Properties

Label 483.2.j.a.229.12
Level $483$
Weight $2$
Character 483.229
Analytic conductor $3.857$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(229,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.229");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.j (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 229.12
Character \(\chi\) \(=\) 483.229
Dual form 483.2.j.a.367.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.585633 + 1.01435i) q^{2} +(0.866025 - 0.500000i) q^{3} +(0.314069 + 0.543983i) q^{4} +(1.31255 - 2.27340i) q^{5} +1.17127i q^{6} +(-1.98677 - 1.74721i) q^{7} -3.07825 q^{8} +(0.500000 - 0.866025i) q^{9} +(1.53734 + 2.66275i) q^{10} +(3.83128 - 2.21199i) q^{11} +(0.543983 + 0.314069i) q^{12} -1.06902i q^{13} +(2.93579 - 0.992054i) q^{14} -2.62510i q^{15} +(1.17458 - 2.03444i) q^{16} +(0.631390 + 1.09360i) q^{17} +(0.585633 + 1.01435i) q^{18} +(0.917929 - 1.58990i) q^{19} +1.64892 q^{20} +(-2.59420 - 0.519738i) q^{21} +5.18166i q^{22} +(2.07498 - 4.32371i) q^{23} +(-2.66584 + 1.53912i) q^{24} +(-0.945565 - 1.63777i) q^{25} +(1.08436 + 0.626053i) q^{26} -1.00000i q^{27} +(0.326467 - 1.62951i) q^{28} +4.39831 q^{29} +(2.66275 + 1.53734i) q^{30} +(-6.19592 + 3.57722i) q^{31} +(-1.70250 - 2.94881i) q^{32} +(2.21199 - 3.83128i) q^{33} -1.47905 q^{34} +(-6.57984 + 2.22344i) q^{35} +0.628138 q^{36} +(-3.11767 - 1.79999i) q^{37} +(1.07514 + 1.86219i) q^{38} +(-0.534510 - 0.925799i) q^{39} +(-4.04035 + 6.99809i) q^{40} +5.29644i q^{41} +(2.04644 - 2.32704i) q^{42} -1.08271i q^{43} +(2.40657 + 1.38944i) q^{44} +(-1.31255 - 2.27340i) q^{45} +(3.17056 + 4.63685i) q^{46} +(9.04435 + 5.22176i) q^{47} -2.34917i q^{48} +(0.894541 + 6.94261i) q^{49} +2.21502 q^{50} +(1.09360 + 0.631390i) q^{51} +(0.581529 - 0.335746i) q^{52} +(9.49829 - 5.48384i) q^{53} +(1.01435 + 0.585633i) q^{54} -11.6134i q^{55} +(6.11578 + 5.37833i) q^{56} -1.83586i q^{57} +(-2.57579 + 4.46141i) q^{58} +(-4.60325 + 2.65769i) q^{59} +(1.42801 - 0.824461i) q^{60} +(-4.33014 + 7.50003i) q^{61} -8.37974i q^{62} +(-2.50651 + 0.846993i) q^{63} +8.68649 q^{64} +(-2.43031 - 1.40314i) q^{65} +(2.59083 + 4.48745i) q^{66} +(-3.49427 + 2.01742i) q^{67} +(-0.396600 + 0.686931i) q^{68} +(-0.364873 - 4.78193i) q^{69} +(1.59803 - 7.97634i) q^{70} +12.3268 q^{71} +(-1.53912 + 2.66584i) q^{72} +(-6.54424 + 3.77832i) q^{73} +(3.65161 - 2.10826i) q^{74} +(-1.63777 - 0.945565i) q^{75} +1.15317 q^{76} +(-11.4767 - 2.29931i) q^{77} +1.25211 q^{78} +(3.14200 + 1.81403i) q^{79} +(-3.08340 - 5.34060i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-5.37242 - 3.10177i) q^{82} -7.03615 q^{83} +(-0.532029 - 1.57443i) q^{84} +3.31492 q^{85} +(1.09824 + 0.634071i) q^{86} +(3.80905 - 2.19916i) q^{87} +(-11.7936 + 6.80906i) q^{88} +(-6.35170 + 11.0015i) q^{89} +3.07468 q^{90} +(-1.86780 + 2.12390i) q^{91} +(3.00371 - 0.229191i) q^{92} +(-3.57722 + 6.19592i) q^{93} +(-10.5933 + 6.11606i) q^{94} +(-2.40965 - 4.17364i) q^{95} +(-2.94881 - 1.70250i) q^{96} -3.50817 q^{97} +(-7.56607 - 3.15844i) q^{98} -4.42398i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 4 q^{2} - 36 q^{4} - 24 q^{8} + 32 q^{9} - 44 q^{16} - 4 q^{18} - 16 q^{23} - 12 q^{25} + 84 q^{26} + 24 q^{29} - 12 q^{31} + 8 q^{32} + 32 q^{35} - 72 q^{36} - 8 q^{46} - 12 q^{47} + 8 q^{49} - 96 q^{50}+ \cdots + 112 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.585633 + 1.01435i −0.414105 + 0.717251i −0.995334 0.0964893i \(-0.969239\pi\)
0.581229 + 0.813740i \(0.302572\pi\)
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 0.314069 + 0.543983i 0.157034 + 0.271992i
\(5\) 1.31255 2.27340i 0.586989 1.01670i −0.407635 0.913145i \(-0.633646\pi\)
0.994624 0.103550i \(-0.0330203\pi\)
\(6\) 1.17127i 0.478167i
\(7\) −1.98677 1.74721i −0.750930 0.660382i
\(8\) −3.07825 −1.08832
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 1.53734 + 2.66275i 0.486150 + 0.842037i
\(11\) 3.83128 2.21199i 1.15518 0.666941i 0.205032 0.978755i \(-0.434270\pi\)
0.950143 + 0.311815i \(0.100937\pi\)
\(12\) 0.543983 + 0.314069i 0.157034 + 0.0906639i
\(13\) 1.06902i 0.296493i −0.988950 0.148246i \(-0.952637\pi\)
0.988950 0.148246i \(-0.0473629\pi\)
\(14\) 2.93579 0.992054i 0.784623 0.265138i
\(15\) 2.62510i 0.677797i
\(16\) 1.17458 2.03444i 0.293646 0.508610i
\(17\) 0.631390 + 1.09360i 0.153134 + 0.265237i 0.932378 0.361484i \(-0.117730\pi\)
−0.779244 + 0.626721i \(0.784397\pi\)
\(18\) 0.585633 + 1.01435i 0.138035 + 0.239084i
\(19\) 0.917929 1.58990i 0.210587 0.364748i −0.741311 0.671162i \(-0.765796\pi\)
0.951898 + 0.306414i \(0.0991290\pi\)
\(20\) 1.64892 0.368710
\(21\) −2.59420 0.519738i −0.566101 0.113416i
\(22\) 5.18166i 1.10473i
\(23\) 2.07498 4.32371i 0.432662 0.901556i
\(24\) −2.66584 + 1.53912i −0.544162 + 0.314172i
\(25\) −0.945565 1.63777i −0.189113 0.327553i
\(26\) 1.08436 + 0.626053i 0.212660 + 0.122779i
\(27\) 1.00000i 0.192450i
\(28\) 0.326467 1.62951i 0.0616965 0.307949i
\(29\) 4.39831 0.816746 0.408373 0.912815i \(-0.366096\pi\)
0.408373 + 0.912815i \(0.366096\pi\)
\(30\) 2.66275 + 1.53734i 0.486150 + 0.280679i
\(31\) −6.19592 + 3.57722i −1.11282 + 0.642487i −0.939558 0.342389i \(-0.888764\pi\)
−0.173262 + 0.984876i \(0.555431\pi\)
\(32\) −1.70250 2.94881i −0.300962 0.521281i
\(33\) 2.21199 3.83128i 0.385058 0.666941i
\(34\) −1.47905 −0.253655
\(35\) −6.57984 + 2.22344i −1.11220 + 0.375830i
\(36\) 0.628138 0.104690
\(37\) −3.11767 1.79999i −0.512541 0.295916i 0.221336 0.975198i \(-0.428958\pi\)
−0.733878 + 0.679282i \(0.762291\pi\)
\(38\) 1.07514 + 1.86219i 0.174410 + 0.302088i
\(39\) −0.534510 0.925799i −0.0855901 0.148246i
\(40\) −4.04035 + 6.99809i −0.638835 + 1.10649i
\(41\) 5.29644i 0.827166i 0.910466 + 0.413583i \(0.135723\pi\)
