Properties

Label 483.2.j.a.229.17
Level $483$
Weight $2$
Character 483.229
Analytic conductor $3.857$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(229,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.229");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.j (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 229.17
Character \(\chi\) \(=\) 483.229
Dual form 483.2.j.a.367.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.208136 - 0.360502i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(0.913359 + 1.58198i) q^{4} +(-0.648045 + 1.12245i) q^{5} +0.416272i q^{6} +(0.918903 + 2.48105i) q^{7} +1.59295 q^{8} +(0.500000 - 0.866025i) q^{9} +(0.269763 + 0.467243i) q^{10} +(-2.43137 + 1.40375i) q^{11} +(-1.58198 - 0.913359i) q^{12} -3.38323i q^{13} +(1.08568 + 0.185130i) q^{14} -1.29609i q^{15} +(-1.49517 + 2.58970i) q^{16} +(-2.05236 - 3.55480i) q^{17} +(-0.208136 - 0.360502i) q^{18} +(-3.04196 + 5.26884i) q^{19} -2.36759 q^{20} +(-2.03632 - 1.68920i) q^{21} +1.16868i q^{22} +(-3.82402 + 2.89428i) q^{23} +(-1.37954 + 0.796477i) q^{24} +(1.66008 + 2.87533i) q^{25} +(-1.21966 - 0.704171i) q^{26} +1.00000i q^{27} +(-3.08570 + 3.71978i) q^{28} +2.21188 q^{29} +(-0.467243 - 0.269763i) q^{30} +(6.23520 - 3.59990i) q^{31} +(2.21535 + 3.83710i) q^{32} +(1.40375 - 2.43137i) q^{33} -1.70868 q^{34} +(-3.38034 - 0.576414i) q^{35} +1.82672 q^{36} +(3.56949 + 2.06085i) q^{37} +(1.26628 + 2.19327i) q^{38} +(1.69161 + 2.92996i) q^{39} +(-1.03231 + 1.78801i) q^{40} -0.240997i q^{41} +(-1.03279 + 0.382513i) q^{42} +3.36019i q^{43} +(-4.44143 - 2.56426i) q^{44} +(0.648045 + 1.12245i) q^{45} +(0.247477 + 1.98097i) q^{46} +(-3.39835 - 1.96204i) q^{47} -2.99033i q^{48} +(-5.31124 + 4.55969i) q^{49} +1.38208 q^{50} +(3.55480 + 2.05236i) q^{51} +(5.35221 - 3.09010i) q^{52} +(6.00452 - 3.46671i) q^{53} +(0.360502 + 0.208136i) q^{54} -3.63878i q^{55} +(1.46377 + 3.95220i) q^{56} -6.08393i q^{57} +(0.460371 - 0.797386i) q^{58} +(-0.590358 + 0.340843i) q^{59} +(2.05039 - 1.18380i) q^{60} +(0.675455 - 1.16992i) q^{61} -2.99707i q^{62} +(2.60811 + 0.444733i) q^{63} -4.13629 q^{64} +(3.79749 + 2.19248i) q^{65} +(-0.584342 - 1.01211i) q^{66} +(-3.27203 + 1.88911i) q^{67} +(3.74909 - 6.49361i) q^{68} +(1.86456 - 4.41853i) q^{69} +(-0.911368 + 1.09865i) q^{70} +10.1493 q^{71} +(0.796477 - 1.37954i) q^{72} +(-0.125713 + 0.0725804i) q^{73} +(1.48588 - 0.857873i) q^{74} +(-2.87533 - 1.66008i) q^{75} -11.1136 q^{76} +(-5.71697 - 4.74244i) q^{77} +1.40834 q^{78} +(7.09830 + 4.09821i) q^{79} +(-1.93787 - 3.35649i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-0.0868798 - 0.0501601i) q^{82} +8.63635 q^{83} +(0.812401 - 4.76427i) q^{84} +5.32009 q^{85} +(1.21135 + 0.699375i) q^{86} +(-1.91554 + 1.10594i) q^{87} +(-3.87306 + 2.23611i) q^{88} +(-1.93681 + 3.35466i) q^{89} +0.539526 q^{90} +(8.39396 - 3.10885i) q^{91} +(-8.07141 - 3.40602i) q^{92} +(-3.59990 + 6.23520i) q^{93} +(-1.41464 + 0.816740i) q^{94} +(-3.94266 - 6.82889i) q^{95} +(-3.83710 - 2.21535i) q^{96} +8.51417 q^{97} +(0.538318 + 2.86375i) q^{98} +2.80750i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 4 q^{2} - 36 q^{4} - 24 q^{8} + 32 q^{9} - 44 q^{16} - 4 q^{18} - 16 q^{23} - 12 q^{25} + 84 q^{26} + 24 q^{29} - 12 q^{31} + 8 q^{32} + 32 q^{35} - 72 q^{36} - 8 q^{46} - 12 q^{47} + 8 q^{49} - 96 q^{50}+ \cdots + 112 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.208136 0.360502i 0.147174 0.254913i −0.783008 0.622012i \(-0.786316\pi\)
0.930182 + 0.367099i \(0.119649\pi\)
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) 0.913359 + 1.58198i 0.456679 + 0.790992i
\(5\) −0.648045 + 1.12245i −0.289815 + 0.501974i −0.973765 0.227555i \(-0.926927\pi\)
0.683951 + 0.729528i \(0.260260\pi\)
\(6\) 0.416272i 0.169942i
\(7\) 0.918903 + 2.48105i 0.347313 + 0.937749i
\(8\) 1.59295 0.563195
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0.269763 + 0.467243i 0.0853065 + 0.147755i
\(11\) −2.43137 + 1.40375i −0.733086 + 0.423247i −0.819550 0.573008i \(-0.805776\pi\)
0.0864644 + 0.996255i \(0.472443\pi\)
\(12\) −1.58198 0.913359i −0.456679 0.263664i
\(13\) 3.38323i 0.938338i −0.883108 0.469169i \(-0.844554\pi\)
0.883108 0.469169i \(-0.155446\pi\)
\(14\) 1.08568 + 0.185130i 0.290160 + 0.0494780i
\(15\) 1.29609i 0.334649i
\(16\) −1.49517 + 2.58970i −0.373792 + 0.647426i
\(17\) −2.05236 3.55480i −0.497771 0.862165i 0.502226 0.864737i \(-0.332515\pi\)
−0.999997 + 0.00257180i \(0.999181\pi\)
\(18\) −0.208136 0.360502i −0.0490581 0.0849711i
\(19\) −3.04196 + 5.26884i −0.697874 + 1.20875i 0.271328 + 0.962487i \(0.412537\pi\)
−0.969202 + 0.246267i \(0.920796\pi\)
\(20\) −2.36759 −0.529409
\(21\) −2.03632 1.68920i −0.444361 0.368614i
\(22\) 1.16868i 0.249164i
\(23\) −3.82402 + 2.89428i −0.797364 + 0.603499i
\(24\) −1.37954 + 0.796477i −0.281597 + 0.162580i
\(25\) 1.66008 + 2.87533i 0.332015 + 0.575067i
\(26\) −1.21966 0.704171i −0.239195 0.138099i
\(27\) 1.00000i 0.192450i
\(28\) −3.08570 + 3.71978i −0.583142 + 0.702972i
\(29\) 2.21188 0.410735 0.205368 0.978685i \(-0.434161\pi\)
0.205368 + 0.978685i \(0.434161\pi\)
\(30\) −0.467243 0.269763i −0.0853065 0.0492517i
\(31\) 6.23520 3.59990i 1.11988 0.646561i 0.178506 0.983939i \(-0.442873\pi\)
0.941369 + 0.337378i \(0.109540\pi\)
\(32\) 2.21535 + 3.83710i 0.391622 + 0.678310i
\(33\) 1.40375 2.43137i 0.244362 0.423247i
\(34\) −1.70868 −0.293036
\(35\) −3.38034 0.576414i −0.571382 0.0974317i
\(36\) 1.82672 0.304453
\(37\) 3.56949 + 2.06085i 0.586821 + 0.338801i 0.763840 0.645406i \(-0.223312\pi\)
−0.177018 + 0.984208i \(0.556645\pi\)
\(38\) 1.26628 + 2.19327i 0.205418 + 0.355795i
\(39\) 1.69161 + 2.92996i 0.270875 + 0.469169i
\(40\) −1.03231 + 1.78801i −0.163222 + 0.282709i
\(41\) 0.240997i 0.0376374i −0.999823 0.0188187i \(-0.994009\pi\)
