Properties

Label 483.2.j.a.229.14
Level $483$
Weight $2$
Character 483.229
Analytic conductor $3.857$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(229,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.229");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.j (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 229.14
Character \(\chi\) \(=\) 483.229
Dual form 483.2.j.a.367.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.123216 + 0.213416i) q^{2} +(0.866025 - 0.500000i) q^{3} +(0.969636 + 1.67946i) q^{4} +(1.99266 - 3.45140i) q^{5} +0.246432i q^{6} +(1.63265 + 2.08193i) q^{7} -0.970763 q^{8} +(0.500000 - 0.866025i) q^{9} +(0.491056 + 0.850535i) q^{10} +(0.567813 - 0.327827i) q^{11} +(1.67946 + 0.969636i) q^{12} +1.72836i q^{13} +(-0.645488 + 0.0919073i) q^{14} -3.98533i q^{15} +(-1.81966 + 3.15174i) q^{16} +(-3.03305 - 5.25340i) q^{17} +(0.123216 + 0.213416i) q^{18} +(-0.168732 + 0.292252i) q^{19} +7.72863 q^{20} +(2.45489 + 0.986681i) q^{21} +0.161574i q^{22} +(-0.397073 + 4.77937i) q^{23} +(-0.840705 + 0.485381i) q^{24} +(-5.44142 - 9.42482i) q^{25} +(-0.368860 - 0.212961i) q^{26} -1.00000i q^{27} +(-1.91344 + 4.76069i) q^{28} -4.71500 q^{29} +(0.850535 + 0.491056i) q^{30} +(3.64518 - 2.10455i) q^{31} +(-1.41918 - 2.45810i) q^{32} +(0.327827 - 0.567813i) q^{33} +1.49488 q^{34} +(10.4389 - 1.48634i) q^{35} +1.93927 q^{36} +(1.40646 + 0.812022i) q^{37} +(-0.0415808 - 0.0720201i) q^{38} +(0.864179 + 1.49680i) q^{39} +(-1.93440 + 3.35049i) q^{40} +6.67407i q^{41} +(-0.513055 + 0.402338i) q^{42} -4.20924i q^{43} +(1.10114 + 0.635746i) q^{44} +(-1.99266 - 3.45140i) q^{45} +(-0.971069 - 0.673636i) q^{46} +(4.32275 + 2.49574i) q^{47} +3.63932i q^{48} +(-1.66889 + 6.79815i) q^{49} +2.68188 q^{50} +(-5.25340 - 3.03305i) q^{51} +(-2.90271 + 1.67588i) q^{52} +(-7.39119 + 4.26731i) q^{53} +(0.213416 + 0.123216i) q^{54} -2.61300i q^{55} +(-1.58492 - 2.02106i) q^{56} +0.337463i q^{57} +(0.580964 - 1.00626i) q^{58} +(9.78531 - 5.64955i) q^{59} +(6.69319 - 3.86432i) q^{60} +(-2.14171 + 3.70955i) q^{61} +1.03726i q^{62} +(2.61933 - 0.372952i) q^{63} -6.57917 q^{64} +(5.96525 + 3.44404i) q^{65} +(0.0807871 + 0.139927i) q^{66} +(-3.69254 + 2.13189i) q^{67} +(5.88191 - 10.1878i) q^{68} +(2.04581 + 4.33759i) q^{69} +(-0.969032 + 2.41097i) q^{70} +2.93387 q^{71} +(-0.485381 + 0.840705i) q^{72} +(12.7226 - 7.34541i) q^{73} +(-0.346598 + 0.200108i) q^{74} +(-9.42482 - 5.44142i) q^{75} -0.654432 q^{76} +(1.60956 + 0.646922i) q^{77} -0.425923 q^{78} +(-9.76037 - 5.63515i) q^{79} +(7.25194 + 12.5607i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-1.42436 - 0.822352i) q^{82} -12.4794 q^{83} +(0.723255 + 5.07960i) q^{84} -24.1754 q^{85} +(0.898321 + 0.518646i) q^{86} +(-4.08331 + 2.35750i) q^{87} +(-0.551212 + 0.318242i) q^{88} +(3.60989 - 6.25251i) q^{89} +0.982113 q^{90} +(-3.59833 + 2.82181i) q^{91} +(-8.41176 + 3.96738i) q^{92} +(2.10455 - 3.64518i) q^{93} +(-1.06526 + 0.615030i) q^{94} +(0.672451 + 1.16472i) q^{95} +(-2.45810 - 1.41918i) q^{96} -14.9762 q^{97} +(-1.24520 - 1.19381i) q^{98} -0.655654i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 4 q^{2} - 36 q^{4} - 24 q^{8} + 32 q^{9} - 44 q^{16} - 4 q^{18} - 16 q^{23} - 12 q^{25} + 84 q^{26} + 24 q^{29} - 12 q^{31} + 8 q^{32} + 32 q^{35} - 72 q^{36} - 8 q^{46} - 12 q^{47} + 8 q^{49} - 96 q^{50}+ \cdots + 112 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.123216 + 0.213416i −0.0871269 + 0.150908i −0.906296 0.422645i \(-0.861102\pi\)
0.819169 + 0.573553i \(0.194435\pi\)
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 0.969636 + 1.67946i 0.484818 + 0.839729i
\(5\) 1.99266 3.45140i 0.891147 1.54351i 0.0526444 0.998613i \(-0.483235\pi\)
0.838502 0.544898i \(-0.183432\pi\)
\(6\) 0.246432i 0.100605i
\(7\) 1.63265 + 2.08193i 0.617085 + 0.786897i
\(8\) −0.970763 −0.343216
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0.491056 + 0.850535i 0.155286 + 0.268963i
\(11\) 0.567813 0.327827i 0.171202 0.0988436i −0.411950 0.911206i \(-0.635152\pi\)
0.583153 + 0.812363i \(0.301819\pi\)
\(12\) 1.67946 + 0.969636i 0.484818 + 0.279910i
\(13\) 1.72836i 0.479360i 0.970852 + 0.239680i \(0.0770426\pi\)
−0.970852 + 0.239680i \(0.922957\pi\)
\(14\) −0.645488 + 0.0919073i −0.172514 + 0.0245633i
\(15\) 3.98533i 1.02901i
\(16\) −1.81966 + 3.15174i −0.454914 + 0.787935i
\(17\) −3.03305 5.25340i −0.735624 1.27414i −0.954449 0.298373i \(-0.903556\pi\)
0.218826 0.975764i \(-0.429777\pi\)
\(18\) 0.123216 + 0.213416i 0.0290423 + 0.0503027i
\(19\) −0.168732 + 0.292252i −0.0387097 + 0.0670471i −0.884731 0.466102i \(-0.845658\pi\)
0.846021 + 0.533149i \(0.178991\pi\)
\(20\) 7.72863 1.72818
\(21\) 2.45489 + 0.986681i 0.535700 + 0.215311i
\(22\) 0.161574i 0.0344477i
\(23\) −0.397073 + 4.77937i −0.0827954 + 0.996567i
\(24\) −0.840705 + 0.485381i −0.171608 + 0.0990780i
\(25\) −5.44142 9.42482i −1.08828 1.88496i
\(26\) −0.368860 0.212961i −0.0723394 0.0417652i
\(27\) 1.00000i 0.192450i
\(28\) −1.91344 + 4.76069i −0.361606 + 0.899686i
\(29\) −4.71500 −0.875554 −0.437777 0.899084i \(-0.644234\pi\)
−0.437777 + 0.899084i \(0.644234\pi\)
\(30\) 0.850535 + 0.491056i 0.155286 + 0.0896542i
\(31\) 3.64518 2.10455i 0.654694 0.377988i −0.135558 0.990769i \(-0.543283\pi\)
0.790252 + 0.612782i \(0.209950\pi\)
\(32\) −1.41918 2.45810i −0.250879 0.434535i
\(33\) 0.327827 0.567813i 0.0570674 0.0988436i
\(34\) 1.49488 0.256370
\(35\) 10.4389 1.48634i 1.76450 0.251237i
\(36\) 1.93927 0.323212
\(37\) 1.40646 + 0.812022i 0.231221 + 0.133496i 0.611135 0.791526i \(-0.290713\pi\)
−0.379914 + 0.925022i \(0.624046\pi\)
\(38\) −0.0415808 0.0720201i −0.00674530 0.0116832i
\(39\) 0.864179 + 1.49680i 0.138379 + 0.239680i
\(40\) −1.93440 + 3.35049i −0.305856 + 0.529758i