−0.910466 + 0.413583i \(0.864277\pi\)
\(42\) 2.04644 2.32704i 0.315773 0.359070i
\(43\) 1.08271i 0.165112i −0.996586 0.0825560i \(-0.973692\pi\)
0.996586 0.0825560i \(-0.0263083\pi\)
\(44\) 2.40657 + 1.38944i 0.362805 + 0.209465i
\(45\) −1.31255 2.27340i −0.195663 0.338898i
\(46\) 3.17056 + 4.63685i 0.467474 + 0.683666i
\(47\) 9.04435 + 5.22176i 1.31925 + 0.761672i 0.983609 0.180317i \(-0.0577122\pi\)
0.335646 + 0.941988i \(0.391046\pi\)
\(48\) 2.34917i 0.339073i
\(49\) 0.894541 + 6.94261i 0.127792 + 0.991801i
\(50\) 2.21502 0.313251
\(51\) 1.09360 + 0.631390i 0.153134 + 0.0884122i
\(52\) 0.581529 0.335746i 0.0806436 0.0465596i
\(53\) 9.49829 5.48384i 1.30469 0.753263i 0.323486 0.946233i \(-0.395145\pi\)
0.981205 + 0.192970i \(0.0618119\pi\)
\(54\) 1.01435 + 0.585633i 0.138035 + 0.0796945i
\(55\) 11.6134i 1.56595i
\(56\) 6.11578 + 5.37833i 0.817255 + 0.718710i
\(57\) 1.83586i 0.243165i
\(58\) −2.57579 + 4.46141i −0.338218 + 0.585811i
\(59\) −4.60325 + 2.65769i −0.599292 + 0.346001i −0.768763 0.639534i \(-0.779127\pi\)
0.169471 + 0.985535i \(0.445794\pi\)
\(60\) 1.42801 0.824461i 0.184355 0.106437i
\(61\) −4.33014 + 7.50003i −0.554418 + 0.960280i 0.443531 + 0.896259i \(0.353726\pi\)
−0.997949 + 0.0640207i \(0.979608\pi\)
\(62\) 8.37974i 1.06423i
\(63\) −2.50651 + 0.846993i −0.315791 + 0.106711i
\(64\) 8.68649 1.08581
\(65\) −2.43031 1.40314i −0.301443 0.174038i
\(66\) 2.59083 + 4.48745i 0.318909 + 0.552367i
\(67\) −3.49427 + 2.01742i −0.426893 + 0.246467i −0.698022 0.716076i \(-0.745936\pi\)
0.271129 + 0.962543i \(0.412603\pi\)
\(68\) −0.396600 + 0.686931i −0.0480948 + 0.0833026i
\(69\) −0.364873 4.78193i −0.0439256 0.575677i
\(70\) 1.59803 7.97634i 0.191001 0.953356i
\(71\) 12.3268 1.46293 0.731464 0.681880i \(-0.238838\pi\)
0.731464 + 0.681880i \(0.238838\pi\)
\(72\) −1.53912 + 2.66584i −0.181387 + 0.314172i
\(73\) −6.54424 + 3.77832i −0.765945 + 0.442219i −0.831426 0.555635i \(-0.812475\pi\)
0.0654811 + 0.997854i \(0.479142\pi\)
\(74\) 3.65161 2.10826i 0.424492 0.245080i
\(75\) −1.63777 0.945565i −0.189113 0.109184i
\(76\) 1.15317 0.132278
\(77\) −11.4767 2.29931i −1.30789 0.262031i
\(78\) 1.25211 0.141773
\(79\) 3.14200 + 1.81403i 0.353502 + 0.204095i 0.666227 0.745749i \(-0.267908\pi\)
−0.312724 + 0.949844i \(0.601242\pi\)
\(80\) −3.08340 5.34060i −0.344734 0.597097i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −5.37242 3.10177i −0.593285 0.342533i
\(83\) −7.03615 −0.772318 −0.386159 0.922432i \(-0.626198\pi\)
−0.386159 + 0.922432i \(0.626198\pi\)
\(84\) −0.532029 1.57443i −0.0580491 0.171785i
\(85\) 3.31492 0.359553
\(86\) 1.09824 + 0.634071i 0.118427 + 0.0683737i
\(87\) 3.80905 2.19916i 0.408373 0.235774i
\(88\) −11.7936 + 6.80906i −1.25721 + 0.725848i
\(89\) −6.35170 + 11.0015i −0.673278 + 1.16615i 0.303690 + 0.952771i \(0.401781\pi\)
−0.976969 + 0.213382i \(0.931552\pi\)
\(90\) 3.07468 0.324100
\(91\) −1.86780 + 2.12390i −0.195799 + 0.222645i
\(92\) 3.00371 0.229191i 0.313159 0.0238948i
\(93\) −3.57722 + 6.19592i −0.370940 + 0.642487i
\(94\) −10.5933 + 6.11606i −1.09262 + 0.630824i
\(95\) −2.40965 4.17364i −0.247225 0.428206i
\(96\) −2.94881 1.70250i −0.300962 0.173760i
\(97\) −3.50817 −0.356201 −0.178100 0.984012i \(-0.556995\pi\)
−0.178100 + 0.984012i \(0.556995\pi\)
\(98\) −7.56607 3.15844i −0.764289 0.319051i
\(99\) 4.42398i 0.444627i
\(100\) 0.593945 1.02874i 0.0593945 0.102874i
\(101\) −4.01799 + 2.31979i −0.399805 + 0.230828i −0.686400 0.727224i \(-0.740810\pi\)
0.286595 + 0.958052i \(0.407477\pi\)
\(102\) −1.28089 + 0.739525i −0.126827 + 0.0732238i
\(103\) 4.28222 7.41703i 0.421940 0.730822i −0.574189 0.818723i \(-0.694683\pi\)
0.996129 + 0.0879011i \(0.0280159\pi\)
\(104\) 3.29071i 0.322680i
\(105\) −4.58658 + 5.21547i −0.447605 + 0.508978i
\(106\) 12.8461i 1.24772i
\(107\) −13.7376 7.93144i −1.32807 0.766761i −0.343068 0.939311i \(-0.611466\pi\)
−0.985001 + 0.172550i \(0.944799\pi\)
\(108\) 0.543983 0.314069i 0.0523448 0.0302213i
\(109\) −12.8951 + 7.44500i −1.23513 + 0.713101i −0.968094 0.250586i \(-0.919377\pi\)
−0.267033 + 0.963687i \(0.586043\pi\)
\(110\) 11.7800 + 6.80118i 1.12318 + 0.648467i
\(111\) −3.59997 −0.341694
\(112\) −5.88822 + 1.98973i −0.556384 + 0.188012i
\(113\) 10.0045i 0.941141i −0.882362 0.470571i \(-0.844048\pi\)
0.882362 0.470571i \(-0.155952\pi\)
\(114\) 1.86219 + 1.07514i 0.174410 + 0.100696i
\(115\) −7.10602 10.3923i −0.662640 0.969090i
\(116\) 1.38137 + 2.39261i 0.128257 + 0.222148i
\(117\) −0.925799 0.534510i −0.0855901 0.0494155i
\(118\) 6.22571i 0.573123i
\(119\) 0.656314 3.27590i 0.0601642 0.300301i
\(120\) 8.08069i 0.737663i
\(121\) 4.28582 7.42325i 0.389620 0.674841i
\(122\) −5.07174 8.78452i −0.459174 0.795313i
\(123\) 2.64822 + 4.58686i 0.238782 + 0.413583i
\(124\) −3.89189 2.24698i −0.349502 0.201785i
\(125\) 8.16108 0.729949
\(126\) 0.608751 3.03850i 0.0542319 0.270691i
\(127\) 15.8378 1.40538 0.702691 0.711496i \(-0.251982\pi\)
0.702691 + 0.711496i \(0.251982\pi\)
\(128\) −1.68210 + 2.91347i −0.148678 + 0.257517i
\(129\) −0.541356 0.937656i −0.0476637 0.0825560i
\(130\) 2.84654 1.64345i 0.249658 0.144140i
\(131\) 7.08700 + 4.09168i 0.619194 + 0.357492i 0.776555 0.630049i \(-0.216965\pi\)
−0.157361 + 0.987541i \(0.550299\pi\)
\(132\) 2.77887 0.241870
\(133\) −4.60160 + 1.55496i −0.399009 + 0.134832i
\(134\) 4.72586i 0.408252i
\(135\) −2.27340 1.31255i −0.195663 0.112966i
\(136\) −1.94357 3.36637i −0.166660 0.288664i
\(137\) −18.0495 + 10.4209i −1.54208 + 0.890318i −0.543369 + 0.839494i \(0.682851\pi\)
−0.998708 + 0.0508242i \(0.983815\pi\)
\(138\) 5.06421 + 2.43035i 0.431094 + 0.206885i
\(139\) 13.9439i 1.18271i −0.806412 0.591355i \(-0.798593\pi\)
0.806412 0.591355i \(-0.201407\pi\)
