Properties

Label 483.2.j.a.229.18
Level $483$
Weight $2$
Character 483.229
Analytic conductor $3.857$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(229,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.229");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.j (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 229.18
Character \(\chi\) \(=\) 483.229
Dual form 483.2.j.a.367.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.208136 - 0.360502i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(0.913359 + 1.58198i) q^{4} +(0.648045 - 1.12245i) q^{5} +0.416272i q^{6} +(-0.918903 - 2.48105i) q^{7} +1.59295 q^{8} +(0.500000 - 0.866025i) q^{9} +(-0.269763 - 0.467243i) q^{10} +(2.43137 - 1.40375i) q^{11} +(-1.58198 - 0.913359i) q^{12} -3.38323i q^{13} +(-1.08568 - 0.185130i) q^{14} +1.29609i q^{15} +(-1.49517 + 2.58970i) q^{16} +(2.05236 + 3.55480i) q^{17} +(-0.208136 - 0.360502i) q^{18} +(3.04196 - 5.26884i) q^{19} +2.36759 q^{20} +(2.03632 + 1.68920i) q^{21} -1.16868i q^{22} +(-0.594509 + 4.75884i) q^{23} +(-1.37954 + 0.796477i) q^{24} +(1.66008 + 2.87533i) q^{25} +(-1.21966 - 0.704171i) q^{26} +1.00000i q^{27} +(3.08570 - 3.71978i) q^{28} +2.21188 q^{29} +(0.467243 + 0.269763i) q^{30} +(6.23520 - 3.59990i) q^{31} +(2.21535 + 3.83710i) q^{32} +(-1.40375 + 2.43137i) q^{33} +1.70868 q^{34} +(-3.38034 - 0.576414i) q^{35} +1.82672 q^{36} +(-3.56949 - 2.06085i) q^{37} +(-1.26628 - 2.19327i) q^{38} +(1.69161 + 2.92996i) q^{39} +(1.03231 - 1.78801i) q^{40} -0.240997i q^{41} +(1.03279 - 0.382513i) q^{42} -3.36019i q^{43} +(4.44143 + 2.56426i) q^{44} +(-0.648045 - 1.12245i) q^{45} +(1.59183 + 1.20481i) q^{46} +(-3.39835 - 1.96204i) q^{47} -2.99033i q^{48} +(-5.31124 + 4.55969i) q^{49} +1.38208 q^{50} +(-3.55480 - 2.05236i) q^{51} +(5.35221 - 3.09010i) q^{52} +(-6.00452 + 3.46671i) q^{53} +(0.360502 + 0.208136i) q^{54} -3.63878i q^{55} +(-1.46377 - 3.95220i) q^{56} +6.08393i q^{57} +(0.460371 - 0.797386i) q^{58} +(-0.590358 + 0.340843i) q^{59} +(-2.05039 + 1.18380i) q^{60} +(-0.675455 + 1.16992i) q^{61} -2.99707i q^{62} +(-2.60811 - 0.444733i) q^{63} -4.13629 q^{64} +(-3.79749 - 2.19248i) q^{65} +(0.584342 + 1.01211i) q^{66} +(3.27203 - 1.88911i) q^{67} +(-3.74909 + 6.49361i) q^{68} +(-1.86456 - 4.41853i) q^{69} +(-0.911368 + 1.09865i) q^{70} +10.1493 q^{71} +(0.796477 - 1.37954i) q^{72} +(-0.125713 + 0.0725804i) q^{73} +(-1.48588 + 0.857873i) q^{74} +(-2.87533 - 1.66008i) q^{75} +11.1136 q^{76} +(-5.71697 - 4.74244i) q^{77} +1.40834 q^{78} +(-7.09830 - 4.09821i) q^{79} +(1.93787 + 3.35649i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-0.0868798 - 0.0501601i) q^{82} -8.63635 q^{83} +(-0.812401 + 4.76427i) q^{84} +5.32009 q^{85} +(-1.21135 - 0.699375i) q^{86} +(-1.91554 + 1.10594i) q^{87} +(3.87306 - 2.23611i) q^{88} +(1.93681 - 3.35466i) q^{89} -0.539526 q^{90} +(-8.39396 + 3.10885i) q^{91} +(-8.07141 + 3.40602i) q^{92} +(-3.59990 + 6.23520i) q^{93} +(-1.41464 + 0.816740i) q^{94} +(-3.94266 - 6.82889i) q^{95} +(-3.83710 - 2.21535i) q^{96} -8.51417 q^{97} +(0.538318 + 2.86375i) q^{98} -2.80750i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 4 q^{2} - 36 q^{4} - 24 q^{8} + 32 q^{9} - 44 q^{16} - 4 q^{18} - 16 q^{23} - 12 q^{25} + 84 q^{26} + 24 q^{29} - 12 q^{31} + 8 q^{32} + 32 q^{35} - 72 q^{36} - 8 q^{46} - 12 q^{47} + 8 q^{49} - 96 q^{50}+ \cdots + 112 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.208136 0.360502i 0.147174 0.254913i −0.783008 0.622012i \(-0.786316\pi\)
0.930182 + 0.367099i \(0.119649\pi\)
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) 0.913359 + 1.58198i 0.456679 + 0.790992i
\(5\) 0.648045 1.12245i 0.289815 0.501974i −0.683951 0.729528i \(-0.739740\pi\)
0.973765 + 0.227555i \(0.0730730\pi\)
\(6\) 0.416272i 0.169942i
\(7\) −0.918903 2.48105i −0.347313 0.937749i
\(8\) 1.59295 0.563195
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −0.269763 0.467243i −0.0853065 0.147755i
\(11\) 2.43137 1.40375i 0.733086 0.423247i −0.0864644 0.996255i \(-0.527557\pi\)
0.819550 + 0.573008i \(0.194224\pi\)
\(12\) −1.58198 0.913359i −0.456679 0.263664i
\(13\) 3.38323i 0.938338i −0.883108 0.469169i \(-0.844554\pi\)
0.883108 0.469169i \(-0.155446\pi\)
\(14\) −1.08568 0.185130i −0.290160 0.0494780i
\(15\) 1.29609i 0.334649i
\(16\) −1.49517 + 2.58970i −0.373792 + 0.647426i
\(17\) 2.05236 + 3.55480i 0.497771 + 0.862165i 0.999997 0.00257180i \(-0.000818630\pi\)
−0.502226 + 0.864737i \(0.667485\pi\)
\(18\) −0.208136 0.360502i −0.0490581 0.0849711i
\(19\) 3.04196 5.26884i 0.697874 1.20875i −0.271328 0.962487i \(-0.587463\pi\)
0.969202 0.246267i \(-0.0792040\pi\)
\(20\) 2.36759 0.529409
\(21\) 2.03632 + 1.68920i 0.444361 + 0.368614i
\(22\) 1.16868i 0.249164i
\(23\) −0.594509 + 4.75884i −0.123964 + 0.992287i
\(24\) −1.37954 + 0.796477i −0.281597 + 0.162580i
\(25\) 1.66008 + 2.87533i 0.332015 + 0.575067i
\(26\) −1.21966 0.704171i −0.239195 0.138099i
\(27\) 1.00000i 0.192450i
\(28\) 3.08570 3.71978i 0.583142 0.702972i
\(29\) 2.21188 0.410735 0.205368 0.978685i \(-0.434161\pi\)
0.205368 + 0.978685i \(0.434161\pi\)
\(30\) 0.467243 + 0.269763i 0.0853065 + 0.0492517i
\(31\) 6.23520 3.59990i 1.11988 0.646561i 0.178506 0.983939i \(-0.442873\pi\)
0.941369 + 0.337378i \(0.109540\pi\)
\(32\) 2.21535 + 3.83710i 0.391622 + 0.678310i
\(33\) −1.40375 + 2.43137i −0.244362 + 0.423247i
\(34\) 1.70868 0.293036
\(35\) −3.38034 0.576414i −0.571382 0.0974317i
\(36\) 1.82672 0.304453
\(37\) −3.56949 2.06085i −0.586821 0.338801i 0.177018 0.984208i \(-0.443355\pi\)
−0.763840 + 0.645406i \(0.776688\pi\)
\(38\) −1.26628 2.19327i −0.205418 0.355795i
\(39\) 1.69161 + 2.92996i 0.270875 + 0.469169i
\(40\) 1.03231 1.78801i 0.163222 0.282709i
\(41\) 0.240997i 0.0376374i −0.999823 0.0188187i \(-0.994009\pi\)
