Properties

Label 483.2.j.a.229.11
Level $483$
Weight $2$
Character 483.229
Analytic conductor $3.857$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(229,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.229");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.j (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 229.11
Character \(\chi\) \(=\) 483.229
Dual form 483.2.j.a.367.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.585633 + 1.01435i) q^{2} +(0.866025 - 0.500000i) q^{3} +(0.314069 + 0.543983i) q^{4} +(-1.31255 + 2.27340i) q^{5} +1.17127i q^{6} +(1.98677 + 1.74721i) q^{7} -3.07825 q^{8} +(0.500000 - 0.866025i) q^{9} +(-1.53734 - 2.66275i) q^{10} +(-3.83128 + 2.21199i) q^{11} +(0.543983 + 0.314069i) q^{12} -1.06902i q^{13} +(-2.93579 + 0.992054i) q^{14} +2.62510i q^{15} +(1.17458 - 2.03444i) q^{16} +(-0.631390 - 1.09360i) q^{17} +(0.585633 + 1.01435i) q^{18} +(-0.917929 + 1.58990i) q^{19} -1.64892 q^{20} +(2.59420 + 0.519738i) q^{21} -5.18166i q^{22} +(2.70696 - 3.95884i) q^{23} +(-2.66584 + 1.53912i) q^{24} +(-0.945565 - 1.63777i) q^{25} +(1.08436 + 0.626053i) q^{26} -1.00000i q^{27} +(-0.326467 + 1.62951i) q^{28} +4.39831 q^{29} +(-2.66275 - 1.53734i) q^{30} +(-6.19592 + 3.57722i) q^{31} +(-1.70250 - 2.94881i) q^{32} +(-2.21199 + 3.83128i) q^{33} +1.47905 q^{34} +(-6.57984 + 2.22344i) q^{35} +0.628138 q^{36} +(3.11767 + 1.79999i) q^{37} +(-1.07514 - 1.86219i) q^{38} +(-0.534510 - 0.925799i) q^{39} +(4.04035 - 6.99809i) q^{40} +5.29644i q^{41} +(-2.04644 + 2.32704i) q^{42} +1.08271i q^{43} +(-2.40657 - 1.38944i) q^{44} +(1.31255 + 2.27340i) q^{45} +(2.43035 + 5.06421i) q^{46} +(9.04435 + 5.22176i) q^{47} -2.34917i q^{48} +(0.894541 + 6.94261i) q^{49} +2.21502 q^{50} +(-1.09360 - 0.631390i) q^{51} +(0.581529 - 0.335746i) q^{52} +(-9.49829 + 5.48384i) q^{53} +(1.01435 + 0.585633i) q^{54} -11.6134i q^{55} +(-6.11578 - 5.37833i) q^{56} +1.83586i q^{57} +(-2.57579 + 4.46141i) q^{58} +(-4.60325 + 2.65769i) q^{59} +(-1.42801 + 0.824461i) q^{60} +(4.33014 - 7.50003i) q^{61} -8.37974i q^{62} +(2.50651 - 0.846993i) q^{63} +8.68649 q^{64} +(2.43031 + 1.40314i) q^{65} +(-2.59083 - 4.48745i) q^{66} +(3.49427 - 2.01742i) q^{67} +(0.396600 - 0.686931i) q^{68} +(0.364873 - 4.78193i) q^{69} +(1.59803 - 7.97634i) q^{70} +12.3268 q^{71} +(-1.53912 + 2.66584i) q^{72} +(-6.54424 + 3.77832i) q^{73} +(-3.65161 + 2.10826i) q^{74} +(-1.63777 - 0.945565i) q^{75} -1.15317 q^{76} +(-11.4767 - 2.29931i) q^{77} +1.25211 q^{78} +(-3.14200 - 1.81403i) q^{79} +(3.08340 + 5.34060i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-5.37242 - 3.10177i) q^{82} +7.03615 q^{83} +(0.532029 + 1.57443i) q^{84} +3.31492 q^{85} +(-1.09824 - 0.634071i) q^{86} +(3.80905 - 2.19916i) q^{87} +(11.7936 - 6.80906i) q^{88} +(6.35170 - 11.0015i) q^{89} -3.07468 q^{90} +(1.86780 - 2.12390i) q^{91} +(3.00371 + 0.229191i) q^{92} +(-3.57722 + 6.19592i) q^{93} +(-10.5933 + 6.11606i) q^{94} +(-2.40965 - 4.17364i) q^{95} +(-2.94881 - 1.70250i) q^{96} +3.50817 q^{97} +(-7.56607 - 3.15844i) q^{98} +4.42398i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 4 q^{2} - 36 q^{4} - 24 q^{8} + 32 q^{9} - 44 q^{16} - 4 q^{18} - 16 q^{23} - 12 q^{25} + 84 q^{26} + 24 q^{29} - 12 q^{31} + 8 q^{32} + 32 q^{35} - 72 q^{36} - 8 q^{46} - 12 q^{47} + 8 q^{49} - 96 q^{50}+ \cdots + 112 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.585633 + 1.01435i −0.414105 + 0.717251i −0.995334 0.0964893i \(-0.969239\pi\)
0.581229 + 0.813740i \(0.302572\pi\)
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 0.314069 + 0.543983i 0.157034 + 0.271992i
\(5\) −1.31255 + 2.27340i −0.586989 + 1.01670i 0.407635 + 0.913145i \(0.366354\pi\)
−0.994624 + 0.103550i \(0.966980\pi\)
\(6\) 1.17127i 0.478167i
\(7\) 1.98677 + 1.74721i 0.750930 + 0.660382i
\(8\) −3.07825 −1.08832
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −1.53734 2.66275i −0.486150 0.842037i
\(11\) −3.83128 + 2.21199i −1.15518 + 0.666941i −0.950143 0.311815i \(-0.899063\pi\)
−0.205032 + 0.978755i \(0.565730\pi\)
\(12\) 0.543983 + 0.314069i 0.157034 + 0.0906639i
\(13\) 1.06902i 0.296493i −0.988950 0.148246i \(-0.952637\pi\)
0.988950 0.148246i \(-0.0473629\pi\)
\(14\) −2.93579 + 0.992054i −0.784623 + 0.265138i
\(15\) 2.62510i 0.677797i
\(16\) 1.17458 2.03444i 0.293646 0.508610i
\(17\) −0.631390 1.09360i −0.153134 0.265237i 0.779244 0.626721i \(-0.215603\pi\)
−0.932378 + 0.361484i \(0.882270\pi\)
\(18\) 0.585633 + 1.01435i 0.138035 + 0.239084i
\(19\) −0.917929 + 1.58990i −0.210587 + 0.364748i −0.951898 0.306414i \(-0.900871\pi\)
0.741311 + 0.671162i \(0.234204\pi\)
\(20\) −1.64892 −0.368710
\(21\) 2.59420 + 0.519738i 0.566101 + 0.113416i
\(22\) 5.18166i 1.10473i
\(23\) 2.70696 3.95884i 0.564439 0.825475i
\(24\) −2.66584 + 1.53912i −0.544162 + 0.314172i
\(25\) −0.945565 1.63777i −0.189113 0.327553i
\(26\) 1.08436 + 0.626053i 0.212660 + 0.122779i
\(27\) 1.00000i 0.192450i
\(28\) −0.326467 + 1.62951i −0.0616965 + 0.307949i
\(29\) 4.39831 0.816746 0.408373 0.912815i \(-0.366096\pi\)
0.408373 + 0.912815i \(0.366096\pi\)
\(30\) −2.66275 1.53734i −0.486150 0.280679i
\(31\) −6.19592 + 3.57722i −1.11282 + 0.642487i −0.939558 0.342389i \(-0.888764\pi\)
−0.173262 + 0.984876i \(0.555431\pi\)
\(32\) −1.70250 2.94881i −0.300962 0.521281i
\(33\) −2.21199 + 3.83128i −0.385058 + 0.666941i
\(34\) 1.47905 0.253655
\(35\) −6.57984 + 2.22344i −1.11220 + 0.375830i
\(36\) 0.628138 0.104690
\(37\) 3.11767 + 1.79999i 0.512541 + 0.295916i 0.733878 0.679282i \(-0.237709\pi\)
−0.221336 + 0.975198i \(0.571042\pi\)
\(38\) −1.07514 1.86219i −0.174410 0.302088i
\(39\) −0.534510 0.925799i −0.0855901 0.148246i
\(40\) 4.04035 6.99809i 0.638835 1.10649i
\(41\) 5.29644i 0.827166i 0.910466 + 0.413583i \(0.135723\pi\)