\(41\) 6.67407i 1.04231i 0.853461 + 0.521157i \(0.174500\pi\)
−0.853461 + 0.521157i \(0.825500\pi\)
\(42\) −0.513055 + 0.402338i −0.0791661 + 0.0620821i
\(43\) 4.20924i 0.641903i −0.947096 0.320951i \(-0.895997\pi\)
0.947096 0.320951i \(-0.104003\pi\)
\(44\) 1.10114 + 0.635746i 0.166004 + 0.0958423i
\(45\) −1.99266 3.45140i −0.297049 0.514504i
\(46\) −0.971069 0.673636i −0.143176 0.0993222i
\(47\) 4.32275 + 2.49574i 0.630537 + 0.364041i 0.780960 0.624581i \(-0.214730\pi\)
−0.150423 + 0.988622i \(0.548063\pi\)
\(48\) 3.63932i 0.525290i
\(49\) −1.66889 + 6.79815i −0.238413 + 0.971164i
\(50\) 2.68188 0.379275
\(51\) −5.25340 3.03305i −0.735624 0.424712i
\(52\) −2.90271 + 1.67588i −0.402533 + 0.232402i
\(53\) −7.39119 + 4.26731i −1.01526 + 0.586160i −0.912727 0.408570i \(-0.866028\pi\)
−0.102532 + 0.994730i \(0.532694\pi\)
\(54\) 0.213416 + 0.123216i 0.0290423 + 0.0167676i
\(55\) 2.61300i 0.352337i
\(56\) −1.58492 2.02106i −0.211794 0.270076i
\(57\) 0.337463i 0.0446981i
\(58\) 0.580964 1.00626i 0.0762843 0.132128i
\(59\) 9.78531 5.64955i 1.27394 0.735509i 0.298212 0.954500i \(-0.403610\pi\)
0.975727 + 0.218991i \(0.0702764\pi\)
\(60\) 6.69319 3.86432i 0.864088 0.498881i
\(61\) −2.14171 + 3.70955i −0.274218 + 0.474959i −0.969937 0.243354i \(-0.921752\pi\)
0.695720 + 0.718313i \(0.255086\pi\)
\(62\) 1.03726i 0.131732i
\(63\) 2.61933 0.372952i 0.330005 0.0469875i
\(64\) −6.57917 −0.822396
\(65\) 5.96525 + 3.44404i 0.739898 + 0.427180i
\(66\) 0.0807871 + 0.139927i 0.00994421 + 0.0172239i
\(67\) −3.69254 + 2.13189i −0.451116 + 0.260452i −0.708301 0.705910i \(-0.750538\pi\)
0.257185 + 0.966362i \(0.417205\pi\)
\(68\) 5.88191 10.1878i 0.713287 1.23545i
\(69\) 2.04581 + 4.33759i 0.246286 + 0.522184i
\(70\) −0.969032 + 2.41097i −0.115821 + 0.288166i
\(71\) 2.93387 0.348186 0.174093 0.984729i \(-0.444301\pi\)
0.174093 + 0.984729i \(0.444301\pi\)
\(72\) −0.485381 + 0.840705i −0.0572027 + 0.0990780i
\(73\) 12.7226 7.34541i 1.48907 0.859716i 0.489149 0.872200i \(-0.337307\pi\)
0.999922 + 0.0124847i \(0.00397410\pi\)
\(74\) −0.346598 + 0.200108i −0.0402912 + 0.0232621i
\(75\) −9.42482 5.44142i −1.08828 0.628322i
\(76\) −0.654432 −0.0750685
\(77\) 1.60956 + 0.646922i 0.183426 + 0.0737235i
\(78\) −0.425923 −0.0482263
\(79\) −9.76037 5.63515i −1.09813 0.634004i −0.162399 0.986725i \(-0.551923\pi\)
−0.935729 + 0.352721i \(0.885257\pi\)
\(80\) 7.25194 + 12.5607i 0.810791 + 1.40433i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −1.42436 0.822352i −0.157294 0.0908136i
\(83\) −12.4794 −1.36979 −0.684896 0.728641i \(-0.740152\pi\)
−0.684896 + 0.728641i \(0.740152\pi\)
\(84\) 0.723255 + 5.07960i 0.0789136 + 0.554230i
\(85\) −24.1754 −2.62219
\(86\) 0.898321 + 0.518646i 0.0968684 + 0.0559270i
\(87\) −4.08331 + 2.35750i −0.437777 + 0.252751i
\(88\) −0.551212 + 0.318242i −0.0587594 + 0.0339247i
\(89\) 3.60989 6.25251i 0.382647 0.662764i −0.608793 0.793329i \(-0.708346\pi\)
0.991440 + 0.130565i \(0.0416791\pi\)
\(90\) 0.982113 0.103524
\(91\) −3.59833 + 2.82181i −0.377207 + 0.295806i
\(92\) −8.41176 + 3.96738i −0.876987 + 0.413627i
\(93\) 2.10455 3.64518i 0.218231 0.377988i
\(94\) −1.06526 + 0.615030i −0.109874 + 0.0634355i
\(95\) 0.672451 + 1.16472i 0.0689920 + 0.119498i
\(96\) −2.45810 1.41918i −0.250879 0.144845i
\(97\) −14.9762 −1.52060 −0.760301 0.649571i \(-0.774948\pi\)
−0.760301 + 0.649571i \(0.774948\pi\)
\(98\) −1.24520 1.19381i −0.125784 0.120593i
\(99\) 0.655654i 0.0658957i
\(100\) 10.5524 18.2773i 1.05524 1.82773i
\(101\) −15.3151 + 8.84217i −1.52391 + 0.879828i −0.524308 + 0.851529i \(0.675676\pi\)
−0.999599 + 0.0282995i \(0.990991\pi\)
\(102\) 1.29461 0.747442i 0.128185 0.0740077i
\(103\) −5.96680 + 10.3348i −0.587927 + 1.01832i 0.406577 + 0.913617i \(0.366722\pi\)
−0.994504 + 0.104702i \(0.966611\pi\)
\(104\) 1.67783i 0.164524i
\(105\) 8.29719 6.50666i 0.809723 0.634985i
\(106\) 2.10320i 0.204281i
\(107\) 2.59532 + 1.49841i 0.250899 + 0.144857i 0.620176 0.784463i \(-0.287061\pi\)
−0.369277 + 0.929320i \(0.620395\pi\)
\(108\) 1.67946 0.969636i 0.161606 0.0933032i
\(109\) 11.4914 6.63459i 1.10068 0.635478i 0.164281 0.986414i \(-0.447470\pi\)
0.936400 + 0.350935i \(0.114136\pi\)
\(110\) 0.557657 + 0.321963i 0.0531705 + 0.0306980i
\(111\) 1.62404 0.154147
\(112\) −9.53258 + 1.35729i −0.900744 + 0.128252i
\(113\) 2.69694i 0.253707i −0.991921 0.126854i \(-0.959512\pi\)
0.991921 0.126854i \(-0.0404878\pi\)
\(114\) −0.0720201 0.0415808i −0.00674530 0.00389440i
\(115\) 15.7043 + 10.8941i 1.46443 + 1.01588i
\(116\) −4.57184 7.91865i −0.424484 0.735228i
\(117\) 1.49680 + 0.864179i 0.138379 + 0.0798934i
\(118\) 2.78446i 0.256330i
\(119\) 5.98531 14.8916i 0.548673 1.36511i
\(120\) 3.86881i 0.353172i
\(121\) −5.28506 + 9.15399i −0.480460 + 0.832181i
\(122\) −0.527785 0.914151i −0.0477834 0.0827634i
\(123\) 3.33703 + 5.77991i 0.300890 + 0.521157i
\(124\) 7.06899 + 4.08129i 0.634814 + 0.366510i
\(125\) −23.4451 −2.09699
\(126\) −0.243150 + 0.604962i −0.0216615 + 0.0538943i
\(127\) −3.15754 −0.280186 −0.140093 0.990138i \(-0.544740\pi\)
−0.140093 + 0.990138i \(0.544740\pi\)
\(128\) 3.64903 6.32030i 0.322532 0.558641i
\(129\) −2.10462 3.64531i −0.185301 0.320951i
\(130\) −1.47003 + 0.848721i −0.128930 + 0.0744378i
\(131\) −16.9107 9.76340i −1.47750 0.853032i −0.477819 0.878459i \(-0.658572\pi\)
−0.999677 + 0.0254262i \(0.991906\pi\)
\(132\) 1.27149 0.110669
\(133\) −0.883928 + 0.125858i −0.0766463 + 0.0109132i
\(134\) 1.05073i 0.0907694i
\(135\) −3.45140 1.99266i −0.297049 0.171501i
\(136\) 2.94438 + 5.09981i 0.252478 + 0.437305i
\(137\) −4.17185 + 2.40862i −0.356425 + 0.205782i −0.667512 0.744599i \(-0.732641\pi\)
0.311086 + 0.950382i \(0.399307\pi\)
\(138\) −1.17779 0.0978515i −0.100260 0.00832967i
\(139\) 14.9914i 1.27155i 0.771873 + 0.635776i \(0.219320\pi\)