\(140\) −3.27604 2.88101i −0.276876 0.243490i
\(141\) 10.4435 0.879503
\(142\) −7.21900 + 12.5037i −0.605805 + 1.04929i
\(143\) −2.36466 4.09572i −0.197743 0.342501i
\(144\) −1.17458 2.03444i −0.0978820 0.169537i
\(145\) 5.77299 9.99912i 0.479421 0.830382i
\(146\) 8.85082i 0.732499i
\(147\) 4.24600 + 5.56520i 0.350204 + 0.459010i
\(148\) 2.26128i 0.185876i
\(149\) −8.52284 4.92066i −0.698218 0.403116i 0.108465 0.994100i \(-0.465406\pi\)
−0.806683 + 0.590984i \(0.798740\pi\)
\(150\) 1.91826 1.10751i 0.156625 0.0904276i
\(151\) 1.75246 + 3.03535i 0.142613 + 0.247013i 0.928480 0.371383i \(-0.121116\pi\)
−0.785867 + 0.618396i \(0.787783\pi\)
\(152\) −2.82561 + 4.89410i −0.229187 + 0.396964i
\(153\) 1.26278 0.102090
\(154\) 9.05343 10.2948i 0.729546 0.829577i
\(155\) 18.7811i 1.50853i
\(156\) 0.335746 0.581529i 0.0268812 0.0465596i
\(157\) 11.0316 + 19.1074i 0.880420 + 1.52493i 0.850874 + 0.525370i \(0.176073\pi\)
0.0295463 + 0.999563i \(0.490594\pi\)
\(158\) −3.68011 + 2.12471i −0.292774 + 0.169033i
\(159\) 5.48384 9.49829i 0.434897 0.753263i
\(160\) −8.93844 −0.706646
\(161\) −11.6769 + 4.96482i −0.920270 + 0.391283i
\(162\) 1.17127 0.0920233
\(163\) −4.63786 + 8.03301i −0.363265 + 0.629194i −0.988496 0.151246i \(-0.951671\pi\)
0.625231 + 0.780440i \(0.285005\pi\)
\(164\) −2.88118 + 1.66345i −0.224982 + 0.129894i
\(165\) −5.80669 10.0575i −0.452050 0.782974i
\(166\) 4.12060 7.13709i 0.319821 0.553946i
\(167\) 0.776446i 0.0600832i −0.999549 0.0300416i \(-0.990436\pi\)
0.999549 0.0300416i \(-0.00956398\pi\)
\(168\) 7.98559 + 1.59988i 0.616101 + 0.123434i
\(169\) 11.8572 0.912092
\(170\) −1.94132 + 3.36247i −0.148893 + 0.257890i
\(171\) −0.917929 1.58990i −0.0701958 0.121583i
\(172\) 0.588977 0.340046i 0.0449091 0.0259283i
\(173\) −14.2142 8.20657i −1.08069 0.623934i −0.149604 0.988746i \(-0.547800\pi\)
−0.931081 + 0.364812i \(0.881133\pi\)
\(174\) 5.15159i 0.390541i
\(175\) −0.982893 + 4.90597i −0.0742997 + 0.370857i
\(176\) 10.3927i 0.783378i
\(177\) −2.65769 + 4.60325i −0.199764 + 0.346001i
\(178\) −7.43952 12.8856i −0.557616 0.965819i
\(179\) −5.92963 10.2704i −0.443202 0.767648i 0.554723 0.832035i \(-0.312824\pi\)
−0.997925 + 0.0643872i \(0.979491\pi\)
\(180\) 0.824461 1.42801i 0.0614517 0.106437i
\(181\) 16.7131 1.24227 0.621136 0.783702i \(-0.286671\pi\)
0.621136 + 0.783702i \(0.286671\pi\)
\(182\) −1.06053 3.13842i −0.0786114 0.232635i
\(183\) 8.66028i 0.640187i
\(184\) −6.38729 + 13.3094i −0.470877 + 0.981185i
\(185\) −8.18417 + 4.72514i −0.601712 + 0.347399i
\(186\) −4.18987 7.25706i −0.307216 0.532114i
\(187\) 4.83806 + 2.79326i 0.353794 + 0.204263i
\(188\) 6.55997i 0.478435i
\(189\) −1.74721 + 1.98677i −0.127091 + 0.144517i
\(190\) 5.64468 0.409508
\(191\) 10.6475 + 6.14735i 0.770427 + 0.444806i 0.833027 0.553232i \(-0.186606\pi\)
−0.0625996 + 0.998039i \(0.519939\pi\)
\(192\) 7.52272 4.34324i 0.542905 0.313447i
\(193\) 11.6142 + 20.1163i 0.836006 + 1.44800i 0.893209 + 0.449642i \(0.148449\pi\)
−0.0572028 + 0.998363i \(0.518218\pi\)
\(194\) 2.05450 3.55850i 0.147504 0.255485i
\(195\) −2.80628 −0.200962
\(196\) −3.49571 + 2.66707i −0.249694 + 0.190505i
\(197\) −10.6853 −0.761293 −0.380646 0.924721i \(-0.624299\pi\)
−0.380646 + 0.924721i \(0.624299\pi\)
\(198\) 4.48745 + 2.59083i 0.318909 + 0.184122i
\(199\) −1.36584 2.36571i −0.0968222 0.167701i 0.813545 0.581501i \(-0.197534\pi\)
−0.910368 + 0.413800i \(0.864201\pi\)
\(200\) 2.91068 + 5.04145i 0.205816 + 0.356484i
\(201\) −2.01742 + 3.49427i −0.142298 + 0.246467i
\(202\) 5.43418i 0.382347i
\(203\) −8.73845 7.68476i −0.613319 0.539364i
\(204\) 0.793199i 0.0555351i
\(205\) 12.0409 + 6.95184i 0.840976 + 0.485537i
\(206\) 5.01562 + 8.68731i 0.349455 + 0.605273i
\(207\) −2.70696 3.95884i −0.188146 0.275158i
\(208\) −2.17486 1.25565i −0.150799 0.0870639i
\(209\) 8.12181i 0.561797i
\(210\) −2.60424 7.70673i −0.179709 0.531815i
\(211\) −20.0123 −1.37771 −0.688853 0.724901i \(-0.741886\pi\)
−0.688853 + 0.724901i \(0.741886\pi\)
\(212\) 5.96624 + 3.44461i 0.409763 + 0.236577i
\(213\) 10.6754 6.16342i 0.731464 0.422311i
\(214\) 16.0904 9.28981i 1.09992 0.635039i
\(215\) −2.46144 1.42111i −0.167869 0.0969190i
\(216\) 3.07825i 0.209448i
\(217\) 18.5600 + 3.71843i 1.25994 + 0.252423i
\(218\) 17.4401i 1.18119i
\(219\) −3.77832 + 6.54424i −0.255315 + 0.442219i
\(220\) 6.31749 3.64740i 0.425925 0.245908i
\(221\) 1.16908 0.674968i 0.0786408 0.0454033i
\(222\) 2.10826 3.65161i 0.141497 0.245080i
\(223\) 1.20048i 0.0803898i 0.999192 + 0.0401949i \(0.0127979\pi\)
−0.999192 + 0.0401949i \(0.987202\pi\)
\(224\) −1.76971 + 8.83324i −0.118243 + 0.590195i
\(225\) −1.89113 −0.126075
\(226\) 10.1480 + 5.85894i 0.675034 + 0.389731i
\(227\) 3.07964 + 5.33409i 0.204403 + 0.354036i 0.949942 0.312425i \(-0.101141\pi\)
−0.745540 + 0.666461i \(0.767808\pi\)
\(228\) 0.998676 0.576586i 0.0661389 0.0381853i
\(229\) 7.44292 12.8915i 0.491842 0.851895i −0.508114 0.861290i \(-0.669657\pi\)
0.999956 + 0.00939460i \(0.00299044\pi\)
\(230\) 14.7029 1.12187i 0.969482 0.0739739i
\(231\) −11.0888 + 3.74709i −0.729587 + 0.246540i
\(232\) −13.5391 −0.888884
\(233\) 9.78731 16.9521i 0.641188 1.11057i −0.343980 0.938977i \(-0.611775\pi\)
0.985168 0.171593i \(-0.0548914\pi\)
\(234\) 1.08436 0.626053i 0.0708866 0.0409264i
\(235\) 23.7423 13.7076i 1.54878 0.894186i
\(236\) −2.89147 1.66939i −0.188219 0.108668i
\(237\) 3.62807 0.235668
\(238\) 2.93854 + 2.58420i 0.190477 + 0.167509i
\(239\) 16.3375 1.05678 0.528392 0.849000i \(-0.322795\pi\)
0.528392 + 0.849000i \(0.322795\pi\)
\(240\) −5.34060 3.08340i −0.344734 0.199032i
\(241\) 13.5181 + 23.4140i 0.870776 + 1.50823i 0.861196 + 0.508274i \(0.169716\pi\)
0.00958007 + 0.999954i \(0.496951\pi\)
