540641i −0.614354 4.27292i −0.415415 0.909632i 0.357685 2.48775i −0.959493 + 0.281733i −4.89867 3.14818i 0.415415 0.909632i −2.41153 0.708089i
127.1 1.85380 1.19136i −0.142315 + 0.989821i 1.18639 2.59784i 0.959493 0.281733i 0.915415 + 2.00448i −0.654861 0.755750i −0.268423 1.86692i −0.959493 0.281733i 1.44306 1.66538i
169.1 −0.0681534 + 0.474017i 0.415415 + 0.909632i 1.69894 + 0.498853i 0.654861 + 0.755750i −0.459493 + 0.134919i 0.841254 + 0.540641i −0.750131 + 1.64256i −0.654861 + 0.755750i −0.402869 + 0.258908i
190.1 0.0982369 0.215109i −0.959493 0.281733i 1.27310 + 1.46924i −0.841254 + 0.540641i −0.154861 + 0.178719i −0.142315 + 0.989821i 0.894911 0.262769i 0.841254 + 0.540641i 0.0336545 + 0.234072i
211.1 0.0982369 + 0.215109i −0.959493 + 0.281733i 1.27310 1.46924i −0.841254 0.540641i −0.154861 0.178719i −0.142315 0.989821i 0.894911 + 0.262769i 0.841254 0.540641i 0.0336545 0.234072i
232.1 1.85380 + 1.19136i −0.142315 0.989821i 1.18639 + 2.59784i 0.959493 + 0.281733i 0.915415 2.00448i −0.654861 + 0.755750i −0.268423 + 1.86692i −0.959493 + 0.281733i 1.44306 + 1.66538i
358.1 1.64589 + 1.89945i 0.841254 + 0.540641i −0.614354 + 4.27292i −0.415415 + 0.909632i 0.357685 + 2.48775i −0.959493 0.281733i −4.89867 + 3.14818i 0.415415 + 0.909632i −2.41153 + 0.708089i
400.1 −1.52977 + 0.449181i −0.654861 0.755750i 0.455922 0.293003i 0.142315 + 0.989821i 1.34125 + 0.861971i 0.415415 0.909632i 1.52231 1.75684i −0.142315 + 0.989821i −0.662317 1.45027i
463.1 −0.0681534 0.474017i 0.415415 0.909632i 1.69894 0.498853i 0.654861 0.755750i −0.459493 0.134919i 0.841254 0.540641i −0.750131 1.64256i −0.654861 0.755750i −0.402869 0.258908i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 64.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.c even 11 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 483.2.q.a 10
23.c even 11 1 inner 483.2.q.a 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
483.2.q.a 10 1.a even 1 1 trivial
483.2.q.a 10 23.c even 11 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{10} - 4T_{2}^{9} + 5T_{2}^{8} + 13T_{2}^{7} - 30T_{2}^{6} - T_{2}^{5} + 70T_{2}^{4} - 5T_{2}^{3} + 20T_{2}^{2} - 3T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(483, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} - 4 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{10} + T^{9} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{10} - T^{9} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{10} + T^{9} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{10} + T^{9} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{10} - 15 T^{9} + \cdots + 529 \) Copy content Toggle raw display
$17$ \( T^{10} + 24 T^{9} + \cdots + 978121 \) Copy content Toggle raw display
$19$ \( T^{10} - 5 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{10} - 21 T^{9} + \cdots + 6436343 \) Copy content Toggle raw display
$29$ \( T^{10} + 22 T^{9} + \cdots + 123904 \) Copy content Toggle raw display
$31$ \( T^{10} + 8 T^{9} + \cdots + 2105401 \) Copy content Toggle raw display
$37$ \( T^{10} + 2 T^{9} + \cdots + 2105401 \) Copy content Toggle raw display
$41$ \( T^{10} - 7 T^{9} + \cdots + 14645929 \) Copy content Toggle raw display
$43$ \( T^{10} - T^{9} + \cdots + 6848689 \) Copy content Toggle raw display
$47$ \( (T^{5} + 3 T^{4} + \cdots + 991)^{2} \) Copy content Toggle raw display
$53$ \( T^{10} + T^{9} + \cdots + 737881 \) Copy content Toggle raw display
$59$ \( T^{10} + \cdots + 229734649 \) Copy content Toggle raw display
$61$ \( T^{10} - 5 T^{9} + \cdots + 212521 \) Copy content Toggle raw display
$67$ \( T^{10} + \cdots + 174266401 \) Copy content Toggle raw display
$71$ \( T^{10} - 22 T^{9} + \cdots + 33860761 \) Copy content Toggle raw display
$73$ \( T^{10} + 33 T^{9} + \cdots + 543169 \) Copy content Toggle raw display
$79$ \( T^{10} + \cdots + 867832681 \) Copy content Toggle raw display
$83$ \( T^{10} + \cdots + 3695059369 \) Copy content Toggle raw display
$89$ \( T^{10} + 38 T^{9} + \cdots + 14645929 \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots + 5993391889 \) Copy content Toggle raw display
show more
show less