0.999823 0.0188187i \(-0.00599053\pi\)
\(42\) 1.03279 0.382513i 0.159363 0.0590231i
\(43\) 3.36019i 0.512424i −0.966621 0.256212i \(-0.917526\pi\)
0.966621 0.256212i \(-0.0824744\pi\)
\(44\) 4.44143 + 2.56426i 0.669570 + 0.386577i
\(45\) −0.648045 1.12245i −0.0966049 0.167325i
\(46\) 1.59183 + 1.20481i 0.234703 + 0.177639i
\(47\) −3.39835 1.96204i −0.495700 0.286192i 0.231236 0.972898i \(-0.425723\pi\)
−0.726936 + 0.686705i \(0.759056\pi\)
\(48\) 2.99033i 0.431617i
\(49\) −5.31124 + 4.55969i −0.758748 + 0.651384i
\(50\) 1.38208 0.195456
\(51\) −3.55480 2.05236i −0.497771 0.287388i
\(52\) 5.35221 3.09010i 0.742218 0.428520i
\(53\) −6.00452 + 3.46671i −0.824785 + 0.476190i −0.852064 0.523438i \(-0.824649\pi\)
0.0272789 + 0.999628i \(0.491316\pi\)
\(54\) 0.360502 + 0.208136i 0.0490581 + 0.0283237i
\(55\) 3.63878i 0.490653i
\(56\) −1.46377 3.95220i −0.195605 0.528135i
\(57\) 6.08393i 0.805836i
\(58\) 0.460371 0.797386i 0.0604497 0.104702i
\(59\) −0.590358 + 0.340843i −0.0768581 + 0.0443740i −0.537937 0.842985i \(-0.680796\pi\)
0.461078 + 0.887359i \(0.347463\pi\)
\(60\) −2.05039 + 1.18380i −0.264705 + 0.152827i
\(61\) −0.675455 + 1.16992i −0.0864831 + 0.149793i −0.906022 0.423230i \(-0.860896\pi\)
0.819539 + 0.573023i \(0.194230\pi\)
\(62\) 2.99707i 0.380628i
\(63\) −2.60811 0.444733i −0.328590 0.0560311i
\(64\) −4.13629 −0.517036
\(65\) −3.79749 2.19248i −0.471021 0.271944i
\(66\) 0.584342 + 1.01211i 0.0719276 + 0.124582i
\(67\) 3.27203 1.88911i 0.399742 0.230791i −0.286630 0.958041i \(-0.592535\pi\)
0.686373 + 0.727250i \(0.259202\pi\)
\(68\) −3.74909 + 6.49361i −0.454644 + 0.787466i
\(69\) −1.86456 4.41853i −0.224467 0.531929i
\(70\) −0.911368 + 1.09865i −0.108929 + 0.131313i
\(71\) 10.1493 1.20450 0.602248 0.798309i \(-0.294272\pi\)
0.602248 + 0.798309i \(0.294272\pi\)
\(72\) 0.796477 1.37954i 0.0938658 0.162580i
\(73\) −0.125713 + 0.0725804i −0.0147136 + 0.00849490i −0.507339 0.861747i \(-0.669371\pi\)
0.492625 + 0.870242i \(0.336037\pi\)
\(74\) −1.48588 + 0.857873i −0.172730 + 0.0997257i
\(75\) −2.87533 1.66008i −0.332015 0.191689i
\(76\) 11.1136 1.27482
\(77\) −5.71697 4.74244i −0.651510 0.540452i
\(78\) 1.40834 0.159463
\(79\) −7.09830 4.09821i −0.798621 0.461084i 0.0443675 0.999015i \(-0.485873\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(80\) 1.93787 + 3.35649i 0.216661 + 0.375267i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −0.0868798 0.0501601i −0.00959427 0.00553926i
\(83\) −8.63635 −0.947962 −0.473981 0.880535i \(-0.657184\pi\)
−0.473981 + 0.880535i \(0.657184\pi\)
\(84\) −0.812401 + 4.76427i −0.0886403 + 0.519825i
\(85\) 5.32009 0.577045
\(86\) −1.21135 0.699375i −0.130624 0.0754156i
\(87\) −1.91554 + 1.10594i −0.205368 + 0.118569i
\(88\) 3.87306 2.23611i 0.412870 0.238370i
\(89\) 1.93681 3.35466i 0.205302 0.355593i −0.744927 0.667146i \(-0.767516\pi\)
0.950229 + 0.311553i \(0.100849\pi\)
\(90\) −0.539526 −0.0568710
\(91\) −8.39396 + 3.10885i −0.879926 + 0.325897i
\(92\) −8.07141 + 3.40602i −0.841503 + 0.355103i
\(93\) −3.59990 + 6.23520i −0.373292 + 0.646561i
\(94\) −1.41464 + 0.816740i −0.145908 + 0.0842403i
\(95\) −3.94266 6.82889i −0.404508 0.700629i
\(96\) −3.83710 2.21535i −0.391622 0.226103i
\(97\) −8.51417 −0.864483 −0.432241 0.901758i \(-0.642277\pi\)
−0.432241 + 0.901758i \(0.642277\pi\)
\(98\) 0.538318 + 2.86375i 0.0543784 + 0.289282i
\(99\) 2.80750i 0.282165i
\(100\) −3.03249 + 5.25242i −0.303249 + 0.525242i
\(101\) −10.2093 + 5.89435i −1.01587 + 0.586510i −0.912904 0.408175i \(-0.866165\pi\)
−0.102962 + 0.994685i \(0.532832\pi\)
\(102\) −1.47976 + 0.854341i −0.146518 + 0.0845923i
\(103\) −6.53852 + 11.3250i −0.644259 + 1.11589i 0.340213 + 0.940349i \(0.389501\pi\)
−0.984472 + 0.175542i \(0.943832\pi\)
\(104\) 5.38932i 0.528467i
\(105\) 3.21567 1.19098i 0.313817 0.116228i
\(106\) 2.88619i 0.280332i
\(107\) −4.36810 2.52193i −0.422280 0.243804i 0.273772 0.961795i \(-0.411729\pi\)
−0.696053 + 0.717991i \(0.745062\pi\)
\(108\) −1.58198 + 0.913359i −0.152226 + 0.0878880i
\(109\) −1.85827 + 1.07287i −0.177990 + 0.102762i −0.586348 0.810059i \(-0.699435\pi\)
0.408358 + 0.912822i \(0.366101\pi\)
\(110\) −1.31179 0.757360i −0.125074 0.0722115i
\(111\) 4.12170 0.391214
\(112\) 7.79910 + 1.32990i 0.736946 + 0.125664i
\(113\) 20.6577i 1.94331i 0.236400 + 0.971656i \(0.424033\pi\)
−0.236400 + 0.971656i \(0.575967\pi\)
\(114\) 2.19327 + 1.26628i 0.205418 + 0.118598i
\(115\) 4.95628 + 3.75125i 0.462175 + 0.349806i
\(116\) 2.02024 + 3.49915i 0.187574 + 0.324888i
\(117\) −2.92996 1.69161i −0.270875 0.156390i
\(118\) 0.283767i 0.0261229i
\(119\) 6.93371 8.35853i 0.635612 0.766225i
\(120\) 2.06461i 0.188473i
\(121\) −1.55896 + 2.70020i −0.141724 + 0.245473i
\(122\) 0.281173 + 0.487005i 0.0254562 + 0.0440914i
\(123\) 0.120498 + 0.208709i 0.0108650 + 0.0188187i
\(124\) 11.3900 + 6.57600i 1.02285 + 0.590542i
\(125\) 10.7837 0.964520
\(126\) −0.703167 + 0.847662i −0.0626431 + 0.0755157i
\(127\) 13.6774 1.21367 0.606836 0.794827i \(-0.292438\pi\)
0.606836 + 0.794827i \(0.292438\pi\)
\(128\) −5.29161 + 9.16534i −0.467717 + 0.810109i
\(129\) 1.68009 + 2.91001i 0.147924 + 0.256212i
\(130\) −1.58079 + 0.912669i −0.138644 + 0.0800463i
\(131\) 3.88592 + 2.24354i 0.339515 + 0.196019i 0.660057 0.751215i \(-0.270532\pi\)
−0.320543 + 0.947234i \(0.603865\pi\)
\(132\) −5.12852 −0.446380
\(133\) −15.8675 2.70572i −1.37589 0.234616i
\(134\) 1.57277i 0.135866i
\(135\) 1.12245 + 0.648045i 0.0966049 + 0.0557748i
\(136\) 3.26932 + 5.66263i 0.280342 + 0.485567i
\(137\) −20.1289 + 11.6214i −1.71973 + 0.992885i −0.800327 + 0.599564i \(0.795341\pi\)
−0.919401 + 0.393322i \(0.871326\pi\)
\(138\) −1.98097 0.247477i −0.168631 0.0210667i
\(139\) 11.1536i 0.946034i −0.881053 0.473017i \(-0.843165\pi\)