\(242\) 5.01983 + 8.69460i 0.322687 + 0.558910i
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) −5.43985 −0.348251
\(245\) 16.9575 + 7.07886i 1.08337 + 0.452252i
\(246\) −6.20354 −0.395523
\(247\) −1.69964 0.981285i −0.108145 0.0624377i
\(248\) 19.0726 11.0116i 1.21111 0.699234i
\(249\) −6.09349 + 3.51808i −0.386159 + 0.222949i
\(250\) −4.77940 + 8.27816i −0.302275 + 0.523557i
\(251\) 18.7998 1.18663 0.593317 0.804969i \(-0.297818\pi\)
0.593317 + 0.804969i \(0.297818\pi\)
\(252\) −1.24797 1.09749i −0.0786146 0.0691351i
\(253\) −1.61419 21.1552i −0.101483 1.33002i
\(254\) −9.27516 + 16.0650i −0.581975 + 1.00801i
\(255\) 2.87080 1.65746i 0.179777 0.103794i
\(256\) 6.71631 + 11.6330i 0.419769 + 0.727062i
\(257\) 17.9778 + 10.3795i 1.12143 + 0.647456i 0.941765 0.336272i \(-0.109166\pi\)
0.179662 + 0.983728i \(0.442500\pi\)
\(258\) 1.26814 0.0789511
\(259\) 3.04915 + 9.02337i 0.189465 + 0.560685i
\(260\) 1.76273i 0.109320i
\(261\) 2.19916 3.80905i 0.136124 0.235774i
\(262\) −8.30076 + 4.79244i −0.512823 + 0.296078i
\(263\) 4.46298 2.57670i 0.275199 0.158886i −0.356049 0.934467i \(-0.615876\pi\)
0.631248 + 0.775581i \(0.282543\pi\)
\(264\) −6.80906 + 11.7936i −0.419068 + 0.725848i
\(265\) 28.7912i 1.76863i
\(266\) 1.11758 5.57825i 0.0685233 0.342024i
\(267\) 12.7034i 0.777435i
\(268\) −2.19488 1.26722i −0.134074 0.0774075i
\(269\) −8.06123 + 4.65415i −0.491502 + 0.283769i −0.725197 0.688541i \(-0.758251\pi\)
0.233695 + 0.972310i \(0.424918\pi\)
\(270\) 2.66275 1.53734i 0.162050 0.0935597i
\(271\) −21.3007 12.2980i −1.29393 0.747049i −0.314578 0.949232i \(-0.601863\pi\)
−0.979348 + 0.202183i \(0.935196\pi\)
\(272\) 2.96648 0.179869
\(273\) −0.555611 + 2.77325i −0.0336271 + 0.167845i
\(274\) 24.4113i 1.47474i
\(275\) −7.24546 4.18317i −0.436918 0.252254i
\(276\) 2.48670 1.70034i 0.149681 0.102348i
\(277\) −1.03536 1.79330i −0.0622088 0.107749i 0.833244 0.552906i \(-0.186481\pi\)
−0.895452 + 0.445157i \(0.853148\pi\)
\(278\) 14.1440 + 8.16602i 0.848299 + 0.489766i
\(279\) 7.15443i 0.428325i
\(280\) 20.2544 6.84429i 1.21043 0.409025i
\(281\) 25.5993i 1.52712i 0.645734 + 0.763562i \(0.276551\pi\)
−0.645734 + 0.763562i \(0.723449\pi\)
\(282\) −6.11606 + 10.5933i −0.364206 + 0.630824i
\(283\) −5.56134 9.63251i −0.330587 0.572594i 0.652040 0.758185i \(-0.273913\pi\)
−0.982627 + 0.185591i \(0.940580\pi\)
\(284\) 3.87148 + 6.70560i 0.229730 + 0.397904i
\(285\) −4.17364 2.40965i −0.247225 0.142735i
\(286\) 5.53930 0.327546
\(287\) 9.25398 10.5228i 0.546245 0.621143i
\(288\) −3.40499 −0.200641
\(289\) 7.70269 13.3415i 0.453100 0.784792i
\(290\) 6.76171 + 11.7116i 0.397061 + 0.687730i
\(291\) −3.03817 + 1.75409i −0.178100 + 0.102826i
\(292\) −4.11068 2.37330i −0.240560 0.138887i
\(293\) −4.47517 −0.261443 −0.130721 0.991419i \(-0.541729\pi\)
−0.130721 + 0.991419i \(0.541729\pi\)
\(294\) −8.13163 + 1.04774i −0.474247 + 0.0611057i
\(295\) 13.9534i 0.812396i
\(296\) 9.59694 + 5.54080i 0.557811 + 0.322052i
\(297\) −2.21199 3.83128i −0.128353 0.222314i
\(298\) 9.98250 5.76340i 0.578271 0.333865i
\(299\) −4.62214 2.21819i −0.267305 0.128281i
\(300\) 1.18789i 0.0685829i
\(301\) −1.89172 + 2.15110i −0.109037 + 0.123988i
\(302\) −4.10519 −0.236227
\(303\) −2.31979 + 4.01799i −0.133268 + 0.230828i
\(304\) −2.15637 3.73494i −0.123676 0.214213i
\(305\) 11.3670 + 19.6883i 0.650875 + 1.12735i
\(306\) −0.739525 + 1.28089i −0.0422758 + 0.0732238i
\(307\) 20.6237i 1.17706i 0.808477 + 0.588528i \(0.200293\pi\)
−0.808477 + 0.588528i \(0.799707\pi\)
\(308\) −2.35369 6.96527i −0.134114 0.396883i
\(309\) 8.56445i 0.487214i
\(310\) −19.0505 10.9988i −1.08200 0.624690i
\(311\) 8.70064 5.02332i 0.493368 0.284846i −0.232602 0.972572i \(-0.574724\pi\)
0.725971 + 0.687726i \(0.241391\pi\)
\(312\) 1.64535 + 2.84984i 0.0931498 + 0.161340i
\(313\) −13.7128 + 23.7513i −0.775094 + 1.34250i 0.159647 + 0.987174i \(0.448964\pi\)
−0.934741 + 0.355329i \(0.884369\pi\)
\(314\) −25.8419 −1.45835
\(315\) −1.36436 + 6.81002i −0.0768731 + 0.383701i
\(316\) 2.27893i 0.128200i
\(317\) 0.0323349 0.0560058i 0.00181611 0.00314560i −0.865116 0.501572i \(-0.832755\pi\)
0.866932 + 0.498426i \(0.166089\pi\)
\(318\) 6.42303 + 11.1250i 0.360186 + 0.623860i
\(319\) 16.8512 9.72903i 0.943484 0.544721i
\(320\) 11.4014 19.7479i 0.637359 1.10394i
\(321\) −15.8629 −0.885379
\(322\) 1.80234 14.7520i 0.100440 0.822097i
\(323\) 2.31828 0.128993
\(324\) 0.314069 0.543983i 0.0174483 0.0302213i
\(325\) −1.75081 + 1.01083i −0.0971173 + 0.0560707i
\(326\) −5.43216 9.40878i −0.300860 0.521104i
\(327\) −7.44500 + 12.8951i −0.411709 + 0.713101i
\(328\) 16.3038i 0.900225i
\(329\) −8.84559 26.1768i −0.487673 1.44317i
\(330\) 13.6024 0.748785
\(331\) −8.77689 + 15.2020i −0.482421 + 0.835578i −0.999796 0.0201804i \(-0.993576\pi\)
0.517375 + 0.855759i \(0.326909\pi\)
\(332\) −2.20984 3.82755i −0.121281 0.210064i
\(333\) −3.11767 + 1.79999i −0.170847 + 0.0986386i
\(334\) 0.787584 + 0.454712i 0.0430947 + 0.0248807i
\(335\) 10.5918i 0.578693i
\(336\) −4.10448 + 4.66726i −0.223918 + 0.254620i
\(337\) 5.11775i 0.278782i 0.990237 + 0.139391i \(0.0445144\pi\)
−0.990237 + 0.139391i \(0.955486\pi\)
\(338\) −6.94396 + 12.0273i −0.377702 + 0.654198i
\(339\) −5.00223 8.66412i −0.271684 0.470571i
\(340\) 1.04111 + 1.80326i 0.0564622 + 0.0977955i
\(341\) −15.8255 + 27.4106i −0.857001 + 1.48437i
\(342\) 2.15028 0.116274
\(343\) 10.3529 15.3563i 0.559005 0.829164i
\(344\) 3.33285i 0.179695i
\(345\) −11.3502 5.44701i −0.611072 0.293257i
\(346\) 16.6486 9.61207i 0.895034 0.516748i
\(347\) 2.10902 + 3.65293i 0.113218 + 0.196100i 0.917066 0.398735i \(-0.130551\pi\)
−0.803848 + 0.594835i \(0.797217\pi\)
\(348\) 2.39261 + 1.38137i 0.128257 + 0.0740493i
