Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [483,2,Mod(47,483)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(483, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 5, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("483.47");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.n (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.85677441763\) |
Analytic rank: | \(0\) |
Dimension: | \(116\) |
Relative dimension: | \(58\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
47.1 | −2.44467 | − | 1.41143i | 1.69781 | − | 0.342692i | 2.98426 | + | 5.16889i | 0.950213 | − | 1.64582i | −4.63427 | − | 1.55857i | −1.23167 | − | 2.34158i | − | 11.2026i | 2.76512 | − | 1.16365i | −4.64591 | + | 2.68232i | |
47.2 | −2.33544 | − | 1.34837i | −1.04040 | + | 1.38476i | 2.63619 | + | 4.56602i | −0.0332776 | + | 0.0576385i | 4.29696 | − | 1.83120i | −1.58536 | + | 2.11817i | − | 8.82477i | −0.835146 | − | 2.88141i | 0.155436 | − | 0.0897409i | |
47.3 | −2.29312 | − | 1.32393i | −1.35264 | − | 1.08184i | 2.50559 | + | 4.33981i | −2.05000 | + | 3.55071i | 1.66947 | + | 4.27158i | −0.0386680 | − | 2.64547i | − | 7.97318i | 0.659249 | + | 2.92667i | 9.40179 | − | 5.42813i | |
47.4 | −2.13598 | − | 1.23321i | −1.67324 | + | 0.447500i | 2.04161 | + | 3.53618i | 1.36168 | − | 2.35849i | 4.12588 | + | 1.10761i | 2.39415 | − | 1.12607i | − | 5.13811i | 2.59949 | − | 1.49755i | −5.81703 | + | 3.35846i | |
47.5 | −2.09741 | − | 1.21094i | 1.21100 | + | 1.23833i | 1.93276 | + | 3.34764i | −0.868774 | + | 1.50476i | −1.04042 | − | 4.06375i | 2.64399 | − | 0.0966161i | − | 4.51808i | −0.0669439 | + | 2.99925i | 3.64436 | − | 2.10407i | |
47.6 | −2.01952 | − | 1.16597i | 0.890949 | + | 1.48533i | 1.71897 | + | 2.97735i | 1.28353 | − | 2.22314i | −0.0674375 | − | 4.03848i | −0.527114 | + | 2.59271i | − | 3.35320i | −1.41242 | + | 2.64671i | −5.18423 | + | 2.99312i | |
47.7 | −1.95986 | − | 1.13153i | −1.38096 | − | 1.04545i | 1.56071 | + | 2.70323i | 0.105593 | − | 0.182893i | 1.52353 | + | 3.61153i | 1.41527 | + | 2.23540i | − | 2.53784i | 0.814080 | + | 2.88743i | −0.413897 | + | 0.238964i | |
47.8 | −1.94838 | − | 1.12490i | 0.249841 | − | 1.71394i | 1.53079 | + | 2.65141i | −0.341657 | + | 0.591768i | −2.41479 | + | 3.05836i | −2.51638 | + | 0.817220i | − | 2.38836i | −2.87516 | − | 0.856422i | 1.33136 | − | 0.768660i | |
47.9 | −1.85789 | − | 1.07265i | −0.419028 | + | 1.68060i | 1.30116 | + | 2.25367i | −0.826951 | + | 1.43232i | 2.58120 | − | 2.67289i | −0.559247 | − | 2.58597i | − | 1.29215i | −2.64883 | − | 1.40844i | 3.07276 | − | 1.77406i | |
47.10 | −1.81419 | − | 1.04742i | −0.759538 | − | 1.55663i | 1.19418 | + | 2.06838i | 1.94488 | − | 3.36863i | −0.252504 | + | 3.61957i | −0.829752 | − | 2.51227i | − | 0.813554i | −1.84620 | + | 2.36464i | −7.05676 | + | 4.07422i | |