0.881053 0.473017i \(-0.156835\pi\)
\(140\) −2.17559 5.87412i −0.183871 0.496453i
\(141\) 3.92407 0.330466
\(142\) 2.11243 3.65883i 0.177271 0.307042i
\(143\) −4.74921 8.22587i −0.397149 0.687882i
\(144\) 1.49517 + 2.58970i 0.124597 + 0.215809i
\(145\) 1.43340 2.48271i 0.119037 0.206178i
\(146\) 0.0604264i 0.00500092i
\(147\) 2.31982 6.60443i 0.191336 0.544724i
\(148\) 7.52918i 0.618895i
\(149\) 10.4621 + 6.04029i 0.857088 + 0.494840i 0.863036 0.505142i \(-0.168560\pi\)
−0.00594789 + 0.999982i \(0.501893\pi\)
\(150\) −1.19692 + 0.691042i −0.0977282 + 0.0564234i
\(151\) −5.50309 9.53164i −0.447835 0.775674i 0.550409 0.834895i \(-0.314472\pi\)
−0.998245 + 0.0592211i \(0.981138\pi\)
\(152\) 4.84571 8.39302i 0.393039 0.680764i
\(153\) 4.10473 0.331847
\(154\) −2.89957 + 1.07391i −0.233654 + 0.0865379i
\(155\) 9.33158i 0.749531i
\(156\) −3.09010 + 5.35221i −0.247406 + 0.428520i
\(157\) −10.6817 18.5013i −0.852493 1.47656i −0.878951 0.476912i \(-0.841756\pi\)
0.0264581 0.999650i \(-0.491577\pi\)
\(158\) −2.95482 + 1.70597i −0.235073 + 0.135720i
\(159\) 3.46671 6.00452i 0.274928 0.476190i
\(160\) 5.74259 0.453991
\(161\) 12.3532 2.89790i 0.973570 0.228387i
\(162\) −0.416272 −0.0327054
\(163\) −6.79092 + 11.7622i −0.531906 + 0.921288i 0.467400 + 0.884046i \(0.345191\pi\)
−0.999306 + 0.0372422i \(0.988143\pi\)
\(164\) 0.381253 0.220117i 0.0297709 0.0171882i
\(165\) 1.81939 + 3.15127i 0.141639 + 0.245326i
\(166\) −1.79753 + 3.11342i −0.139516 + 0.241648i
\(167\) 0.426445i 0.0329993i 0.999864 + 0.0164996i \(0.00525223\pi\)
−0.999864 + 0.0164996i \(0.994748\pi\)
\(168\) 3.24376 + 2.69082i 0.250262 + 0.207602i
\(169\) 1.55379 0.119522
\(170\) 1.10730 1.91790i 0.0849262 0.147097i
\(171\) −3.04196 5.26884i −0.232625 0.402918i
\(172\) 5.31576 3.06906i 0.405323 0.234013i
\(173\) 12.4084 + 7.16401i 0.943396 + 0.544670i 0.891023 0.453958i \(-0.149988\pi\)
0.0523727 + 0.998628i \(0.483322\pi\)
\(174\) 0.920742i 0.0698013i
\(175\) 5.60841 6.76088i 0.423956 0.511075i
\(176\) 8.39537i 0.632825i
\(177\) 0.340843 0.590358i 0.0256194 0.0443740i
\(178\) −0.806241 1.39645i −0.0604303 0.104668i
\(179\) 6.49175 + 11.2440i 0.485216 + 0.840419i 0.999856 0.0169877i \(-0.00540760\pi\)
−0.514640 + 0.857407i \(0.672074\pi\)
\(180\) 1.18380 2.05039i 0.0882349 0.152827i
\(181\) 3.77532 0.280617 0.140309 0.990108i \(-0.455191\pi\)
0.140309 + 0.990108i \(0.455191\pi\)
\(182\) −0.626336 + 3.67310i −0.0464271 + 0.272268i
\(183\) 1.35091i 0.0998621i
\(184\) −0.947026 + 7.58062i −0.0698157 + 0.558850i
\(185\) −4.62639 + 2.67105i −0.340139 + 0.196379i
\(186\) 1.49854 + 2.59554i 0.109878 + 0.190314i
\(187\) 9.98011 + 5.76202i 0.729818 + 0.421360i
\(188\) 7.16817i 0.522793i
\(189\) 2.48105 0.918903i 0.180470 0.0668403i
\(190\) −3.28244 −0.238133
\(191\) −2.98440 1.72305i −0.215944 0.124675i 0.388127 0.921606i \(-0.373122\pi\)
−0.604071 + 0.796931i \(0.706456\pi\)
\(192\) 3.58213 2.06815i 0.258518 0.149256i
\(193\) −4.32367 7.48882i −0.311225 0.539057i 0.667403 0.744697i \(-0.267406\pi\)
−0.978628 + 0.205640i \(0.934073\pi\)
\(194\) −1.77210 + 3.06937i −0.127230 + 0.220368i
\(195\) 4.38497 0.314014
\(196\) −12.0644 4.23766i −0.861744 0.302690i
\(197\) 13.0386 0.928962 0.464481 0.885583i \(-0.346241\pi\)
0.464481 + 0.885583i \(0.346241\pi\)
\(198\) −1.01211 0.584342i −0.0719276 0.0415274i
\(199\) −4.47236 7.74636i −0.317037 0.549125i 0.662831 0.748769i \(-0.269355\pi\)
−0.979868 + 0.199644i \(0.936021\pi\)
\(200\) 2.64442 + 4.58028i 0.186989 + 0.323875i
\(201\) −1.88911 + 3.27203i −0.133247 + 0.230791i
\(202\) 4.90731i 0.345277i
\(203\) −2.03250 5.48778i −0.142653 0.385167i
\(204\) 7.49818i 0.524977i
\(205\) −0.270506 0.156177i −0.0188930 0.0109079i
\(206\) 2.72180 + 4.71430i 0.189637 + 0.328461i
\(207\) 3.82402 + 2.89428i 0.265788 + 0.201166i
\(208\) 8.76155 + 5.05849i 0.607505 + 0.350743i
\(209\) 17.0807i 1.18149i
\(210\) 0.239945 1.40714i 0.0165578 0.0971019i
\(211\) −3.23308 −0.222574 −0.111287 0.993788i \(-0.535497\pi\)
−0.111287 + 0.993788i \(0.535497\pi\)
\(212\) −10.9686 6.33271i −0.753325 0.434932i
\(213\) −8.78952 + 5.07463i −0.602248 + 0.347708i
\(214\) −1.81832 + 1.04981i −0.124298 + 0.0717633i
\(215\) −3.77163 2.17755i −0.257223 0.148508i
\(216\) 1.59295i 0.108387i
\(217\) −14.6611 12.1619i −0.995259 0.825604i
\(218\) 0.893211i 0.0604959i
\(219\) 0.0725804 0.125713i 0.00490453 0.00849490i
\(220\) 5.75649 3.32351i 0.388102 0.224071i
\(221\) 12.0267 6.94361i 0.809002 0.467077i
\(222\) 0.857873 1.48588i 0.0575767 0.0997257i
\(223\) 15.5726i 1.04282i −0.853307 0.521408i \(-0.825407\pi\)
0.853307 0.521408i \(-0.174593\pi\)
\(224\) 7.48435 9.02232i 0.500069 0.602829i
\(225\) 3.32015 0.221343
\(226\) 7.44714 + 4.29961i 0.495376 + 0.286006i
\(227\) −12.8041 22.1773i −0.849838 1.47196i −0.881353 0.472459i \(-0.843366\pi\)
0.0315149 0.999503i \(-0.489967\pi\)
\(228\) −9.62468 + 5.55681i −0.637410 + 0.368009i
\(229\) −6.95903 + 12.0534i −0.459865 + 0.796510i −0.998953 0.0457393i \(-0.985436\pi\)
0.539088 + 0.842249i \(0.318769\pi\)
\(230\) 2.38391 1.00598i 0.157190 0.0663322i
\(231\) 7.32227 + 1.24859i 0.481770 + 0.0821511i
\(232\) 3.52342 0.231324
\(233\) −8.37502 + 14.5060i −0.548666 + 0.950317i 0.449700 + 0.893179i \(0.351531\pi\)
−0.998366 + 0.0571377i \(0.981803\pi\)
\(234\) −1.21966 + 0.704171i −0.0797316 + 0.0460331i
\(235\) −4.40456 + 2.54297i −0.287322 + 0.165885i
\(236\) −1.07842 0.622625i −0.0701990 0.0405294i
\(237\) 8.19641 0.532414
\(238\) −1.57011 4.23933i −0.101775 0.274795i
\(239\) −8.26463 −0.534595 −0.267297 0.963614i \(-0.586131\pi\)
−0.267297 + 0.963614i \(0.586131\pi\)
\(240\) −3.35649 1.93787i −0.216661 0.125089i
\(241\) 13.0474 + 22.5988i 0.840459 + 1.45572i 0.889507 + 0.456922i \(0.151048\pi\)
−0.0490478 + 0.998796i \(0.515619\pi\)