\(349\) 10.2932i 0.550983i −0.961303 0.275492i \(-0.911159\pi\)
0.961303 0.275492i \(-0.0888406\pi\)
\(350\) −4.40074 3.87009i −0.235229 0.206865i
\(351\) −1.06902 −0.0570601
\(352\) −13.0455 7.53182i −0.695327 0.401447i
\(353\) −0.880590 + 0.508409i −0.0468691 + 0.0270599i −0.523251 0.852178i \(-0.675281\pi\)
0.476382 + 0.879238i \(0.341948\pi\)
\(354\) −3.11285 5.39162i −0.165446 0.286561i
\(355\) 16.1796 28.0239i 0.858723 1.48735i
\(356\) −7.97948 −0.422912
\(357\) −1.06957 3.16517i −0.0566074 0.167519i
\(358\) 13.8903 0.734128
\(359\) 3.34357 + 1.93041i 0.176467 + 0.101883i 0.585632 0.810577i \(-0.300847\pi\)
−0.409165 + 0.912461i \(0.634180\pi\)
\(360\) 4.04035 + 6.99809i 0.212945 + 0.368832i
\(361\) 7.81481 + 13.5357i 0.411306 + 0.712403i
\(362\) −9.78772 + 16.9528i −0.514431 + 0.891021i
\(363\) 8.57164i 0.449894i
\(364\) −1.74198 0.349000i −0.0913048 0.0182926i
\(365\) 19.8369i 1.03831i
\(366\) −8.78452 5.07174i −0.459174 0.265104i
\(367\) −13.8594 24.0052i −0.723455 1.25306i −0.959607 0.281345i \(-0.909219\pi\)
0.236151 0.971716i \(-0.424114\pi\)
\(368\) −6.35909 9.29997i −0.331491 0.484795i
\(369\) 4.58686 + 2.64822i 0.238782 + 0.137861i
\(370\) 11.0688i 0.575438i
\(371\) −28.4524 5.70032i −1.47717 0.295946i
\(372\) −4.49397 −0.233001
\(373\) −0.158538 0.0915320i −0.00820879 0.00473935i 0.495890 0.868385i \(-0.334842\pi\)
−0.504099 + 0.863646i \(0.668175\pi\)
\(374\) −5.66666 + 3.27165i −0.293016 + 0.169173i
\(375\) 7.06770 4.08054i 0.364975 0.210718i
\(376\) −27.8407 16.0739i −1.43578 0.828946i
\(377\) 4.70188i 0.242159i
\(378\) −0.992054 2.93579i −0.0510258 0.151001i
\(379\) 33.5082i 1.72120i −0.509283 0.860599i \(-0.670089\pi\)
0.509283 0.860599i \(-0.329911\pi\)
\(380\) 1.51359 2.62162i 0.0776457 0.134486i
\(381\) 13.7160 7.91892i 0.702691 0.405699i
\(382\) −12.4711 + 7.20017i −0.638075 + 0.368393i
\(383\) 9.84454 17.0512i 0.503033 0.871278i −0.496961 0.867773i \(-0.665551\pi\)
0.999994 0.00350527i \(-0.00111576\pi\)
\(384\) 3.36419i 0.171678i
\(385\) −20.2910 + 23.0732i −1.03412 + 1.17592i
\(386\) −27.2065 −1.38478
\(387\) −0.937656 0.541356i −0.0476637 0.0275187i
\(388\) −1.10181 1.90839i −0.0559358 0.0968837i
\(389\) 0.516198 0.298027i 0.0261723 0.0151106i −0.486857 0.873482i \(-0.661857\pi\)
0.513029 + 0.858371i \(0.328523\pi\)
\(390\) 1.64345 2.84654i 0.0832193 0.144140i
\(391\) 6.03852 0.460754i 0.305381 0.0233014i
\(392\) −2.75362 21.3711i −0.139079 1.07940i
\(393\) 8.18336 0.412796
\(394\) 6.25763 10.8385i 0.315255 0.546038i
\(395\) 8.24805 4.76201i 0.415004 0.239603i
\(396\) 2.40657 1.38944i 0.120935 0.0698218i
\(397\) −8.28054 4.78077i −0.415589 0.239940i 0.277600 0.960697i \(-0.410461\pi\)
−0.693188 + 0.720757i \(0.743794\pi\)
\(398\) 3.19953 0.160378
\(399\) −3.20762 + 3.64743i −0.160582 + 0.182600i
\(400\) −4.44258 −0.222129
\(401\) 13.5938 + 7.84838i 0.678842 + 0.391929i 0.799418 0.600775i \(-0.205141\pi\)
−0.120577 + 0.992704i \(0.538474\pi\)
\(402\) −2.36293 4.09271i −0.117852 0.204126i
\(403\) 3.82412 + 6.62356i 0.190493 + 0.329943i
\(404\) −2.52385 1.45715i −0.125566 0.0724958i
\(405\) −2.62510 −0.130442
\(406\) 12.9125 4.36336i 0.640837 0.216550i
\(407\) −15.9262 −0.789433
\(408\) −3.36637 1.94357i −0.166660 0.0962212i
\(409\) −21.3620 + 12.3333i −1.05628 + 0.609844i −0.924401 0.381421i \(-0.875435\pi\)
−0.131880 + 0.991266i \(0.542101\pi\)
\(410\) −14.1031 + 8.14245i −0.696504 + 0.402127i
\(411\) −10.4209 + 18.0495i −0.514025 + 0.890318i
\(412\) 5.37965 0.265036
\(413\) 13.7891 + 2.76260i 0.678519 + 0.135939i
\(414\) 5.60091 0.427363i 0.275270 0.0210038i
\(415\) −9.23529 + 15.9960i −0.453343 + 0.785213i
\(416\) −3.15234 + 1.82000i −0.154556 + 0.0892331i
\(417\) −6.97197 12.0758i −0.341419 0.591355i
\(418\) 8.23832 + 4.75639i 0.402949 + 0.232643i
\(419\) −27.5752 −1.34714 −0.673569 0.739124i \(-0.735240\pi\)
−0.673569 + 0.739124i \(0.735240\pi\)
\(420\) −4.27763 0.857008i −0.208727 0.0418177i
\(421\) 17.6198i 0.858735i 0.903130 + 0.429367i \(0.141263\pi\)
−0.903130 + 0.429367i \(0.858737\pi\)
\(422\) 11.7199 20.2994i 0.570515 0.988161i
\(423\) 9.04435 5.22176i 0.439751 0.253891i
\(424\) −29.2381 + 16.8806i −1.41993 + 0.819795i
\(425\) 1.19404 2.06814i 0.0579195 0.100319i
\(426\) 14.4380i 0.699524i
\(427\) 21.7071 7.33520i 1.05048 0.354975i
\(428\) 9.96407i 0.481631i
\(429\) −4.09572 2.36466i −0.197743 0.114167i
\(430\) 2.88300 1.66450i 0.139030 0.0802692i
\(431\) −12.0768 + 6.97254i −0.581719 + 0.335856i −0.761816 0.647793i \(-0.775692\pi\)
0.180097 + 0.983649i \(0.442359\pi\)
\(432\) −2.03444 1.17458i −0.0978820 0.0565122i
\(433\) −13.0347 −0.626409 −0.313204 0.949686i \(-0.601403\pi\)
−0.313204 + 0.949686i \(0.601403\pi\)
\(434\) −14.6411 + 16.6486i −0.702797 + 0.799160i
\(435\) 11.5460i 0.553588i
\(436\) −8.09991 4.67648i −0.387915 0.223963i
\(437\) −4.96958 7.26786i −0.237727 0.347669i
\(438\) −4.42541 7.66504i −0.211454 0.366250i
\(439\) 26.1051 + 15.0718i 1.24593 + 0.719338i 0.970295 0.241924i \(-0.0777785\pi\)
0.275635 + 0.961262i \(0.411112\pi\)
\(440\) 35.7489i 1.70426i
\(441\) 6.45974 + 2.69661i 0.307607 + 0.128410i
\(442\) 1.58113i 0.0752069i
\(443\) 4.33873 7.51490i 0.206139 0.357044i −0.744356 0.667783i \(-0.767243\pi\)
0.950495 + 0.310739i \(0.100577\pi\)
\(444\) −1.13064 1.95832i −0.0536577 0.0929379i
\(445\) 16.6738 + 28.8799i 0.790415 + 1.36904i
\(446\) −1.21770 0.703038i −0.0576597 0.0332898i
\(447\) −9.84132 −0.465479
\(448\) −17.2581 15.1771i −0.815368 0.717050i
\(449\) 13.2107 0.623453 0.311727 0.950172i \(-0.399093\pi\)
0.311727 + 0.950172i \(0.399093\pi\)
\(450\) 1.10751 1.91826i 0.0522084 0.0904276i
\(451\) 11.7157 + 20.2922i 0.551670 + 0.955521i
\(452\) 5.44226 3.14209i 0.255983 0.147792i