−0.910466 + 0.413583i \(0.864277\pi\)
\(42\) −2.04644 + 2.32704i −0.315773 + 0.359070i
\(43\) 1.08271i 0.165112i 0.996586 + 0.0825560i \(0.0263083\pi\)
−0.996586 + 0.0825560i \(0.973692\pi\)
\(44\) −2.40657 1.38944i −0.362805 0.209465i
\(45\) 1.31255 + 2.27340i 0.195663 + 0.338898i
\(46\) 2.43035 + 5.06421i 0.358335 + 0.746677i
\(47\) 9.04435 + 5.22176i 1.31925 + 0.761672i 0.983609 0.180317i \(-0.0577122\pi\)
0.335646 + 0.941988i \(0.391046\pi\)
\(48\) 2.34917i 0.339073i
\(49\) 0.894541 + 6.94261i 0.127792 + 0.991801i
\(50\) 2.21502 0.313251
\(51\) −1.09360 0.631390i −0.153134 0.0884122i
\(52\) 0.581529 0.335746i 0.0806436 0.0465596i
\(53\) −9.49829 + 5.48384i −1.30469 + 0.753263i −0.981205 0.192970i \(-0.938188\pi\)
−0.323486 + 0.946233i \(0.604855\pi\)
\(54\) 1.01435 + 0.585633i 0.138035 + 0.0796945i
\(55\) 11.6134i 1.56595i
\(56\) −6.11578 5.37833i −0.817255 0.718710i
\(57\) 1.83586i 0.243165i
\(58\) −2.57579 + 4.46141i −0.338218 + 0.585811i
\(59\) −4.60325 + 2.65769i −0.599292 + 0.346001i −0.768763 0.639534i \(-0.779127\pi\)
0.169471 + 0.985535i \(0.445794\pi\)
\(60\) −1.42801 + 0.824461i −0.184355 + 0.106437i
\(61\) 4.33014 7.50003i 0.554418 0.960280i −0.443531 0.896259i \(-0.646274\pi\)
0.997949 0.0640207i \(-0.0203924\pi\)
\(62\) 8.37974i 1.06423i
\(63\) 2.50651 0.846993i 0.315791 0.106711i
\(64\) 8.68649 1.08581
\(65\) 2.43031 + 1.40314i 0.301443 + 0.174038i
\(66\) −2.59083 4.48745i −0.318909 0.552367i
\(67\) 3.49427 2.01742i 0.426893 0.246467i −0.271129 0.962543i \(-0.587397\pi\)
0.698022 + 0.716076i \(0.254064\pi\)
\(68\) 0.396600 0.686931i 0.0480948 0.0833026i
\(69\) 0.364873 4.78193i 0.0439256 0.575677i
\(70\) 1.59803 7.97634i 0.191001 0.953356i
\(71\) 12.3268 1.46293 0.731464 0.681880i \(-0.238838\pi\)
0.731464 + 0.681880i \(0.238838\pi\)
\(72\) −1.53912 + 2.66584i −0.181387 + 0.314172i
\(73\) −6.54424 + 3.77832i −0.765945 + 0.442219i −0.831426 0.555635i \(-0.812475\pi\)
0.0654811 + 0.997854i \(0.479142\pi\)
\(74\) −3.65161 + 2.10826i −0.424492 + 0.245080i
\(75\) −1.63777 0.945565i −0.189113 0.109184i
\(76\) −1.15317 −0.132278
\(77\) −11.4767 2.29931i −1.30789 0.262031i
\(78\) 1.25211 0.141773
\(79\) −3.14200 1.81403i −0.353502 0.204095i 0.312724 0.949844i \(-0.398758\pi\)
−0.666227 + 0.745749i \(0.732092\pi\)
\(80\) 3.08340 + 5.34060i 0.344734 + 0.597097i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −5.37242 3.10177i −0.593285 0.342533i
\(83\) 7.03615 0.772318 0.386159 0.922432i \(-0.373802\pi\)
0.386159 + 0.922432i \(0.373802\pi\)
\(84\) 0.532029 + 1.57443i 0.0580491 + 0.171785i
\(85\) 3.31492 0.359553
\(86\) −1.09824 0.634071i −0.118427 0.0683737i
\(87\) 3.80905 2.19916i 0.408373 0.235774i
\(88\) 11.7936 6.80906i 1.25721 0.725848i
\(89\) 6.35170 11.0015i 0.673278 1.16615i −0.303690 0.952771i \(-0.598219\pi\)
0.976969 0.213382i \(-0.0684478\pi\)
\(90\) −3.07468 −0.324100
\(91\) 1.86780 2.12390i 0.195799 0.222645i
\(92\) 3.00371 + 0.229191i 0.313159 + 0.0238948i
\(93\) −3.57722 + 6.19592i −0.370940 + 0.642487i
\(94\) −10.5933 + 6.11606i −1.09262 + 0.630824i
\(95\) −2.40965 4.17364i −0.247225 0.428206i
\(96\) −2.94881 1.70250i −0.300962 0.173760i
\(97\) 3.50817 0.356201 0.178100 0.984012i \(-0.443005\pi\)
0.178100 + 0.984012i \(0.443005\pi\)
\(98\) −7.56607 3.15844i −0.764289 0.319051i
\(99\) 4.42398i 0.444627i
\(100\) 0.593945 1.02874i 0.0593945 0.102874i
\(101\) −4.01799 + 2.31979i −0.399805 + 0.230828i −0.686400 0.727224i \(-0.740810\pi\)
0.286595 + 0.958052i \(0.407477\pi\)
\(102\) 1.28089 0.739525i 0.126827 0.0732238i
\(103\) −4.28222 + 7.41703i −0.421940 + 0.730822i −0.996129 0.0879011i \(-0.971984\pi\)
0.574189 + 0.818723i \(0.305317\pi\)
\(104\) 3.29071i 0.322680i
\(105\) −4.58658 + 5.21547i −0.447605 + 0.508978i
\(106\) 12.8461i 1.24772i
\(107\) 13.7376 + 7.93144i 1.32807 + 0.766761i 0.985001 0.172550i \(-0.0552006\pi\)
0.343068 + 0.939311i \(0.388534\pi\)
\(108\) 0.543983 0.314069i 0.0523448 0.0302213i
\(109\) 12.8951 7.44500i 1.23513 0.713101i 0.267033 0.963687i \(-0.413957\pi\)
0.968094 + 0.250586i \(0.0806233\pi\)
\(110\) 11.7800 + 6.80118i 1.12318 + 0.648467i
\(111\) 3.59997 0.341694
\(112\) 5.88822 1.98973i 0.556384 0.188012i
\(113\) 10.0045i 0.941141i 0.882362 + 0.470571i \(0.155952\pi\)
−0.882362 + 0.470571i \(0.844048\pi\)
\(114\) −1.86219 1.07514i −0.174410 0.100696i
\(115\) 5.44701 + 11.3502i 0.507937 + 1.05841i
\(116\) 1.38137 + 2.39261i 0.128257 + 0.222148i
\(117\) −0.925799 0.534510i −0.0855901 0.0494155i
\(118\) 6.22571i 0.573123i
\(119\) 0.656314 3.27590i 0.0601642 0.300301i
\(120\) 8.08069i 0.737663i
\(121\) 4.28582 7.42325i 0.389620 0.674841i
\(122\) 5.07174 + 8.78452i 0.459174 + 0.795313i
\(123\) 2.64822 + 4.58686i 0.238782 + 0.413583i
\(124\) −3.89189 2.24698i −0.349502 0.201785i
\(125\) −8.16108 −0.729949
\(126\) −0.608751 + 3.03850i −0.0542319 + 0.270691i
\(127\) 15.8378 1.40538 0.702691 0.711496i \(-0.251982\pi\)
0.702691 + 0.711496i \(0.251982\pi\)
\(128\) −1.68210 + 2.91347i −0.148678 + 0.257517i
\(129\) 0.541356 + 0.937656i 0.0476637 + 0.0825560i
\(130\) −2.84654 + 1.64345i −0.249658 + 0.144140i
\(131\) 7.08700 + 4.09168i 0.619194 + 0.357492i 0.776555 0.630049i \(-0.216965\pi\)
−0.157361 + 0.987541i \(0.550299\pi\)
\(132\) −2.77887 −0.241870
\(133\) −4.60160 + 1.55496i −0.399009 + 0.134832i
\(134\) 4.72586i 0.408252i
\(135\) 2.27340 + 1.31255i 0.195663 + 0.112966i
\(136\) 1.94357 + 3.36637i 0.166660 + 0.288664i
\(137\) 18.0495 10.4209i 1.54208 0.890318i 0.543369 0.839494i \(-0.317149\pi\)
0.998708 0.0508242i \(-0.0161848\pi\)
\(138\) 4.63685 + 3.17056i 0.394715 + 0.269896i
\(139\) 13.9439i 1.18271i −0.806412 0.591355i \(-0.798593\pi\)
0.806412 0.591355i \(-0.201407\pi\)
\(140\) −3.27604 2.88101i −0.276876 0.243490i