\(242\) 0.648951 + 1.12402i 0.0417162 + 0.0722545i
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) −2.46773 −0.157980
\(245\) 1.67609 + 8.91647i 0.107081 + 0.569652i
\(246\) 0.100320 0.00639618
\(247\) −17.8257 10.2917i −1.13422 0.654842i
\(248\) 9.93240 5.73447i 0.630708 0.364139i
\(249\) 7.47930 4.31817i 0.473981 0.273653i
\(250\) 2.24447 3.88753i 0.141953 0.245869i
\(251\) 13.6112 0.859131 0.429566 0.903036i \(-0.358667\pi\)
0.429566 + 0.903036i \(0.358667\pi\)
\(252\) −1.67858 4.53218i −0.105740 0.285501i
\(253\) 5.23476 + 12.4050i 0.329107 + 0.779898i
\(254\) 2.84676 4.93073i 0.178621 0.309381i
\(255\) −4.60734 + 2.66005i −0.288523 + 0.166579i
\(256\) −1.93354 3.34899i −0.120846 0.209312i
\(257\) 4.03487 + 2.32953i 0.251688 + 0.145312i 0.620537 0.784177i \(-0.286915\pi\)
−0.368849 + 0.929489i \(0.620248\pi\)
\(258\) 1.39875 0.0870824
\(259\) −1.83305 + 10.7498i −0.113900 + 0.667961i
\(260\) 8.01009i 0.496765i
\(261\) 1.10594 1.91554i 0.0684559 0.118569i
\(262\) 1.61760 0.933922i 0.0999356 0.0576979i
\(263\) 26.5367 15.3210i 1.63632 0.944731i 0.654237 0.756289i \(-0.272990\pi\)
0.982084 0.188442i \(-0.0603436\pi\)
\(264\) −2.23611 + 3.87306i −0.137623 + 0.238370i
\(265\) 8.98635i 0.552027i
\(266\) −4.27802 + 5.15712i −0.262302 + 0.316203i
\(267\) 3.87363i 0.237062i
\(268\) 5.97708 + 3.45087i 0.365108 + 0.210795i
\(269\) −20.8811 + 12.0557i −1.27315 + 0.735051i −0.975579 0.219650i \(-0.929509\pi\)
−0.297567 + 0.954701i \(0.596175\pi\)
\(270\) 0.467243 0.269763i 0.0284355 0.0164172i
\(271\) 10.6658 + 6.15787i 0.647898 + 0.374064i 0.787651 0.616122i \(-0.211297\pi\)
−0.139752 + 0.990187i \(0.544631\pi\)
\(272\) −12.2745 −0.744251
\(273\) 5.71495 6.88933i 0.345885 0.416961i
\(274\) 9.67534i 0.584509i
\(275\) 8.07251 + 4.66067i 0.486791 + 0.281049i
\(276\) 5.28703 6.98541i 0.318242 0.420472i
\(277\) −11.5136 19.9422i −0.691788 1.19821i −0.971252 0.238055i \(-0.923490\pi\)
0.279464 0.960156i \(-0.409843\pi\)
\(278\) −4.02089 2.32146i −0.241157 0.139232i
\(279\) 7.19979i 0.431040i
\(280\) −5.38473 0.918201i −0.321799 0.0548730i
\(281\) 18.7454i 1.11826i −0.829081 0.559128i \(-0.811136\pi\)
0.829081 0.559128i \(-0.188864\pi\)
\(282\) 0.816740 1.41464i 0.0486362 0.0842403i
\(283\) 12.5662 + 21.7654i 0.746985 + 1.29382i 0.949261 + 0.314488i \(0.101833\pi\)
−0.202276 + 0.979329i \(0.564834\pi\)
\(284\) 9.26992 + 16.0560i 0.550069 + 0.952747i
\(285\) 6.82889 + 3.94266i 0.404508 + 0.233543i
\(286\) −3.95392 −0.233800
\(287\) −0.597926 + 0.221453i −0.0352944 + 0.0130719i
\(288\) 4.43070 0.261082
\(289\) 0.0756136 0.130967i 0.00444786 0.00770392i
\(290\) −0.596682 1.03348i −0.0350384 0.0606883i
\(291\) 7.37349 4.25708i 0.432241 0.249555i
\(292\) −0.229642 0.132584i −0.0134388 0.00775889i
\(293\) 8.60003 0.502419 0.251210 0.967933i \(-0.419172\pi\)
0.251210 + 0.967933i \(0.419172\pi\)
\(294\) −1.89807 2.21092i −0.110698 0.128943i
\(295\) 0.883527i 0.0514409i
\(296\) −5.68604 3.28284i −0.330494 0.190811i
\(297\) 1.40375 + 2.43137i 0.0814539 + 0.141082i
\(298\) 4.35508 2.51440i 0.252283 0.145656i
\(299\) 16.1002 + 2.01136i 0.931100 + 0.116320i
\(300\) 6.06498i 0.350162i
\(301\) −8.33680 + 3.08768i −0.480525 + 0.177971i
\(302\) −4.58157 −0.263639
\(303\) 5.89435 10.2093i 0.338622 0.586510i
\(304\) 9.09649 + 15.7556i 0.521719 + 0.903644i
\(305\) 0.875450 + 1.51632i 0.0501281 + 0.0868245i
\(306\) 0.854341 1.47976i 0.0488394 0.0845923i
\(307\) 10.3669i 0.591670i 0.955239 + 0.295835i \(0.0955978\pi\)
−0.955239 + 0.295835i \(0.904402\pi\)
\(308\) 2.28082 13.3757i 0.129962 0.762152i
\(309\) 13.0770i 0.743927i
\(310\) −3.36405 1.94224i −0.191065 0.110312i
\(311\) −25.8773 + 14.9403i −1.46737 + 0.847184i −0.999333 0.0365262i \(-0.988371\pi\)
−0.468034 + 0.883711i \(0.655037\pi\)
\(312\) 2.69466 + 4.66729i 0.152555 + 0.264233i
\(313\) −7.87441 + 13.6389i −0.445088 + 0.770915i −0.998058 0.0622857i \(-0.980161\pi\)
0.552970 + 0.833201i \(0.313494\pi\)
\(314\) −8.89299 −0.501860
\(315\) −2.18936 + 2.63925i −0.123356 + 0.148705i
\(316\) 14.9725i 0.842271i
\(317\) 17.2999 29.9643i 0.971659 1.68296i 0.281111 0.959675i \(-0.409297\pi\)
0.690548 0.723287i \(-0.257370\pi\)
\(318\) −1.44310 2.49951i −0.0809248 0.140166i
\(319\) 5.37789 3.10493i 0.301104 0.173842i
\(320\) −2.68050 + 4.64277i −0.149845 + 0.259539i
\(321\) 5.04385 0.281520
\(322\) 1.52645 5.05652i 0.0850657 0.281789i
\(323\) 24.9729 1.38953
\(324\) 0.913359 1.58198i 0.0507422 0.0878880i
\(325\) 9.72790 5.61641i 0.539607 0.311542i
\(326\) 2.82687 + 4.89628i 0.156566 + 0.271180i
\(327\) 1.07287 1.85827i 0.0593299 0.102762i
\(328\) 0.383897i 0.0211972i
\(329\) −1.74516 + 10.2344i −0.0962140 + 0.564240i
\(330\) 1.51472 0.0833826
\(331\) −6.61046 + 11.4497i −0.363344 + 0.629330i −0.988509 0.151163i \(-0.951698\pi\)
0.625165 + 0.780492i \(0.285032\pi\)
\(332\) −7.88809 13.6626i −0.432915 0.749831i
\(333\) −3.56949 + 2.06085i −0.195607 + 0.112934i
\(334\) 0.153734 + 0.0887584i 0.00841195 + 0.00485664i
\(335\) 4.89691i 0.267547i
\(336\) −7.41917 + 2.74783i −0.404749 + 0.149906i
\(337\) 19.0448i 1.03744i 0.854946 + 0.518718i \(0.173590\pi\)
−0.854946 + 0.518718i \(0.826410\pi\)
\(338\) 0.323399 0.560143i 0.0175906 0.0304678i
\(339\) −10.3288 17.8901i −0.560986 0.971656i
\(340\) 4.85916 + 8.41630i 0.263525 + 0.456438i
\(341\) 10.1067 17.5054i 0.547310 0.947968i
\(342\) −2.53257 −0.136946
\(343\) 16.1933 + 8.98754i 0.874358 + 0.485282i
\(344\) 5.35262i 0.288594i
\(345\) −6.16789 0.770537i −0.332068 0.0414843i
\(346\) 5.16528 2.98218i 0.277687 0.160323i
\(347\) 9.83637 + 17.0371i 0.528044 + 0.914599i 0.999466 + 0.0326908i \(0.0104077\pi\)
−0.471422 + 0.881908i \(0.656259\pi\)
\(348\) −3.49915 2.02024i −0.187574 0.108296i
\(349\) 35.3155i 1.89040i 0.326499 + 0.945198i \(0.394131\pi\)
