Defining parameters
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.n (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(128\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(483, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 136 | 116 | 20 |
Cusp forms | 120 | 116 | 4 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(483, [\chi])\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||
483.2.n.a | \(116\) | \(3.857\) | None | \(0\) | \(0\) | \(0\) | \(-10\) |
Decomposition of \(S_{2}^{\mathrm{old}}(483, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(483, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)