# Properties

 Label 483.2.i.h.415.5 Level $483$ Weight $2$ Character 483.415 Analytic conductor $3.857$ Analytic rank $0$ Dimension $20$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$483 = 3 \cdot 7 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 483.i (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.85677441763$$ Analytic rank: $$0$$ Dimension: $$20$$ Relative dimension: $$10$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{20} - \cdots)$$ Defining polynomial: $$x^{20} - 3 x^{19} + 22 x^{18} - 43 x^{17} + 245 x^{16} - 416 x^{15} + 1707 x^{14} - 2021 x^{13} + 7135 x^{12} - 6640 x^{11} + 20315 x^{10} - 10565 x^{9} + 29358 x^{8} - 9009 x^{7} + 30661 x^{6} - 4026 x^{5} + 15786 x^{4} - 84 x^{3} + 5800 x^{2} + 152 x + 4$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 415.5 Root $$0.432430 + 0.748990i$$ of defining polynomial Character $$\chi$$ $$=$$ 483.415 Dual form 483.2.i.h.277.5

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.432430 + 0.748990i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.626009 + 1.08428i) q^{4} +(1.24779 - 2.16123i) q^{5} -0.864859 q^{6} +(-0.0271380 - 2.64561i) q^{7} -2.81254 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})$$ $$q+(-0.432430 + 0.748990i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.626009 + 1.08428i) q^{4} +(1.24779 - 2.16123i) q^{5} -0.864859 q^{6} +(-0.0271380 - 2.64561i) q^{7} -2.81254 q^{8} +(-0.500000 + 0.866025i) q^{9} +(1.07916 + 1.86916i) q^{10} +(1.99155 + 3.44946i) q^{11} +(-0.626009 + 1.08428i) q^{12} +2.80699 q^{13} +(1.99327 + 1.12372i) q^{14} +2.49557 q^{15} +(-0.0357927 + 0.0619948i) q^{16} +(3.49385 + 6.05152i) q^{17} +(-0.432430 - 0.748990i) q^{18} +(2.99029 - 5.17933i) q^{19} +3.12450 q^{20} +(2.27760 - 1.34631i) q^{21} -3.44482 q^{22} +(-0.500000 + 0.866025i) q^{23} +(-1.40627 - 2.43573i) q^{24} +(-0.613943 - 1.06338i) q^{25} +(-1.21382 + 2.10240i) q^{26} -1.00000 q^{27} +(2.85159 - 1.68560i) q^{28} -4.06198 q^{29} +(-1.07916 + 1.86916i) q^{30} +(1.72173 + 2.98212i) q^{31} +(-2.84349 - 4.92508i) q^{32} +(-1.99155 + 3.44946i) q^{33} -6.04338 q^{34} +(-5.75164 - 3.24251i) q^{35} -1.25202 q^{36} +(0.738463 - 1.27905i) q^{37} +(2.58618 + 4.47939i) q^{38} +(1.40349 + 2.43092i) q^{39} +(-3.50945 + 6.07854i) q^{40} -7.65339 q^{41} +(0.0234706 + 2.28808i) q^{42} +7.07993 q^{43} +(-2.49345 + 4.31879i) q^{44} +(1.24779 + 2.16123i) q^{45} +(-0.432430 - 0.748990i) q^{46} +(1.52265 - 2.63732i) q^{47} -0.0715855 q^{48} +(-6.99853 + 0.143593i) q^{49} +1.06195 