\(453\) 3.03535 + 1.75246i 0.142613 + 0.0823377i
\(454\) −7.21414 −0.338577
\(455\) 2.37690 + 7.03398i 0.111431 + 0.329758i
\(456\) 5.65122i 0.264643i
\(457\) 13.2929 + 7.67468i 0.621817 + 0.359006i 0.777576 0.628789i \(-0.216449\pi\)
−0.155759 + 0.987795i \(0.549782\pi\)
\(458\) 8.71763 + 15.0994i 0.407348 + 0.705548i
\(459\) 1.09360 0.631390i 0.0510448 0.0294707i
\(460\) 3.42147 7.12946i 0.159527 0.332413i
\(461\) 9.68259i 0.450963i −0.974247 0.225482i \(-0.927604\pi\)
0.974247 0.225482i \(-0.0723955\pi\)
\(462\) 2.69311 13.4423i 0.125295 0.625390i
\(463\) −20.1178 −0.934952 −0.467476 0.884006i \(-0.654837\pi\)
−0.467476 + 0.884006i \(0.654837\pi\)
\(464\) 5.16618 8.94809i 0.239834 0.415405i
\(465\) 9.39054 + 16.2649i 0.435476 + 0.754266i
\(466\) 11.4635 + 19.8554i 0.531038 + 0.919785i
\(467\) 12.2019 21.1343i 0.564637 0.977979i −0.432447 0.901659i \(-0.642350\pi\)
0.997083 0.0763197i \(-0.0243170\pi\)
\(468\) 0.671492i 0.0310397i
\(469\) 10.4672 + 2.09706i 0.483329 + 0.0968331i
\(470\) 32.1105i 1.48115i
\(471\) 19.1074 + 11.0316i 0.880420 + 0.508311i
\(472\) 14.1699 8.18101i 0.652224 0.376562i
\(473\) −2.39495 4.14817i −0.110120 0.190733i
\(474\) −2.12471 + 3.68011i −0.0975913 + 0.169033i
\(475\) −3.47185 −0.159299
\(476\) 1.98816 0.671835i 0.0911273 0.0307935i
\(477\) 10.9677i 0.502176i
\(478\) −9.56776 + 16.5719i −0.437619 + 0.757979i
\(479\) 14.7292 + 25.5117i 0.672993 + 1.16566i 0.977051 + 0.213004i \(0.0683248\pi\)
−0.304059 + 0.952653i \(0.598342\pi\)
\(480\) −7.74092 + 4.46922i −0.353323 + 0.203991i
\(481\) −1.92422 + 3.33285i −0.0877369 + 0.151965i
\(482\) −31.6665 −1.44237
\(483\) −7.63010 + 10.1381i −0.347182 + 0.461301i
\(484\) 5.38417 0.244735
\(485\) −4.60464 + 7.97548i −0.209086 + 0.362148i
\(486\) 1.01435 0.585633i 0.0460116 0.0265648i
\(487\) −3.19397 5.53212i −0.144733 0.250684i 0.784540 0.620078i \(-0.212899\pi\)
−0.929273 + 0.369393i \(0.879566\pi\)
\(488\) 13.3292 23.0869i 0.603387 1.04510i
\(489\) 9.27572i 0.419462i
\(490\) −17.1112 + 13.0551i −0.773007 + 0.589769i
\(491\) 13.1737 0.594520 0.297260 0.954797i \(-0.403927\pi\)
0.297260 + 0.954797i \(0.403927\pi\)
\(492\) −1.66345 + 2.88118i −0.0749941 + 0.129894i
\(493\) 2.77705 + 4.80999i 0.125072 + 0.216631i
\(494\) 1.99072 1.14934i 0.0895669 0.0517115i
\(495\) −10.0575 5.80669i −0.452050 0.260991i
\(496\) 16.8070i 0.754655i
\(497\) −24.4907 21.5375i −1.09856 0.966091i
\(498\) 8.24120i 0.369297i
\(499\) 17.9870 31.1544i 0.805210 1.39466i −0.110940 0.993827i \(-0.535386\pi\)
0.916149 0.400837i \(-0.131281\pi\)
\(500\) 2.56314 + 4.43949i 0.114627 + 0.198540i
\(501\) −0.388223 0.672422i −0.0173445 0.0300416i
\(502\) −11.0098 + 19.0695i −0.491391 + 0.851113i
\(503\) 2.88055 0.128437 0.0642187 0.997936i \(-0.479544\pi\)
0.0642187 + 0.997936i \(0.479544\pi\)
\(504\) 7.71566 2.60725i 0.343683 0.116136i
\(505\) 12.1793i 0.541974i
\(506\) 22.4040 + 10.7518i 0.995979 + 0.477977i
\(507\) 10.2686 5.92860i 0.456046 0.263298i
\(508\) 4.97417 + 8.61552i 0.220693 + 0.382252i
\(509\) −23.4595 13.5444i −1.03983 0.600344i −0.120042 0.992769i \(-0.538303\pi\)
−0.919784 + 0.392425i \(0.871636\pi\)
\(510\) 3.88265i 0.171926i
\(511\) 19.6034 + 3.92747i 0.867204 + 0.173741i
\(512\) −22.4615 −0.992669
\(513\) −1.58990 0.917929i −0.0701958 0.0405276i
\(514\) −21.0568 + 12.1572i −0.928776 + 0.536229i
\(515\) −11.2412 19.4704i −0.495349 0.857969i
\(516\) 0.340046 0.588977i 0.0149697 0.0259283i
\(517\) 46.2020 2.03196
\(518\) −10.9385 2.19149i −0.480610 0.0962884i
\(519\) −16.4131 −0.720457
\(520\) 7.48110 + 4.31921i 0.328068 + 0.189410i
\(521\) −3.74848 6.49256i −0.164224 0.284444i 0.772155 0.635434i \(-0.219179\pi\)
−0.936379 + 0.350989i \(0.885845\pi\)
\(522\) 2.57579 + 4.46141i 0.112739 + 0.195270i
\(523\) −11.4128 + 19.7676i −0.499048 + 0.864376i −0.999999 0.00109950i \(-0.999650\pi\)
0.500952 + 0.865475i \(0.332983\pi\)
\(524\) 5.14028i 0.224554i
\(525\) 1.60178 + 4.74014i 0.0699072 + 0.206877i
\(526\) 6.03600i 0.263182i
\(527\) −7.82408 4.51723i −0.340822 0.196774i
\(528\) −5.19634 9.00032i −0.226142 0.391689i
\(529\) −14.3889 17.9432i −0.625606 0.780139i
\(530\) 29.2042 + 16.8611i 1.26855 + 0.732398i
\(531\) 5.31537i 0.230667i
\(532\) −2.29109 2.01483i −0.0993314 0.0873539i
\(533\) 5.66201 0.245249
\(534\) −12.8856 7.43952i −0.557616 0.321940i
\(535\) −36.0627 + 20.8208i −1.55912 + 0.900161i
\(536\) 10.7562 6.21010i 0.464598 0.268236i
\(537\) −10.2704 5.92963i −0.443202 0.255883i
\(538\) 10.9025i 0.470040i
\(539\) 18.7842 + 24.6204i 0.809094 + 1.06047i
\(540\) 1.64892i 0.0709583i
\(541\) 10.6982 18.5298i 0.459951 0.796659i −0.539007 0.842302i \(-0.681200\pi\)
0.998958 + 0.0456426i \(0.0145336\pi\)
\(542\) 24.9488 14.4042i 1.07164 0.618713i
\(543\) 14.4739 8.35654i 0.621136 0.358613i
\(544\) 2.14988 3.72370i 0.0921753 0.159652i
\(545\) 39.0877i 1.67433i
\(546\) −2.48765 2.18769i −0.106462 0.0936244i
\(547\) −5.94927 −0.254372 −0.127186 0.991879i \(-0.540595\pi\)
−0.127186 + 0.991879i \(0.540595\pi\)
\(548\) −11.3376 6.54577i −0.484318 0.279621i
\(549\) 4.33014 + 7.50003i 0.184806 + 0.320093i
\(550\) 8.48635 4.89960i 0.361859 0.208920i
\(551\) 4.03734 6.99287i 0.171996 0.297906i
\(552\) 1.12317 + 14.7200i 0.0478053 + 0.626523i
\(553\) −3.07295 9.09379i −0.130675 0.386707i
\(554\) 2.42536 0.103044
\(555\) −4.72514 + 8.18417i −0.200571 + 0.347399i
\(556\) 7.58527 4.37936i 0.321687 0.185726i
\(557\) 10.1747 5.87438i 0.431117 0.248905i −0.268706 0.963222i \(-0.586596\pi\)
0.699822 + 0.714317i \(0.253263\pi\)
\(558\) −7.25706 4.18987i −0.307216 0.177371i
\(559\) −1.15744 −0.0489545
\(560\) −3.20512 + 15.9979i −0.135441 + 0.676034i
\(561\) 5.58651 0.235863
\(562\) −25.9665 14.9918i −1.09533 0.632390i