0.999823 0.0188187i \(-0.00599053\pi\)
\(42\) −1.03279 + 0.382513i −0.159363 + 0.0590231i
\(43\) 3.36019i 0.512424i 0.966621 + 0.256212i \(0.0824744\pi\)
−0.966621 + 0.256212i \(0.917526\pi\)
\(44\) −4.44143 2.56426i −0.669570 0.386577i
\(45\) 0.648045 + 1.12245i 0.0966049 + 0.167325i
\(46\) 0.247477 + 1.98097i 0.0364886 + 0.292078i
\(47\) −3.39835 1.96204i −0.495700 0.286192i 0.231236 0.972898i \(-0.425723\pi\)
−0.726936 + 0.686705i \(0.759056\pi\)
\(48\) 2.99033i 0.431617i
\(49\) −5.31124 + 4.55969i −0.758748 + 0.651384i
\(50\) 1.38208 0.195456
\(51\) 3.55480 + 2.05236i 0.497771 + 0.287388i
\(52\) 5.35221 3.09010i 0.742218 0.428520i
\(53\) 6.00452 3.46671i 0.824785 0.476190i −0.0272789 0.999628i \(-0.508684\pi\)
0.852064 + 0.523438i \(0.175351\pi\)
\(54\) 0.360502 + 0.208136i 0.0490581 + 0.0283237i
\(55\) 3.63878i 0.490653i
\(56\) 1.46377 + 3.95220i 0.195605 + 0.528135i
\(57\) 6.08393i 0.805836i
\(58\) 0.460371 0.797386i 0.0604497 0.104702i
\(59\) −0.590358 + 0.340843i −0.0768581 + 0.0443740i −0.537937 0.842985i \(-0.680796\pi\)
0.461078 + 0.887359i \(0.347463\pi\)
\(60\) 2.05039 1.18380i 0.264705 0.152827i
\(61\) 0.675455 1.16992i 0.0864831 0.149793i −0.819539 0.573023i \(-0.805770\pi\)
0.906022 + 0.423230i \(0.139104\pi\)
\(62\) 2.99707i 0.380628i
\(63\) 2.60811 + 0.444733i 0.328590 + 0.0560311i
\(64\) −4.13629 −0.517036
\(65\) 3.79749 + 2.19248i 0.471021 + 0.271944i
\(66\) −0.584342 1.01211i −0.0719276 0.124582i
\(67\) −3.27203 + 1.88911i −0.399742 + 0.230791i −0.686373 0.727250i \(-0.740798\pi\)
0.286630 + 0.958041i \(0.407465\pi\)
\(68\) 3.74909 6.49361i 0.454644 0.787466i
\(69\) 1.86456 4.41853i 0.224467 0.531929i
\(70\) −0.911368 + 1.09865i −0.108929 + 0.131313i
\(71\) 10.1493 1.20450 0.602248 0.798309i \(-0.294272\pi\)
0.602248 + 0.798309i \(0.294272\pi\)
\(72\) 0.796477 1.37954i 0.0938658 0.162580i
\(73\) −0.125713 + 0.0725804i −0.0147136 + 0.00849490i −0.507339 0.861747i \(-0.669371\pi\)
0.492625 + 0.870242i \(0.336037\pi\)
\(74\) 1.48588 0.857873i 0.172730 0.0997257i
\(75\) −2.87533 1.66008i −0.332015 0.191689i
\(76\) −11.1136 −1.27482
\(77\) −5.71697 4.74244i −0.651510 0.540452i
\(78\) 1.40834 0.159463
\(79\) 7.09830 + 4.09821i 0.798621 + 0.461084i 0.842989 0.537931i \(-0.180794\pi\)
−0.0443675 + 0.999015i \(0.514127\pi\)
\(80\) −1.93787 3.35649i −0.216661 0.375267i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −0.0868798 0.0501601i −0.00959427 0.00553926i
\(83\) 8.63635 0.947962 0.473981 0.880535i \(-0.342816\pi\)
0.473981 + 0.880535i \(0.342816\pi\)
\(84\) 0.812401 4.76427i 0.0886403 0.519825i
\(85\) 5.32009 0.577045
\(86\) 1.21135 + 0.699375i 0.130624 + 0.0754156i
\(87\) −1.91554 + 1.10594i −0.205368 + 0.118569i
\(88\) −3.87306 + 2.23611i −0.412870 + 0.238370i
\(89\) −1.93681 + 3.35466i −0.205302 + 0.355593i −0.950229 0.311553i \(-0.899151\pi\)
0.744927 + 0.667146i \(0.232484\pi\)
\(90\) 0.539526 0.0568710
\(91\) 8.39396 3.10885i 0.879926 0.325897i
\(92\) −8.07141 3.40602i −0.841503 0.355103i
\(93\) −3.59990 + 6.23520i −0.373292 + 0.646561i
\(94\) −1.41464 + 0.816740i −0.145908 + 0.0842403i
\(95\) −3.94266 6.82889i −0.404508 0.700629i
\(96\) −3.83710 2.21535i −0.391622 0.226103i
\(97\) 8.51417 0.864483 0.432241 0.901758i \(-0.357723\pi\)
0.432241 + 0.901758i \(0.357723\pi\)
\(98\) 0.538318 + 2.86375i 0.0543784 + 0.289282i
\(99\) 2.80750i 0.282165i
\(100\) −3.03249 + 5.25242i −0.303249 + 0.525242i
\(101\) −10.2093 + 5.89435i −1.01587 + 0.586510i −0.912904 0.408175i \(-0.866165\pi\)
−0.102962 + 0.994685i \(0.532832\pi\)
\(102\) 1.47976 0.854341i 0.146518 0.0845923i
\(103\) 6.53852 11.3250i 0.644259 1.11589i −0.340213 0.940349i \(-0.610499\pi\)
0.984472 0.175542i \(-0.0561676\pi\)
\(104\) 5.38932i 0.528467i
\(105\) 3.21567 1.19098i 0.313817 0.116228i
\(106\) 2.88619i 0.280332i
\(107\) 4.36810 + 2.52193i 0.422280 + 0.243804i 0.696053 0.717991i \(-0.254938\pi\)
−0.273772 + 0.961795i \(0.588271\pi\)
\(108\) −1.58198 + 0.913359i −0.152226 + 0.0878880i
\(109\) 1.85827 1.07287i 0.177990 0.102762i −0.408358 0.912822i \(-0.633899\pi\)
0.586348 + 0.810059i \(0.300565\pi\)
\(110\) −1.31179 0.757360i −0.125074 0.0722115i
\(111\) −4.12170 −0.391214
\(112\) −7.79910 1.32990i −0.736946 0.125664i
\(113\) 20.6577i 1.94331i −0.236400 0.971656i \(-0.575967\pi\)
0.236400 0.971656i \(-0.424033\pi\)
\(114\) −2.19327 1.26628i −0.205418 0.118598i
\(115\) −0.770537 6.16789i −0.0718530 0.575158i
\(116\) 2.02024 + 3.49915i 0.187574 + 0.324888i
\(117\) −2.92996 1.69161i −0.270875 0.156390i
\(118\) 0.283767i 0.0261229i
\(119\) 6.93371 8.35853i 0.635612 0.766225i
\(120\) 2.06461i 0.188473i
\(121\) −1.55896 + 2.70020i −0.141724 + 0.245473i
\(122\) −0.281173 0.487005i −0.0254562 0.0440914i
\(123\) 0.120498 + 0.208709i 0.0108650 + 0.0188187i
\(124\) 11.3900 + 6.57600i 1.02285 + 0.590542i
\(125\) −10.7837 −0.964520
\(126\) 0.703167 0.847662i 0.0626431 0.0755157i
\(127\) 13.6774 1.21367 0.606836 0.794827i \(-0.292438\pi\)
0.606836 + 0.794827i \(0.292438\pi\)
\(128\) −5.29161 + 9.16534i −0.467717 + 0.810109i
\(129\) −1.68009 2.91001i −0.147924 0.256212i
\(130\) 1.58079 0.912669i 0.138644 0.0800463i
\(131\) 3.88592 + 2.24354i 0.339515 + 0.196019i 0.660057 0.751215i \(-0.270532\pi\)
−0.320543 + 0.947234i \(0.603865\pi\)
\(132\) 5.12852 0.446380
\(133\) −15.8675 2.70572i −1.37589 0.234616i
\(134\) 1.57277i 0.135866i
\(135\) −1.12245 0.648045i −0.0966049 0.0557748i
\(136\) −3.26932 5.66263i −0.280342 0.485567i
\(137\) 20.1289 11.6214i 1.71973 0.992885i 0.800327 0.599564i \(-0.204659\pi\)
0.919401 0.393322i \(-0.128674\pi\)
\(138\) −1.20481 1.59183i −0.102560 0.135506i
\(139\) 11.1536i 0.946034i −0.881053 0.473017i \(-0.843165\pi\)
0.881053 0.473017i \(-0.156835\pi\)