−0.771873 + 0.635776i \(0.780680\pi\)
\(140\) 12.6182 + 16.0905i 1.06643 + 1.35990i
\(141\) 4.99148 0.420358
\(142\) −0.361500 + 0.626136i −0.0303364 + 0.0525441i
\(143\) 0.566603 + 0.981385i 0.0473817 + 0.0820675i
\(144\) 1.81966 + 3.15174i 0.151638 + 0.262645i
\(145\) −9.39542 + 16.2733i −0.780247 + 1.35143i
\(146\) 3.62029i 0.299617i
\(147\) 1.95377 + 6.72181i 0.161144 + 0.554406i
\(148\) 3.14946i 0.258884i
\(149\) 0.619589 + 0.357720i 0.0507587 + 0.0293056i 0.525165 0.851001i \(-0.324004\pi\)
−0.474406 + 0.880306i \(0.657337\pi\)
\(150\) 2.32258 1.34094i 0.189638 0.109487i
\(151\) 3.45795 + 5.98935i 0.281404 + 0.487407i 0.971731 0.236091i \(-0.0758665\pi\)
−0.690327 + 0.723498i \(0.742533\pi\)
\(152\) 0.163798 0.283707i 0.0132858 0.0230117i
\(153\) −6.06611 −0.490416
\(154\) −0.336387 + 0.263795i −0.0271068 + 0.0212572i
\(155\) 16.7746i 1.34737i
\(156\) −1.67588 + 2.90271i −0.134178 + 0.232402i
\(157\) −0.122016 0.211339i −0.00973797 0.0168667i 0.861115 0.508410i \(-0.169766\pi\)
−0.870853 + 0.491543i \(0.836433\pi\)
\(158\) 2.40527 1.38868i 0.191353 0.110478i
\(159\) −4.26731 + 7.39119i −0.338420 + 0.586160i
\(160\) −11.3118 −0.894279
\(161\) −10.5986 + 6.97636i −0.835287 + 0.549814i
\(162\) 0.246432 0.0193615
\(163\) 9.61189 16.6483i 0.752862 1.30399i −0.193569 0.981087i \(-0.562006\pi\)
0.946430 0.322908i \(-0.104660\pi\)
\(164\) −11.2088 + 6.47142i −0.875262 + 0.505333i
\(165\) −1.30650 2.26292i −0.101711 0.176168i
\(166\) 1.53766 2.66331i 0.119346 0.206713i
\(167\) 9.42816i 0.729573i −0.931091 0.364787i \(-0.881142\pi\)
0.931091 0.364787i \(-0.118858\pi\)
\(168\) −2.38311 0.957833i −0.183861 0.0738984i
\(169\) 10.0128 0.770214
\(170\) 2.97880 5.15943i 0.228464 0.395711i
\(171\) 0.168732 + 0.292252i 0.0129032 + 0.0223490i
\(172\) 7.06924 4.08143i 0.539025 0.311206i
\(173\) −5.92661 3.42173i −0.450592 0.260150i 0.257488 0.966281i \(-0.417105\pi\)
−0.708080 + 0.706132i \(0.750439\pi\)
\(174\) 1.16193i 0.0880855i
\(175\) 10.7379 26.7161i 0.811709 2.01955i
\(176\) 2.38613i 0.179862i
\(177\) 5.64955 9.78531i 0.424646 0.735509i
\(178\) 0.889592 + 1.54082i 0.0666777 + 0.115489i
\(179\) 3.44131 + 5.96052i 0.257215 + 0.445510i 0.965495 0.260422i \(-0.0838617\pi\)
−0.708280 + 0.705932i \(0.750528\pi\)
\(180\) 3.86432 6.69319i 0.288029 0.498881i
\(181\) 19.3978 1.44183 0.720914 0.693025i \(-0.243722\pi\)
0.720914 + 0.693025i \(0.243722\pi\)
\(182\) −0.158849 1.11563i −0.0117747 0.0826963i
\(183\) 4.28342i 0.316639i
\(184\) 0.385464 4.63963i 0.0284168 0.342038i
\(185\) 5.60522 3.23618i 0.412104 0.237928i
\(186\) 0.518628 + 0.898289i 0.0380276 + 0.0658658i
\(187\) −3.44442 1.98863i −0.251881 0.145423i
\(188\) 9.67983i 0.705974i
\(189\) 2.08193 1.63265i 0.151438 0.118758i
\(190\) −0.331427 −0.0240442
\(191\) 22.6030 + 13.0499i 1.63550 + 0.944254i 0.982357 + 0.187017i \(0.0598818\pi\)
0.653140 + 0.757238i \(0.273451\pi\)
\(192\) −5.69772 + 3.28958i −0.411198 + 0.237405i
\(193\) −5.41491 9.37890i −0.389774 0.675108i 0.602645 0.798009i \(-0.294113\pi\)
−0.992419 + 0.122901i \(0.960780\pi\)
\(194\) 1.84531 3.19616i 0.132485 0.229471i
\(195\) 6.88808 0.493265
\(196\) −13.0354 + 3.78889i −0.931101 + 0.270635i
\(197\) −9.15072 −0.651962 −0.325981 0.945376i \(-0.605695\pi\)
−0.325981 + 0.945376i \(0.605695\pi\)
\(198\) 0.139927 + 0.0807871i 0.00994421 + 0.00574129i
\(199\) −9.66202 16.7351i −0.684923 1.18632i −0.973461 0.228853i \(-0.926503\pi\)
0.288538 0.957468i \(-0.406831\pi\)
\(200\) 5.28233 + 9.14927i 0.373517 + 0.646951i
\(201\) −2.13189 + 3.69254i −0.150372 + 0.260452i
\(202\) 4.35799i 0.306627i
\(203\) −7.69796 9.81632i −0.540291 0.688971i
\(204\) 11.7638i 0.823633i
\(205\) 23.0349 + 13.2992i 1.60882 + 0.928855i
\(206\) −1.47041 2.54683i −0.102448 0.177446i
\(207\) 3.94052 + 2.73356i 0.273885 + 0.189995i
\(208\) −5.44733 3.14502i −0.377705 0.218068i
\(209\) 0.221259i 0.0153048i
\(210\) 0.366281 + 2.57248i 0.0252758 + 0.177518i
\(211\) −4.81173 −0.331253 −0.165626 0.986189i \(-0.552965\pi\)
−0.165626 + 0.986189i \(0.552965\pi\)
\(212\) −14.3335 8.27547i −0.984431 0.568361i
\(213\) 2.54081 1.46693i 0.174093 0.100513i
\(214\) −0.639571 + 0.369256i −0.0437201 + 0.0252418i
\(215\) −14.5278 8.38760i −0.990784 0.572030i
\(216\) 0.970763i 0.0660520i
\(217\) 10.3328 + 4.15303i 0.701439 + 0.281926i
\(218\) 3.26995i 0.221469i
\(219\) 7.34541 12.7226i 0.496357 0.859716i
\(220\) 4.38842 2.53366i 0.295867 0.170819i
\(221\) 9.07976 5.24220i 0.610771 0.352629i
\(222\) −0.200108 + 0.346598i −0.0134304 + 0.0232621i
\(223\) 22.0462i 1.47632i 0.674625 + 0.738160i \(0.264305\pi\)
−0.674625 + 0.738160i \(0.735695\pi\)
\(224\) 2.80056 6.96787i 0.187121 0.465560i
\(225\) −10.8828 −0.725523
\(226\) 0.575572 + 0.332307i 0.0382865 + 0.0221047i
\(227\) −0.0667898 0.115683i −0.00443299 0.00767817i 0.863800 0.503834i \(-0.168078\pi\)
−0.868233 + 0.496156i \(0.834744\pi\)
\(228\) −0.566755 + 0.327216i −0.0375343 + 0.0216704i
\(229\) 13.6209 23.5922i 0.900097 1.55901i 0.0727313 0.997352i \(-0.476828\pi\)
0.827366 0.561663i \(-0.189838\pi\)
\(230\) −4.26000 + 2.00921i −0.280896 + 0.132484i
\(231\) 1.71738 0.244528i 0.112995 0.0160887i
\(232\) 4.57715 0.300505
\(233\) 5.46430 9.46445i 0.357978 0.620037i −0.629645 0.776883i \(-0.716799\pi\)
0.987623 + 0.156846i \(0.0501328\pi\)
\(234\) −0.368860 + 0.212961i −0.0241131 + 0.0139217i
\(235\) 17.2276 9.94634i 1.12380 0.648828i
\(236\) 18.9764 + 10.9560i 1.23526 + 0.713176i
\(237\) −11.2703 −0.732085
\(238\) 2.44062 + 3.11225i 0.158202 + 0.201737i
\(239\) −4.25183 −0.275028 −0.137514 0.990500i \(-0.543911\pi\)
−0.137514 + 0.990500i \(0.543911\pi\)
\(240\) 12.5607 + 7.25194i 0.810791 + 0.468110i
\(241\) 12.0856 + 20.9328i 0.778499 + 1.34840i 0.932807 + 0.360377i \(0.117352\pi\)
−0.154308 + 0.988023i \(0.549315\pi\)