q^{50} +(-3.49385 + 6.05152i) q^{51} +(1.75720 + 3.04356i) q^{52} +(-4.78552 - 8.28876i) q^{53} +(0.432430 - 0.748990i) q^{54} +9.94011 q^{55} +(0.0763267 + 7.44089i) q^{56} +5.98058 q^{57} +(1.75652 - 3.04238i) q^{58} +(4.15309 + 7.19336i) q^{59} +(1.56225 + 2.70590i) q^{60} +(1.85641 - 3.21539i) q^{61} -2.97811 q^{62} +(2.30474 + 1.29930i) q^{63} +4.77528 q^{64} +(3.50252 - 6.06654i) q^{65} +(-1.72241 - 2.98330i) q^{66} +(-2.23479 - 3.87076i) q^{67} +(-4.37436 + 7.57662i) q^{68} -1.00000 q^{69} +(4.91579 - 2.90576i) q^{70} -9.49028 q^{71} +(1.40627 - 2.43573i) q^{72} +(-6.45106 - 11.1736i) q^{73} +(0.638666 + 1.10620i) q^{74} +(0.613943 - 1.06338i) q^{75} +7.48779 q^{76} +(9.07190 - 5.36248i) q^{77} -2.42765 q^{78} +(-3.56152 + 6.16873i) q^{79} +(0.0893234 + 0.154713i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(3.30955 - 5.73232i) q^{82} +1.05716 q^{83} +(2.88557 + 1.62675i) q^{84} +17.4383 q^{85} +(-3.06157 + 5.30280i) q^{86} +(-2.03099 - 3.51778i) q^{87} +(-5.60131 - 9.70175i) q^{88} +(1.65027 - 2.85835i) q^{89} -2.15832 q^{90} +(-0.0761760 - 7.42619i) q^{91} -1.25202 q^{92} +(-1.72173 + 2.98212i) q^{93} +(1.31688 + 2.28091i) q^{94} +(-7.46248 - 12.9254i) q^{95} +(2.84349 - 4.92508i) q^{96} -15.9312 q^{97} +(2.91882 - 5.30392i) q^{98} -3.98310 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$20q - 3q^{2} + 10q^{3} - 15q^{4} + 5q^{5} - 6q^{6} + 18q^{8} - 10q^{9} + O(q^{10})$$ $$20q - 3q^{2} + 10q^{3} - 15q^{4} + 5q^{5} - 6q^{6} + 18q^{8} - 10q^{9} - 11q^{10} - 8q^{11} + 15q^{12} + 11q^{14} + 10q^{15} - 37q^{16} + 11q^{17} - 3q^{18} - q^{19} - 30q^{20} + 12q^{22} - 10q^{23} + 9q^{24} - 21q^{25} - q^{26} - 20q^{27} + 44q^{28} + 44q^{29} + 11q^{30} + 3q^{31} - 11q^{32} + 8q^{33} - 6q^{34} - 9q^{35} + 30q^{36} + 3q^{37} - 16q^{38} - 39q^{40} - 52q^{41} + 7q^{42} + 54q^{43} - 16q^{44} + 5q^{45} - 3q^{46} - 11q^{47} - 74q^{48} + 22q^{49} + 4q^{50} - 11q^{51} - 29q^{52} - 5q^{53} + 3q^{54} - 36q^{55} + 43q^{56} - 2q^{57} - 16q^{58} + 10q^{59} - 15q^{60} - 22q^{61} - 64q^{62} + 138q^{64} + 11q^{65} + 6q^{66} + 2q^{67} + 21q^{68} - 20q^{69} + 84q^{70} + 54q^{71} - 9q^{72} + 8q^{73} - 14q^{74} + 21q^{75} - 44q^{76} + 8q^{77} - 2q^{78} - 21q^{79} + 53q^{80} - 10q^{81} - 36q^{82} - 24q^{83} + 25q^{84} + 46q^{85} - 18q^{86} + 22q^{87} + 10q^{88} - 6q^{89} + 22q^{90} - 62q^{91} + 30q^{92} - 3q^{93} - 35q^{94} - 44q^{95} + 11q^{96} + 12q^{97} + 2q^{98} + 16q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/483\mathbb{Z}\right)^\times$$.