\(563\) −11.3472 19.6540i −0.478229 0.828317i 0.521459 0.853276i \(-0.325388\pi\)
−0.999688 + 0.0249589i \(0.992055\pi\)
\(564\) 3.27998 + 5.68110i 0.138112 + 0.239217i
\(565\) −22.7442 13.1313i −0.956854 0.552440i
\(566\) 13.0276 0.547591
\(567\) −0.519738 + 2.59420i −0.0218269 + 0.108946i
\(568\) −37.9451 −1.59214
\(569\) 36.2218 + 20.9127i 1.51850 + 0.876704i 0.999763 + 0.0217683i \(0.00692960\pi\)
0.518733 + 0.854936i \(0.326404\pi\)
\(570\) 4.88844 2.82234i 0.204754 0.118215i
\(571\) −10.4469 + 6.03155i −0.437191 + 0.252412i −0.702405 0.711777i \(-0.747891\pi\)
0.265214 + 0.964189i \(0.414557\pi\)
\(572\) 1.48534 2.57268i 0.0621050 0.107569i
\(573\) 12.2947 0.513618
\(574\) 5.25436 + 15.5493i 0.219313 + 0.649013i
\(575\) −9.04326 + 0.690023i −0.377130 + 0.0287760i
\(576\) 4.34324 7.52272i 0.180968 0.313447i
\(577\) −9.76872 + 5.63997i −0.406677 + 0.234795i −0.689361 0.724418i \(-0.742109\pi\)
0.282684 + 0.959213i \(0.408775\pi\)
\(578\) 9.02190 + 15.6264i 0.375261 + 0.649972i
\(579\) 20.1163 + 11.6142i 0.836006 + 0.482668i
\(580\) 7.25247 0.301143
\(581\) 13.9792 + 12.2936i 0.579957 + 0.510025i
\(582\) 4.10900i 0.170324i
\(583\) 24.2604 42.0203i 1.00476 1.74030i
\(584\) 20.1448 11.6306i 0.833597 0.481277i
\(585\) −2.43031 + 1.40314i −0.100481 + 0.0580127i
\(586\) 2.62081 4.53937i 0.108265 0.187520i
\(587\) 23.4925i 0.969641i 0.874614 + 0.484820i \(0.161115\pi\)
−0.874614 + 0.484820i \(0.838885\pi\)
\(588\) −1.69384 + 4.05761i −0.0698529 + 0.167333i
\(589\) 13.1345i 0.541198i
\(590\) −14.1535 8.17154i −0.582691 0.336417i
\(591\) −9.25370 + 5.34263i −0.380646 + 0.219766i
\(592\) −7.32392 + 4.22847i −0.301011 + 0.173789i
\(593\) 16.9633 + 9.79376i 0.696599 + 0.402181i 0.806079 0.591808i \(-0.201585\pi\)
−0.109481 + 0.993989i \(0.534919\pi\)
\(594\) 5.18166 0.212606
\(595\) −6.58599 5.79184i −0.269999 0.237442i
\(596\) 6.18171i 0.253213i
\(597\) −2.36571 1.36584i −0.0968222 0.0559003i
\(598\) 4.95689 3.38940i 0.202702 0.138603i
\(599\) −19.3629 33.5375i −0.791147 1.37031i −0.925257 0.379341i \(-0.876151\pi\)
0.134110 0.990966i \(-0.457182\pi\)
\(600\) 5.04145 + 2.91068i 0.205816 + 0.118828i
\(601\) 17.9352i 0.731593i −0.930695 0.365797i \(-0.880797\pi\)
0.930695 0.365797i \(-0.119203\pi\)
\(602\) −1.07411 3.17861i −0.0437774 0.129551i
\(603\) 4.03483i 0.164311i
\(604\) −1.10079 + 1.90662i −0.0447903 + 0.0775791i
\(605\) −11.2507 19.4868i −0.457405 0.792249i
\(606\) −2.71709 4.70614i −0.110374 0.191174i
\(607\) −4.31043 2.48863i −0.174955 0.101010i 0.409965 0.912101i \(-0.365541\pi\)
−0.584920 + 0.811091i \(0.698874\pi\)
\(608\) −6.25109 −0.253515
\(609\) −11.4101 2.28597i −0.462360 0.0926322i
\(610\) −26.6276 −1.07812
\(611\) 5.58217 9.66860i 0.225830 0.391150i
\(612\) 0.396600 + 0.686931i 0.0160316 + 0.0277675i
\(613\) −20.0317 + 11.5653i −0.809074 + 0.467119i −0.846634 0.532175i \(-0.821375\pi\)
0.0375602 + 0.999294i \(0.488041\pi\)
\(614\) −20.9196 12.0779i −0.844245 0.487425i
\(615\) 13.9037 0.560650
\(616\) 35.3281 + 7.07785i 1.42341 + 0.285175i
\(617\) 37.3929i 1.50538i −0.658375 0.752690i \(-0.728756\pi\)
0.658375 0.752690i \(-0.271244\pi\)
\(618\) 8.68731 + 5.01562i 0.349455 + 0.201758i
\(619\) −21.9986 38.1028i −0.884200 1.53148i −0.846628 0.532186i \(-0.821371\pi\)
−0.0375728 0.999294i \(-0.511963\pi\)
\(620\) −10.2166 + 5.89855i −0.410308 + 0.236891i
\(621\) −4.32371 2.07498i −0.173505 0.0832659i
\(622\) 11.7673i 0.471825i
\(623\) 31.8412 10.7597i 1.27569 0.431078i
\(624\) −2.51131 −0.100533
\(625\) 15.4396 26.7422i 0.617586 1.06969i
\(626\) −16.0613 27.8191i −0.641941 1.11187i
\(627\) −4.06090 7.03369i −0.162177 0.280899i
\(628\) −6.92939 + 12.0021i −0.276513 + 0.478934i
\(629\) 4.54597i 0.181260i
\(630\) −6.10870 5.37211i −0.243377 0.214030i
\(631\) 10.1960i 0.405898i −0.979189 0.202949i \(-0.934947\pi\)
0.979189 0.202949i \(-0.0650525\pi\)
\(632\) −9.67184 5.58404i −0.384725 0.222121i
\(633\) −17.3312 + 10.0062i −0.688853 + 0.397710i
\(634\) 0.0378728 + 0.0655976i 0.00150412 + 0.00260521i
\(635\) 20.7879 36.0058i 0.824944 1.42884i
\(636\) 6.88921 0.273175
\(637\) 7.42179 0.956282i 0.294062 0.0378893i
\(638\) 22.7905i 0.902286i
\(639\) 6.16342 10.6754i 0.243821 0.422311i
\(640\) 4.41566 + 7.64815i 0.174544 + 0.302320i
\(641\) −37.4979 + 21.6494i −1.48108 + 0.855102i −0.999770 0.0214491i \(-0.993172\pi\)
−0.481309 + 0.876551i \(0.659839\pi\)
\(642\) 9.28981 16.0904i 0.366640 0.635039i
\(643\) 5.89071 0.232307 0.116154 0.993231i \(-0.462944\pi\)
0.116154 + 0.993231i \(0.462944\pi\)
\(644\) −6.36814 4.79275i −0.250940 0.188861i
\(645\) −2.84222 −0.111912
\(646\) −1.35766 + 2.35154i −0.0534165 + 0.0925201i
\(647\) 14.3694 8.29618i 0.564919 0.326156i −0.190198 0.981746i \(-0.560913\pi\)
0.755118 + 0.655589i \(0.227580\pi\)
\(648\) 1.53912 + 2.66584i 0.0604625 + 0.104724i
\(649\) −11.7576 + 20.3647i −0.461525 + 0.799384i
\(650\) 2.36790i 0.0928766i
\(651\) 17.9327 6.05976i 0.702837 0.237501i
\(652\) −5.82643 −0.228181
\(653\) −9.87863 + 17.1103i −0.386581 + 0.669578i −0.991987 0.126339i \(-0.959677\pi\)
0.605406 + 0.795917i \(0.293011\pi\)
\(654\) −8.72006 15.1036i −0.340982 0.590597i
\(655\) 18.6041 10.7411i 0.726921 0.419688i
\(656\) 10.7753 + 6.22112i 0.420704 + 0.242894i
\(657\) 7.55663i 0.294812i
\(658\) 31.7326 + 6.35750i 1.23706 + 0.247841i
\(659\) 13.6631i 0.532238i 0.963940 + 0.266119i \(0.0857414\pi\)
−0.963940 + 0.266119i \(0.914259\pi\)
\(660\) 3.64740 6.31749i 0.141975 0.245908i
\(661\) 20.5219 + 35.5450i 0.798209 + 1.38254i 0.920781 + 0.390079i \(0.127552\pi\)
−0.122572 + 0.992460i \(0.539114\pi\)
\(662\) −10.2801 17.8056i −0.399546 0.692034i
\(663\) 0.674968 1.16908i 0.0262136 0.0454033i
\(664\) 21.6590 0.840533
\(665\) −2.50478 + 12.5022i −0.0971310 + 0.484816i