47.11 | −1.75262 | − | 1.01188i | 1.45057 | − | 0.946485i | 1.04778 | + | 1.81482i | 1.57777 | − | 2.73277i | −3.50003 | + | 0.191028i | 1.90338 | + | 1.83770i | − | 0.193410i | 1.20833 | − | 2.74589i | −5.53045 | + | 3.19301i | |
47.12 | −1.61162 | − | 0.930468i | −1.59984 | + | 0.663721i | 0.731543 | + | 1.26707i | −2.09187 | + | 3.62322i | 3.19590 | + | 0.418931i | 0.0287355 | + | 2.64560i | 0.999164i | 2.11895 | − | 2.12369i | 6.74259 | − | 3.89284i | ||
47.13 | −1.56218 | − | 0.901925i | 1.68751 | + | 0.390253i | 0.626938 | + | 1.08589i | −0.604515 | + | 1.04705i | −2.28422 | − | 2.13166i | −2.35039 | − | 1.21476i | 1.34590i | 2.69541 | + | 1.31711i | 1.88872 | − | 1.09045i | ||
47.14 | −1.40944 | − | 0.813741i | 1.19429 | − | 1.25446i | 0.324350 | + | 0.561790i | −0.349118 | + | 0.604691i | −2.70409 | + | 0.796242i | 0.554890 | − | 2.58691i | 2.19922i | −0.147336 | − | 2.99638i | 0.984123 | − | 0.568184i | ||
47.15 | −1.33899 | − | 0.773067i | −1.69734 | − | 0.345005i | 0.195266 | + | 0.338210i | 0.489073 | − | 0.847100i | 2.00602 | + | 1.77412i | −2.35128 | + | 1.21304i | 2.48845i | 2.76194 | + | 1.17118i | −1.30973 | + | 0.756173i | ||
47.16 | −1.18271 | − | 0.682837i | −1.09928 | + | 1.33850i | −0.0674665 | − | 0.116855i | 1.64053 | − | 2.84148i | 2.21410 | − | 0.832434i | −2.62678 | − | 0.316234i | 2.91562i | −0.583186 | − | 2.94277i | −3.88054 | + | 2.24043i | ||
47.17 | −1.08140 | − | 0.624349i | −0.486586 | + | 1.66230i | −0.220377 | − | 0.381705i | 1.03800 | − | 1.79786i | 1.56405 | − | 1.49382i | 2.55312 | + | 0.693956i | 3.04776i | −2.52647 | − | 1.61770i | −2.24498 | + | 1.29614i | ||
47.18 | −1.07338 | − | 0.619715i | −0.722709 | − | 1.57407i | −0.231907 | − | 0.401675i | −0.273772 | + | 0.474187i | −0.199734 | + | 2.13744i | 2.55123 | − | 0.700882i | 3.05372i | −1.95538 | + | 2.27519i | 0.587721 | − | 0.339321i | ||
47.19 | −1.06618 | − | 0.615560i | 0.610600 | + | 1.62085i | −0.242171 | − | 0.419452i | −1.71746 | + | 2.97473i | 0.346722 | − | 2.10399i | −2.51610 | + | 0.818060i | 3.05852i | −2.25433 | + | 1.97939i | 3.66225 | − | 2.11440i | ||
47.20 | −0.995717 | − | 0.574877i | 1.25957 | + | 1.18890i | −0.339032 | − | 0.587221i | 1.31638 | − | 2.28004i | −0.570703 | − | 1.90791i | 1.26124 | − | 2.32579i | 3.07912i | 0.173032 | + | 2.99501i | −2.62149 | + | 1.51352i | ||
See next 80 embeddings (of 116 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.d | odd | 6 | 1 | inner |
21.g | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 483.2.n.a | ✓ | 116 |
3.b | odd | 2 | 1 | inner | 483.2.n.a | ✓ | 116 |
7.d | odd | 6 | 1 | inner | 483.2.n.a | ✓ | 116 |
21.g | even | 6 | 1 | inner | 483.2.n.a | ✓ | 116 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
483.2.n.a | ✓ | 116 | 1.a | even | 1 | 1 | trivial |
483.2.n.a | ✓ | 116 | 3.b | odd | 2 | 1 | inner |
483.2.n.a | ✓ | 116 | 7.d | odd | 6 | 1 | inner |
483.2.n.a | ✓ | 116 | 21.g | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(483, [\chi])\).