 $$n$$ $$323$$ $$346$$ $$442$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.432430 + 0.748990i −0.305774 + 0.529616i −0.977433 0.211244i $$-0.932249\pi$$
0.671659 + 0.740860i $$0.265582\pi$$
$$3$$ 0.500000 + 0.866025i 0.288675 + 0.500000i
$$4$$ 0.626009 + 1.08428i 0.313005 + 0.542140i
$$5$$ 1.24779 2.16123i 0.558027 0.966531i −0.439634 0.898177i $$-0.644892\pi$$
0.997661 0.0683543i $$-0.0217748\pi$$
$$6$$ −0.864859 −0.353077
$$7$$ −0.0271380 2.64561i −0.0102572 0.999947i
$$8$$ −2.81254 −0.994383
$$9$$ −0.500000 + 0.866025i −0.166667 + 0.288675i
$$10$$ 1.07916 + 1.86916i 0.341260 + 0.591080i
$$11$$ 1.99155 + 3.44946i 0.600475 + 1.04005i 0.992749 + 0.120204i $$0.0383549\pi$$
−0.392275 + 0.919848i $$0.628312\pi$$
$$12$$ −0.626009 + 1.08428i −0.180713 + 0.313005i
$$13$$ 2.80699 0.778518 0.389259 0.921128i $$-0.372731\pi$$
0.389259 + 0.921128i $$0.372731\pi$$
$$14$$ 1.99327 + 1.12372i 0.532725 + 0.300326i
$$15$$ 2.49557 0.644354
$$16$$ −0.0357927 + 0.0619948i −0.00894819 + 0.0154987i
$$17$$ 3.49385 + 6.05152i 0.847383 + 1.46771i 0.883536 + 0.468364i $$0.155156\pi$$
−0.0361530 + 0.999346i $$0.511510\pi$$
$$18$$ −0.432430 0.748990i −0.101925 0.176539i
$$19$$ 2.99029 5.17933i 0.686019 1.18822i −0.287096 0.957902i $$-0.592690\pi$$
0.973115 0.230318i $$-0.0739767\pi$$
$$20$$ 3.12450 0.698660
$$21$$ 2.27760 1.34631i 0.497013 0.293789i
$$22$$ −3.44482 −0.734438
$$23$$ −0.500000 + 0.866025i −0.104257 + 0.180579i
$$24$$ −1.40627 2.43573i −0.287054 0.497191i
$$25$$ −0.613943 1.06338i −0.122789 0.212676i
$$26$$ −1.21382 + 2.10240i −0.238050 + 0.412315i
$$27$$ −1.00000 −0.192450
$$28$$ 2.85159 1.68560i 0.538901 0.318549i
$$29$$ −4.06198 −0.754291 −0.377145 0.926154i $$-0.623094\pi$$
−0.377145 + 0.926154i $$0.623094\pi$$
$$30$$ −1.07916 + 1.86916i −0.197027 + 0.341260i
$$31$$ 1.72173 + 2.98212i 0.309232 + 0.535605i 0.978195 0.207691i $$-0.0665948\pi$$
−0.668963 + 0.743296i $$0.733261\pi$$
$$32$$ −2.84349 4.92508i −0.502664 0.870639i
$$33$$ −1.99155 + 3.44946i −0.346684 + 0.600475i
$$34$$ −6.04338 −1.03643
$$35$$ −5.75164 3.24251i −0.972204 0.548084i
$$36$$ −1.25202 −0.208670
$$37$$ 0.738463 1.27905i 0.121402 0.210275i −0.798918 0.601439i $$-0.794594\pi$$
0.920321 + 0.391164i $$0.127927\pi$$
$$38$$ 2.58618 + 4.47939i 0.419534 + 0.726654i
$$39$$ 1.40349 + 2.43092i 0.224739 + 0.389259i
$$40$$ −3.50945 + 6.07854i −0.554892 + 0.961102i
$$41$$ −7.65339 −1.19526 −0.597630 0.801772i $$-0.703891\pi$$
−0.597630 + 0.801772i $$0.703891\pi$$
$$42$$ 0.0234706 + 2.28808i 0.00362159 + 0.353059i
$$43$$ 7.07993 1.07968 0.539840 0.841768i $$-0.318485\pi$$
0.539840 + 0.841768i $$0.318485\pi$$
$$44$$ −2.49345 + 4.31879i −0.375902 + 0.651082i
$$45$$ 1.24779 + 2.16123i 0.186009 + 0.322177i
$$46$$ −0.432430 0.748990i −0.0637583 0.110433i
$$47$$ 1.52265 2.63732i 0.222102 0.384692i −0.733344 0.679858i $$-0.762042\pi$$
0.955446 + 0.295166i $$0.0953749\pi$$
$$48$$ −0.0715855 −0.0103325
$$49$$ −6.99853 + 0.143593i −0.999790 + 0.0205133i
$$50$$ 1.06195 0.150182
$$51$$ −3.49385 + 6.05152i −0.489237 + 0.847383i
$$52$$ 1.75720 + 3.04356i 0.243680 + 0.422065i