\(141\) 10.4435 0.879503
\(142\) −7.21900 + 12.5037i −0.605805 + 1.04929i
\(143\) 2.36466 + 4.09572i 0.197743 + 0.342501i
\(144\) −1.17458 2.03444i −0.0978820 0.169537i
\(145\) −5.77299 + 9.99912i −0.479421 + 0.830382i
\(146\) 8.85082i 0.732499i
\(147\) 4.24600 + 5.56520i 0.350204 + 0.459010i
\(148\) 2.26128i 0.185876i
\(149\) 8.52284 + 4.92066i 0.698218 + 0.403116i 0.806683 0.590984i \(-0.201260\pi\)
−0.108465 + 0.994100i \(0.534594\pi\)
\(150\) 1.91826 1.10751i 0.156625 0.0904276i
\(151\) 1.75246 + 3.03535i 0.142613 + 0.247013i 0.928480 0.371383i \(-0.121116\pi\)
−0.785867 + 0.618396i \(0.787783\pi\)
\(152\) 2.82561 4.89410i 0.229187 0.396964i
\(153\) −1.26278 −0.102090
\(154\) 9.05343 10.2948i 0.729546 0.829577i
\(155\) 18.7811i 1.50853i
\(156\) 0.335746 0.581529i 0.0268812 0.0465596i
\(157\) −11.0316 19.1074i −0.880420 1.52493i −0.850874 0.525370i \(-0.823927\pi\)
−0.0295463 0.999563i \(-0.509406\pi\)
\(158\) 3.68011 2.12471i 0.292774 0.169033i
\(159\) −5.48384 + 9.49829i −0.434897 + 0.753263i
\(160\) 8.93844 0.706646
\(161\) 12.2950 3.13571i 0.968983 0.247128i
\(162\) 1.17127 0.0920233
\(163\) −4.63786 + 8.03301i −0.363265 + 0.629194i −0.988496 0.151246i \(-0.951671\pi\)
0.625231 + 0.780440i \(0.285005\pi\)
\(164\) −2.88118 + 1.66345i −0.224982 + 0.129894i
\(165\) −5.80669 10.0575i −0.452050 0.782974i
\(166\) −4.12060 + 7.13709i −0.319821 + 0.553946i
\(167\) 0.776446i 0.0600832i −0.999549 0.0300416i \(-0.990436\pi\)
0.999549 0.0300416i \(-0.00956398\pi\)
\(168\) −7.98559 1.59988i −0.616101 0.123434i
\(169\) 11.8572 0.912092
\(170\) −1.94132 + 3.36247i −0.148893 + 0.257890i
\(171\) 0.917929 + 1.58990i 0.0701958 + 0.121583i
\(172\) −0.588977 + 0.340046i −0.0449091 + 0.0259283i
\(173\) −14.2142 8.20657i −1.08069 0.623934i −0.149604 0.988746i \(-0.547800\pi\)
−0.931081 + 0.364812i \(0.881133\pi\)
\(174\) 5.15159i 0.390541i
\(175\) 0.982893 4.90597i 0.0742997 0.370857i
\(176\) 10.3927i 0.783378i
\(177\) −2.65769 + 4.60325i −0.199764 + 0.346001i
\(178\) 7.43952 + 12.8856i 0.557616 + 0.965819i
\(179\) −5.92963 10.2704i −0.443202 0.767648i 0.554723 0.832035i \(-0.312824\pi\)
−0.997925 + 0.0643872i \(0.979491\pi\)
\(180\) −0.824461 + 1.42801i −0.0614517 + 0.106437i
\(181\) −16.7131 −1.24227 −0.621136 0.783702i \(-0.713329\pi\)
−0.621136 + 0.783702i \(0.713329\pi\)
\(182\) 1.06053 + 3.13842i 0.0786114 + 0.232635i
\(183\) 8.66028i 0.640187i
\(184\) −8.33268 + 12.1863i −0.614293 + 0.898384i
\(185\) −8.18417 + 4.72514i −0.601712 + 0.347399i
\(186\) −4.18987 7.25706i −0.307216 0.532114i
\(187\) 4.83806 + 2.79326i 0.353794 + 0.204263i
\(188\) 6.55997i 0.478435i
\(189\) 1.74721 1.98677i 0.127091 0.144517i
\(190\) 5.64468 0.409508
\(191\) −10.6475 6.14735i −0.770427 0.444806i 0.0625996 0.998039i \(-0.480061\pi\)
−0.833027 + 0.553232i \(0.813394\pi\)
\(192\) 7.52272 4.34324i 0.542905 0.313447i
\(193\) 11.6142 + 20.1163i 0.836006 + 1.44800i 0.893209 + 0.449642i \(0.148449\pi\)
−0.0572028 + 0.998363i \(0.518218\pi\)
\(194\) −2.05450 + 3.55850i −0.147504 + 0.255485i
\(195\) 2.80628 0.200962
\(196\) −3.49571 + 2.66707i −0.249694 + 0.190505i
\(197\) −10.6853 −0.761293 −0.380646 0.924721i \(-0.624299\pi\)
−0.380646 + 0.924721i \(0.624299\pi\)
\(198\) −4.48745 2.59083i −0.318909 0.184122i
\(199\) 1.36584 + 2.36571i 0.0968222 + 0.167701i 0.910368 0.413800i \(-0.135799\pi\)
−0.813545 + 0.581501i \(0.802466\pi\)
\(200\) 2.91068 + 5.04145i 0.205816 + 0.356484i
\(201\) 2.01742 3.49427i 0.142298 0.246467i
\(202\) 5.43418i 0.382347i
\(203\) 8.73845 + 7.68476i 0.613319 + 0.539364i
\(204\) 0.793199i 0.0555351i
\(205\) −12.0409 6.95184i −0.840976 0.485537i
\(206\) −5.01562 8.68731i −0.349455 0.605273i
\(207\) −2.07498 4.32371i −0.144221 0.300519i
\(208\) −2.17486 1.25565i −0.150799 0.0870639i
\(209\) 8.12181i 0.561797i
\(210\) −2.60424 7.70673i −0.179709 0.531815i
\(211\) −20.0123 −1.37771 −0.688853 0.724901i \(-0.741886\pi\)
−0.688853 + 0.724901i \(0.741886\pi\)
\(212\) −5.96624 3.44461i −0.409763 0.236577i
\(213\) 10.6754 6.16342i 0.731464 0.422311i
\(214\) −16.0904 + 9.28981i −1.09992 + 0.635039i
\(215\) −2.46144 1.42111i −0.167869 0.0969190i
\(216\) 3.07825i 0.209448i
\(217\) −18.5600 3.71843i −1.25994 0.252423i
\(218\) 17.4401i 1.18119i
\(219\) −3.77832 + 6.54424i −0.255315 + 0.442219i
\(220\) 6.31749 3.64740i 0.425925 0.245908i
\(221\) −1.16908 + 0.674968i −0.0786408 + 0.0454033i
\(222\) −2.10826 + 3.65161i −0.141497 + 0.245080i
\(223\) 1.20048i 0.0803898i 0.999192 + 0.0401949i \(0.0127979\pi\)
−0.999192 + 0.0401949i \(0.987202\pi\)
\(224\) 1.76971 8.83324i 0.118243 0.590195i
\(225\) −1.89113 −0.126075
\(226\) −10.1480 5.85894i −0.675034 0.389731i
\(227\) −3.07964 5.33409i −0.204403 0.354036i 0.745540 0.666461i \(-0.232192\pi\)
−0.949942 + 0.312425i \(0.898859\pi\)
\(228\) −0.998676 + 0.576586i −0.0661389 + 0.0381853i
\(229\) −7.44292 + 12.8915i −0.491842 + 0.851895i −0.999956 0.00939460i \(-0.997010\pi\)
0.508114 + 0.861290i \(0.330343\pi\)
\(230\) −14.7029 1.12187i −0.969482 0.0739739i
\(231\) −11.0888 + 3.74709i −0.729587 + 0.246540i
\(232\) −13.5391 −0.888884
\(233\) 9.78731 16.9521i 0.641188 1.11057i −0.343980 0.938977i \(-0.611775\pi\)
0.985168 0.171593i \(-0.0548914\pi\)
\(234\) 1.08436 0.626053i 0.0708866 0.0409264i
\(235\) −23.7423 + 13.7076i −1.54878 + 0.894186i
\(236\) −2.89147 1.66939i −0.188219 0.108668i
\(237\) −3.62807 −0.235668
\(238\) 2.93854 + 2.58420i 0.190477 + 0.167509i
\(239\) 16.3375 1.05678 0.528392 0.849000i \(-0.322795\pi\)
0.528392 + 0.849000i \(0.322795\pi\)
\(240\) 5.34060 + 3.08340i 0.344734 + 0.199032i
\(241\) −13.5181 23.4140i −0.870776 1.50823i −0.861196 0.508274i \(-0.830284\pi\)
−0.00958007 0.999954i \(-0.503049\pi\)
\(242\) 5.01983 + 8.69460i 0.322687 + 0.558910i