−0.326499 + 0.945198i \(0.605869\pi\)
\(350\) −1.27000 3.42902i −0.0678844 0.183289i
\(351\) 3.38323 0.180583
\(352\) 10.7727 + 6.21960i 0.574185 + 0.331506i
\(353\) −12.5436 + 7.24207i −0.667630 + 0.385456i −0.795178 0.606376i \(-0.792623\pi\)
0.127548 + 0.991832i \(0.459289\pi\)
\(354\) −0.141883 0.245749i −0.00754102 0.0130614i
\(355\) 6.57718 11.3920i 0.349081 0.604625i
\(356\) 7.07602 0.375028
\(357\) −1.82551 + 10.7056i −0.0966160 + 0.566598i
\(358\) 5.40466 0.285645
\(359\) −14.0688 8.12264i −0.742524 0.428696i 0.0804624 0.996758i \(-0.474360\pi\)
−0.822986 + 0.568061i \(0.807694\pi\)
\(360\) −1.03231 1.78801i −0.0544073 0.0942363i
\(361\) −9.00709 15.6007i −0.474057 0.821092i
\(362\) 0.785779 1.36101i 0.0412996 0.0715331i
\(363\) 3.11792i 0.163648i
\(364\) −12.5849 10.4396i −0.659626 0.547184i
\(365\) 0.188142i 0.00984778i
\(366\) −0.487005 0.281173i −0.0254562 0.0146971i
\(367\) 2.94340 + 5.09812i 0.153644 + 0.266120i 0.932565 0.361003i \(-0.117566\pi\)
−0.778920 + 0.627123i \(0.784232\pi\)
\(368\) −11.4351 8.65486i −0.596096 0.451166i
\(369\) −0.208709 0.120498i −0.0108650 0.00627290i
\(370\) 2.22376i 0.115608i
\(371\) 14.1187 + 11.7120i 0.733005 + 0.608055i
\(372\) −13.1520 −0.681899
\(373\) 23.0048 + 13.2818i 1.19114 + 0.687708i 0.958566 0.284870i \(-0.0919505\pi\)
0.232578 + 0.972578i \(0.425284\pi\)
\(374\) 4.15444 2.39856i 0.214821 0.124027i
\(375\) −9.33893 + 5.39183i −0.482260 + 0.278433i
\(376\) −5.41341 3.12543i −0.279175 0.161182i
\(377\) 7.48328i 0.385408i
\(378\) 0.185130 1.08568i 0.00952205 0.0558414i
\(379\) 35.7093i 1.83426i 0.398585 + 0.917131i \(0.369501\pi\)
−0.398585 + 0.917131i \(0.630499\pi\)
\(380\) 7.20213 12.4744i 0.369461 0.639926i
\(381\) −11.8450 + 6.83870i −0.606836 + 0.350357i
\(382\) −1.24232 + 0.717255i −0.0635627 + 0.0366980i
\(383\) −6.39128 + 11.0700i −0.326579 + 0.565651i −0.981831 0.189759i \(-0.939229\pi\)
0.655252 + 0.755411i \(0.272563\pi\)
\(384\) 10.5832i 0.540073i
\(385\) −9.02800 + 3.34368i −0.460109 + 0.170410i
\(386\) −3.59965 −0.183217
\(387\) −2.91001 1.68009i −0.147924 0.0854039i
\(388\) −7.77649 13.4693i −0.394792 0.683799i
\(389\) 9.43612 5.44795i 0.478430 0.276222i −0.241332 0.970443i \(-0.577584\pi\)
0.719762 + 0.694221i \(0.244251\pi\)
\(390\) 0.912669 1.58079i 0.0462148 0.0800463i
\(391\) −18.1369 + 7.65351i −0.917220 + 0.387055i
\(392\) −8.46056 + 7.26338i −0.427323 + 0.366856i
\(393\) −4.48708 −0.226343
\(394\) 2.71380 4.70044i 0.136719 0.236805i
\(395\) −9.20004 + 5.31165i −0.462904 + 0.267258i
\(396\) 4.44143 2.56426i 0.223190 0.128859i
\(397\) −29.6816 17.1367i −1.48968 0.860066i −0.489748 0.871864i \(-0.662911\pi\)
−0.999930 + 0.0117982i \(0.996244\pi\)
\(398\) −3.72343 −0.186639
\(399\) 15.0945 5.59054i 0.755672 0.279877i
\(400\) −9.92836 −0.496418
\(401\) 30.8591 + 17.8165i 1.54103 + 0.889713i 0.998774 + 0.0494981i \(0.0157622\pi\)
0.542254 + 0.840215i \(0.317571\pi\)
\(402\) 0.786383 + 1.36206i 0.0392212 + 0.0679331i
\(403\) −12.1793 21.0951i −0.606692 1.05082i
\(404\) −18.6495 10.7673i −0.927850 0.535694i
\(405\) −1.29609 −0.0644032
\(406\) −2.40139 0.409484i −0.119179 0.0203224i
\(407\) −11.5717 −0.573587
\(408\) −5.66263 3.26932i −0.280342 0.161856i
\(409\) 17.3884 10.0392i 0.859801 0.496406i −0.00414480 0.999991i \(-0.501319\pi\)
0.863946 + 0.503585i \(0.167986\pi\)
\(410\) −0.112604 + 0.0650120i −0.00556112 + 0.00321071i
\(411\) 11.6214 20.1289i 0.573243 0.992885i
\(412\) −23.8881 −1.17688
\(413\) 1.38813 + 1.15151i 0.0683055 + 0.0566619i
\(414\) 1.83931 0.776164i 0.0903971 0.0381464i
\(415\) −5.59674 + 9.69384i −0.274733 + 0.475852i
\(416\) 12.9818 7.49503i 0.636484 0.367474i
\(417\) 5.57679 + 9.65928i 0.273097 + 0.473017i
\(418\) −6.15761 3.55510i −0.301178 0.173885i
\(419\) 14.4789 0.707343 0.353671 0.935370i \(-0.384933\pi\)
0.353671 + 0.935370i \(0.384933\pi\)
\(420\) 4.82117 + 3.99934i 0.235249 + 0.195148i
\(421\) 5.46052i 0.266129i 0.991107 + 0.133065i \(0.0424818\pi\)
−0.991107 + 0.133065i \(0.957518\pi\)
\(422\) −0.672919 + 1.16553i −0.0327572 + 0.0567371i
\(423\) −3.39835 + 1.96204i −0.165233 + 0.0953974i
\(424\) −9.56494 + 5.52232i −0.464514 + 0.268187i
\(425\) −6.81415 + 11.8025i −0.330535 + 0.572503i
\(426\) 4.22485i 0.204695i
\(427\) 3.52331 + 0.600794i 0.170505 + 0.0290745i
\(428\) 9.21369i 0.445361i
\(429\) 8.22587 + 4.74921i 0.397149 + 0.229294i
\(430\) −1.57002 + 0.906453i −0.0757132 + 0.0437131i
\(431\) −4.07918 + 2.35512i −0.196487 + 0.113442i −0.595016 0.803714i \(-0.702854\pi\)
0.398529 + 0.917156i \(0.369521\pi\)
\(432\) −2.58970 1.49517i −0.124597 0.0719362i
\(433\) −11.8433 −0.569151 −0.284576 0.958654i \(-0.591853\pi\)
−0.284576 + 0.958654i \(0.591853\pi\)
\(434\) −7.43589 + 2.75402i −0.356934 + 0.132197i
\(435\) 2.86679i 0.137452i
\(436\) −3.39453 1.95983i −0.162568 0.0938589i
\(437\) 23.2651 + 17.6086i 1.11292 + 0.842333i
\(438\) −0.0302132 0.0523308i −0.00144364 0.00250046i
\(439\) −24.8602 14.3530i −1.18651 0.685032i −0.228999 0.973427i \(-0.573545\pi\)
−0.957512 + 0.288395i \(0.906879\pi\)
\(440\) 5.79641i 0.276333i
\(441\) 1.29319 + 6.87951i 0.0615804 + 0.327596i
\(442\) 5.78085i 0.274967i
\(443\) 19.2032 33.2609i 0.912372 1.58027i 0.101668 0.994818i \(-0.467582\pi\)
0.810704 0.585456i \(-0.199085\pi\)
\(444\) 3.76459 + 6.52046i 0.178659 + 0.309447i
\(445\) −2.51028 4.34794i −0.118999 0.206112i
\(446\) −5.61394 3.24121i −0.265828 0.153476i
\(447\) −12.0806 −0.571392
\(448\) 3.80085 + 10.2624i 0.179573 + 0.484851i
\(449\) 16.2724 0.767941 0.383970 0.923345i \(-0.374556\pi\)
0.383970 + 0.923345i \(0.374556\pi\)
\(450\) 0.691042 1.19692i 0.0325761 0.0564234i
\(451\) −0.338300 0.585952i −0.0159299 0.0275914i
\(452\) −32.6801 + 18.8679i −1.53714 + 0.887471i
\(453\) 9.53164 + 5.50309i 0.447835 + 0.258558i