\(140\) −2.17559 5.87412i −0.183871 0.496453i
\(141\) 3.92407 0.330466
\(142\) 2.11243 3.65883i 0.177271 0.307042i
\(143\) 4.74921 + 8.22587i 0.397149 + 0.687882i
\(144\) 1.49517 + 2.58970i 0.124597 + 0.215809i
\(145\) −1.43340 + 2.48271i −0.119037 + 0.206178i
\(146\) 0.0604264i 0.00500092i
\(147\) 2.31982 6.60443i 0.191336 0.544724i
\(148\) 7.52918i 0.618895i
\(149\) −10.4621 6.04029i −0.857088 0.494840i 0.00594789 0.999982i \(-0.498107\pi\)
−0.863036 + 0.505142i \(0.831440\pi\)
\(150\) −1.19692 + 0.691042i −0.0977282 + 0.0564234i
\(151\) −5.50309 9.53164i −0.447835 0.775674i 0.550409 0.834895i \(-0.314472\pi\)
−0.998245 + 0.0592211i \(0.981138\pi\)
\(152\) −4.84571 + 8.39302i −0.393039 + 0.680764i
\(153\) −4.10473 −0.331847
\(154\) −2.89957 + 1.07391i −0.233654 + 0.0865379i
\(155\) 9.33158i 0.749531i
\(156\) −3.09010 + 5.35221i −0.247406 + 0.428520i
\(157\) 10.6817 + 18.5013i 0.852493 + 1.47656i 0.878951 + 0.476912i \(0.158244\pi\)
−0.0264581 + 0.999650i \(0.508423\pi\)
\(158\) 2.95482 1.70597i 0.235073 0.135720i
\(159\) −3.46671 + 6.00452i −0.274928 + 0.476190i
\(160\) −5.74259 −0.453991
\(161\) −10.6948 6.82803i −0.842865 0.538125i
\(162\) −0.416272 −0.0327054
\(163\) −6.79092 + 11.7622i −0.531906 + 0.921288i 0.467400 + 0.884046i \(0.345191\pi\)
−0.999306 + 0.0372422i \(0.988143\pi\)
\(164\) 0.381253 0.220117i 0.0297709 0.0171882i
\(165\) 1.81939 + 3.15127i 0.141639 + 0.245326i
\(166\) 1.79753 3.11342i 0.139516 0.241648i
\(167\) 0.426445i 0.0329993i 0.999864 + 0.0164996i \(0.00525223\pi\)
−0.999864 + 0.0164996i \(0.994748\pi\)
\(168\) −3.24376 2.69082i −0.250262 0.207602i
\(169\) 1.55379 0.119522
\(170\) 1.10730 1.91790i 0.0849262 0.147097i
\(171\) 3.04196 + 5.26884i 0.232625 + 0.402918i
\(172\) −5.31576 + 3.06906i −0.405323 + 0.234013i
\(173\) 12.4084 + 7.16401i 0.943396 + 0.544670i 0.891023 0.453958i \(-0.149988\pi\)
0.0523727 + 0.998628i \(0.483322\pi\)
\(174\) 0.920742i 0.0698013i
\(175\) −5.60841 + 6.76088i −0.423956 + 0.511075i
\(176\) 8.39537i 0.632825i
\(177\) 0.340843 0.590358i 0.0256194 0.0443740i
\(178\) 0.806241 + 1.39645i 0.0604303 + 0.104668i
\(179\) 6.49175 + 11.2440i 0.485216 + 0.840419i 0.999856 0.0169877i \(-0.00540760\pi\)
−0.514640 + 0.857407i \(0.672074\pi\)
\(180\) −1.18380 + 2.05039i −0.0882349 + 0.152827i
\(181\) −3.77532 −0.280617 −0.140309 0.990108i \(-0.544809\pi\)
−0.140309 + 0.990108i \(0.544809\pi\)
\(182\) 0.626336 3.67310i 0.0464271 0.272268i
\(183\) 1.35091i 0.0998621i
\(184\) −6.09149 + 4.61046i −0.449071 + 0.339887i
\(185\) −4.62639 + 2.67105i −0.340139 + 0.196379i
\(186\) 1.49854 + 2.59554i 0.109878 + 0.190314i
\(187\) 9.98011 + 5.76202i 0.729818 + 0.421360i
\(188\) 7.16817i 0.522793i
\(189\) −2.48105 + 0.918903i −0.180470 + 0.0668403i
\(190\) −3.28244 −0.238133
\(191\) 2.98440 + 1.72305i 0.215944 + 0.124675i 0.604071 0.796931i \(-0.293544\pi\)
−0.388127 + 0.921606i \(0.626878\pi\)
\(192\) 3.58213 2.06815i 0.258518 0.149256i
\(193\) −4.32367 7.48882i −0.311225 0.539057i 0.667403 0.744697i \(-0.267406\pi\)
−0.978628 + 0.205640i \(0.934073\pi\)
\(194\) 1.77210 3.06937i 0.127230 0.220368i
\(195\) −4.38497 −0.314014
\(196\) −12.0644 4.23766i −0.861744 0.302690i
\(197\) 13.0386 0.928962 0.464481 0.885583i \(-0.346241\pi\)
0.464481 + 0.885583i \(0.346241\pi\)
\(198\) 1.01211 + 0.584342i 0.0719276 + 0.0415274i
\(199\) 4.47236 + 7.74636i 0.317037 + 0.549125i 0.979868 0.199644i \(-0.0639787\pi\)
−0.662831 + 0.748769i \(0.730645\pi\)
\(200\) 2.64442 + 4.58028i 0.186989 + 0.323875i
\(201\) 1.88911 3.27203i 0.133247 0.230791i
\(202\) 4.90731i 0.345277i
\(203\) 2.03250 + 5.48778i 0.142653 + 0.385167i
\(204\) 7.49818i 0.524977i
\(205\) 0.270506 + 0.156177i 0.0188930 + 0.0109079i
\(206\) −2.72180 4.71430i −0.189637 0.328461i
\(207\) 0.594509 + 4.75884i 0.0413212 + 0.330762i
\(208\) 8.76155 + 5.05849i 0.607505 + 0.350743i
\(209\) 17.0807i 1.18149i
\(210\) 0.239945 1.40714i 0.0165578 0.0971019i
\(211\) −3.23308 −0.222574 −0.111287 0.993788i \(-0.535497\pi\)
−0.111287 + 0.993788i \(0.535497\pi\)
\(212\) 10.9686 + 6.33271i 0.753325 + 0.434932i
\(213\) −8.78952 + 5.07463i −0.602248 + 0.347708i
\(214\) 1.81832 1.04981i 0.124298 0.0717633i
\(215\) −3.77163 2.17755i −0.257223 0.148508i
\(216\) 1.59295i 0.108387i
\(217\) 14.6611 + 12.1619i 0.995259 + 0.825604i
\(218\) 0.893211i 0.0604959i
\(219\) 0.0725804 0.125713i 0.00490453 0.00849490i
\(220\) 5.75649 3.32351i 0.388102 0.224071i
\(221\) −12.0267 + 6.94361i −0.809002 + 0.467077i
\(222\) −0.857873 + 1.48588i −0.0575767 + 0.0997257i
\(223\) 15.5726i 1.04282i −0.853307 0.521408i \(-0.825407\pi\)
0.853307 0.521408i \(-0.174593\pi\)
\(224\) −7.48435 + 9.02232i −0.500069 + 0.602829i
\(225\) 3.32015 0.221343
\(226\) −7.44714 4.29961i −0.495376 0.286006i
\(227\) 12.8041 + 22.1773i 0.849838 + 1.47196i 0.881353 + 0.472459i \(0.156634\pi\)
−0.0315149 + 0.999503i \(0.510033\pi\)
\(228\) 9.62468 5.55681i 0.637410 0.368009i
\(229\) 6.95903 12.0534i 0.459865 0.796510i −0.539088 0.842249i \(-0.681231\pi\)
0.998953 + 0.0457393i \(0.0145643\pi\)
\(230\) −2.38391 1.00598i −0.157190 0.0663322i
\(231\) 7.32227 + 1.24859i 0.481770 + 0.0821511i
\(232\) 3.52342 0.231324
\(233\) −8.37502 + 14.5060i −0.548666 + 0.950317i 0.449700 + 0.893179i \(0.351531\pi\)
−0.998366 + 0.0571377i \(0.981803\pi\)
\(234\) −1.21966 + 0.704171i −0.0797316 + 0.0460331i
\(235\) 4.40456 2.54297i 0.287322 0.165885i
\(236\) −1.07842 0.622625i −0.0701990 0.0405294i
\(237\) −8.19641 −0.532414
\(238\) −1.57011 4.23933i −0.101775 0.274795i
\(239\) −8.26463 −0.534595 −0.267297 0.963614i \(-0.586131\pi\)
−0.267297 + 0.963614i \(0.586131\pi\)
\(240\) 3.35649 + 1.93787i 0.216661 + 0.125089i
\(241\) −13.0474 22.5988i −0.840459 1.45572i −0.889507 0.456922i \(-0.848952\pi\)
0.0490478 0.998796i \(-0.484381\pi\)