\(666\) 4.21652i 0.163387i
\(667\) 9.12639 19.0170i 0.353375 0.736342i
\(668\) 0.422374 0.243858i 0.0163421 0.00943513i
\(669\) 0.600238 + 1.03964i 0.0232065 + 0.0401949i
\(670\) −10.7438 6.20292i −0.415068 0.239640i
\(671\) 38.3130i 1.47906i
\(672\) 2.88401 + 8.53466i 0.111253 + 0.329232i
\(673\) −6.56598 −0.253100 −0.126550 0.991960i \(-0.540390\pi\)
−0.126550 + 0.991960i \(0.540390\pi\)
\(674\) −5.19117 2.99712i −0.199956 0.115445i
\(675\) −1.63777 + 0.945565i −0.0630377 + 0.0363948i
\(676\) 3.72398 + 6.45012i 0.143230 + 0.248081i
\(677\) −23.3248 + 40.3997i −0.896444 + 1.55269i −0.0644363 + 0.997922i \(0.520525\pi\)
−0.832007 + 0.554764i \(0.812808\pi\)
\(678\) 11.7179 0.450023
\(679\) 6.96994 + 6.12950i 0.267482 + 0.235229i
\(680\) −10.2041 −0.391311
\(681\) 5.33409 + 3.07964i 0.204403 + 0.118012i
\(682\) −18.5359 32.1051i −0.709777 1.22937i
\(683\) −13.9394 24.1438i −0.533377 0.923836i −0.999240 0.0389794i \(-0.987589\pi\)
0.465863 0.884857i \(-0.345744\pi\)
\(684\) 0.576586 0.998676i 0.0220463 0.0381853i
\(685\) 54.7118i 2.09043i
\(686\) 9.51363 + 19.4946i 0.363232 + 0.744308i
\(687\) 14.8858i 0.567930i
\(688\) −2.20271 1.27174i −0.0839775 0.0484845i
\(689\) −5.86234 10.1539i −0.223337 0.386831i
\(690\) 12.1722 8.32303i 0.463387 0.316852i
\(691\) 30.2632 + 17.4725i 1.15127 + 0.664685i 0.949196 0.314686i \(-0.101899\pi\)
0.202072 + 0.979371i \(0.435232\pi\)
\(692\) 10.3097i 0.391917i
\(693\) −7.72961 + 8.78946i −0.293624 + 0.333884i
\(694\) −4.94044 −0.187537
\(695\) −31.7001 18.3021i −1.20246 0.694238i
\(696\) −11.7252 + 6.76954i −0.444442 + 0.256599i
\(697\) −5.79219 + 3.34412i −0.219395 + 0.126668i
\(698\) 10.4409 + 6.02804i 0.395193 + 0.228165i
\(699\) 19.5746i 0.740380i
\(700\) −2.97746 + 1.00614i −0.112538 + 0.0380284i
\(701\) 50.6216i 1.91195i −0.293446 0.955976i \(-0.594802\pi\)
0.293446 0.955976i \(-0.405198\pi\)
\(702\) 0.626053 1.08436i 0.0236289 0.0409264i
\(703\) −5.72359 + 3.30452i −0.215869 + 0.124632i
\(704\) 33.2804 19.2144i 1.25430 0.724171i
\(705\) 13.7076 23.7423i 0.516259 0.894186i
\(706\) 1.19096i 0.0448225i
\(707\) 12.0360 + 2.41137i 0.452660 + 0.0906887i
\(708\) −3.33879 −0.125479
\(709\) 15.8772 + 9.16673i 0.596282 + 0.344264i 0.767578 0.640956i \(-0.221462\pi\)
−0.171295 + 0.985220i \(0.554795\pi\)
\(710\) 18.9506 + 32.8234i 0.711203 + 1.23184i
\(711\) 3.14200 1.81403i 0.117834 0.0680316i
\(712\) 19.5521 33.8652i 0.732745 1.26915i
\(713\) 2.61046 + 34.2120i 0.0977625 + 1.28125i
\(714\) 3.83695 + 0.768718i 0.143594 + 0.0287686i
\(715\) −12.4149 −0.464293
\(716\) 3.72463 6.45124i 0.139196 0.241094i
\(717\) 14.1487 8.16874i 0.528392 0.305067i
\(718\) −3.91621 + 2.26102i −0.146152 + 0.0843807i
\(719\) 7.94476 + 4.58691i 0.296290 + 0.171063i 0.640775 0.767729i \(-0.278613\pi\)
−0.344485 + 0.938792i \(0.611947\pi\)
\(720\) −6.16679 −0.229823
\(721\) −21.4669 + 7.25403i −0.799469 + 0.270154i
\(722\) −18.3064 −0.681295
\(723\) 23.4140 + 13.5181i 0.870776 + 0.502743i
\(724\) 5.24906 + 9.09163i 0.195080 + 0.337888i
\(725\) −4.15889 7.20341i −0.154457 0.267528i
\(726\) 8.69460 + 5.01983i 0.322687 + 0.186303i
\(727\) −43.0133 −1.59528 −0.797638 0.603137i \(-0.793917\pi\)
−0.797638 + 0.603137i \(0.793917\pi\)
\(728\) 5.74955 6.53789i 0.213092 0.242310i
\(729\) −1.00000 −0.0370370
\(730\) −20.1215 11.6171i −0.744729 0.429969i
\(731\) 1.18405 0.683613i 0.0437938 0.0252843i
\(732\) −4.71105 + 2.71993i −0.174125 + 0.100531i
\(733\) −14.1989 + 24.5931i −0.524447 + 0.908368i 0.475148 + 0.879906i \(0.342394\pi\)
−0.999595 + 0.0284625i \(0.990939\pi\)
\(734\) 32.4661 1.19835
\(735\) 18.2250 2.34826i 0.672240 0.0866167i
\(736\) −16.2825 + 1.24239i −0.600179 + 0.0457952i
\(737\) −8.92502 + 15.4586i −0.328757 + 0.569424i
\(738\) −5.37242 + 3.10177i −0.197762 + 0.114178i
\(739\) 6.93883 + 12.0184i 0.255249 + 0.442104i 0.964963 0.262386i \(-0.0845093\pi\)
−0.709714 + 0.704490i \(0.751176\pi\)
\(740\) −5.14079 2.96804i −0.188979 0.109107i
\(741\) −1.96257 −0.0720968
\(742\) 22.4447 25.5222i 0.823972 0.936950i
\(743\) 33.8390i 1.24143i −0.784035 0.620717i \(-0.786842\pi\)
0.784035 0.620717i \(-0.213158\pi\)
\(744\) 11.0116 19.0726i 0.403703 0.699234i
\(745\) −22.3733 + 12.9172i −0.819693 + 0.473250i
\(746\) 0.185690 0.107208i 0.00679860 0.00392517i
\(747\) −3.51808 + 6.09349i −0.128720 + 0.222949i
\(748\) 3.50910i 0.128305i
\(749\) 13.4357 + 39.7605i 0.490932 + 1.45282i
\(750\) 9.55879i 0.349038i
\(751\) 35.3689 + 20.4203i 1.29063 + 0.745146i 0.978766 0.204981i \(-0.0657133\pi\)
0.311864 + 0.950127i \(0.399047\pi\)
\(752\) 21.2467 12.2668i 0.774787 0.447324i
\(753\) 16.2811 9.39990i 0.593317 0.342552i
\(754\) 4.76933 + 2.75358i 0.173689 + 0.100279i
\(755\) 9.20074 0.334849
\(756\) −1.62951 0.326467i −0.0592649 0.0118735i
\(757\) 1.96542i 0.0714345i −0.999362 0.0357173i \(-0.988628\pi\)
0.999362 0.0357173i \(-0.0113716\pi\)
\(758\) 33.9889 + 19.6235i 1.23453 + 0.712757i
\(759\) −11.9755 17.5138i −0.434684 0.635712i
\(760\) 7.41750 + 12.8475i 0.269061 + 0.466027i
\(761\) −37.1235 21.4333i −1.34573 0.776956i −0.358086 0.933689i \(-0.616570\pi\)
−0.987641 + 0.156733i \(0.949904\pi\)
\(762\) 18.5503i 0.672007i
\(763\) 38.6276 + 7.73890i 1.39841 + 0.280167i
\(764\) 7.72276i 0.279400i
\(765\) 1.65746 2.87080i 0.0599255 0.103794i
\(766\) 11.5306 + 19.9715i 0.416616 + 0.721601i
\(767\) 2.84112 + 4.92096i 0.102587 + 0.177686i
\(768\) 11.6330 + 6.71631i 0.419769 + 0.242354i
\(769\) −33.7742 −1.21793 −0.608965 0.793197i \(-0.708415\pi\)
−0.608965 + 0.793197i \(0.708415\pi\)
\(770\) −11.5211 34.0945i −0.415192 1.22868i
\(771\) 20.7590 0.747618
\(772\) −7.29530 + 12.6358i −0.262563 + 0.454773i
\(773\) −18.4633 31.9794i −0.664079 1.15022i −0.979534 0.201279i