\(242\) −1.30241 2.25584i −0.0837219 0.145011i
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) −8.30671 −0.531782
\(245\) 20.1376 + 19.3064i 1.28654 + 1.23344i
\(246\) −1.64470 −0.104863
\(247\) −0.505115 0.291628i −0.0321397 0.0185559i
\(248\) −3.53860 + 2.04301i −0.224702 + 0.129732i
\(249\) −10.8075 + 6.23970i −0.684896 + 0.395425i
\(250\) 2.88881 5.00357i 0.182704 0.316453i
\(251\) 15.7258 0.992605 0.496303 0.868150i \(-0.334691\pi\)
0.496303 + 0.868150i \(0.334691\pi\)
\(252\) 3.16616 + 4.03743i 0.199449 + 0.254334i
\(253\) 1.34134 + 2.84396i 0.0843295 + 0.178798i
\(254\) 0.389059 0.673870i 0.0244117 0.0422824i
\(255\) −20.9365 + 12.0877i −1.31110 + 0.756962i
\(256\) −5.67993 9.83793i −0.354996 0.614870i
\(257\) 16.8596 + 9.73392i 1.05168 + 0.607185i 0.923118 0.384517i \(-0.125632\pi\)
0.128558 + 0.991702i \(0.458965\pi\)
\(258\) 1.03729 0.0645789
\(259\) 0.605691 + 4.25391i 0.0376358 + 0.264325i
\(260\) 13.3578i 0.828419i
\(261\) −2.35750 + 4.08331i −0.145926 + 0.252751i
\(262\) 4.16734 2.40601i 0.257459 0.148644i
\(263\) 3.70369 2.13833i 0.228379 0.131855i −0.381445 0.924392i \(-0.624573\pi\)
0.609824 + 0.792537i \(0.291240\pi\)
\(264\) −0.318242 + 0.551212i −0.0195865 + 0.0339247i
\(265\) 34.0133i 2.08942i
\(266\) 0.0820540 0.204152i 0.00503106 0.0125174i
\(267\) 7.21977i 0.441843i
\(268\) −7.16084 4.13431i −0.437418 0.252543i
\(269\) 16.1755 9.33893i 0.986238 0.569405i 0.0820901 0.996625i \(-0.473840\pi\)
0.904148 + 0.427220i \(0.140507\pi\)
\(270\) 0.850535 0.491056i 0.0517619 0.0298847i
\(271\) 15.9437 + 9.20509i 0.968510 + 0.559170i 0.898782 0.438396i \(-0.144453\pi\)
0.0697285 + 0.997566i \(0.477787\pi\)
\(272\) 22.0765 1.33858
\(273\) −1.70534 + 4.24292i −0.103212 + 0.256793i
\(274\) 1.18712i 0.0717167i
\(275\) −6.17943 3.56769i −0.372633 0.215140i
\(276\) −5.30111 + 7.64173i −0.319089 + 0.459978i
\(277\) −1.62257 2.81038i −0.0974910 0.168859i 0.813154 0.582048i \(-0.197748\pi\)
−0.910646 + 0.413188i \(0.864415\pi\)
\(278\) −3.19941 1.84718i −0.191888 0.110786i
\(279\) 4.20909i 0.251992i
\(280\) −10.1337 + 1.44288i −0.605604 + 0.0862286i
\(281\) 27.7593i 1.65598i 0.560740 + 0.827992i \(0.310517\pi\)
−0.560740 + 0.827992i \(0.689483\pi\)
\(282\) −0.615030 + 1.06526i −0.0366245 + 0.0634355i
\(283\) −5.75864 9.97426i −0.342316 0.592908i 0.642547 0.766247i \(-0.277878\pi\)
−0.984862 + 0.173338i \(0.944545\pi\)
\(284\) 2.84478 + 4.92731i 0.168807 + 0.292382i
\(285\) 1.16472 + 0.672451i 0.0689920 + 0.0398325i
\(286\) −0.279258 −0.0165129
\(287\) −13.8950 + 10.8964i −0.820194 + 0.643196i
\(288\) −2.83837 −0.167252
\(289\) −9.89883 + 17.1453i −0.582284 + 1.00855i
\(290\) −2.31533 4.01027i −0.135961 0.235491i
\(291\) −12.9698 + 7.48809i −0.760301 + 0.438960i
\(292\) 24.6726 + 14.2447i 1.44386 + 0.833611i
\(293\) −1.71184 −0.100007 −0.0500033 0.998749i \(-0.515923\pi\)
−0.0500033 + 0.998749i \(0.515923\pi\)
\(294\) −1.67528 0.411268i −0.0977044 0.0239857i
\(295\) 45.0306i 2.62179i
\(296\) −1.36534 0.788281i −0.0793589 0.0458179i
\(297\) −0.327827 0.567813i −0.0190225 0.0329479i
\(298\) −0.152687 + 0.0881536i −0.00884489 + 0.00510660i
\(299\) −8.26045 0.686284i −0.477714 0.0396888i
\(300\) 21.1048i 1.21849i
\(301\) 8.76335 6.87222i 0.505111 0.396108i
\(302\) −1.70430 −0.0980715
\(303\) −8.84217 + 15.3151i −0.507969 + 0.879828i
\(304\) −0.614067 1.06360i −0.0352192 0.0610014i
\(305\) 8.53541 + 14.7838i 0.488736 + 0.846516i
\(306\) 0.747442 1.29461i 0.0427284 0.0740077i
\(307\) 9.12986i 0.521069i 0.965465 + 0.260534i \(0.0838987\pi\)
−0.965465 + 0.260534i \(0.916101\pi\)
\(308\) 0.474205 + 3.33046i 0.0270204 + 0.189771i
\(309\) 11.9336i 0.678879i
\(310\) 3.57998 + 2.06690i 0.203329 + 0.117392i
\(311\) 20.3637 11.7570i 1.15472 0.666677i 0.204686 0.978828i \(-0.434383\pi\)
0.950033 + 0.312150i \(0.101049\pi\)
\(312\) −0.838913 1.45304i −0.0474941 0.0822622i
\(313\) 11.7299 20.3169i 0.663015 1.14838i −0.316804 0.948491i \(-0.602610\pi\)
0.979819 0.199885i \(-0.0640569\pi\)
\(314\) 0.0601375 0.00339376
\(315\) 3.93225 9.78353i 0.221557 0.551239i
\(316\) 21.8562i 1.22951i
\(317\) 5.50215 9.53000i 0.309031 0.535258i −0.669119 0.743155i \(-0.733328\pi\)
0.978151 + 0.207897i \(0.0666618\pi\)
\(318\) −1.05160 1.82143i −0.0589709 0.102141i
\(319\) −2.67724 + 1.54571i −0.149897 + 0.0865429i
\(320\) −13.1101 + 22.7073i −0.732875 + 1.26938i
\(321\) 2.99682 0.167266
\(322\) −0.182953 3.12151i −0.0101956 0.173955i
\(323\) 2.04709 0.113903
\(324\) 0.969636 1.67946i 0.0538686 0.0933032i
\(325\) 16.2895 9.40473i 0.903577 0.521681i
\(326\) 2.36868 + 4.10267i 0.131189 + 0.227226i
\(327\) 6.63459 11.4914i 0.366894 0.635478i
\(328\) 6.47894i 0.357739i
\(329\) 1.86158 + 13.0743i 0.102632 + 0.720812i
\(330\) 0.643926 0.0354470
\(331\) 3.71216 6.42964i 0.204039 0.353405i −0.745787 0.666184i \(-0.767927\pi\)
0.949826 + 0.312779i \(0.101260\pi\)
\(332\) −12.1005 20.9586i −0.664099 1.15025i
\(333\) 1.40646 0.812022i 0.0770737 0.0444985i
\(334\) 2.01212 + 1.16170i 0.110099 + 0.0635654i
\(335\) 16.9926i 0.928403i
\(336\) −7.57681 + 5.94174i −0.413349 + 0.324148i
\(337\) 33.7933i 1.84084i 0.390930 + 0.920420i \(0.372153\pi\)
−0.390930 + 0.920420i \(0.627847\pi\)
\(338\) −1.23373 + 2.13689i −0.0671063 + 0.116232i
\(339\) −1.34847 2.33562i −0.0732389 0.126854i
\(340\) −23.4414 40.6016i −1.27129 2.20193i
\(341\) 1.37985 2.38998i 0.0747233 0.129425i
\(342\) −0.0831617 −0.00449687
\(343\) −16.8780 + 7.62449i −0.911327 + 0.411684i
\(344\) 4.08617i 0.220312i
\(345\) 19.0473 + 1.58247i 1.02547 + 0.0851971i
\(346\) 1.46051 0.843224i 0.0785174 0.0453320i
\(347\) −11.0306 19.1055i −0.592153 1.02564i −0.993942 0.109907i \(-0.964945\pi\)
0.401789 0.915732i \(-0.368389\pi\)
\(348\) −7.91865 4.57184i −0.424484 0.245076i