\(454\) −10.6600 −0.500297
\(455\) −1.95014 + 11.4364i −0.0914239 + 0.536149i
\(456\) 9.69142i 0.453842i
\(457\) −27.2086 15.7089i −1.27277 0.734832i −0.297259 0.954797i \(-0.596072\pi\)
−0.975508 + 0.219965i \(0.929406\pi\)
\(458\) 2.89685 + 5.01748i 0.135361 + 0.234452i
\(459\) −3.55480 + 2.05236i −0.165924 + 0.0957961i
\(460\) −1.40755 + 11.2670i −0.0656276 + 0.525326i
\(461\) 23.0035i 1.07138i 0.844415 + 0.535689i \(0.179948\pi\)
−0.844415 + 0.535689i \(0.820052\pi\)
\(462\) 1.97415 2.37981i 0.0918455 0.110719i
\(463\) 17.2955 0.803790 0.401895 0.915686i \(-0.368352\pi\)
0.401895 + 0.915686i \(0.368352\pi\)
\(464\) −3.30712 + 5.72811i −0.153529 + 0.265921i
\(465\) 4.66579 + 8.08139i 0.216371 + 0.374765i
\(466\) 3.48628 + 6.03842i 0.161499 + 0.279725i
\(467\) −17.5237 + 30.3520i −0.810902 + 1.40452i 0.101331 + 0.994853i \(0.467690\pi\)
−0.912233 + 0.409671i \(0.865644\pi\)
\(468\) 6.18020i 0.285680i
\(469\) −7.69366 6.38218i −0.355260 0.294702i
\(470\) 2.11714i 0.0976563i
\(471\) 18.5013 + 10.6817i 0.852493 + 0.492187i
\(472\) −0.940413 + 0.542948i −0.0432860 + 0.0249912i
\(473\) −4.71687 8.16985i −0.216882 0.375650i
\(474\) 1.70597 2.95482i 0.0783577 0.135720i
\(475\) 20.1996 0.926819
\(476\) 19.5560 + 3.33469i 0.896349 + 0.152845i
\(477\) 6.93343i 0.317460i
\(478\) −1.72017 + 2.97942i −0.0786786 + 0.136275i
\(479\) −19.6351 34.0089i −0.897149 1.55391i −0.831122 0.556090i \(-0.812301\pi\)
−0.0660270 0.997818i \(-0.521032\pi\)
\(480\) −4.97323 + 2.87129i −0.226996 + 0.131056i
\(481\) −6.97231 + 12.0764i −0.317910 + 0.550637i
\(482\) 10.8626 0.494776
\(483\) −9.24926 + 8.68627i −0.420856 + 0.395239i
\(484\) −5.69556 −0.258889
\(485\) −5.51756 + 9.55670i −0.250540 + 0.433947i
\(486\) 0.360502 0.208136i 0.0163527 0.00944124i
\(487\) −12.7333 22.0547i −0.576999 0.999392i −0.995821 0.0913237i \(-0.970890\pi\)
0.418822 0.908068i \(-0.362443\pi\)
\(488\) −1.07597 + 1.86363i −0.0487068 + 0.0843627i
\(489\) 13.5818i 0.614192i
\(490\) 3.56326 + 1.25160i 0.160972 + 0.0565417i
\(491\) −18.1317 −0.818274 −0.409137 0.912473i \(-0.634170\pi\)
−0.409137 + 0.912473i \(0.634170\pi\)
\(492\) −0.220117 + 0.381253i −0.00992362 + 0.0171882i
\(493\) 4.53957 + 7.86277i 0.204452 + 0.354121i
\(494\) −7.42032 + 4.28412i −0.333856 + 0.192752i
\(495\) −3.15127 1.81939i −0.141639 0.0817755i
\(496\) 21.5298i 0.966716i
\(497\) −9.32619 25.1809i −0.418337 1.12952i
\(498\) 3.59507i 0.161099i
\(499\) 3.93276 6.81173i 0.176054 0.304935i −0.764471 0.644658i \(-0.777000\pi\)
0.940526 + 0.339723i \(0.110333\pi\)
\(500\) 9.84936 + 17.0596i 0.440477 + 0.762928i
\(501\) −0.213222 0.369312i −0.00952607 0.0164996i
\(502\) 2.83298 4.90686i 0.126442 0.219004i
\(503\) −34.6468 −1.54482 −0.772412 0.635122i \(-0.780950\pi\)
−0.772412 + 0.635122i \(0.780950\pi\)
\(504\) −4.15459 0.708439i −0.185060 0.0315564i
\(505\) 15.2792i 0.679917i
\(506\) 5.56158 + 0.694794i 0.247243 + 0.0308873i
\(507\) −1.34562 + 0.776893i −0.0597610 + 0.0345030i
\(508\) 12.4924 + 21.6374i 0.554259 + 0.960006i
\(509\) −2.04296 1.17950i −0.0905527 0.0522806i 0.454040 0.890981i \(-0.349982\pi\)
−0.544593 + 0.838701i \(0.683316\pi\)
\(510\) 2.21461i 0.0980644i
\(511\) 0.295594 + 0.245206i 0.0130763 + 0.0108473i
\(512\) −22.7762 −1.00658
\(513\) 5.26884 + 3.04196i 0.232625 + 0.134306i
\(514\) 1.67960 0.969719i 0.0740841 0.0427725i
\(515\) 8.47451 + 14.6783i 0.373432 + 0.646802i
\(516\) −3.06906 + 5.31576i −0.135108 + 0.234013i
\(517\) −11.0168 −0.484520
\(518\) 3.49381 + 2.89824i 0.153509 + 0.127341i
\(519\) −14.3280 −0.628931
\(520\) −6.04923 3.49253i −0.265276 0.153157i
\(521\) 15.1524 + 26.2447i 0.663839 + 1.14980i 0.979599 + 0.200963i \(0.0644072\pi\)
−0.315760 + 0.948839i \(0.602259\pi\)
\(522\) −0.460371 0.797386i −0.0201499 0.0349006i
\(523\) 13.2982 23.0332i 0.581490 1.00717i −0.413813 0.910362i \(-0.635803\pi\)
0.995303 0.0968083i \(-0.0308634\pi\)
\(524\) 8.19662i 0.358071i
\(525\) −1.47658 + 8.65930i −0.0644432 + 0.377923i
\(526\) 12.7554i 0.556160i
\(527\) 25.5938 + 14.7766i 1.11488 + 0.643678i
\(528\) −4.19769 7.27061i −0.182681 0.316413i
\(529\) −22.2931 5.65835i −0.969266 0.246015i
\(530\) 3.23960 + 1.87038i 0.140719 + 0.0812442i
\(531\) 0.681687i 0.0295827i
\(532\) −10.2123 27.5735i −0.442761 1.19546i
\(533\) −0.815347 −0.0353166
\(534\) 1.39645 + 0.806241i 0.0604303 + 0.0348894i
\(535\) −5.66145 + 3.26864i −0.244766 + 0.141316i
\(536\) 5.21220 3.00927i 0.225133 0.129980i
\(537\) −11.2440 6.49175i −0.485216 0.280140i
\(538\) 10.0369i 0.432723i
\(539\) −6.51290 + 18.5419i −0.280531 + 0.798658i
\(540\) 2.36759i 0.101885i
\(541\) 12.6830 21.9676i 0.545284 0.944460i −0.453305 0.891356i \(-0.649755\pi\)
0.998589 0.0531042i \(-0.0169115\pi\)
\(542\) 4.43985 2.56335i 0.190708 0.110105i
\(543\) −3.26952 + 1.88766i −0.140309 + 0.0810072i
\(544\) −9.09341 + 15.7502i −0.389877 + 0.675286i
\(545\) 2.78107i 0.119128i
\(546\) −1.29413 3.49417i −0.0553836 0.149537i
\(547\) −3.00044 −0.128290 −0.0641448 0.997941i \(-0.520432\pi\)
−0.0641448 + 0.997941i \(0.520432\pi\)
\(548\) −36.7698 21.2291i −1.57073 0.906861i
\(549\) 0.675455 + 1.16992i 0.0288277 + 0.0499310i
\(550\) 3.36036 1.94010i 0.143286 0.0827263i
\(551\) 6.72845 11.6540i 0.286642 0.496478i
\(552\) −2.97016 7.03852i −0.126418 0.299579i
\(553\) −3.64521 + 21.3771i −0.155010 + 0.909047i
\(554\) −9.58561 −0.407253
\(555\) 2.67105 4.62639i 0.113380 0.196379i
\(556\) 17.6448 10.1872i 0.748306 0.432034i
\(557\) −0.716386 + 0.413606i −0.0303543 + 0.0175250i −0.515100 0.857130i \(-0.672245\pi\)
0.484746 + 0.874655i \(0.338912\pi\)
\(558\) −2.59554 1.49854i −0.109878 0.0634381i
\(559\) −11.3683 −0.480826
\(560\) 6.54691 7.89225i 0.276658 0.333508i
\(561\) −11.5240 −0.486545
\(562\) −6.75775 3.90159i −0.285059 0.164579i