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) 5.43985 0.348251
\(245\) −16.9575 7.07886i −1.08337 0.452252i
\(246\) −6.20354 −0.395523
\(247\) 1.69964 + 0.981285i 0.108145 + 0.0624377i
\(248\) 19.0726 11.0116i 1.21111 0.699234i
\(249\) 6.09349 3.51808i 0.386159 0.222949i
\(250\) 4.77940 8.27816i 0.302275 0.523557i
\(251\) −18.7998 −1.18663 −0.593317 0.804969i \(-0.702182\pi\)
−0.593317 + 0.804969i \(0.702182\pi\)
\(252\) 1.24797 + 1.09749i 0.0786146 + 0.0691351i
\(253\) −1.61419 + 21.1552i −0.101483 + 1.33002i
\(254\) −9.27516 + 16.0650i −0.581975 + 1.00801i
\(255\) 2.87080 1.65746i 0.179777 0.103794i
\(256\) 6.71631 + 11.6330i 0.419769 + 0.727062i
\(257\) 17.9778 + 10.3795i 1.12143 + 0.647456i 0.941765 0.336272i \(-0.109166\pi\)
0.179662 + 0.983728i \(0.442500\pi\)
\(258\) −1.26814 −0.0789511
\(259\) 3.04915 + 9.02337i 0.189465 + 0.560685i
\(260\) 1.76273i 0.109320i
\(261\) 2.19916 3.80905i 0.136124 0.235774i
\(262\) −8.30076 + 4.79244i −0.512823 + 0.296078i
\(263\) −4.46298 + 2.57670i −0.275199 + 0.158886i −0.631248 0.775581i \(-0.717457\pi\)
0.356049 + 0.934467i \(0.384124\pi\)
\(264\) 6.80906 11.7936i 0.419068 0.725848i
\(265\) 28.7912i 1.76863i
\(266\) 1.11758 5.57825i 0.0685233 0.342024i
\(267\) 12.7034i 0.777435i
\(268\) 2.19488 + 1.26722i 0.134074 + 0.0774075i
\(269\) −8.06123 + 4.65415i −0.491502 + 0.283769i −0.725197 0.688541i \(-0.758251\pi\)
0.233695 + 0.972310i \(0.424918\pi\)
\(270\) −2.66275 + 1.53734i −0.162050 + 0.0935597i
\(271\) −21.3007 12.2980i −1.29393 0.747049i −0.314578 0.949232i \(-0.601863\pi\)
−0.979348 + 0.202183i \(0.935196\pi\)
\(272\) −2.96648 −0.179869
\(273\) 0.555611 2.77325i 0.0336271 0.167845i
\(274\) 24.4113i 1.47474i
\(275\) 7.24546 + 4.18317i 0.436918 + 0.252254i
\(276\) 2.71589 1.30337i 0.163477 0.0784537i
\(277\) −1.03536 1.79330i −0.0622088 0.107749i 0.833244 0.552906i \(-0.186481\pi\)
−0.895452 + 0.445157i \(0.853148\pi\)
\(278\) 14.1440 + 8.16602i 0.848299 + 0.489766i
\(279\) 7.15443i 0.428325i
\(280\) 20.2544 6.84429i 1.21043 0.409025i
\(281\) 25.5993i 1.52712i −0.645734 0.763562i \(-0.723449\pi\)
0.645734 0.763562i \(-0.276551\pi\)
\(282\) −6.11606 + 10.5933i −0.364206 + 0.630824i
\(283\) 5.56134 + 9.63251i 0.330587 + 0.572594i 0.982627 0.185591i \(-0.0594199\pi\)
−0.652040 + 0.758185i \(0.726087\pi\)
\(284\) 3.87148 + 6.70560i 0.229730 + 0.397904i
\(285\) −4.17364 2.40965i −0.247225 0.142735i
\(286\) −5.53930 −0.327546
\(287\) −9.25398 + 10.5228i −0.546245 + 0.621143i
\(288\) −3.40499 −0.200641
\(289\) 7.70269 13.3415i 0.453100 0.784792i
\(290\) −6.76171 11.7116i −0.397061 0.687730i
\(291\) 3.03817 1.75409i 0.178100 0.102826i
\(292\) −4.11068 2.37330i −0.240560 0.138887i
\(293\) 4.47517 0.261443 0.130721 0.991419i \(-0.458271\pi\)
0.130721 + 0.991419i \(0.458271\pi\)
\(294\) −8.13163 + 1.04774i −0.474247 + 0.0611057i
\(295\) 13.9534i 0.812396i
\(296\) −9.59694 5.54080i −0.557811 0.322052i
\(297\) 2.21199 + 3.83128i 0.128353 + 0.222314i
\(298\) −9.98250 + 5.76340i −0.578271 + 0.333865i
\(299\) −4.23208 2.89379i −0.244747 0.167352i
\(300\) 1.18789i 0.0685829i
\(301\) −1.89172 + 2.15110i −0.109037 + 0.123988i
\(302\) −4.10519 −0.236227
\(303\) −2.31979 + 4.01799i −0.133268 + 0.230828i
\(304\) 2.15637 + 3.73494i 0.123676 + 0.214213i
\(305\) 11.3670 + 19.6883i 0.650875 + 1.12735i
\(306\) 0.739525 1.28089i 0.0422758 0.0732238i
\(307\) 20.6237i 1.17706i 0.808477 + 0.588528i \(0.200293\pi\)
−0.808477 + 0.588528i \(0.799707\pi\)
\(308\) −2.35369 6.96527i −0.134114 0.396883i
\(309\) 8.56445i 0.487214i
\(310\) 19.0505 + 10.9988i 1.08200 + 0.624690i
\(311\) 8.70064 5.02332i 0.493368 0.284846i −0.232602 0.972572i \(-0.574724\pi\)
0.725971 + 0.687726i \(0.241391\pi\)
\(312\) 1.64535 + 2.84984i 0.0931498 + 0.161340i
\(313\) 13.7128 23.7513i 0.775094 1.34250i −0.159647 0.987174i \(-0.551036\pi\)
0.934741 0.355329i \(-0.115631\pi\)
\(314\) 25.8419 1.45835
\(315\) −1.36436 + 6.81002i −0.0768731 + 0.383701i
\(316\) 2.27893i 0.128200i
\(317\) 0.0323349 0.0560058i 0.00181611 0.00314560i −0.865116 0.501572i \(-0.832755\pi\)
0.866932 + 0.498426i \(0.166089\pi\)
\(318\) −6.42303 11.1250i −0.360186 0.623860i
\(319\) −16.8512 + 9.72903i −0.943484 + 0.544721i
\(320\) −11.4014 + 19.7479i −0.637359 + 1.10394i
\(321\) 15.8629 0.885379
\(322\) −4.01967 + 14.3078i −0.224008 + 0.797340i
\(323\) 2.31828 0.128993
\(324\) 0.314069 0.543983i 0.0174483 0.0302213i
\(325\) −1.75081 + 1.01083i −0.0971173 + 0.0560707i
\(326\) −5.43216 9.40878i −0.300860 0.521104i
\(327\) 7.44500 12.8951i 0.411709 0.713101i
\(328\) 16.3038i 0.900225i
\(329\) 8.84559 + 26.1768i 0.487673 + 1.44317i
\(330\) 13.6024 0.748785
\(331\) −8.77689 + 15.2020i −0.482421 + 0.835578i −0.999796 0.0201804i \(-0.993576\pi\)
0.517375 + 0.855759i \(0.326909\pi\)
\(332\) 2.20984 + 3.82755i 0.121281 + 0.210064i
\(333\) 3.11767 1.79999i 0.170847 0.0986386i
\(334\) 0.787584 + 0.454712i 0.0430947 + 0.0248807i
\(335\) 10.5918i 0.578693i
\(336\) 4.10448 4.66726i 0.223918 0.254620i
\(337\) 5.11775i 0.278782i −0.990237 0.139391i \(-0.955486\pi\)
0.990237 0.139391i \(-0.0445144\pi\)
\(338\) −6.94396 + 12.0273i −0.377702 + 0.654198i
\(339\) 5.00223 + 8.66412i 0.271684 + 0.470571i
\(340\) 1.04111 + 1.80326i 0.0564622 + 0.0977955i
\(341\) 15.8255 27.4106i 0.857001 1.48437i
\(342\) −2.15028 −0.116274
\(343\) −10.3529 + 15.3563i −0.559005 + 0.829164i
\(344\) 3.33285i 0.179695i
\(345\) 10.3923 + 7.10602i 0.559504 + 0.382575i
\(346\) 16.6486 9.61207i 0.895034 0.516748i
\(347\) 2.10902 + 3.65293i 0.113218 + 0.196100i 0.917066 0.398735i \(-0.130551\pi\)
−0.803848 + 0.594835i \(0.797217\pi\)
\(348\) 2.39261 + 1.38137i 0.128257 + 0.0740493i
\(349\) 10.2932i 0.550983i −0.961303 0.275492i \(-0.911159\pi\)