\(242\) 0.648951 + 1.12402i 0.0417162 + 0.0722545i
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) 2.46773 0.157980
\(245\) −1.67609 8.91647i −0.107081 0.569652i
\(246\) 0.100320 0.00639618
\(247\) 17.8257 + 10.2917i 1.13422 + 0.654842i
\(248\) 9.93240 5.73447i 0.630708 0.364139i
\(249\) −7.47930 + 4.31817i −0.473981 + 0.273653i
\(250\) −2.24447 + 3.88753i −0.141953 + 0.245869i
\(251\) −13.6112 −0.859131 −0.429566 0.903036i \(-0.641333\pi\)
−0.429566 + 0.903036i \(0.641333\pi\)
\(252\) 1.67858 + 4.53218i 0.105740 + 0.285501i
\(253\) 5.23476 12.4050i 0.329107 0.779898i
\(254\) 2.84676 4.93073i 0.178621 0.309381i
\(255\) −4.60734 + 2.66005i −0.288523 + 0.166579i
\(256\) −1.93354 3.34899i −0.120846 0.209312i
\(257\) 4.03487 + 2.32953i 0.251688 + 0.145312i 0.620537 0.784177i \(-0.286915\pi\)
−0.368849 + 0.929489i \(0.620248\pi\)
\(258\) −1.39875 −0.0870824
\(259\) −1.83305 + 10.7498i −0.113900 + 0.667961i
\(260\) 8.01009i 0.496765i
\(261\) 1.10594 1.91554i 0.0684559 0.118569i
\(262\) 1.61760 0.933922i 0.0999356 0.0576979i
\(263\) −26.5367 + 15.3210i −1.63632 + 0.944731i −0.654237 + 0.756289i \(0.727010\pi\)
−0.982084 + 0.188442i \(0.939656\pi\)
\(264\) 2.23611 3.87306i 0.137623 0.238370i
\(265\) 8.98635i 0.552027i
\(266\) −4.27802 + 5.15712i −0.262302 + 0.316203i
\(267\) 3.87363i 0.237062i
\(268\) −5.97708 3.45087i −0.365108 0.210795i
\(269\) −20.8811 + 12.0557i −1.27315 + 0.735051i −0.975579 0.219650i \(-0.929509\pi\)
−0.297567 + 0.954701i \(0.596175\pi\)
\(270\) −0.467243 + 0.269763i −0.0284355 + 0.0164172i
\(271\) 10.6658 + 6.15787i 0.647898 + 0.374064i 0.787651 0.616122i \(-0.211297\pi\)
−0.139752 + 0.990187i \(0.544631\pi\)
\(272\) 12.2745 0.744251
\(273\) −5.71495 + 6.88933i −0.345885 + 0.416961i
\(274\) 9.67534i 0.584509i
\(275\) −8.07251 4.66067i −0.486791 0.281049i
\(276\) 8.69306 1.08600i 0.523261 0.0653695i
\(277\) −11.5136 19.9422i −0.691788 1.19821i −0.971252 0.238055i \(-0.923490\pi\)
0.279464 0.960156i \(-0.409843\pi\)
\(278\) −4.02089 2.32146i −0.241157 0.139232i
\(279\) 7.19979i 0.431040i
\(280\) −5.38473 0.918201i −0.321799 0.0548730i
\(281\) 18.7454i 1.11826i 0.829081 + 0.559128i \(0.188864\pi\)
−0.829081 + 0.559128i \(0.811136\pi\)
\(282\) 0.816740 1.41464i 0.0486362 0.0842403i
\(283\) −12.5662 21.7654i −0.746985 1.29382i −0.949261 0.314488i \(-0.898167\pi\)
0.202276 0.979329i \(-0.435166\pi\)
\(284\) 9.26992 + 16.0560i 0.550069 + 0.952747i
\(285\) 6.82889 + 3.94266i 0.404508 + 0.233543i
\(286\) 3.95392 0.233800
\(287\) 0.597926 0.221453i 0.0352944 0.0130719i
\(288\) 4.43070 0.261082
\(289\) 0.0756136 0.130967i 0.00444786 0.00770392i
\(290\) 0.596682 + 1.03348i 0.0350384 + 0.0606883i
\(291\) −7.37349 + 4.25708i −0.432241 + 0.249555i
\(292\) −0.229642 0.132584i −0.0134388 0.00775889i
\(293\) −8.60003 −0.502419 −0.251210 0.967933i \(-0.580828\pi\)
−0.251210 + 0.967933i \(0.580828\pi\)
\(294\) −1.89807 2.21092i −0.110698 0.128943i
\(295\) 0.883527i 0.0514409i
\(296\) 5.68604 + 3.28284i 0.330494 + 0.190811i
\(297\) −1.40375 2.43137i −0.0814539 0.141082i
\(298\) −4.35508 + 2.51440i −0.252283 + 0.145656i
\(299\) 9.79200 + 12.9375i 0.566286 + 0.748197i
\(300\) 6.06498i 0.350162i
\(301\) −8.33680 + 3.08768i −0.480525 + 0.177971i
\(302\) −4.58157 −0.263639
\(303\) 5.89435 10.2093i 0.338622 0.586510i
\(304\) −9.09649 15.7556i −0.521719 0.903644i
\(305\) 0.875450 + 1.51632i 0.0501281 + 0.0868245i
\(306\) −0.854341 + 1.47976i −0.0488394 + 0.0845923i
\(307\) 10.3669i 0.591670i 0.955239 + 0.295835i \(0.0955978\pi\)
−0.955239 + 0.295835i \(0.904402\pi\)
\(308\) 2.28082 13.3757i 0.129962 0.762152i
\(309\) 13.0770i 0.743927i
\(310\) 3.36405 + 1.94224i 0.191065 + 0.110312i
\(311\) −25.8773 + 14.9403i −1.46737 + 0.847184i −0.999333 0.0365262i \(-0.988371\pi\)
−0.468034 + 0.883711i \(0.655037\pi\)
\(312\) 2.69466 + 4.66729i 0.152555 + 0.264233i
\(313\) 7.87441 13.6389i 0.445088 0.770915i −0.552970 0.833201i \(-0.686506\pi\)
0.998058 + 0.0622857i \(0.0198390\pi\)
\(314\) 8.89299 0.501860
\(315\) −2.18936 + 2.63925i −0.123356 + 0.148705i
\(316\) 14.9725i 0.842271i
\(317\) 17.2999 29.9643i 0.971659 1.68296i 0.281111 0.959675i \(-0.409297\pi\)
0.690548 0.723287i \(-0.257370\pi\)
\(318\) 1.44310 + 2.49951i 0.0809248 + 0.140166i
\(319\) −5.37789 + 3.10493i −0.301104 + 0.173842i
\(320\) 2.68050 4.64277i 0.149845 0.259539i
\(321\) −5.04385 −0.281520
\(322\) −4.68748 + 2.43432i −0.261223 + 0.135660i
\(323\) 24.9729 1.38953
\(324\) 0.913359 1.58198i 0.0507422 0.0878880i
\(325\) 9.72790 5.61641i 0.539607 0.311542i
\(326\) 2.82687 + 4.89628i 0.156566 + 0.271180i
\(327\) −1.07287 + 1.85827i −0.0593299 + 0.102762i
\(328\) 0.383897i 0.0211972i
\(329\) 1.74516 10.2344i 0.0962140 0.564240i
\(330\) 1.51472 0.0833826
\(331\) −6.61046 + 11.4497i −0.363344 + 0.629330i −0.988509 0.151163i \(-0.951698\pi\)
0.625165 + 0.780492i \(0.285032\pi\)
\(332\) 7.88809 + 13.6626i 0.432915 + 0.749831i
\(333\) 3.56949 2.06085i 0.195607 0.112934i
\(334\) 0.153734 + 0.0887584i 0.00841195 + 0.00485664i
\(335\) 4.89691i 0.267547i
\(336\) 7.41917 2.74783i 0.404749 0.149906i
\(337\) 19.0448i 1.03744i −0.854946 0.518718i \(-0.826410\pi\)
0.854946 0.518718i \(-0.173590\pi\)
\(338\) 0.323399 0.560143i 0.0175906 0.0304678i
\(339\) 10.3288 + 17.8901i 0.560986 + 0.971656i
\(340\) 4.85916 + 8.41630i 0.263525 + 0.456438i
\(341\) −10.1067 + 17.5054i −0.547310 + 0.947968i
\(342\) 2.53257 0.136946
\(343\) −16.1933 8.98754i −0.874358 0.485282i
\(344\) 5.35262i 0.288594i
\(345\) 3.75125 + 4.95628i 0.201960 + 0.266837i
\(346\) 5.16528 2.98218i 0.277687 0.160323i
\(347\) 9.83637 + 17.0371i 0.528044 + 0.914599i 0.999466 + 0.0326908i \(0.0104077\pi\)
−0.471422 + 0.881908i \(0.656259\pi\)
\(348\) −3.49915 2.02024i −0.187574 0.108296i