\(349\) 9.37354i 0.501754i −0.968019 0.250877i \(-0.919281\pi\)
0.968019 0.250877i \(-0.0807190\pi\)
\(350\) 4.37858 + 5.58350i 0.234045 + 0.298451i
\(351\) 1.72836 0.0922529
\(352\) −1.61166 0.930494i −0.0859020 0.0495955i
\(353\) −19.5497 + 11.2870i −1.04052 + 0.600747i −0.919982 0.391962i \(-0.871797\pi\)
−0.120542 + 0.992708i \(0.538463\pi\)
\(354\) 1.39223 + 2.41141i 0.0739962 + 0.128165i
\(355\) 5.84622 10.1259i 0.310285 0.537429i
\(356\) 14.0011 0.742057
\(357\) −2.26237 15.8892i −0.119737 0.840943i
\(358\) −1.69610 −0.0896415
\(359\) 1.00068 + 0.577743i 0.0528139 + 0.0304921i 0.526174 0.850377i \(-0.323626\pi\)
−0.473361 + 0.880869i \(0.656959\pi\)
\(360\) 1.93440 + 3.35049i 0.101952 + 0.176586i
\(361\) 9.44306 + 16.3559i 0.497003 + 0.860835i
\(362\) −2.39012 + 4.13981i −0.125622 + 0.217584i
\(363\) 10.5701i 0.554787i
\(364\) −8.22817 3.30711i −0.431274 0.173340i
\(365\) 58.5478i 3.06453i
\(366\) −0.914151 0.527785i −0.0477834 0.0275878i
\(367\) −0.804722 1.39382i −0.0420061 0.0727567i 0.844258 0.535937i \(-0.180042\pi\)
−0.886264 + 0.463180i \(0.846708\pi\)
\(368\) −14.3408 9.94828i −0.747565 0.518590i
\(369\) 5.77991 + 3.33703i 0.300890 + 0.173719i
\(370\) 1.59499i 0.0829198i
\(371\) −20.9515 8.42094i −1.08775 0.437193i
\(372\) 8.16257 0.423210
\(373\) −8.02098 4.63092i −0.415311 0.239780i 0.277758 0.960651i \(-0.410409\pi\)
−0.693069 + 0.720871i \(0.743742\pi\)
\(374\) 0.848815 0.490063i 0.0438912 0.0253406i
\(375\) −20.3040 + 11.7225i −1.04850 + 0.605350i
\(376\) −4.19636 2.42277i −0.216411 0.124945i
\(377\) 8.14921i 0.419706i
\(378\) 0.0919073 + 0.645488i 0.00472720 + 0.0332003i
\(379\) 18.8381i 0.967650i −0.875165 0.483825i \(-0.839247\pi\)
0.875165 0.483825i \(-0.160753\pi\)
\(380\) −1.30406 + 2.25871i −0.0668971 + 0.115869i
\(381\) −2.73451 + 1.57877i −0.140093 + 0.0808827i
\(382\) −5.57010 + 3.21590i −0.284991 + 0.164540i
\(383\) 7.43036 12.8698i 0.379674 0.657614i −0.611341 0.791367i \(-0.709370\pi\)
0.991015 + 0.133753i \(0.0427030\pi\)
\(384\) 7.29806i 0.372427i
\(385\) 5.44009 4.26612i 0.277253 0.217422i
\(386\) 2.66881 0.135839
\(387\) −3.64531 2.10462i −0.185301 0.106984i
\(388\) −14.5214 25.1519i −0.737215 1.27689i
\(389\) −19.2447 + 11.1109i −0.975744 + 0.563346i −0.900982 0.433856i \(-0.857153\pi\)
−0.0747612 + 0.997201i \(0.523819\pi\)
\(390\) −0.848721 + 1.47003i −0.0429767 + 0.0744378i
\(391\) 26.3123 12.4101i 1.33067 0.627605i
\(392\) 1.62010 6.59939i 0.0818273 0.333319i
\(393\) −19.5268 −0.984997
\(394\) 1.12752 1.95291i 0.0568034 0.0983864i
\(395\) −38.8983 + 22.4579i −1.95719 + 1.12998i
\(396\) 1.10114 0.635746i 0.0553346 0.0319474i
\(397\) −13.9063 8.02882i −0.697938 0.402955i 0.108641 0.994081i \(-0.465350\pi\)
−0.806579 + 0.591126i \(0.798683\pi\)
\(398\) 4.76206 0.238701
\(399\) −0.702575 + 0.550960i −0.0351728 + 0.0275825i
\(400\) 39.6061 1.98031
\(401\) −24.1971 13.9702i −1.20835 0.697640i −0.245950 0.969283i \(-0.579100\pi\)
−0.962398 + 0.271643i \(0.912433\pi\)
\(402\) −0.525366 0.909961i −0.0262029 0.0453847i
\(403\) 3.63741 + 6.30018i 0.181192 + 0.313834i
\(404\) −29.7001 17.1474i −1.47763 0.853113i
\(405\) −3.98533 −0.198033
\(406\) 3.04348 0.433343i 0.151045 0.0215065i
\(407\) 1.06481 0.0527808
\(408\) 5.09981 + 2.94438i 0.252478 + 0.145768i
\(409\) 27.0614 15.6239i 1.33810 0.772551i 0.351573 0.936161i \(-0.385647\pi\)
0.986525 + 0.163610i \(0.0523137\pi\)
\(410\) −5.67653 + 3.27734i −0.280344 + 0.161856i
\(411\) −2.40862 + 4.17185i −0.118808 + 0.205782i
\(412\) −23.1425 −1.14015
\(413\) 27.7380 + 11.1486i 1.36490 + 0.548587i
\(414\) −1.06892 + 0.504152i −0.0525346 + 0.0247777i
\(415\) −24.8672 + 43.0713i −1.22069 + 2.11429i
\(416\) 4.24848 2.45286i 0.208299 0.120261i
\(417\) 7.49569 + 12.9829i 0.367066 + 0.635776i
\(418\) −0.0472203 0.0272627i −0.00230962 0.00133346i
\(419\) −9.51570 −0.464872 −0.232436 0.972612i \(-0.574670\pi\)
−0.232436 + 0.972612i \(0.574670\pi\)
\(420\) 18.9729 + 7.62569i 0.925783 + 0.372096i
\(421\) 24.5804i 1.19798i 0.800758 + 0.598988i \(0.204430\pi\)
−0.800758 + 0.598988i \(0.795570\pi\)
\(422\) 0.592882 1.02690i 0.0288610 0.0499888i
\(423\) 4.32275 2.49574i 0.210179 0.121347i
\(424\) 7.17509 4.14254i 0.348453 0.201180i
\(425\) −33.0083 + 57.1720i −1.60114 + 2.77325i
\(426\) 0.722999i 0.0350294i
\(427\) −11.2197 + 1.59751i −0.542959 + 0.0773089i
\(428\) 5.81165i 0.280917i
\(429\) 0.981385 + 0.566603i 0.0473817 + 0.0273558i
\(430\) 3.58010 2.06697i 0.172648 0.0996783i
\(431\) 1.14983 0.663853i 0.0553852 0.0319767i −0.472052 0.881571i \(-0.656486\pi\)
0.527437 + 0.849594i \(0.323153\pi\)
\(432\) 3.15174 + 1.81966i 0.151638 + 0.0875483i
\(433\) −16.6799 −0.801584 −0.400792 0.916169i \(-0.631265\pi\)
−0.400792 + 0.916169i \(0.631265\pi\)
\(434\) −2.15950 + 1.69348i −0.103659 + 0.0812895i
\(435\) 18.7908i 0.900952i
\(436\) 22.2850 + 12.8663i 1.06726 + 0.616183i
\(437\) −1.32978 0.922475i −0.0636119 0.0441280i
\(438\) 1.81014 + 3.13526i 0.0864921 + 0.149809i
\(439\) 22.9037 + 13.2235i 1.09313 + 0.631122i 0.934409 0.356201i \(-0.115928\pi\)
0.158725 + 0.987323i \(0.449262\pi\)
\(440\) 2.53660i 0.120928i
\(441\) 5.05292 + 4.84438i 0.240615 + 0.230685i
\(442\) 2.58369i 0.122894i
\(443\) 9.59561 16.6201i 0.455901 0.789644i −0.542838 0.839837i \(-0.682650\pi\)
0.998740 + 0.0501933i \(0.0159837\pi\)
\(444\) 1.57473 + 2.72751i 0.0747334 + 0.129442i
\(445\) −14.3866 24.9183i −0.681990 1.18124i
\(446\) −4.70501 2.71644i −0.222789 0.128627i
\(447\) 0.715440 0.0338391
\(448\) −10.7415 13.6974i −0.507488 0.647141i
\(449\) −24.2883 −1.14624 −0.573119 0.819472i \(-0.694267\pi\)
−0.573119 + 0.819472i \(0.694267\pi\)
\(450\) 1.34094 2.32258i 0.0632126 0.109487i
\(451\) 2.18794 + 3.78963i 0.103026 + 0.178446i
\(452\) 4.52940 2.61505i 0.213045 0.123002i