\(563\) −12.5287 21.7004i −0.528023 0.914562i −0.999466 0.0326661i \(-0.989600\pi\)
0.471443 0.881896i \(-0.343733\pi\)
\(564\) 3.58409 + 6.20782i 0.150917 + 0.261396i
\(565\) 23.1872 + 13.3871i 0.975491 + 0.563200i
\(566\) 10.4619 0.439748
\(567\) −1.68920 + 2.03632i −0.0709398 + 0.0855174i
\(568\) 16.1673 0.678366
\(569\) −5.70825 3.29566i −0.239302 0.138161i 0.375554 0.926801i \(-0.377453\pi\)
−0.614856 + 0.788639i \(0.710786\pi\)
\(570\) 2.84267 1.64122i 0.119066 0.0687431i
\(571\) 9.07398 5.23887i 0.379734 0.219240i −0.297968 0.954576i \(-0.596309\pi\)
0.677703 + 0.735336i \(0.262976\pi\)
\(572\) 8.67546 15.0263i 0.362739 0.628283i
\(573\) 3.44609 0.143962
\(574\) −0.0446157 + 0.261646i −0.00186222 + 0.0109209i
\(575\) −14.6702 + 6.19062i −0.611789 + 0.258167i
\(576\) −2.06815 + 3.58213i −0.0861727 + 0.149256i
\(577\) 28.5827 16.5022i 1.18991 0.686996i 0.231626 0.972805i \(-0.425596\pi\)
0.958287 + 0.285809i \(0.0922622\pi\)
\(578\) −0.0314758 0.0545177i −0.00130922 0.00226764i
\(579\) 7.48882 + 4.32367i 0.311225 + 0.179686i
\(580\) 5.23682 0.217447
\(581\) 7.93596 + 21.4272i 0.329239 + 0.888951i
\(582\) 3.54421i 0.146912i
\(583\) −9.73281 + 16.8577i −0.403092 + 0.698176i
\(584\) −0.200255 + 0.115617i −0.00828662 + 0.00478428i
\(585\) −3.79749 + 2.19248i −0.157007 + 0.0906480i
\(586\) 1.78998 3.10033i 0.0739432 0.128073i
\(587\) 12.9758i 0.535567i −0.963479 0.267783i \(-0.913709\pi\)
0.963479 0.267783i \(-0.0862911\pi\)
\(588\) 12.5669 2.36229i 0.518251 0.0974193i
\(589\) 43.8030i 1.80487i
\(590\) 0.318513 + 0.183894i 0.0131130 + 0.00757079i
\(591\) −11.2918 + 6.51930i −0.464481 + 0.268168i
\(592\) 10.6740 6.16262i 0.438698 0.253282i
\(593\) −31.4273 18.1446i −1.29057 0.745109i −0.311811 0.950144i \(-0.600936\pi\)
−0.978755 + 0.205036i \(0.934269\pi\)
\(594\) 1.16868 0.0479517
\(595\) −4.88865 13.1994i −0.200415 0.541124i
\(596\) 22.0678i 0.903933i
\(597\) 7.74636 + 4.47236i 0.317037 + 0.183042i
\(598\) 4.07613 5.38553i 0.166686 0.220231i
\(599\) −15.5154 26.8734i −0.633940 1.09802i −0.986739 0.162317i \(-0.948103\pi\)
0.352799 0.935699i \(-0.385230\pi\)
\(600\) −4.58028 2.64442i −0.186989 0.107958i
\(601\) 20.7835i 0.847776i 0.905715 + 0.423888i \(0.139335\pi\)
−0.905715 + 0.423888i \(0.860665\pi\)
\(602\) −0.622070 + 3.64809i −0.0253537 + 0.148685i
\(603\) 3.77822i 0.153861i
\(604\) 10.0526 17.4116i 0.409035 0.708469i
\(605\) 2.02055 + 3.49970i 0.0821472 + 0.142283i
\(606\) −2.45365 4.24985i −0.0996729 0.172638i
\(607\) 16.9902 + 9.80932i 0.689613 + 0.398148i 0.803467 0.595349i \(-0.202986\pi\)
−0.113854 + 0.993497i \(0.536320\pi\)
\(608\) 26.9561 1.09321
\(609\) 4.50409 + 3.73631i 0.182515 + 0.151403i
\(610\) 0.728850 0.0295103
\(611\) −6.63801 + 11.4974i −0.268545 + 0.465134i
\(612\) 3.74909 + 6.49361i 0.151548 + 0.262489i
\(613\) 40.0742 23.1368i 1.61858 0.934488i 0.631292 0.775545i \(-0.282525\pi\)
0.987288 0.158943i \(-0.0508085\pi\)
\(614\) 3.73728 + 2.15772i 0.150824 + 0.0870786i
\(615\) 0.312354 0.0125953
\(616\) −9.10688 7.55450i −0.366927 0.304379i
\(617\) 30.5101i 1.22829i −0.789193 0.614146i \(-0.789501\pi\)
0.789193 0.614146i \(-0.210499\pi\)
\(618\) −4.71430 2.72180i −0.189637 0.109487i
\(619\) −4.76427 8.25196i −0.191492 0.331674i 0.754253 0.656584i \(-0.227999\pi\)
−0.945745 + 0.324910i \(0.894666\pi\)
\(620\) 14.7624 8.52308i 0.592873 0.342295i
\(621\) −4.75884 0.594509i −0.190966 0.0238568i
\(622\) 12.4384i 0.498735i
\(623\) −10.1028 1.72273i −0.404761 0.0690197i
\(624\) −10.1170 −0.405003
\(625\) −1.31208 + 2.27258i −0.0524830 + 0.0909032i
\(626\) 3.27790 + 5.67748i 0.131011 + 0.226918i
\(627\) 8.54033 + 14.7923i 0.341068 + 0.590747i
\(628\) 19.5125 33.7966i 0.778632 1.34863i
\(629\) 16.9184i 0.674582i
\(630\) 0.495772 + 1.33859i 0.0197520 + 0.0533308i
\(631\) 7.71076i 0.306960i −0.988152 0.153480i \(-0.950952\pi\)
0.988152 0.153480i \(-0.0490481\pi\)
\(632\) −11.3073 6.52826i −0.449779 0.259680i
\(633\) 2.79993 1.61654i 0.111287 0.0642516i
\(634\) −7.20146 12.4733i −0.286006 0.495378i
\(635\) 8.86357 15.3522i 0.351740 0.609232i
\(636\) 12.6654 0.502216
\(637\) 15.4265 + 17.9691i 0.611219 + 0.711962i
\(638\) 2.58499i 0.102341i
\(639\) 5.07463 8.78952i 0.200749 0.347708i
\(640\) 6.85841 + 11.8791i 0.271102 + 0.469563i
\(641\) 3.53672 2.04193i 0.139692 0.0806512i −0.428525 0.903530i \(-0.640967\pi\)
0.568217 + 0.822879i \(0.307633\pi\)
\(642\) 1.04981 1.81832i 0.0414326 0.0717633i
\(643\) 12.6742 0.499820 0.249910 0.968269i \(-0.419599\pi\)
0.249910 + 0.968269i \(0.419599\pi\)
\(644\) 15.8674 + 16.8958i 0.625262 + 0.665787i
\(645\) 4.35510 0.171482
\(646\) 5.19775 9.00276i 0.204503 0.354209i
\(647\) 26.2316 15.1448i 1.03127 0.595405i 0.113923 0.993490i \(-0.463658\pi\)
0.917349 + 0.398084i \(0.130325\pi\)
\(648\) −0.796477 1.37954i −0.0312886 0.0541934i
\(649\) −0.956919 + 1.65743i −0.0375624 + 0.0650599i
\(650\) 4.67590i 0.183404i
\(651\) 18.7778 + 3.20198i 0.735961 + 0.125496i
\(652\) −24.8102 −0.971642
\(653\) −5.64151 + 9.77138i −0.220769 + 0.382384i −0.955042 0.296471i \(-0.904190\pi\)
0.734272 + 0.678855i \(0.237523\pi\)
\(654\) −0.446606 0.773544i −0.0174637 0.0302479i
\(655\) 5.03650 2.90783i 0.196793 0.113618i
\(656\) 0.624111 + 0.360330i 0.0243674 + 0.0140685i
\(657\) 0.145161i 0.00566327i
\(658\) 3.32629 + 2.75928i 0.129672 + 0.107568i
\(659\) 26.5417i 1.03392i −0.856010 0.516960i \(-0.827064\pi\)
0.856010 0.516960i \(-0.172936\pi\)
\(660\) −3.32351 + 5.75649i −0.129367 + 0.224071i
\(661\) −20.0973 34.8095i −0.781693 1.35393i −0.930955 0.365135i \(-0.881023\pi\)
0.149261 0.988798i \(-0.452310\pi\)
\(662\) 2.75175 + 4.76617i 0.106950 + 0.185242i
\(663\) −6.94361 + 12.0267i −0.269667 + 0.467077i
\(664\) −13.7573 −0.533887
\(665\) −13.3199 + 16.0570i −0.516524 + 0.622665i