\(349\) 35.3155i 1.89040i 0.326499 + 0.945198i \(0.394131\pi\)
−0.326499 + 0.945198i \(0.605869\pi\)
\(350\) 1.27000 + 3.42902i 0.0678844 + 0.183289i
\(351\) 3.38323 0.180583
\(352\) −10.7727 6.21960i −0.574185 0.331506i
\(353\) −12.5436 + 7.24207i −0.667630 + 0.385456i −0.795178 0.606376i \(-0.792623\pi\)
0.127548 + 0.991832i \(0.459289\pi\)
\(354\) −0.141883 0.245749i −0.00754102 0.0130614i
\(355\) −6.57718 + 11.3920i −0.349081 + 0.604625i
\(356\) −7.07602 −0.375028
\(357\) −1.82551 + 10.7056i −0.0966160 + 0.566598i
\(358\) 5.40466 0.285645
\(359\) 14.0688 + 8.12264i 0.742524 + 0.428696i 0.822986 0.568061i \(-0.192306\pi\)
−0.0804624 + 0.996758i \(0.525640\pi\)
\(360\) 1.03231 + 1.78801i 0.0544073 + 0.0942363i
\(361\) −9.00709 15.6007i −0.474057 0.821092i
\(362\) −0.785779 + 1.36101i −0.0412996 + 0.0715331i
\(363\) 3.11792i 0.163648i
\(364\) 12.5849 + 10.4396i 0.659626 + 0.547184i
\(365\) 0.188142i 0.00984778i
\(366\) 0.487005 + 0.281173i 0.0254562 + 0.0146971i
\(367\) −2.94340 5.09812i −0.153644 0.266120i 0.778920 0.627123i \(-0.215768\pi\)
−0.932565 + 0.361003i \(0.882434\pi\)
\(368\) −1.77778 14.2305i −0.0926732 0.741817i
\(369\) −0.208709 0.120498i −0.0108650 0.00627290i
\(370\) 2.22376i 0.115608i
\(371\) 14.1187 + 11.7120i 0.733005 + 0.608055i
\(372\) −13.1520 −0.681899
\(373\) −23.0048 13.2818i −1.19114 0.687708i −0.232578 0.972578i \(-0.574716\pi\)
−0.958566 + 0.284870i \(0.908050\pi\)
\(374\) 4.15444 2.39856i 0.214821 0.124027i
\(375\) 9.33893 5.39183i 0.482260 0.278433i
\(376\) −5.41341 3.12543i −0.279175 0.161182i
\(377\) 7.48328i 0.385408i
\(378\) −0.185130 + 1.08568i −0.00952205 + 0.0558414i
\(379\) 35.7093i 1.83426i −0.398585 0.917131i \(-0.630499\pi\)
0.398585 0.917131i \(-0.369501\pi\)
\(380\) 7.20213 12.4744i 0.369461 0.639926i
\(381\) −11.8450 + 6.83870i −0.606836 + 0.350357i
\(382\) 1.24232 0.717255i 0.0635627 0.0366980i
\(383\) 6.39128 11.0700i 0.326579 0.565651i −0.655252 0.755411i \(-0.727437\pi\)
0.981831 + 0.189759i \(0.0607707\pi\)
\(384\) 10.5832i 0.540073i
\(385\) 9.02800 3.34368i 0.460109 0.170410i
\(386\) −3.59965 −0.183217
\(387\) 2.91001 + 1.68009i 0.147924 + 0.0854039i
\(388\) 7.77649 + 13.4693i 0.394792 + 0.683799i
\(389\) −9.43612 + 5.44795i −0.478430 + 0.276222i −0.719762 0.694221i \(-0.755749\pi\)
0.241332 + 0.970443i \(0.422416\pi\)
\(390\) −0.912669 + 1.58079i −0.0462148 + 0.0800463i
\(391\) 18.1369 + 7.65351i 0.917220 + 0.387055i
\(392\) −8.46056 + 7.26338i −0.427323 + 0.366856i
\(393\) −4.48708 −0.226343
\(394\) 2.71380 4.70044i 0.136719 0.236805i
\(395\) −9.20004 + 5.31165i −0.462904 + 0.267258i
\(396\) −4.44143 + 2.56426i −0.223190 + 0.128859i
\(397\) −29.6816 17.1367i −1.48968 0.860066i −0.489748 0.871864i \(-0.662911\pi\)
−0.999930 + 0.0117982i \(0.996244\pi\)
\(398\) 3.72343 0.186639
\(399\) 15.0945 5.59054i 0.755672 0.279877i
\(400\) −9.92836 −0.496418
\(401\) −30.8591 17.8165i −1.54103 0.889713i −0.998774 0.0494981i \(-0.984238\pi\)
−0.542254 0.840215i \(-0.682429\pi\)
\(402\) −0.786383 1.36206i −0.0392212 0.0679331i
\(403\) −12.1793 21.0951i −0.606692 1.05082i
\(404\) −18.6495 10.7673i −0.927850 0.535694i
\(405\) 1.29609 0.0644032
\(406\) 2.40139 + 0.409484i 0.119179 + 0.0203224i
\(407\) −11.5717 −0.573587
\(408\) 5.66263 + 3.26932i 0.280342 + 0.161856i
\(409\) 17.3884 10.0392i 0.859801 0.496406i −0.00414480 0.999991i \(-0.501319\pi\)
0.863946 + 0.503585i \(0.167986\pi\)
\(410\) 0.112604 0.0650120i 0.00556112 0.00321071i
\(411\) −11.6214 + 20.1289i −0.573243 + 0.992885i
\(412\) 23.8881 1.17688
\(413\) −1.38813 1.15151i −0.0683055 0.0566619i
\(414\) 1.83931 + 0.776164i 0.0903971 + 0.0381464i
\(415\) −5.59674 + 9.69384i −0.274733 + 0.475852i
\(416\) 12.9818 7.49503i 0.636484 0.367474i
\(417\) 5.57679 + 9.65928i 0.273097 + 0.473017i
\(418\) −6.15761 3.55510i −0.301178 0.173885i
\(419\) −14.4789 −0.707343 −0.353671 0.935370i \(-0.615067\pi\)
−0.353671 + 0.935370i \(0.615067\pi\)
\(420\) 4.82117 + 3.99934i 0.235249 + 0.195148i
\(421\) 5.46052i 0.266129i −0.991107 0.133065i \(-0.957518\pi\)
0.991107 0.133065i \(-0.0424818\pi\)
\(422\) −0.672919 + 1.16553i −0.0327572 + 0.0567371i
\(423\) −3.39835 + 1.96204i −0.165233 + 0.0953974i
\(424\) 9.56494 5.52232i 0.464514 0.268187i
\(425\) 6.81415 11.8025i 0.330535 0.572503i
\(426\) 4.22485i 0.204695i
\(427\) 3.52331 + 0.600794i 0.170505 + 0.0290745i
\(428\) 9.21369i 0.445361i
\(429\) −8.22587 4.74921i −0.397149 0.229294i
\(430\) −1.57002 + 0.906453i −0.0757132 + 0.0437131i
\(431\) 4.07918 2.35512i 0.196487 0.113442i −0.398529 0.917156i \(-0.630479\pi\)
0.595016 + 0.803714i \(0.297146\pi\)
\(432\) −2.58970 1.49517i −0.124597 0.0719362i
\(433\) 11.8433 0.569151 0.284576 0.958654i \(-0.408147\pi\)
0.284576 + 0.958654i \(0.408147\pi\)
\(434\) 7.43589 2.75402i 0.356934 0.132197i
\(435\) 2.86679i 0.137452i
\(436\) 3.39453 + 1.95983i 0.162568 + 0.0938589i
\(437\) −3.61695 28.9524i −0.173022 1.38498i
\(438\) −0.0302132 0.0523308i −0.00144364 0.00250046i
\(439\) −24.8602 14.3530i −1.18651 0.685032i −0.228999 0.973427i \(-0.573545\pi\)
−0.957512 + 0.288395i \(0.906879\pi\)
\(440\) 5.79641i 0.276333i
\(441\) 1.29319 + 6.87951i 0.0615804 + 0.327596i
\(442\) 5.78085i 0.274967i
\(443\) 19.2032 33.2609i 0.912372 1.58027i 0.101668 0.994818i \(-0.467582\pi\)
0.810704 0.585456i \(-0.199085\pi\)
\(444\) −3.76459 6.52046i −0.178659 0.309447i
\(445\) −2.51028 4.34794i −0.118999 0.206112i
\(446\) −5.61394 3.24121i −0.265828 0.153476i
\(447\) 12.0806 0.571392
\(448\) −3.80085 10.2624i −0.179573 0.484851i
\(449\) 16.2724 0.767941 0.383970 0.923345i \(-0.374556\pi\)
0.383970 + 0.923345i \(0.374556\pi\)
\(450\) 0.691042 1.19692i 0.0325761 0.0564234i
\(451\) 0.338300 + 0.585952i 0.0159299 + 0.0275914i
\(452\) 32.6801 18.8679i 1.53714 0.887471i