\(453\) 5.98935 + 3.45795i 0.281404 + 0.162469i
\(454\) 0.0329183 0.00154493
\(455\) 2.56892 + 18.0422i 0.120433 + 0.845830i
\(456\) 0.327596i 0.0153411i
\(457\) −11.4347 6.60181i −0.534892 0.308820i 0.208114 0.978104i \(-0.433267\pi\)
−0.743006 + 0.669285i \(0.766601\pi\)
\(458\) 3.35664 + 5.81387i 0.156845 + 0.271664i
\(459\) −5.25340 + 3.03305i −0.245208 + 0.141571i
\(460\) −3.06883 + 36.9380i −0.143085 + 1.72224i
\(461\) 11.2165i 0.522402i −0.965284 0.261201i \(-0.915881\pi\)
0.965284 0.261201i \(-0.0841186\pi\)
\(462\) −0.159422 + 0.396646i −0.00741699 + 0.0184536i
\(463\) 7.69763 0.357739 0.178870 0.983873i \(-0.442756\pi\)
0.178870 + 0.983873i \(0.442756\pi\)
\(464\) 8.57969 14.8605i 0.398302 0.689880i
\(465\) −8.38731 14.5272i −0.388952 0.673685i
\(466\) 1.34658 + 2.33234i 0.0623791 + 0.108044i
\(467\) 2.98084 5.16296i 0.137937 0.238913i −0.788779 0.614677i \(-0.789286\pi\)
0.926715 + 0.375764i \(0.122620\pi\)
\(468\) 3.35176i 0.154935i
\(469\) −10.4671 4.20699i −0.483325 0.194261i
\(470\) 4.90219i 0.226121i
\(471\) −0.211339 0.122016i −0.00973797 0.00562222i
\(472\) −9.49921 + 5.48437i −0.437237 + 0.252439i
\(473\) −1.37990 2.39006i −0.0634480 0.109895i
\(474\) 1.38868 2.40527i 0.0637843 0.110478i
\(475\) 3.67256 0.168509
\(476\) 30.8134 4.38734i 1.41233 0.201094i
\(477\) 8.53462i 0.390773i
\(478\) 0.523893 0.907409i 0.0239623 0.0415039i
\(479\) 4.36834 + 7.56619i 0.199595 + 0.345708i 0.948397 0.317085i \(-0.102704\pi\)
−0.748802 + 0.662793i \(0.769371\pi\)
\(480\) −9.79634 + 5.65592i −0.447140 + 0.258156i
\(481\) −1.40347 + 2.43087i −0.0639925 + 0.110838i
\(482\) −5.95654 −0.271313
\(483\) −5.69048 + 11.3410i −0.258926 + 0.516034i
\(484\) −20.4983 −0.931742
\(485\) −29.8425 + 51.6888i −1.35508 + 2.34707i
\(486\) 0.213416 0.123216i 0.00968076 0.00558919i
\(487\) −14.8741 25.7627i −0.674010 1.16742i −0.976757 0.214348i \(-0.931237\pi\)
0.302748 0.953071i \(-0.402096\pi\)
\(488\) 2.07909 3.60109i 0.0941160 0.163014i
\(489\) 19.2238i 0.869330i
\(490\) −6.60158 + 1.91882i −0.298229 + 0.0866836i
\(491\) 2.54212 0.114724 0.0573620 0.998353i \(-0.481731\pi\)
0.0573620 + 0.998353i \(0.481731\pi\)
\(492\) −6.47142 + 11.2088i −0.291754 + 0.505333i
\(493\) 14.3009 + 24.7698i 0.644078 + 1.11558i
\(494\) 0.124477 0.0718666i 0.00560047 0.00323343i
\(495\) −2.26292 1.30650i −0.101711 0.0587228i
\(496\) 15.3182i 0.687808i
\(497\) 4.78999 + 6.10812i 0.214860 + 0.273987i
\(498\) 3.07532i 0.137808i
\(499\) 10.1398 17.5626i 0.453918 0.786210i −0.544707 0.838626i \(-0.683359\pi\)
0.998625 + 0.0524168i \(0.0166924\pi\)
\(500\) −22.7332 39.3750i −1.01666 1.76091i
\(501\) −4.71408 8.16503i −0.210610 0.364787i
\(502\) −1.93767 + 3.35615i −0.0864826 + 0.149792i
\(503\) 16.8507 0.751335 0.375668 0.926754i \(-0.377413\pi\)
0.375668 + 0.926754i \(0.377413\pi\)
\(504\) −2.54275 + 0.362048i −0.113263 + 0.0161269i
\(505\) 70.4779i 3.13622i
\(506\) −0.772222 0.0641568i −0.0343295 0.00285212i
\(507\) 8.67132 5.00639i 0.385107 0.222342i
\(508\) −3.06166 5.30295i −0.135839 0.235280i
\(509\) 20.7071 + 11.9552i 0.917825 + 0.529906i 0.882941 0.469485i \(-0.155560\pi\)
0.0348844 + 0.999391i \(0.488894\pi\)
\(510\) 5.95760i 0.263807i
\(511\) 36.0643 + 14.4952i 1.59539 + 0.641228i
\(512\) 17.3955 0.768782
\(513\) 0.292252 + 0.168732i 0.0129032 + 0.00744968i
\(514\) −4.15476 + 2.39875i −0.183258 + 0.105804i
\(515\) 23.7797 + 41.1876i 1.04786 + 1.81494i
\(516\) 4.08143 7.06924i 0.179675 0.311206i
\(517\) 3.27268 0.143932
\(518\) −0.982486 0.394886i −0.0431679 0.0173503i
\(519\) −6.84347 −0.300395
\(520\) −5.79084 3.34334i −0.253945 0.146615i
\(521\) 8.69551 + 15.0611i 0.380957 + 0.659837i 0.991199 0.132378i \(-0.0422612\pi\)
−0.610242 + 0.792215i \(0.708928\pi\)
\(522\) −0.580964 1.00626i −0.0254281 0.0440428i
\(523\) 14.4355 25.0030i 0.631219 1.09330i −0.356084 0.934454i \(-0.615888\pi\)
0.987303 0.158850i \(-0.0507785\pi\)
\(524\) 37.8678i 1.65426i
\(525\) −4.05878 28.5058i −0.177140 1.24410i
\(526\) 1.05390i 0.0459524i
\(527\) −22.1121 12.7664i −0.963216 0.556113i
\(528\) 1.19307 + 2.06645i 0.0519216 + 0.0899308i
\(529\) −22.6847 3.79551i −0.986290 0.165022i
\(530\) −7.25899 4.19098i −0.315310 0.182044i
\(531\) 11.2991i 0.490339i
\(532\) −1.06846 1.36248i −0.0463236 0.0590712i
\(533\) −11.5352 −0.499644
\(534\) 1.54082 + 0.889592i 0.0666777 + 0.0384964i
\(535\) 10.3432 5.97166i 0.447176 0.258177i
\(536\) 3.58458 2.06956i 0.154830 0.0893914i
\(537\) 5.96052 + 3.44131i 0.257215 + 0.148503i
\(538\) 4.60282i 0.198442i
\(539\) 1.28100 + 4.40719i 0.0551765 + 0.189831i
\(540\) 7.72863i 0.332587i
\(541\) −17.3882 + 30.1173i −0.747579 + 1.29484i 0.201401 + 0.979509i \(0.435451\pi\)
−0.948980 + 0.315336i \(0.897883\pi\)
\(542\) −3.92904 + 2.26843i −0.168767 + 0.0974374i
\(543\) 16.7990 9.69891i 0.720914 0.416220i
\(544\) −8.60893 + 14.9111i −0.369105 + 0.639308i
\(545\) 52.8821i 2.26522i
\(546\) −0.695384 0.886743i −0.0297597 0.0379491i
\(547\) 37.1612 1.58890 0.794449 0.607331i \(-0.207760\pi\)
0.794449 + 0.607331i \(0.207760\pi\)
\(548\) −8.09035 4.67097i −0.345603 0.199534i
\(549\) 2.14171 + 3.70955i 0.0914059 + 0.158320i
\(550\) 1.52281 0.879194i 0.0649328 0.0374890i
\(551\) 0.795570 1.37797i 0.0338924 0.0587034i
\(552\) −1.98599 4.21077i −0.0845295 0.179222i
\(553\) −4.20328 29.5207i −0.178742 1.25535i
\(554\) 0.799708 0.0339764
\(555\) 3.23618 5.60522i 0.137368 0.237928i
\(556\) −25.1774 + 14.5362i −1.06776 + 0.616471i
\(557\) 12.6316 7.29288i 0.535219 0.309009i −0.207920 0.978146i \(-0.566669\pi\)
0.743139 + 0.669137i \(0.233336\pi\)
\(558\) 0.898289 + 0.518628i 0.0380276 + 0.0219553i
\(559\) 7.27507 0.307703
\(560\) −14.3107 + 35.6053i −0.604737 + 1.50460i
\(561\) −3.97727 −0.167920
\(562\) −5.92430 3.42040i −0.249902 0.144281i