0.961303 0.275492i \(-0.0888406\pi\)
\(350\) 4.40074 + 3.87009i 0.235229 + 0.206865i
\(351\) −1.06902 −0.0570601
\(352\) 13.0455 + 7.53182i 0.695327 + 0.401447i
\(353\) −0.880590 + 0.508409i −0.0468691 + 0.0270599i −0.523251 0.852178i \(-0.675281\pi\)
0.476382 + 0.879238i \(0.341948\pi\)
\(354\) −3.11285 5.39162i −0.165446 0.286561i
\(355\) −16.1796 + 28.0239i −0.858723 + 1.48735i
\(356\) 7.97948 0.422912
\(357\) −1.06957 3.16517i −0.0566074 0.167519i
\(358\) 13.8903 0.734128
\(359\) −3.34357 1.93041i −0.176467 0.101883i 0.409165 0.912461i \(-0.365820\pi\)
−0.585632 + 0.810577i \(0.699153\pi\)
\(360\) −4.04035 6.99809i −0.212945 0.368832i
\(361\) 7.81481 + 13.5357i 0.411306 + 0.712403i
\(362\) 9.78772 16.9528i 0.514431 0.891021i
\(363\) 8.57164i 0.449894i
\(364\) 1.74198 + 0.349000i 0.0913048 + 0.0182926i
\(365\) 19.8369i 1.03831i
\(366\) 8.78452 + 5.07174i 0.459174 + 0.265104i
\(367\) 13.8594 + 24.0052i 0.723455 + 1.25306i 0.959607 + 0.281345i \(0.0907805\pi\)
−0.236151 + 0.971716i \(0.575886\pi\)
\(368\) −4.87447 10.1571i −0.254099 0.529476i
\(369\) 4.58686 + 2.64822i 0.238782 + 0.137861i
\(370\) 11.0688i 0.575438i
\(371\) −28.4524 5.70032i −1.47717 0.295946i
\(372\) −4.49397 −0.233001
\(373\) 0.158538 + 0.0915320i 0.00820879 + 0.00473935i 0.504099 0.863646i \(-0.331825\pi\)
−0.495890 + 0.868385i \(0.665158\pi\)
\(374\) −5.66666 + 3.27165i −0.293016 + 0.169173i
\(375\) −7.06770 + 4.08054i −0.364975 + 0.210718i
\(376\) −27.8407 16.0739i −1.43578 0.828946i
\(377\) 4.70188i 0.242159i
\(378\) 0.992054 + 2.93579i 0.0510258 + 0.151001i
\(379\) 33.5082i 1.72120i 0.509283 + 0.860599i \(0.329911\pi\)
−0.509283 + 0.860599i \(0.670089\pi\)
\(380\) 1.51359 2.62162i 0.0776457 0.134486i
\(381\) 13.7160 7.91892i 0.702691 0.405699i
\(382\) 12.4711 7.20017i 0.638075 0.368393i
\(383\) −9.84454 + 17.0512i −0.503033 + 0.871278i 0.496961 + 0.867773i \(0.334449\pi\)
−0.999994 + 0.00350527i \(0.998884\pi\)
\(384\) 3.36419i 0.171678i
\(385\) 20.2910 23.0732i 1.03412 1.17592i
\(386\) −27.2065 −1.38478
\(387\) 0.937656 + 0.541356i 0.0476637 + 0.0275187i
\(388\) 1.10181 + 1.90839i 0.0559358 + 0.0968837i
\(389\) −0.516198 + 0.298027i −0.0261723 + 0.0151106i −0.513029 0.858371i \(-0.671477\pi\)
0.486857 + 0.873482i \(0.338143\pi\)
\(390\) −1.64345 + 2.84654i −0.0832193 + 0.144140i
\(391\) −6.03852 0.460754i −0.305381 0.0233014i
\(392\) −2.75362 21.3711i −0.139079 1.07940i
\(393\) 8.18336 0.412796
\(394\) 6.25763 10.8385i 0.315255 0.546038i
\(395\) 8.24805 4.76201i 0.415004 0.239603i
\(396\) −2.40657 + 1.38944i −0.120935 + 0.0698218i
\(397\) −8.28054 4.78077i −0.415589 0.239940i 0.277600 0.960697i \(-0.410461\pi\)
−0.693188 + 0.720757i \(0.743794\pi\)
\(398\) −3.19953 −0.160378
\(399\) −3.20762 + 3.64743i −0.160582 + 0.182600i
\(400\) −4.44258 −0.222129
\(401\) −13.5938 7.84838i −0.678842 0.391929i 0.120577 0.992704i \(-0.461526\pi\)
−0.799418 + 0.600775i \(0.794859\pi\)
\(402\) 2.36293 + 4.09271i 0.117852 + 0.204126i
\(403\) 3.82412 + 6.62356i 0.190493 + 0.329943i
\(404\) −2.52385 1.45715i −0.125566 0.0724958i
\(405\) 2.62510 0.130442
\(406\) −12.9125 + 4.36336i −0.640837 + 0.216550i
\(407\) −15.9262 −0.789433
\(408\) 3.36637 + 1.94357i 0.166660 + 0.0962212i
\(409\) −21.3620 + 12.3333i −1.05628 + 0.609844i −0.924401 0.381421i \(-0.875435\pi\)
−0.131880 + 0.991266i \(0.542101\pi\)
\(410\) 14.1031 8.14245i 0.696504 0.402127i
\(411\) 10.4209 18.0495i 0.514025 0.890318i
\(412\) −5.37965 −0.265036
\(413\) −13.7891 2.76260i −0.678519 0.135939i
\(414\) 5.60091 + 0.427363i 0.275270 + 0.0210038i
\(415\) −9.23529 + 15.9960i −0.453343 + 0.785213i
\(416\) −3.15234 + 1.82000i −0.154556 + 0.0892331i
\(417\) −6.97197 12.0758i −0.341419 0.591355i
\(418\) 8.23832 + 4.75639i 0.402949 + 0.232643i
\(419\) 27.5752 1.34714 0.673569 0.739124i \(-0.264760\pi\)
0.673569 + 0.739124i \(0.264760\pi\)
\(420\) −4.27763 0.857008i −0.208727 0.0418177i
\(421\) 17.6198i 0.858735i −0.903130 0.429367i \(-0.858737\pi\)
0.903130 0.429367i \(-0.141263\pi\)
\(422\) 11.7199 20.2994i 0.570515 0.988161i
\(423\) 9.04435 5.22176i 0.439751 0.253891i
\(424\) 29.2381 16.8806i 1.41993 0.819795i
\(425\) −1.19404 + 2.06814i −0.0579195 + 0.100319i
\(426\) 14.4380i 0.699524i
\(427\) 21.7071 7.33520i 1.05048 0.354975i
\(428\) 9.96407i 0.481631i
\(429\) 4.09572 + 2.36466i 0.197743 + 0.114167i
\(430\) 2.88300 1.66450i 0.139030 0.0802692i
\(431\) 12.0768 6.97254i 0.581719 0.335856i −0.180097 0.983649i \(-0.557641\pi\)
0.761816 + 0.647793i \(0.224308\pi\)
\(432\) −2.03444 1.17458i −0.0978820 0.0565122i
\(433\) 13.0347 0.626409 0.313204 0.949686i \(-0.398597\pi\)
0.313204 + 0.949686i \(0.398597\pi\)
\(434\) 14.6411 16.6486i 0.702797 0.799160i
\(435\) 11.5460i 0.553588i
\(436\) 8.09991 + 4.67648i 0.387915 + 0.223963i
\(437\) 3.80936 + 7.93772i 0.182226 + 0.379713i
\(438\) −4.42541 7.66504i −0.211454 0.366250i
\(439\) 26.1051 + 15.0718i 1.24593 + 0.719338i 0.970295 0.241924i \(-0.0777785\pi\)
0.275635 + 0.961262i \(0.411112\pi\)
\(440\) 35.7489i 1.70426i
\(441\) 6.45974 + 2.69661i 0.307607 + 0.128410i
\(442\) 1.58113i 0.0752069i
\(443\) 4.33873 7.51490i 0.206139 0.357044i −0.744356 0.667783i \(-0.767243\pi\)
0.950495 + 0.310739i \(0.100577\pi\)
\(444\) 1.13064 + 1.95832i 0.0536577 + 0.0929379i
\(445\) 16.6738 + 28.8799i 0.790415 + 1.36904i
\(446\) −1.21770 0.703038i −0.0576597 0.0332898i
\(447\) 9.84132 0.465479
\(448\) 17.2581 + 15.1771i 0.815368 + 0.717050i
\(449\) 13.2107 0.623453 0.311727 0.950172i \(-0.399093\pi\)
0.311727 + 0.950172i \(0.399093\pi\)
\(450\) 1.10751 1.91826i 0.0522084 0.0904276i
\(451\) −11.7157 20.2922i −0.551670 0.955521i
\(452\) −5.44226 + 3.14209i −0.255983 + 0.147792i
\(453\) 3.03535 + 1.75246i 0.142613 + 0.0823377i