\(453\) 9.53164 + 5.50309i 0.447835 + 0.258558i
\(454\) 10.6600 0.500297
\(455\) −1.95014 + 11.4364i −0.0914239 + 0.536149i
\(456\) 9.69142i 0.453842i
\(457\) 27.2086 + 15.7089i 1.27277 + 0.734832i 0.975508 0.219965i \(-0.0705942\pi\)
0.297259 + 0.954797i \(0.403928\pi\)
\(458\) −2.89685 5.01748i −0.135361 0.234452i
\(459\) 3.55480 2.05236i 0.165924 0.0957961i
\(460\) 9.05372 6.85247i 0.422132 0.319498i
\(461\) 23.0035i 1.07138i 0.844415 + 0.535689i \(0.179948\pi\)
−0.844415 + 0.535689i \(0.820052\pi\)
\(462\) 1.97415 2.37981i 0.0918455 0.110719i
\(463\) 17.2955 0.803790 0.401895 0.915686i \(-0.368352\pi\)
0.401895 + 0.915686i \(0.368352\pi\)
\(464\) −3.30712 + 5.72811i −0.153529 + 0.265921i
\(465\) −4.66579 8.08139i −0.216371 0.374765i
\(466\) 3.48628 + 6.03842i 0.161499 + 0.279725i
\(467\) 17.5237 30.3520i 0.810902 1.40452i −0.101331 0.994853i \(-0.532310\pi\)
0.912233 0.409671i \(-0.134356\pi\)
\(468\) 6.18020i 0.285680i
\(469\) −7.69366 6.38218i −0.355260 0.294702i
\(470\) 2.11714i 0.0976563i
\(471\) −18.5013 10.6817i −0.852493 0.492187i
\(472\) −0.940413 + 0.542948i −0.0432860 + 0.0249912i
\(473\) −4.71687 8.16985i −0.216882 0.375650i
\(474\) −1.70597 + 2.95482i −0.0783577 + 0.135720i
\(475\) −20.1996 −0.926819
\(476\) 19.5560 + 3.33469i 0.896349 + 0.152845i
\(477\) 6.93343i 0.317460i
\(478\) −1.72017 + 2.97942i −0.0786786 + 0.136275i
\(479\) 19.6351 + 34.0089i 0.897149 + 1.55391i 0.831122 + 0.556090i \(0.187699\pi\)
0.0660270 + 0.997818i \(0.478968\pi\)
\(480\) 4.97323 2.87129i 0.226996 0.131056i
\(481\) 6.97231 12.0764i 0.317910 0.550637i
\(482\) −10.8626 −0.494776
\(483\) 12.6760 + 0.565870i 0.576776 + 0.0257480i
\(484\) −5.69556 −0.258889
\(485\) −5.51756 + 9.55670i −0.250540 + 0.433947i
\(486\) 0.360502 0.208136i 0.0163527 0.00944124i
\(487\) −12.7333 22.0547i −0.576999 0.999392i −0.995821 0.0913237i \(-0.970890\pi\)
0.418822 0.908068i \(-0.362443\pi\)
\(488\) 1.07597 1.86363i 0.0487068 0.0843627i
\(489\) 13.5818i 0.614192i
\(490\) −3.56326 1.25160i −0.160972 0.0565417i
\(491\) −18.1317 −0.818274 −0.409137 0.912473i \(-0.634170\pi\)
−0.409137 + 0.912473i \(0.634170\pi\)
\(492\) −0.220117 + 0.381253i −0.00992362 + 0.0171882i
\(493\) −4.53957 7.86277i −0.204452 0.354121i
\(494\) 7.42032 4.28412i 0.333856 0.192752i
\(495\) −3.15127 1.81939i −0.141639 0.0817755i
\(496\) 21.5298i 0.966716i
\(497\) 9.32619 + 25.1809i 0.418337 + 1.12952i
\(498\) 3.59507i 0.161099i
\(499\) 3.93276 6.81173i 0.176054 0.304935i −0.764471 0.644658i \(-0.777000\pi\)
0.940526 + 0.339723i \(0.110333\pi\)
\(500\) −9.84936 17.0596i −0.440477 0.762928i
\(501\) −0.213222 0.369312i −0.00952607 0.0164996i
\(502\) −2.83298 + 4.90686i −0.126442 + 0.219004i
\(503\) 34.6468 1.54482 0.772412 0.635122i \(-0.219050\pi\)
0.772412 + 0.635122i \(0.219050\pi\)
\(504\) 4.15459 + 0.708439i 0.185060 + 0.0315564i
\(505\) 15.2792i 0.679917i
\(506\) −3.38250 4.46908i −0.150370 0.198675i
\(507\) −1.34562 + 0.776893i −0.0597610 + 0.0345030i
\(508\) 12.4924 + 21.6374i 0.554259 + 0.960006i
\(509\) −2.04296 1.17950i −0.0905527 0.0522806i 0.454040 0.890981i \(-0.349982\pi\)
−0.544593 + 0.838701i \(0.683316\pi\)
\(510\) 2.21461i 0.0980644i
\(511\) −0.295594 0.245206i −0.0130763 0.0108473i
\(512\) −22.7762 −1.00658
\(513\) −5.26884 3.04196i −0.232625 0.134306i
\(514\) 1.67960 0.969719i 0.0740841 0.0427725i
\(515\) 8.47451 + 14.6783i 0.373432 + 0.646802i
\(516\) 3.06906 5.31576i 0.135108 0.234013i
\(517\) 11.0168 0.484520
\(518\) 3.49381 + 2.89824i 0.153509 + 0.127341i
\(519\) −14.3280 −0.628931
\(520\) 6.04923 + 3.49253i 0.265276 + 0.153157i
\(521\) −15.1524 26.2447i −0.663839 1.14980i −0.979599 0.200963i \(-0.935593\pi\)
0.315760 0.948839i \(-0.397741\pi\)
\(522\) −0.460371 0.797386i −0.0201499 0.0349006i
\(523\) −13.2982 + 23.0332i −0.581490 + 1.00717i 0.413813 + 0.910362i \(0.364197\pi\)
−0.995303 + 0.0968083i \(0.969137\pi\)
\(524\) 8.19662i 0.358071i
\(525\) 1.47658 8.65930i 0.0644432 0.377923i
\(526\) 12.7554i 0.556160i
\(527\) −25.5938 14.7766i −1.11488 0.643678i
\(528\) 4.19769 + 7.27061i 0.182681 + 0.316413i
\(529\) 6.24629 22.1356i 0.271578 0.962417i
\(530\) 3.23960 + 1.87038i 0.140719 + 0.0812442i
\(531\) 0.681687i 0.0295827i
\(532\) −10.2123 27.5735i −0.442761 1.19546i
\(533\) −0.815347 −0.0353166
\(534\) −1.39645 0.806241i −0.0604303 0.0348894i
\(535\) −5.66145 + 3.26864i −0.244766 + 0.141316i
\(536\) −5.21220 + 3.00927i −0.225133 + 0.129980i
\(537\) −11.2440 6.49175i −0.485216 0.280140i
\(538\) 10.0369i 0.432723i
\(539\) 6.51290 18.5419i 0.280531 0.798658i
\(540\) 2.36759i 0.101885i
\(541\) 12.6830 21.9676i 0.545284 0.944460i −0.453305 0.891356i \(-0.649755\pi\)
0.998589 0.0531042i \(-0.0169115\pi\)
\(542\) 4.43985 2.56335i 0.190708 0.110105i
\(543\) 3.26952 1.88766i 0.140309 0.0810072i
\(544\) 9.09341 15.7502i 0.389877 0.675286i
\(545\) 2.78107i 0.119128i
\(546\) 1.29413 + 3.49417i 0.0553836 + 0.149537i
\(547\) −3.00044 −0.128290 −0.0641448 0.997941i \(-0.520432\pi\)
−0.0641448 + 0.997941i \(0.520432\pi\)
\(548\) 36.7698 + 21.2291i 1.57073 + 0.906861i
\(549\) −0.675455 1.16992i −0.0288277 0.0499310i
\(550\) −3.36036 + 1.94010i −0.143286 + 0.0827263i
\(551\) −6.72845 + 11.6540i −0.286642 + 0.496478i
\(552\) 2.97016 7.03852i 0.126418 0.299579i
\(553\) −3.64521 + 21.3771i −0.155010 + 0.909047i
\(554\) −9.58561 −0.407253
\(555\) 2.67105 4.62639i 0.113380 0.196379i
\(556\) 17.6448 10.1872i 0.748306 0.432034i
\(557\) 0.716386 0.413606i 0.0303543 0.0175250i −0.484746 0.874655i \(-0.661088\pi\)
0.515100 + 0.857130i \(0.327755\pi\)
\(558\) −2.59554 1.49854i −0.109878 0.0634381i
\(559\) 11.3683 0.480826
\(560\) 6.54691 7.89225i 0.276658 0.333508i
\(561\) −11.5240 −0.486545
\(562\) 6.75775 + 3.90159i 0.285059 + 0.164579i
\(563\) 12.5287 + 21.7004i 0.528023 + 0.914562i 0.999466 + 0.0326661i \(0.0103998\pi\)