\(563\) 4.97857 + 8.62314i 0.209822 + 0.363422i 0.951658 0.307159i \(-0.0993783\pi\)
−0.741837 + 0.670581i \(0.766045\pi\)
\(564\) 4.83991 + 8.38298i 0.203797 + 0.352987i
\(565\) −9.30822 5.37410i −0.391600 0.226090i
\(566\) 2.83823 0.119300
\(567\) 0.986681 2.45489i 0.0414367 0.103095i
\(568\) −2.84809 −0.119503
\(569\) −40.1514 23.1814i −1.68323 0.971816i −0.959488 0.281749i \(-0.909085\pi\)
−0.723746 0.690066i \(-0.757581\pi\)
\(570\) −0.287024 + 0.165713i −0.0120221 + 0.00694097i
\(571\) 37.5322 21.6692i 1.57067 0.906829i 0.574587 0.818443i \(-0.305163\pi\)
0.996086 0.0883853i \(-0.0281707\pi\)
\(572\) −1.09880 + 1.90317i −0.0459430 + 0.0795756i
\(573\) 26.0997 1.09033
\(574\) −0.613396 4.30803i −0.0256026 0.179814i
\(575\) 47.2053 22.2642i 1.96860 0.928482i
\(576\) −3.28958 + 5.69772i −0.137066 + 0.237405i
\(577\) −5.38237 + 3.10751i −0.224071 + 0.129367i −0.607834 0.794064i \(-0.707961\pi\)
0.383763 + 0.923432i \(0.374628\pi\)
\(578\) −2.43939 4.22515i −0.101465 0.175743i
\(579\) −9.37890 5.41491i −0.389774 0.225036i
\(580\) −36.4405 −1.51311
\(581\) −20.3745 25.9813i −0.845277 1.07788i
\(582\) 3.69061i 0.152981i
\(583\) −2.79788 + 4.84607i −0.115876 + 0.200704i
\(584\) −12.3507 + 7.13065i −0.511074 + 0.295068i
\(585\) 5.96525 3.44404i 0.246633 0.142393i
\(586\) 0.210926 0.365334i 0.00871326 0.0150918i
\(587\) 23.7269i 0.979315i −0.871915 0.489657i \(-0.837122\pi\)
0.871915 0.489657i \(-0.162878\pi\)
\(588\) −9.39456 + 9.79899i −0.387425 + 0.404103i
\(589\) 1.42041i 0.0585271i
\(590\) 9.61028 + 5.54850i 0.395649 + 0.228428i
\(591\) −7.92476 + 4.57536i −0.325981 + 0.188205i
\(592\) −5.11857 + 2.95521i −0.210372 + 0.121458i
\(593\) 13.6510 + 7.88139i 0.560578 + 0.323650i 0.753378 0.657588i \(-0.228423\pi\)
−0.192799 + 0.981238i \(0.561757\pi\)
\(594\) 0.161574 0.00662947
\(595\) −39.4701 50.3316i −1.61812 2.06340i
\(596\) 1.38743i 0.0568314i
\(597\) −16.7351 9.66202i −0.684923 0.395440i
\(598\) 1.16428 1.67836i 0.0476111 0.0686330i
\(599\) 18.1368 + 31.4138i 0.741048 + 1.28353i 0.952019 + 0.306040i \(0.0990042\pi\)
−0.210971 + 0.977492i \(0.567662\pi\)
\(600\) 9.14927 + 5.28233i 0.373517 + 0.215650i
\(601\) 10.9186i 0.445381i 0.974889 + 0.222690i \(0.0714839\pi\)
−0.974889 + 0.222690i \(0.928516\pi\)
\(602\) 0.386860 + 2.71701i 0.0157672 + 0.110737i
\(603\) 4.26378i 0.173635i
\(604\) −6.70591 + 11.6150i −0.272860 + 0.472607i
\(605\) 21.0627 + 36.4817i 0.856320 + 1.48319i
\(606\) −2.17899 3.77413i −0.0885155 0.153313i
\(607\) −34.2870 19.7956i −1.39167 0.803479i −0.398167 0.917313i \(-0.630354\pi\)
−0.993500 + 0.113834i \(0.963687\pi\)
\(608\) 0.957845 0.0388457
\(609\) −11.5748 4.65220i −0.469034 0.188517i
\(610\) −4.20680 −0.170328
\(611\) −4.31353 + 7.47125i −0.174507 + 0.302255i
\(612\) −5.88191 10.1878i −0.237762 0.411816i
\(613\) 28.0394 16.1885i 1.13250 0.653849i 0.187937 0.982181i \(-0.439820\pi\)
0.944562 + 0.328332i \(0.106487\pi\)
\(614\) −1.94846 1.12494i −0.0786335 0.0453991i
\(615\) 26.5984 1.07255
\(616\) −1.56250 0.628007i −0.0629548 0.0253031i
\(617\) 28.7944i 1.15922i −0.814894 0.579610i \(-0.803205\pi\)
0.814894 0.579610i \(-0.196795\pi\)
\(618\) −2.54683 1.47041i −0.102448 0.0591486i
\(619\) 21.3808 + 37.0326i 0.859365 + 1.48846i 0.872535 + 0.488551i \(0.162474\pi\)
−0.0131703 + 0.999913i \(0.504192\pi\)
\(620\) 28.1723 16.2653i 1.13143 0.653229i
\(621\) 4.77937 + 0.397073i 0.191789 + 0.0159340i
\(622\) 5.79459i 0.232342i
\(623\) 18.9110 2.69263i 0.757653 0.107878i
\(624\) −6.29004 −0.251803
\(625\) −19.5111 + 33.7942i −0.780443 + 1.35177i
\(626\) 2.89063 + 5.00672i 0.115533 + 0.200109i
\(627\) 0.110630 + 0.191616i 0.00441812 + 0.00765241i
\(628\) 0.236623 0.409843i 0.00944228 0.0163545i
\(629\) 9.85163i 0.392810i
\(630\) 1.60345 + 2.04469i 0.0638829 + 0.0814625i
\(631\) 16.7980i 0.668716i 0.942446 + 0.334358i \(0.108519\pi\)
−0.942446 + 0.334358i \(0.891481\pi\)
\(632\) 9.47501 + 5.47040i 0.376895 + 0.217601i
\(633\) −4.16708 + 2.40586i −0.165626 + 0.0956245i
\(634\) 1.35591 + 2.34850i 0.0538499 + 0.0932708i
\(635\) −6.29191 + 10.8979i −0.249687 + 0.432470i
\(636\) −16.5509 −0.656287
\(637\) −11.7496 2.88444i −0.465537 0.114286i
\(638\) 0.761823i 0.0301609i
\(639\) 1.46693 2.54081i 0.0580310 0.100513i
\(640\) −14.5426 25.1885i −0.574846 0.995662i
\(641\) 8.73067 5.04065i 0.344841 0.199094i −0.317570 0.948235i \(-0.602867\pi\)
0.662411 + 0.749141i \(0.269533\pi\)
\(642\) −0.369256 + 0.639571i −0.0145734 + 0.0252418i
\(643\) −32.0209 −1.26278 −0.631391 0.775464i \(-0.717516\pi\)
−0.631391 + 0.775464i \(0.717516\pi\)
\(644\) −21.9933 11.0354i −0.866657 0.434855i
\(645\) −16.7752 −0.660523
\(646\) −0.252234 + 0.436882i −0.00992401 + 0.0171889i
\(647\) 32.3852 18.6976i 1.27319 0.735078i 0.297605 0.954689i \(-0.403812\pi\)
0.975587 + 0.219611i \(0.0704789\pi\)
\(648\) 0.485381 + 0.840705i 0.0190676 + 0.0330260i
\(649\) 3.70415 6.41578i 0.145401 0.251841i
\(650\) 4.63525i 0.181810i
\(651\) 11.0250 1.56979i 0.432104 0.0615249i
\(652\) 37.2801 1.46000
\(653\) 15.1700 26.2752i 0.593648 1.02823i −0.400088 0.916477i \(-0.631021\pi\)
0.993736 0.111751i \(-0.0356461\pi\)
\(654\) 1.63498 + 2.83186i 0.0639326 + 0.110735i
\(655\) −67.3947 + 38.9104i −2.63333 + 1.52035i
\(656\) −21.0349 12.1445i −0.821276 0.474164i
\(657\) 14.6908i 0.573144i
\(658\) −3.01966 1.21368i −0.117718 0.0473140i
\(659\) 8.19897i 0.319387i 0.987167 + 0.159693i \(0.0510505\pi\)
−0.987167 + 0.159693i \(0.948949\pi\)
\(660\) 2.53366 4.38842i 0.0986224 0.170819i
\(661\) 13.5183 + 23.4143i 0.525799 + 0.910711i 0.999548 + 0.0300510i \(0.00956696\pi\)
−0.473749 + 0.880660i \(0.657100\pi\)
\(662\) 0.914794 + 1.58447i 0.0355545 + 0.0615822i
\(663\) 5.24220 9.07976i 0.203590 0.352629i
\(664\) 12.1145 0.470135
\(665\) −1.32699 + 3.30158i −0.0514584 + 0.128030i
\(666\) 0.400217i 0.0155081i