\(666\) 1.71575i 0.0664838i
\(667\) −1.31498 + 10.5260i −0.0509163 + 0.407567i
\(668\) −0.674628 + 0.389497i −0.0261022 + 0.0150701i
\(669\) 7.78629 + 13.4862i 0.301035 + 0.521408i
\(670\) −1.76535 1.01922i −0.0682013 0.0393760i
\(671\) 3.79268i 0.146415i
\(672\) −1.97048 + 11.5557i −0.0760129 + 0.445772i
\(673\) 39.8949 1.53784 0.768918 0.639348i \(-0.220795\pi\)
0.768918 + 0.639348i \(0.220795\pi\)
\(674\) 6.86568 + 3.96390i 0.264456 + 0.152684i
\(675\) −2.87533 + 1.66008i −0.110672 + 0.0638963i
\(676\) 1.41916 + 2.45806i 0.0545832 + 0.0945409i
\(677\) −4.92309 + 8.52703i −0.189210 + 0.327721i −0.944987 0.327108i \(-0.893926\pi\)
0.755777 + 0.654829i \(0.227259\pi\)
\(678\) −8.59921 −0.330251
\(679\) 7.82369 + 21.1241i 0.300246 + 0.810668i
\(680\) 8.47467 0.324989
\(681\) 22.1773 + 12.8041i 0.849838 + 0.490654i
\(682\) −4.20714 7.28699i −0.161100 0.279033i
\(683\) −14.4397 25.0103i −0.552520 0.956993i −0.998092 0.0617467i \(-0.980333\pi\)
0.445572 0.895246i \(-0.353000\pi\)
\(684\) 5.55681 9.62468i 0.212470 0.368009i
\(685\) 30.1248i 1.15101i
\(686\) 6.61044 3.96710i 0.252388 0.151465i
\(687\) 13.9181i 0.531007i
\(688\) 8.70189 + 5.02404i 0.331756 + 0.191540i
\(689\) 11.7287 + 20.3147i 0.446827 + 0.773927i
\(690\) −1.56154 + 2.06316i −0.0594468 + 0.0785431i
\(691\) 11.3374 + 6.54566i 0.431296 + 0.249009i 0.699899 0.714242i \(-0.253229\pi\)
−0.268603 + 0.963251i \(0.586562\pi\)
\(692\) 26.1733i 0.994958i
\(693\) −6.96556 + 2.57982i −0.264600 + 0.0979994i
\(694\) 8.18920 0.310858
\(695\) −12.5193 7.22802i −0.474884 0.274175i
\(696\) −3.05137 + 1.76171i −0.115662 + 0.0667774i
\(697\) 0.856695 0.494613i 0.0324496 0.0187348i
\(698\) 12.7313 + 7.35042i 0.481887 + 0.278218i
\(699\) 16.7500i 0.633545i
\(700\) 15.8181 + 2.69730i 0.597868 + 0.101948i
\(701\) 15.0246i 0.567471i 0.958903 + 0.283735i \(0.0915737\pi\)
−0.958903 + 0.283735i \(0.908426\pi\)
\(702\) 0.704171 1.21966i 0.0265772 0.0460331i
\(703\) −21.7165 + 12.5381i −0.819055 + 0.472882i
\(704\) −10.0569 + 5.80633i −0.379032 + 0.218834i
\(705\) 2.54297 4.40456i 0.0957740 0.165885i
\(706\) 6.02934i 0.226917i
\(707\) 24.0056 + 19.9135i 0.902822 + 0.748925i
\(708\) 1.24525 0.0467993
\(709\) 0.0358729 + 0.0207113i 0.00134724 + 0.000777827i 0.500673 0.865636i \(-0.333086\pi\)
−0.499326 + 0.866414i \(0.666419\pi\)
\(710\) −2.73789 4.74217i −0.102751 0.177971i
\(711\) −7.09830 + 4.09821i −0.266207 + 0.153695i
\(712\) 3.08526 5.34382i 0.115625 0.200268i
\(713\) 13.4244 + 31.8125i 0.502749 + 1.19139i
\(714\) 3.47942 + 2.88631i 0.130214 + 0.108017i
\(715\) −12.3108 −0.460398
\(716\) −11.8586 + 20.5397i −0.443176 + 0.767604i
\(717\) 7.15738 4.13232i 0.267297 0.154324i
\(718\) −5.85645 + 3.38122i −0.218561 + 0.126186i
\(719\) 2.48281 + 1.43345i 0.0925932 + 0.0534587i 0.545582 0.838058i \(-0.316309\pi\)
−0.452988 + 0.891516i \(0.649642\pi\)
\(720\) 3.87574 0.144440
\(721\) 34.1063 + 5.81579i 1.27018 + 0.216591i
\(722\) −7.49880 −0.279076
\(723\) −22.5988 13.0474i −0.840459 0.485239i
\(724\) 3.44822 + 5.97249i 0.128152 + 0.221966i
\(725\) 3.67188 + 6.35988i 0.136370 + 0.236200i
\(726\) −1.12402 0.648951i −0.0417162 0.0240848i
\(727\) 16.1319 0.598300 0.299150 0.954206i \(-0.403297\pi\)
0.299150 + 0.954206i \(0.403297\pi\)
\(728\) −13.3712 + 4.95226i −0.495569 + 0.183543i
\(729\) −1.00000 −0.0370370
\(730\) 0.0678254 + 0.0391590i 0.00251033 + 0.00144934i
\(731\) 11.9448 6.89632i 0.441794 0.255070i
\(732\) 2.13712 1.23387i 0.0789901 0.0456050i
\(733\) 9.38450 16.2544i 0.346624 0.600371i −0.639023 0.769187i \(-0.720661\pi\)
0.985647 + 0.168817i \(0.0539946\pi\)
\(734\) 2.45051 0.0904500
\(735\) −5.90977 6.88384i −0.217985 0.253914i
\(736\) −19.5772 + 8.26131i −0.721625 + 0.304516i
\(737\) 5.30368 9.18625i 0.195364 0.338380i
\(738\) −0.0868798 + 0.0501601i −0.00319809 + 0.00184642i
\(739\) −21.6696 37.5329i −0.797131 1.38067i −0.921477 0.388432i \(-0.873017\pi\)
0.124347 0.992239i \(-0.460316\pi\)
\(740\) −8.45110 4.87925i −0.310669 0.179365i
\(741\) 20.5833 0.756146
\(742\) 7.16079 2.65213i 0.262881 0.0973627i
\(743\) 39.9810i 1.46676i 0.679819 + 0.733380i \(0.262058\pi\)
−0.679819 + 0.733380i \(0.737942\pi\)
\(744\) −5.73447 + 9.93240i −0.210236 + 0.364139i
\(745\) 13.5598 7.82876i 0.496793 0.286824i
\(746\) 9.57626 5.52886i 0.350612 0.202426i
\(747\) −4.31817 + 7.47930i −0.157994 + 0.273653i
\(748\) 21.0512i 0.769707i
\(749\) −2.24317 + 13.1549i −0.0819635 + 0.480669i
\(750\) 4.48894i 0.163913i
\(751\) 40.0065 + 23.0978i 1.45986 + 0.842850i 0.999004 0.0446250i \(-0.0142093\pi\)
0.460855 + 0.887475i \(0.347543\pi\)
\(752\) 10.1622 5.86714i 0.370577 0.213953i
\(753\) −11.7876 + 6.80560i −0.429566 + 0.248010i
\(754\) −2.69774 1.55754i −0.0982457 0.0567222i
\(755\) −14.2650 −0.519157
\(756\) 3.71978 + 3.08570i 0.135287 + 0.112226i
\(757\) 44.6366i 1.62235i −0.584807 0.811173i \(-0.698830\pi\)
0.584807 0.811173i \(-0.301170\pi\)
\(758\) 12.8733 + 7.43238i 0.467578 + 0.269956i
\(759\) −10.7360 8.12570i −0.389691 0.294944i
\(760\) −6.28048 10.8781i −0.227817 0.394590i
\(761\) −18.8170 10.8640i −0.682115 0.393819i 0.118536 0.992950i \(-0.462180\pi\)
−0.800651 + 0.599130i \(0.795513\pi\)
\(762\) 5.69352i 0.206254i
\(763\) 4.36941 + 3.62459i 0.158183 + 0.131219i
\(764\) 6.29503i 0.227746i
\(765\) 2.66005 4.60734i 0.0961742 0.166579i
\(766\) 2.66051 + 4.60814i 0.0961281 + 0.166499i
\(767\) 1.15315 + 1.99731i 0.0416378 + 0.0721188i
\(768\) 3.34899 + 1.93354i 0.120846 + 0.0697707i
\(769\) 1.28406 0.0463045 0.0231522 0.999732i \(-0.492630\pi\)
0.0231522 + 0.999732i \(0.492630\pi\)
\(770\) −0.673646 + 3.95055i −0.0242765 + 0.142368i
\(771\) −4.65906 −0.167792
\(772\) 7.89813 13.6800i 0.284260 0.492353i
\(773\) −26.8737 46.5465i −0.966578 1.67416i −0.705314 0.708895i \(-0.749194\