\(454\) 7.21414 0.338577
\(455\) 2.37690 + 7.03398i 0.111431 + 0.329758i
\(456\) 5.65122i 0.264643i
\(457\) −13.2929 7.67468i −0.621817 0.359006i 0.155759 0.987795i \(-0.450218\pi\)
−0.777576 + 0.628789i \(0.783551\pi\)
\(458\) −8.71763 15.0994i −0.407348 0.705548i
\(459\) −1.09360 + 0.631390i −0.0510448 + 0.0294707i
\(460\) −4.46356 + 6.52781i −0.208114 + 0.304361i
\(461\) 9.68259i 0.450963i −0.974247 0.225482i \(-0.927604\pi\)
0.974247 0.225482i \(-0.0723955\pi\)
\(462\) 2.69311 13.4423i 0.125295 0.625390i
\(463\) −20.1178 −0.934952 −0.467476 0.884006i \(-0.654837\pi\)
−0.467476 + 0.884006i \(0.654837\pi\)
\(464\) 5.16618 8.94809i 0.239834 0.415405i
\(465\) −9.39054 16.2649i −0.435476 0.754266i
\(466\) 11.4635 + 19.8554i 0.531038 + 0.919785i
\(467\) −12.2019 + 21.1343i −0.564637 + 0.977979i 0.432447 + 0.901659i \(0.357650\pi\)
−0.997083 + 0.0763197i \(0.975683\pi\)
\(468\) 0.671492i 0.0310397i
\(469\) 10.4672 + 2.09706i 0.483329 + 0.0968331i
\(470\) 32.1105i 1.48115i
\(471\) −19.1074 11.0316i −0.880420 0.508311i
\(472\) 14.1699 8.18101i 0.652224 0.376562i
\(473\) −2.39495 4.14817i −0.110120 0.190733i
\(474\) 2.12471 3.68011i 0.0975913 0.169033i
\(475\) 3.47185 0.159299
\(476\) 1.98816 0.671835i 0.0911273 0.0307935i
\(477\) 10.9677i 0.502176i
\(478\) −9.56776 + 16.5719i −0.437619 + 0.757979i
\(479\) −14.7292 25.5117i −0.672993 1.16566i −0.977051 0.213004i \(-0.931675\pi\)
0.304059 0.952653i \(-0.401658\pi\)
\(480\) 7.74092 4.46922i 0.353323 0.203991i
\(481\) 1.92422 3.33285i 0.0877369 0.151965i
\(482\) 31.6665 1.44237
\(483\) 9.07994 8.86311i 0.413152 0.403285i
\(484\) 5.38417 0.244735
\(485\) −4.60464 + 7.97548i −0.209086 + 0.362148i
\(486\) 1.01435 0.585633i 0.0460116 0.0265648i
\(487\) −3.19397 5.53212i −0.144733 0.250684i 0.784540 0.620078i \(-0.212899\pi\)
−0.929273 + 0.369393i \(0.879566\pi\)
\(488\) −13.3292 + 23.0869i −0.603387 + 1.04510i
\(489\) 9.27572i 0.419462i
\(490\) 17.1112 13.0551i 0.773007 0.589769i
\(491\) 13.1737 0.594520 0.297260 0.954797i \(-0.403927\pi\)
0.297260 + 0.954797i \(0.403927\pi\)
\(492\) −1.66345 + 2.88118i −0.0749941 + 0.129894i
\(493\) −2.77705 4.80999i −0.125072 0.216631i
\(494\) −1.99072 + 1.14934i −0.0895669 + 0.0517115i
\(495\) −10.0575 5.80669i −0.452050 0.260991i
\(496\) 16.8070i 0.754655i
\(497\) 24.4907 + 21.5375i 1.09856 + 0.966091i
\(498\) 8.24120i 0.369297i
\(499\) 17.9870 31.1544i 0.805210 1.39466i −0.110940 0.993827i \(-0.535386\pi\)
0.916149 0.400837i \(-0.131281\pi\)
\(500\) −2.56314 4.43949i −0.114627 0.198540i
\(501\) −0.388223 0.672422i −0.0173445 0.0300416i
\(502\) 11.0098 19.0695i 0.491391 0.851113i
\(503\) −2.88055 −0.128437 −0.0642187 0.997936i \(-0.520456\pi\)
−0.0642187 + 0.997936i \(0.520456\pi\)
\(504\) −7.71566 + 2.60725i −0.343683 + 0.116136i
\(505\) 12.1793i 0.541974i
\(506\) −20.5133 14.0265i −0.911929 0.623555i
\(507\) 10.2686 5.92860i 0.456046 0.263298i
\(508\) 4.97417 + 8.61552i 0.220693 + 0.382252i
\(509\) −23.4595 13.5444i −1.03983 0.600344i −0.120042 0.992769i \(-0.538303\pi\)
−0.919784 + 0.392425i \(0.871636\pi\)
\(510\) 3.88265i 0.171926i
\(511\) −19.6034 3.92747i −0.867204 0.173741i
\(512\) −22.4615 −0.992669
\(513\) 1.58990 + 0.917929i 0.0701958 + 0.0405276i
\(514\) −21.0568 + 12.1572i −0.928776 + 0.536229i
\(515\) −11.2412 19.4704i −0.495349 0.857969i
\(516\) −0.340046 + 0.588977i −0.0149697 + 0.0259283i
\(517\) −46.2020 −2.03196
\(518\) −10.9385 2.19149i −0.480610 0.0962884i
\(519\) −16.4131 −0.720457
\(520\) −7.48110 4.31921i −0.328068 0.189410i
\(521\) 3.74848 + 6.49256i 0.164224 + 0.284444i 0.936379 0.350989i \(-0.114155\pi\)
−0.772155 + 0.635434i \(0.780821\pi\)
\(522\) 2.57579 + 4.46141i 0.112739 + 0.195270i
\(523\) 11.4128 19.7676i 0.499048 0.864376i −0.500952 0.865475i \(-0.667017\pi\)
0.999999 + 0.00109950i \(0.000349981\pi\)
\(524\) 5.14028i 0.224554i
\(525\) −1.60178 4.74014i −0.0699072 0.206877i
\(526\) 6.03600i 0.263182i
\(527\) 7.82408 + 4.51723i 0.340822 + 0.196774i
\(528\) 5.19634 + 9.00032i 0.226142 + 0.391689i
\(529\) −8.34479 21.4328i −0.362817 0.931860i
\(530\) 29.2042 + 16.8611i 1.26855 + 0.732398i
\(531\) 5.31537i 0.230667i
\(532\) −2.29109 2.01483i −0.0993314 0.0873539i
\(533\) 5.66201 0.245249
\(534\) 12.8856 + 7.43952i 0.557616 + 0.321940i
\(535\) −36.0627 + 20.8208i −1.55912 + 0.900161i
\(536\) −10.7562 + 6.21010i −0.464598 + 0.268236i
\(537\) −10.2704 5.92963i −0.443202 0.255883i
\(538\) 10.9025i 0.470040i
\(539\) −18.7842 24.6204i −0.809094 1.06047i
\(540\) 1.64892i 0.0709583i
\(541\) 10.6982 18.5298i 0.459951 0.796659i −0.539007 0.842302i \(-0.681200\pi\)
0.998958 + 0.0456426i \(0.0145336\pi\)
\(542\) 24.9488 14.4042i 1.07164 0.618713i
\(543\) −14.4739 + 8.35654i −0.621136 + 0.358613i
\(544\) −2.14988 + 3.72370i −0.0921753 + 0.159652i
\(545\) 39.0877i 1.67433i
\(546\) 2.48765 + 2.18769i 0.106462 + 0.0936244i
\(547\) −5.94927 −0.254372 −0.127186 0.991879i \(-0.540595\pi\)
−0.127186 + 0.991879i \(0.540595\pi\)
\(548\) 11.3376 + 6.54577i 0.484318 + 0.279621i
\(549\) −4.33014 7.50003i −0.184806 0.320093i
\(550\) −8.48635 + 4.89960i −0.361859 + 0.208920i
\(551\) −4.03734 + 6.99287i −0.171996 + 0.297906i
\(552\) −1.12317 + 14.7200i −0.0478053 + 0.626523i
\(553\) −3.07295 9.09379i −0.130675 0.386707i
\(554\) 2.42536 0.103044
\(555\) −4.72514 + 8.18417i −0.200571 + 0.347399i
\(556\) 7.58527 4.37936i 0.321687 0.185726i
\(557\) −10.1747 + 5.87438i −0.431117 + 0.248905i −0.699822 0.714317i \(-0.746737\pi\)
0.268706 + 0.963222i \(0.413404\pi\)
\(558\) −7.25706 4.18987i −0.307216 0.177371i
\(559\) 1.15744 0.0489545
\(560\) −3.20512 + 15.9979i −0.135441 + 0.676034i
\(561\) 5.58651 0.235863
\(562\) 25.9665 + 14.9918i 1.09533 + 0.632390i
\(563\) 11.3472 + 19.6540i 0.478229 + 0.828317i 0.999688 0.0249589i \(-0.00794549\pi\)