\(667\) 1.87220 22.5347i 0.0724919 0.872548i
\(668\) 15.8342 9.14188i 0.612644 0.353710i
\(669\) 11.0231 + 19.0925i 0.426177 + 0.738160i
\(670\) −3.62649 2.09376i −0.140104 0.0808889i
\(671\) 2.80844i 0.108419i
\(672\) −1.05858 7.43463i −0.0408354 0.286797i
\(673\) 11.3840 0.438822 0.219411 0.975633i \(-0.429586\pi\)
0.219411 + 0.975633i \(0.429586\pi\)
\(674\) −7.21205 4.16388i −0.277798 0.160387i
\(675\) −9.42482 + 5.44142i −0.362762 + 0.209441i
\(676\) 9.70875 + 16.8160i 0.373413 + 0.646771i
\(677\) 21.5089 37.2545i 0.826654 1.43181i −0.0739950 0.997259i \(-0.523575\pi\)
0.900649 0.434548i \(-0.143092\pi\)
\(678\) 0.664613 0.0255243
\(679\) −24.4509 31.1794i −0.938340 1.19656i
\(680\) 23.4686 0.899980
\(681\) −0.115683 0.0667898i −0.00443299 0.00255939i
\(682\) 0.340040 + 0.588967i 0.0130208 + 0.0225527i
\(683\) 10.7223 + 18.5715i 0.410276 + 0.710618i 0.994920 0.100672i \(-0.0320992\pi\)
−0.584644 + 0.811290i \(0.698766\pi\)
\(684\) −0.327216 + 0.566755i −0.0125114 + 0.0216704i
\(685\) 19.1983i 0.733529i
\(686\) 0.452449 4.54150i 0.0172746 0.173395i
\(687\) 27.2419i 1.03934i
\(688\) 13.2664 + 7.65937i 0.505778 + 0.292011i
\(689\) −7.37544 12.7746i −0.280982 0.486675i
\(690\) −2.68466 + 3.87003i −0.102203 + 0.147330i
\(691\) 16.9816 + 9.80434i 0.646011 + 0.372975i 0.786926 0.617047i \(-0.211671\pi\)
−0.140915 + 0.990022i \(0.545004\pi\)
\(692\) 13.2713i 0.504500i
\(693\) 1.36503 1.07046i 0.0518531 0.0406633i
\(694\) 5.43658 0.206370
\(695\) 51.7412 + 29.8728i 1.96266 + 1.13314i
\(696\) 3.96393 2.28857i 0.150252 0.0867482i
\(697\) 35.0616 20.2428i 1.32805 0.766751i
\(698\) 2.00047 + 1.15497i 0.0757188 + 0.0437163i
\(699\) 10.9286i 0.413358i
\(700\) 55.2805 7.87108i 2.08941 0.297499i
\(701\) 18.8113i 0.710494i 0.934773 + 0.355247i \(0.115603\pi\)
−0.934773 + 0.355247i \(0.884397\pi\)
\(702\) −0.212961 + 0.368860i −0.00803771 + 0.0139217i
\(703\) −0.474629 + 0.274027i −0.0179010 + 0.0103351i
\(704\) −3.73574 + 2.15683i −0.140796 + 0.0812886i
\(705\) 9.94634 17.2276i 0.374601 0.648828i
\(706\) 5.56296i 0.209365i
\(707\) −43.4130 17.4488i −1.63271 0.656229i
\(708\) 21.9120 0.823504
\(709\) −23.8300 13.7582i −0.894954 0.516702i −0.0193940 0.999812i \(-0.506174\pi\)
−0.875560 + 0.483110i \(0.839507\pi\)
\(710\) 1.44070 + 2.49536i 0.0540683 + 0.0936491i
\(711\) −9.76037 + 5.63515i −0.366043 + 0.211335i
\(712\) −3.50434 + 6.06970i −0.131331 + 0.227472i
\(713\) 8.61099 + 18.2573i 0.322484 + 0.683742i
\(714\) 3.66977 + 1.47497i 0.137338 + 0.0551995i
\(715\) 4.51620 0.168896
\(716\) −6.67363 + 11.5591i −0.249405 + 0.431982i
\(717\) −3.68219 + 2.12591i −0.137514 + 0.0793937i
\(718\) −0.246600 + 0.142374i −0.00920302 + 0.00531337i
\(719\) 8.94715 + 5.16564i 0.333672 + 0.192646i 0.657470 0.753480i \(-0.271626\pi\)
−0.323798 + 0.946126i \(0.604960\pi\)
\(720\) 14.5039 0.540527
\(721\) −31.2581 + 4.45066i −1.16411 + 0.165751i
\(722\) −4.65414 −0.173209
\(723\) 20.9328 + 12.0856i 0.778499 + 0.449467i
\(724\) 18.8088 + 32.5778i 0.699024 + 1.21074i
\(725\) 25.6563 + 44.4381i 0.952852 + 1.65039i
\(726\) −2.25584 1.30241i −0.0837219 0.0483369i
\(727\) 6.95672 0.258011 0.129005 0.991644i \(-0.458822\pi\)
0.129005 + 0.991644i \(0.458822\pi\)
\(728\) 3.49312 2.73931i 0.129464 0.101525i
\(729\) −1.00000 −0.0370370
\(730\) 12.4951 + 7.21402i 0.462463 + 0.267003i
\(731\) −22.1128 + 12.7668i −0.817873 + 0.472199i
\(732\) −7.19382 + 4.15335i −0.265891 + 0.153512i
\(733\) −24.3077 + 42.1022i −0.897826 + 1.55508i −0.0675581 + 0.997715i \(0.521521\pi\)
−0.830268 + 0.557365i \(0.811813\pi\)
\(734\) 0.396618 0.0146394
\(735\) 27.0929 + 6.65108i 0.999335 + 0.245329i
\(736\) 12.3117 5.80676i 0.453814 0.214040i
\(737\) −1.39778 + 2.42103i −0.0514880 + 0.0891799i
\(738\) −1.42436 + 0.822352i −0.0524313 + 0.0302712i
\(739\) 11.8109 + 20.4571i 0.434471 + 0.752525i 0.997252 0.0740803i \(-0.0236021\pi\)
−0.562782 + 0.826606i \(0.690269\pi\)
\(740\) 10.8700 + 6.27582i 0.399591 + 0.230704i
\(741\) −0.583257 −0.0214265
\(742\) 4.37873 3.43380i 0.160748 0.126059i
\(743\) 4.51930i 0.165797i 0.996558 + 0.0828985i \(0.0264177\pi\)
−0.996558 + 0.0828985i \(0.973582\pi\)
\(744\) −2.04301 + 3.53860i −0.0749005 + 0.129732i
\(745\) 2.46927 1.42563i 0.0904669 0.0522311i
\(746\) 1.97663 1.14121i 0.0723694 0.0417825i
\(747\) −6.23970 + 10.8075i −0.228299 + 0.395425i
\(748\) 7.71301i 0.282015i
\(749\) 1.11767 + 7.84967i 0.0408388 + 0.286821i
\(750\) 5.77762i 0.210969i
\(751\) −4.48893 2.59168i −0.163803 0.0945718i 0.415857 0.909430i \(-0.363482\pi\)
−0.579661 + 0.814858i \(0.696815\pi\)
\(752\) −15.7318 + 9.08278i −0.573681 + 0.331215i
\(753\) 13.6190 7.86291i 0.496303 0.286540i
\(754\) 1.73918 + 1.00411i 0.0633371 + 0.0365677i
\(755\) 27.5622 1.00309
\(756\) 4.76069 + 1.91344i 0.173145 + 0.0695912i
\(757\) 4.11310i 0.149493i −0.997203 0.0747466i \(-0.976185\pi\)
0.997203 0.0747466i \(-0.0238148\pi\)
\(758\) 4.02037 + 2.32116i 0.146026 + 0.0843083i
\(759\) 2.58362 + 1.79227i 0.0937793 + 0.0650553i
\(760\) −0.652790 1.13067i −0.0236792 0.0410135i
\(761\) −18.4595 10.6576i −0.669155 0.386337i 0.126601 0.991954i \(-0.459593\pi\)
−0.795756 + 0.605617i \(0.792926\pi\)
\(762\) 0.778118i 0.0281882i
\(763\) 32.5743 + 13.0924i 1.17927 + 0.473978i
\(764\) 50.6144i 1.83117i
\(765\) −12.0877 + 20.9365i −0.437032 + 0.756962i
\(766\) 1.83108 + 3.17152i 0.0661595 + 0.114592i
\(767\) 9.76445 + 16.9125i 0.352574 + 0.610676i
\(768\) −9.83793 5.67993i −0.354996 0.204957i
\(769\) −19.8664 −0.716399 −0.358200 0.933645i \(-0.616609\pi\)
−0.358200 + 0.933645i \(0.616609\pi\)
\(770\) 0.240154 + 1.68666i 0.00865454 + 0.0607829i
\(771\) 19.4678 0.701117
\(772\) 10.5010 18.1882i 0.377939 0.654609i
\(773\) 3.13480 + 5.42963i 0.112751 + 0.195290i 0.916878 0.399167i \(-0.130700\pi\)