−0.471443 + 0.881896i \(0.656267\pi\)
\(564\) 3.58409 + 6.20782i 0.150917 + 0.261396i
\(565\) 23.1872 + 13.3871i 0.975491 + 0.563200i
\(566\) −10.4619 −0.439748
\(567\) 1.68920 2.03632i 0.0709398 0.0855174i
\(568\) 16.1673 0.678366
\(569\) 5.70825 + 3.29566i 0.239302 + 0.138161i 0.614856 0.788639i \(-0.289214\pi\)
−0.375554 + 0.926801i \(0.622547\pi\)
\(570\) 2.84267 1.64122i 0.119066 0.0687431i
\(571\) −9.07398 + 5.23887i −0.379734 + 0.219240i −0.677703 0.735336i \(-0.737024\pi\)
0.297968 + 0.954576i \(0.403691\pi\)
\(572\) −8.67546 + 15.0263i −0.362739 + 0.628283i
\(573\) −3.44609 −0.143962
\(574\) 0.0446157 0.261646i 0.00186222 0.0109209i
\(575\) −14.6702 6.19062i −0.611789 0.258167i
\(576\) −2.06815 + 3.58213i −0.0861727 + 0.149256i
\(577\) 28.5827 16.5022i 1.18991 0.686996i 0.231626 0.972805i \(-0.425596\pi\)
0.958287 + 0.285809i \(0.0922622\pi\)
\(578\) −0.0314758 0.0545177i −0.00130922 0.00226764i
\(579\) 7.48882 + 4.32367i 0.311225 + 0.179686i
\(580\) −5.23682 −0.217447
\(581\) 7.93596 + 21.4272i 0.329239 + 0.888951i
\(582\) 3.54421i 0.146912i
\(583\) −9.73281 + 16.8577i −0.403092 + 0.698176i
\(584\) −0.200255 + 0.115617i −0.00828662 + 0.00478428i
\(585\) 3.79749 2.19248i 0.157007 0.0906480i
\(586\) −1.78998 + 3.10033i −0.0739432 + 0.128073i
\(587\) 12.9758i 0.535567i −0.963479 0.267783i \(-0.913709\pi\)
0.963479 0.267783i \(-0.0862911\pi\)
\(588\) 12.5669 2.36229i 0.518251 0.0974193i
\(589\) 43.8030i 1.80487i
\(590\) −0.318513 0.183894i −0.0131130 0.00757079i
\(591\) −11.2918 + 6.51930i −0.464481 + 0.268168i
\(592\) −10.6740 + 6.16262i −0.438698 + 0.253282i
\(593\) −31.4273 18.1446i −1.29057 0.745109i −0.311811 0.950144i \(-0.600936\pi\)
−0.978755 + 0.205036i \(0.934269\pi\)
\(594\) −1.16868 −0.0479517
\(595\) 4.88865 + 13.1994i 0.200415 + 0.541124i
\(596\) 22.0678i 0.903933i
\(597\) −7.74636 4.47236i −0.317037 0.183042i
\(598\) 6.70207 0.837272i 0.274068 0.0342386i
\(599\) −15.5154 26.8734i −0.633940 1.09802i −0.986739 0.162317i \(-0.948103\pi\)
0.352799 0.935699i \(-0.385230\pi\)
\(600\) −4.58028 2.64442i −0.186989 0.107958i
\(601\) 20.7835i 0.847776i 0.905715 + 0.423888i \(0.139335\pi\)
−0.905715 + 0.423888i \(0.860665\pi\)
\(602\) −0.622070 + 3.64809i −0.0253537 + 0.148685i
\(603\) 3.77822i 0.153861i
\(604\) 10.0526 17.4116i 0.409035 0.708469i
\(605\) −2.02055 3.49970i −0.0821472 0.142283i
\(606\) −2.45365 4.24985i −0.0996729 0.172638i
\(607\) 16.9902 + 9.80932i 0.689613 + 0.398148i 0.803467 0.595349i \(-0.202986\pi\)
−0.113854 + 0.993497i \(0.536320\pi\)
\(608\) −26.9561 −1.09321
\(609\) −4.50409 3.73631i −0.182515 0.151403i
\(610\) 0.728850 0.0295103
\(611\) −6.63801 + 11.4974i −0.268545 + 0.465134i
\(612\) −3.74909 6.49361i −0.151548 0.262489i
\(613\) −40.0742 + 23.1368i −1.61858 + 0.934488i −0.631292 + 0.775545i \(0.717475\pi\)
−0.987288 + 0.158943i \(0.949191\pi\)
\(614\) 3.73728 + 2.15772i 0.150824 + 0.0870786i
\(615\) −0.312354 −0.0125953
\(616\) −9.10688 7.55450i −0.366927 0.304379i
\(617\) 30.5101i 1.22829i 0.789193 + 0.614146i \(0.210499\pi\)
−0.789193 + 0.614146i \(0.789501\pi\)
\(618\) 4.71430 + 2.72180i 0.189637 + 0.109487i
\(619\) 4.76427 + 8.25196i 0.191492 + 0.331674i 0.945745 0.324910i \(-0.105334\pi\)
−0.754253 + 0.656584i \(0.772001\pi\)
\(620\) −14.7624 + 8.52308i −0.592873 + 0.342295i
\(621\) −2.89428 3.82402i −0.116143 0.153453i
\(622\) 12.4384i 0.498735i
\(623\) −10.1028 1.72273i −0.404761 0.0690197i
\(624\) −10.1170 −0.405003
\(625\) −1.31208 + 2.27258i −0.0524830 + 0.0909032i
\(626\) −3.27790 5.67748i −0.131011 0.226918i
\(627\) 8.54033 + 14.7923i 0.341068 + 0.590747i
\(628\) −19.5125 + 33.7966i −0.778632 + 1.34863i
\(629\) 16.9184i 0.674582i
\(630\) 0.495772 + 1.33859i 0.0197520 + 0.0533308i
\(631\) 7.71076i 0.306960i 0.988152 + 0.153480i \(0.0490481\pi\)
−0.988152 + 0.153480i \(0.950952\pi\)
\(632\) 11.3073 + 6.52826i 0.449779 + 0.259680i
\(633\) 2.79993 1.61654i 0.111287 0.0642516i
\(634\) −7.20146 12.4733i −0.286006 0.495378i
\(635\) −8.86357 + 15.3522i −0.351740 + 0.609232i
\(636\) −12.6654 −0.502216
\(637\) 15.4265 + 17.9691i 0.611219 + 0.711962i
\(638\) 2.58499i 0.102341i
\(639\) 5.07463 8.78952i 0.200749 0.347708i
\(640\) −6.85841 11.8791i −0.271102 0.469563i
\(641\) −3.53672 + 2.04193i −0.139692 + 0.0806512i −0.568217 0.822879i \(-0.692367\pi\)
0.428525 + 0.903530i \(0.359033\pi\)
\(642\) −1.04981 + 1.81832i −0.0414326 + 0.0717633i
\(643\) −12.6742 −0.499820 −0.249910 0.968269i \(-0.580401\pi\)
−0.249910 + 0.968269i \(0.580401\pi\)
\(644\) 1.03369 23.1554i 0.0407329 0.912450i
\(645\) 4.35510 0.171482
\(646\) 5.19775 9.00276i 0.204503 0.354209i
\(647\) 26.2316 15.1448i 1.03127 0.595405i 0.113923 0.993490i \(-0.463658\pi\)
0.917349 + 0.398084i \(0.130325\pi\)
\(648\) −0.796477 1.37954i −0.0312886 0.0541934i
\(649\) 0.956919 1.65743i 0.0375624 0.0650599i
\(650\) 4.67590i 0.183404i
\(651\) −18.7778 3.20198i −0.735961 0.125496i
\(652\) −24.8102 −0.971642
\(653\) −5.64151 + 9.77138i −0.220769 + 0.382384i −0.955042 0.296471i \(-0.904190\pi\)
0.734272 + 0.678855i \(0.237523\pi\)
\(654\) 0.446606 + 0.773544i 0.0174637 + 0.0302479i
\(655\) −5.03650 + 2.90783i −0.196793 + 0.113618i
\(656\) 0.624111 + 0.360330i 0.0243674 + 0.0140685i
\(657\) 0.145161i 0.00566327i
\(658\) −3.32629 2.75928i −0.129672 0.107568i
\(659\) 26.5417i 1.03392i 0.856010 + 0.516960i \(0.172936\pi\)
−0.856010 + 0.516960i \(0.827064\pi\)
\(660\) −3.32351 + 5.75649i −0.129367 + 0.224071i
\(661\) 20.0973 + 34.8095i 0.781693 + 1.35393i 0.930955 + 0.365135i \(0.118977\pi\)
−0.149261 + 0.988798i \(0.547690\pi\)
\(662\) 2.75175 + 4.76617i 0.106950 + 0.185242i
\(663\) 6.94361 12.0267i 0.269667 0.467077i
\(664\) 13.7573 0.533887
\(665\) 13.3199 16.0570i 0.516524 0.622665i