−0.521459 + 0.853276i \(0.674612\pi\)
\(564\) 3.27998 + 5.68110i 0.138112 + 0.239217i
\(565\) −22.7442 13.1313i −0.956854 0.552440i
\(566\) −13.0276 −0.547591
\(567\) 0.519738 2.59420i 0.0218269 0.108946i
\(568\) −37.9451 −1.59214
\(569\) −36.2218 20.9127i −1.51850 0.876704i −0.999763 0.0217683i \(-0.993070\pi\)
−0.518733 0.854936i \(-0.673596\pi\)
\(570\) 4.88844 2.82234i 0.204754 0.118215i
\(571\) 10.4469 6.03155i 0.437191 0.252412i −0.265214 0.964189i \(-0.585443\pi\)
0.702405 + 0.711777i \(0.252109\pi\)
\(572\) −1.48534 + 2.57268i −0.0621050 + 0.107569i
\(573\) −12.2947 −0.513618
\(574\) −5.25436 15.5493i −0.219313 0.649013i
\(575\) −9.04326 0.690023i −0.377130 0.0287760i
\(576\) 4.34324 7.52272i 0.180968 0.313447i
\(577\) −9.76872 + 5.63997i −0.406677 + 0.234795i −0.689361 0.724418i \(-0.742109\pi\)
0.282684 + 0.959213i \(0.408775\pi\)
\(578\) 9.02190 + 15.6264i 0.375261 + 0.649972i
\(579\) 20.1163 + 11.6142i 0.836006 + 0.482668i
\(580\) −7.25247 −0.301143
\(581\) 13.9792 + 12.2936i 0.579957 + 0.510025i
\(582\) 4.10900i 0.170324i
\(583\) 24.2604 42.0203i 1.00476 1.74030i
\(584\) 20.1448 11.6306i 0.833597 0.481277i
\(585\) 2.43031 1.40314i 0.100481 0.0580127i
\(586\) −2.62081 + 4.53937i −0.108265 + 0.187520i
\(587\) 23.4925i 0.969641i 0.874614 + 0.484820i \(0.161115\pi\)
−0.874614 + 0.484820i \(0.838885\pi\)
\(588\) −1.69384 + 4.05761i −0.0698529 + 0.167333i
\(589\) 13.1345i 0.541198i
\(590\) 14.1535 + 8.17154i 0.582691 + 0.336417i
\(591\) −9.25370 + 5.34263i −0.380646 + 0.219766i
\(592\) 7.32392 4.22847i 0.301011 0.173789i
\(593\) 16.9633 + 9.79376i 0.696599 + 0.402181i 0.806079 0.591808i \(-0.201585\pi\)
−0.109481 + 0.993989i \(0.534919\pi\)
\(594\) −5.18166 −0.212606
\(595\) 6.58599 + 5.79184i 0.269999 + 0.237442i
\(596\) 6.18171i 0.253213i
\(597\) 2.36571 + 1.36584i 0.0968222 + 0.0559003i
\(598\) 5.41375 2.59809i 0.221385 0.106244i
\(599\) −19.3629 33.5375i −0.791147 1.37031i −0.925257 0.379341i \(-0.876151\pi\)
0.134110 0.990966i \(-0.457182\pi\)
\(600\) 5.04145 + 2.91068i 0.205816 + 0.118828i
\(601\) 17.9352i 0.731593i −0.930695 0.365797i \(-0.880797\pi\)
0.930695 0.365797i \(-0.119203\pi\)
\(602\) −1.07411 3.17861i −0.0437774 0.129551i
\(603\) 4.03483i 0.164311i
\(604\) −1.10079 + 1.90662i −0.0447903 + 0.0775791i
\(605\) 11.2507 + 19.4868i 0.457405 + 0.792249i
\(606\) −2.71709 4.70614i −0.110374 0.191174i
\(607\) −4.31043 2.48863i −0.174955 0.101010i 0.409965 0.912101i \(-0.365541\pi\)
−0.584920 + 0.811091i \(0.698874\pi\)
\(608\) 6.25109 0.253515
\(609\) 11.4101 + 2.28597i 0.462360 + 0.0926322i
\(610\) −26.6276 −1.07812
\(611\) 5.58217 9.66860i 0.225830 0.391150i
\(612\) −0.396600 0.686931i −0.0160316 0.0277675i
\(613\) 20.0317 11.5653i 0.809074 0.467119i −0.0375602 0.999294i \(-0.511959\pi\)
0.846634 + 0.532175i \(0.178625\pi\)
\(614\) −20.9196 12.0779i −0.844245 0.487425i
\(615\) −13.9037 −0.560650
\(616\) 35.3281 + 7.07785i 1.42341 + 0.285175i
\(617\) 37.3929i 1.50538i 0.658375 + 0.752690i \(0.271244\pi\)
−0.658375 + 0.752690i \(0.728756\pi\)
\(618\) −8.68731 5.01562i −0.349455 0.201758i
\(619\) 21.9986 + 38.1028i 0.884200 + 1.53148i 0.846628 + 0.532186i \(0.178629\pi\)
0.0375728 + 0.999294i \(0.488037\pi\)
\(620\) 10.2166 5.89855i 0.410308 0.236891i
\(621\) −3.95884 2.70696i −0.158863 0.108626i
\(622\) 11.7673i 0.471825i
\(623\) 31.8412 10.7597i 1.27569 0.431078i
\(624\) −2.51131 −0.100533
\(625\) 15.4396 26.7422i 0.617586 1.06969i
\(626\) 16.0613 + 27.8191i 0.641941 + 1.11187i
\(627\) −4.06090 7.03369i −0.162177 0.280899i
\(628\) 6.92939 12.0021i 0.276513 0.478934i
\(629\) 4.54597i 0.181260i
\(630\) −6.10870 5.37211i −0.243377 0.214030i
\(631\) 10.1960i 0.405898i 0.979189 + 0.202949i \(0.0650525\pi\)
−0.979189 + 0.202949i \(0.934947\pi\)
\(632\) 9.67184 + 5.58404i 0.384725 + 0.222121i
\(633\) −17.3312 + 10.0062i −0.688853 + 0.397710i
\(634\) 0.0378728 + 0.0655976i 0.00150412 + 0.00260521i
\(635\) −20.7879 + 36.0058i −0.824944 + 1.42884i
\(636\) −6.88921 −0.273175
\(637\) 7.42179 0.956282i 0.294062 0.0378893i
\(638\) 22.7905i 0.902286i
\(639\) 6.16342 10.6754i 0.243821 0.422311i
\(640\) −4.41566 7.64815i −0.174544 0.302320i
\(641\) 37.4979 21.6494i 1.48108 0.855102i 0.481309 0.876551i \(-0.340161\pi\)
0.999770 + 0.0214491i \(0.00682800\pi\)
\(642\) −9.28981 + 16.0904i −0.366640 + 0.635039i
\(643\) −5.89071 −0.232307 −0.116154 0.993231i \(-0.537056\pi\)
−0.116154 + 0.993231i \(0.537056\pi\)
\(644\) 5.56725 + 5.70345i 0.219380 + 0.224748i
\(645\) −2.84222 −0.111912
\(646\) −1.35766 + 2.35154i −0.0534165 + 0.0925201i
\(647\) 14.3694 8.29618i 0.564919 0.326156i −0.190198 0.981746i \(-0.560913\pi\)
0.755118 + 0.655589i \(0.227580\pi\)
\(648\) 1.53912 + 2.66584i 0.0604625 + 0.104724i
\(649\) 11.7576 20.3647i 0.461525 0.799384i
\(650\) 2.36790i 0.0928766i
\(651\) −17.9327 + 6.05976i −0.702837 + 0.237501i
\(652\) −5.82643 −0.228181
\(653\) −9.87863 + 17.1103i −0.386581 + 0.669578i −0.991987 0.126339i \(-0.959677\pi\)
0.605406 + 0.795917i \(0.293011\pi\)
\(654\) 8.72006 + 15.1036i 0.340982 + 0.590597i
\(655\) −18.6041 + 10.7411i −0.726921 + 0.419688i
\(656\) 10.7753 + 6.22112i 0.420704 + 0.242894i
\(657\) 7.55663i 0.294812i
\(658\) −31.7326 6.35750i −1.23706 0.247841i
\(659\) 13.6631i 0.532238i −0.963940 0.266119i \(-0.914259\pi\)
0.963940 0.266119i \(-0.0857414\pi\)
\(660\) 3.64740 6.31749i 0.141975 0.245908i
\(661\) −20.5219 35.5450i −0.798209 1.38254i −0.920781 0.390079i \(-0.872448\pi\)
0.122572 0.992460i \(-0.460886\pi\)
\(662\) −10.2801 17.8056i −0.399546 0.692034i
\(663\) −0.674968 + 1.16908i −0.0262136 + 0.0454033i
\(664\) −21.6590 −0.840533
\(665\) 2.50478 12.5022i 0.0971310 0.484816i
\(666\) 4.21652i 0.163387i