\(666\) 1.71575i 0.0664838i
\(667\) −8.45826 + 6.40179i −0.327505 + 0.247878i
\(668\) −0.674628 + 0.389497i −0.0261022 + 0.0150701i
\(669\) 7.78629 + 13.4862i 0.301035 + 0.521408i
\(670\) −1.76535 1.01922i −0.0682013 0.0393760i
\(671\) 3.79268i 0.146415i
\(672\) 1.97048 11.5557i 0.0760129 0.445772i
\(673\) 39.8949 1.53784 0.768918 0.639348i \(-0.220795\pi\)
0.768918 + 0.639348i \(0.220795\pi\)
\(674\) −6.86568 3.96390i −0.264456 0.152684i
\(675\) −2.87533 + 1.66008i −0.110672 + 0.0638963i
\(676\) 1.41916 + 2.45806i 0.0545832 + 0.0945409i
\(677\) 4.92309 8.52703i 0.189210 0.327721i −0.755777 0.654829i \(-0.772741\pi\)
0.944987 + 0.327108i \(0.106074\pi\)
\(678\) 8.59921 0.330251
\(679\) 7.82369 + 21.1241i 0.300246 + 0.810668i
\(680\) 8.47467 0.324989
\(681\) −22.1773 12.8041i −0.849838 0.490654i
\(682\) 4.20714 + 7.28699i 0.161100 + 0.279033i
\(683\) −14.4397 25.0103i −0.552520 0.956993i −0.998092 0.0617467i \(-0.980333\pi\)
0.445572 0.895246i \(-0.353000\pi\)
\(684\) −5.55681 + 9.62468i −0.212470 + 0.368009i
\(685\) 30.1248i 1.15101i
\(686\) −6.61044 + 3.96710i −0.252388 + 0.151465i
\(687\) 13.9181i 0.531007i
\(688\) −8.70189 5.02404i −0.331756 0.191540i
\(689\) −11.7287 20.3147i −0.446827 0.773927i
\(690\) 2.56752 0.320753i 0.0977437 0.0122109i
\(691\) 11.3374 + 6.54566i 0.431296 + 0.249009i 0.699899 0.714242i \(-0.253229\pi\)
−0.268603 + 0.963251i \(0.586562\pi\)
\(692\) 26.1733i 0.994958i
\(693\) −6.96556 + 2.57982i −0.264600 + 0.0979994i
\(694\) 8.18920 0.310858
\(695\) 12.5193 + 7.22802i 0.474884 + 0.274175i
\(696\) −3.05137 + 1.76171i −0.115662 + 0.0667774i
\(697\) −0.856695 + 0.494613i −0.0324496 + 0.0187348i
\(698\) 12.7313 + 7.35042i 0.481887 + 0.278218i
\(699\) 16.7500i 0.633545i
\(700\) −15.8181 2.69730i −0.597868 0.101948i
\(701\) 15.0246i 0.567471i −0.958903 0.283735i \(-0.908426\pi\)
0.958903 0.283735i \(-0.0915737\pi\)
\(702\) 0.704171 1.21966i 0.0265772 0.0460331i
\(703\) −21.7165 + 12.5381i −0.819055 + 0.472882i
\(704\) 10.0569 5.80633i 0.379032 0.218834i
\(705\) −2.54297 + 4.40456i −0.0957740 + 0.165885i
\(706\) 6.02934i 0.226917i
\(707\) −24.0056 19.9135i −0.902822 0.748925i
\(708\) 1.24525 0.0467993
\(709\) −0.0358729 0.0207113i −0.00134724 0.000777827i 0.499326 0.866414i \(-0.333581\pi\)
−0.500673 + 0.865636i \(0.666914\pi\)
\(710\) 2.73789 + 4.74217i 0.102751 + 0.177971i
\(711\) 7.09830 4.09821i 0.266207 0.153695i
\(712\) −3.08526 + 5.34382i −0.115625 + 0.200268i
\(713\) −13.4244 + 31.8125i −0.502749 + 1.19139i
\(714\) 3.47942 + 2.88631i 0.130214 + 0.108017i
\(715\) −12.3108 −0.460398
\(716\) −11.8586 + 20.5397i −0.443176 + 0.767604i
\(717\) 7.15738 4.13232i 0.267297 0.154324i
\(718\) 5.85645 3.38122i 0.218561 0.126186i
\(719\) 2.48281 + 1.43345i 0.0925932 + 0.0534587i 0.545582 0.838058i \(-0.316309\pi\)
−0.452988 + 0.891516i \(0.649642\pi\)
\(720\) −3.87574 −0.144440
\(721\) 34.1063 + 5.81579i 1.27018 + 0.216591i
\(722\) −7.49880 −0.279076
\(723\) 22.5988 + 13.0474i 0.840459 + 0.485239i
\(724\) −3.44822 5.97249i −0.128152 0.221966i
\(725\) 3.67188 + 6.35988i 0.136370 + 0.236200i
\(726\) −1.12402 0.648951i −0.0417162 0.0240848i
\(727\) −16.1319 −0.598300 −0.299150 0.954206i \(-0.596703\pi\)
−0.299150 + 0.954206i \(0.596703\pi\)
\(728\) 13.3712 4.95226i 0.495569 0.183543i
\(729\) −1.00000 −0.0370370
\(730\) −0.0678254 0.0391590i −0.00251033 0.00144934i
\(731\) 11.9448 6.89632i 0.441794 0.255070i
\(732\) −2.13712 + 1.23387i −0.0789901 + 0.0456050i
\(733\) −9.38450 + 16.2544i −0.346624 + 0.600371i −0.985647 0.168817i \(-0.946005\pi\)
0.639023 + 0.769187i \(0.279339\pi\)
\(734\) −2.45051 −0.0904500
\(735\) 5.90977 + 6.88384i 0.217985 + 0.253914i
\(736\) −19.5772 8.26131i −0.721625 0.304516i
\(737\) 5.30368 9.18625i 0.195364 0.338380i
\(738\) −0.0868798 + 0.0501601i −0.00319809 + 0.00184642i
\(739\) −21.6696 37.5329i −0.797131 1.38067i −0.921477 0.388432i \(-0.873017\pi\)
0.124347 0.992239i \(-0.460316\pi\)
\(740\) −8.45110 4.87925i −0.310669 0.179365i
\(741\) −20.5833 −0.756146
\(742\) 7.16079 2.65213i 0.262881 0.0973627i
\(743\) 39.9810i 1.46676i −0.679819 0.733380i \(-0.737942\pi\)
0.679819 0.733380i \(-0.262058\pi\)
\(744\) −5.73447 + 9.93240i −0.210236 + 0.364139i
\(745\) 13.5598 7.82876i 0.496793 0.286824i
\(746\) −9.57626 + 5.52886i −0.350612 + 0.202426i
\(747\) 4.31817 7.47930i 0.157994 0.273653i
\(748\) 21.0512i 0.769707i
\(749\) −2.24317 + 13.1549i −0.0819635 + 0.480669i
\(750\) 4.48894i 0.163913i
\(751\) −40.0065 23.0978i −1.45986 0.842850i −0.460855 0.887475i \(-0.652457\pi\)
−0.999004 + 0.0446250i \(0.985791\pi\)
\(752\) 10.1622 5.86714i 0.370577 0.213953i
\(753\) 11.7876 6.80560i 0.429566 0.248010i
\(754\) −2.69774 1.55754i −0.0982457 0.0567222i
\(755\) 14.2650 0.519157
\(756\) −3.71978 3.08570i −0.135287 0.112226i
\(757\) 44.6366i 1.62235i 0.584807 + 0.811173i \(0.301170\pi\)
−0.584807 + 0.811173i \(0.698830\pi\)
\(758\) −12.8733 7.43238i −0.467578 0.269956i
\(759\) 1.66909 + 13.3605i 0.0605840 + 0.484954i
\(760\) −6.28048 10.8781i −0.227817 0.394590i
\(761\) −18.8170 10.8640i −0.682115 0.393819i 0.118536 0.992950i \(-0.462180\pi\)
−0.800651 + 0.599130i \(0.795513\pi\)
\(762\) 5.69352i 0.206254i
\(763\) 4.36941 + 3.62459i 0.158183 + 0.131219i
\(764\) 6.29503i 0.227746i
\(765\) 2.66005 4.60734i 0.0961742 0.166579i
\(766\) −2.66051 4.60814i −0.0961281 0.166499i
\(767\) 1.15315 + 1.99731i 0.0416378 + 0.0721188i
\(768\) 3.34899 + 1.93354i 0.120846 + 0.0697707i
\(769\) −1.28406 −0.0463045 −0.0231522 0.999732i \(-0.507370\pi\)
−0.0231522 + 0.999732i \(0.507370\pi\)
\(770\) 0.673646 3.95055i 0.0242765 0.142368i
\(771\) −4.65906 −0.167792
\(772\) 7.89813 13.6800i 0.284260 0.492353i
\(773\) 26.8737 + 46.5465i 0.966578 + 1.67416i 0.705314 + 0.708895i \(0.250806\p