\(667\) 11.9060 17.4122i 0.461003 0.674203i
\(668\) 0.422374 0.243858i 0.0163421 0.00943513i
\(669\) 0.600238 + 1.03964i 0.0232065 + 0.0401949i
\(670\) −10.7438 6.20292i −0.415068 0.239640i
\(671\) 38.3130i 1.47906i
\(672\) −2.88401 8.53466i −0.111253 0.329232i
\(673\) −6.56598 −0.253100 −0.126550 0.991960i \(-0.540390\pi\)
−0.126550 + 0.991960i \(0.540390\pi\)
\(674\) 5.19117 + 2.99712i 0.199956 + 0.115445i
\(675\) −1.63777 + 0.945565i −0.0630377 + 0.0363948i
\(676\) 3.72398 + 6.45012i 0.143230 + 0.248081i
\(677\) 23.3248 40.3997i 0.896444 1.55269i 0.0644363 0.997922i \(-0.479475\pi\)
0.832007 0.554764i \(-0.187192\pi\)
\(678\) −11.7179 −0.450023
\(679\) 6.96994 + 6.12950i 0.267482 + 0.235229i
\(680\) −10.2041 −0.391311
\(681\) −5.33409 3.07964i −0.204403 0.118012i
\(682\) 18.5359 + 32.1051i 0.709777 + 1.22937i
\(683\) −13.9394 24.1438i −0.533377 0.923836i −0.999240 0.0389794i \(-0.987589\pi\)
0.465863 0.884857i \(-0.345744\pi\)
\(684\) −0.576586 + 0.998676i −0.0220463 + 0.0381853i
\(685\) 54.7118i 2.09043i
\(686\) −9.51363 19.4946i −0.363232 0.744308i
\(687\) 14.8858i 0.567930i
\(688\) 2.20271 + 1.27174i 0.0839775 + 0.0484845i
\(689\) 5.86234 + 10.1539i 0.223337 + 0.386831i
\(690\) −13.2940 + 6.37990i −0.506096 + 0.242878i
\(691\) 30.2632 + 17.4725i 1.15127 + 0.664685i 0.949196 0.314686i \(-0.101899\pi\)
0.202072 + 0.979371i \(0.435232\pi\)
\(692\) 10.3097i 0.391917i
\(693\) −7.72961 + 8.78946i −0.293624 + 0.333884i
\(694\) −4.94044 −0.187537
\(695\) 31.7001 + 18.3021i 1.20246 + 0.694238i
\(696\) −11.7252 + 6.76954i −0.444442 + 0.256599i
\(697\) 5.79219 3.34412i 0.219395 0.126668i
\(698\) 10.4409 + 6.02804i 0.395193 + 0.228165i
\(699\) 19.5746i 0.740380i
\(700\) 2.97746 1.00614i 0.112538 0.0380284i
\(701\) 50.6216i 1.91195i 0.293446 + 0.955976i \(0.405198\pi\)
−0.293446 + 0.955976i \(0.594802\pi\)
\(702\) 0.626053 1.08436i 0.0236289 0.0409264i
\(703\) −5.72359 + 3.30452i −0.215869 + 0.124632i
\(704\) −33.2804 + 19.2144i −1.25430 + 0.724171i
\(705\) −13.7076 + 23.7423i −0.516259 + 0.894186i
\(706\) 1.19096i 0.0448225i
\(707\) −12.0360 2.41137i −0.452660 0.0906887i
\(708\) −3.33879 −0.125479
\(709\) −15.8772 9.16673i −0.596282 0.344264i 0.171295 0.985220i \(-0.445205\pi\)
−0.767578 + 0.640956i \(0.778538\pi\)
\(710\) −18.9506 32.8234i −0.711203 1.23184i
\(711\) −3.14200 + 1.81403i −0.117834 + 0.0680316i
\(712\) −19.5521 + 33.8652i −0.732745 + 1.26915i
\(713\) −2.61046 + 34.2120i −0.0977625 + 1.28125i
\(714\) 3.83695 + 0.768718i 0.143594 + 0.0287686i
\(715\) −12.4149 −0.464293
\(716\) 3.72463 6.45124i 0.139196 0.241094i
\(717\) 14.1487 8.16874i 0.528392 0.305067i
\(718\) 3.91621 2.26102i 0.146152 0.0843807i
\(719\) 7.94476 + 4.58691i 0.296290 + 0.171063i 0.640775 0.767729i \(-0.278613\pi\)
−0.344485 + 0.938792i \(0.611947\pi\)
\(720\) 6.16679 0.229823
\(721\) −21.4669 + 7.25403i −0.799469 + 0.270154i
\(722\) −18.3064 −0.681295
\(723\) −23.4140 13.5181i −0.870776 0.502743i
\(724\) −5.24906 9.09163i −0.195080 0.337888i
\(725\) −4.15889 7.20341i −0.154457 0.267528i
\(726\) 8.69460 + 5.01983i 0.322687 + 0.186303i
\(727\) 43.0133 1.59528 0.797638 0.603137i \(-0.206083\pi\)
0.797638 + 0.603137i \(0.206083\pi\)
\(728\) −5.74955 + 6.53789i −0.213092 + 0.242310i
\(729\) −1.00000 −0.0370370
\(730\) 20.1215 + 11.6171i 0.744729 + 0.429969i
\(731\) 1.18405 0.683613i 0.0437938 0.0252843i
\(732\) 4.71105 2.71993i 0.174125 0.100531i
\(733\) 14.1989 24.5931i 0.524447 0.908368i −0.475148 0.879906i \(-0.657606\pi\)
0.999595 0.0284625i \(-0.00906111\pi\)
\(734\) −32.4661 −1.19835
\(735\) −18.2250 + 2.34826i −0.672240 + 0.0866167i
\(736\) −16.2825 1.24239i −0.600179 0.0457952i
\(737\) −8.92502 + 15.4586i −0.328757 + 0.569424i
\(738\) −5.37242 + 3.10177i −0.197762 + 0.114178i
\(739\) 6.93883 + 12.0184i 0.255249 + 0.442104i 0.964963 0.262386i \(-0.0845093\pi\)
−0.709714 + 0.704490i \(0.751176\pi\)
\(740\) −5.14079 2.96804i −0.188979 0.109107i
\(741\) 1.96257 0.0720968
\(742\) 22.4447 25.5222i 0.823972 0.936950i
\(743\) 33.8390i 1.24143i 0.784035 + 0.620717i \(0.213158\pi\)
−0.784035 + 0.620717i \(0.786842\pi\)
\(744\) 11.0116 19.0726i 0.403703 0.699234i
\(745\) −22.3733 + 12.9172i −0.819693 + 0.473250i
\(746\) −0.185690 + 0.107208i −0.00679860 + 0.00392517i
\(747\) 3.51808 6.09349i 0.128720 0.222949i
\(748\) 3.50910i 0.128305i
\(749\) 13.4357 + 39.7605i 0.490932 + 1.45282i
\(750\) 9.55879i 0.349038i
\(751\) −35.3689 20.4203i −1.29063 0.745146i −0.311864 0.950127i \(-0.600953\pi\)
−0.978766 + 0.204981i \(0.934287\pi\)
\(752\) 21.2467 12.2668i 0.774787 0.447324i
\(753\) −16.2811 + 9.39990i −0.593317 + 0.342552i
\(754\) 4.76933 + 2.75358i 0.173689 + 0.100279i
\(755\) −9.20074 −0.334849
\(756\) 1.62951 + 0.326467i 0.0592649 + 0.0118735i
\(757\) 1.96542i 0.0714345i 0.999362 + 0.0357173i \(0.0113716\pi\)
−0.999362 + 0.0357173i \(0.988628\pi\)
\(758\) −33.9889 19.6235i −1.23453 0.712757i
\(759\) 9.17966 + 19.1280i 0.333201 + 0.694303i
\(760\) 7.41750 + 12.8475i 0.269061 + 0.466027i
\(761\) −37.1235 21.4333i −1.34573 0.776956i −0.358086 0.933689i \(-0.616570\pi\)
−0.987641 + 0.156733i \(0.949904\pi\)
\(762\) 18.5503i 0.672007i
\(763\) 38.6276 + 7.73890i 1.39841 + 0.280167i
\(764\) 7.72276i 0.279400i
\(765\) 1.65746 2.87080i 0.0599255 0.103794i
\(766\) −11.5306 19.9715i −0.416616 0.721601i
\(767\) 2.84112 + 4.92096i 0.102587 + 0.177686i
\(768\) 11.6330 + 6.71631i 0.419769 + 0.242354i
\(769\) 33.7742 1.21793 0.608965 0.793197i \(-0.291585\pi\)
0.608965 + 0.793197i \(0.291585\pi\)
\(770\) 11.5211 + 34.0945i 0.415192 + 1.22868i
\(771\) 20.7590 0.747618
\(772\) −7.29530 + 12.6358i −0.262563 + 0.454773i
\(773\) 18.4633 + 31.9794i 0.664079 + 1.15022i 0.979534 + 0.201279i \(0.0645096\pi\)
−0.315455 + 0.948941i \(0.60215