$$53$$ −4.78552 8.28876i −0.657342 1.13855i −0.981301 0.192478i $$-0.938348\pi$$
0.323960 0.946071i $$-0.394986\pi$$
$$54$$ 0.432430 0.748990i 0.0588462 0.101925i
$$55$$ 9.94011 1.34032
$$56$$ 0.0763267 + 7.44089i 0.0101996 + 0.994330i
$$57$$ 5.98058 0.792147
$$58$$ 1.75652 3.04238i 0.230643 0.399485i
$$59$$ 4.15309 + 7.19336i 0.540686 + 0.936496i 0.998865 + 0.0476357i $$0.0151687\pi$$
−0.458179 + 0.888860i $$0.651498\pi$$
$$60$$ 1.56225 + 2.70590i 0.201686 + 0.349330i
$$61$$ 1.85641 3.21539i 0.237689 0.411689i −0.722362 0.691515i $$-0.756944\pi$$
0.960051 + 0.279826i $$0.0902769\pi$$
$$62$$ −2.97811 −0.378220
$$63$$ 2.30474 + 1.29930i 0.290369 + 0.163697i
$$64$$ 4.77528 0.596909
$$65$$ 3.50252 6.06654i 0.434434 0.752462i
$$66$$ −1.72241 2.98330i −0.212014 0.367219i
$$67$$ −2.23479 3.87076i −0.273023 0.472889i 0.696612 0.717448i $$-0.254690\pi$$
−0.969634 + 0.244559i $$0.921357\pi$$
$$68$$ −4.37436 + 7.57662i −0.530469 + 0.918800i
$$69$$ −1.00000 −0.120386
$$70$$ 4.91579 2.90576i 0.587549 0.347305i
$$71$$ −9.49028 −1.12629 −0.563144 0.826359i $$-0.690408\pi$$
−0.563144 + 0.826359i $$0.690408\pi$$
$$72$$ 1.40627 2.43573i 0.165730 0.287054i
$$73$$ −6.45106 11.1736i −0.755039 1.30777i −0.945355 0.326043i $$-0.894285\pi$$
0.190316 0.981723i $$-0.439049\pi$$
$$74$$ 0.638666 + 1.10620i 0.0742435 + 0.128593i
$$75$$ 0.613943 1.06338i 0.0708920 0.122789i
$$76$$ 7.48779 0.858908
$$77$$ 9.07190 5.36248i 1.03384 0.611111i
$$78$$ −2.42765 −0.274877
$$79$$ −3.56152 + 6.16873i −0.400702 + 0.694037i −0.993811 0.111086i $$-0.964567\pi$$
0.593109 + 0.805123i $$0.297901\pi$$
$$80$$ 0.0893234 + 0.154713i 0.00998666 + 0.0172974i
$$81$$ −0.500000 0.866025i −0.0555556 0.0962250i
$$82$$ 3.30955 5.73232i 0.365479 0.633028i
$$83$$ 1.05716 0.116038 0.0580192 0.998315i $$-0.481522\pi$$
0.0580192 + 0.998315i $$0.481522\pi$$
$$84$$ 2.88557 + 1.62675i 0.314842 + 0.177493i
$$85$$ 17.4383 1.89145
$$86$$ −3.06157 + 5.30280i −0.330138 + 0.571816i
$$87$$ −2.03099 3.51778i −0.217745 0.377145i
$$88$$ −5.60131 9.70175i −0.597101 1.03421i
$$89$$ 1.65027 2.85835i 0.174928 0.302984i −0.765208 0.643783i $$-0.777364\pi$$
0.940136 + 0.340799i $$0.110697\pi$$
$$90$$ −2.15832 −0.227507
$$91$$ −0.0761760 7.42619i −0.00798541 0.778477i
$$92$$ −1.25202 −0.130532
$$93$$ −1.72173 + 2.98212i −0.178535 + 0.309232i
$$94$$ 1.31688 + 2.28091i 0.135826 + 0.235258i
$$95$$ −7.46248 12.9254i −0.765635 1.32612i
$$96$$ 2.84349 4.92508i 0.290213 0.502664i
$$97$$ −15.9312 −1.61757 −0.808786 0.588103i $$-0.799875\pi$$
−0.808786 + 0.588103i $$0.799875\pi$$
$$98$$ 2.91882 5.30392i 0.294845 0.535777i
$$99$$ −3.98310 −0.400316
$$100$$ 0.768667 1.33137i 0.0768667 0.133137i
$$101$$ −3.48214 6.03125i −0.346486 0.600132i 0.639136 0.769093i $$-0.279292\pi$$
−0.985623 + 0.168962i $$0.945959\pi$$
$$102$$ −3.02169 5.23372i −0.299192 0.518215i
$$103$$ −3.00244 + 5.20038i −0.295839 + 0.512408i −0.975180 0.221415i $$-0.928933\pi$$
0.679341 + 0.733823i $$0.262266\pi$$
$$104$$ −7.89475 −0.774144
$$105$$ −0.0677249 6.60232i −0.00660927 0.644320i
$$106$$ 8.27760 0.803992
$$107$$ −2.85898 + 4.95191i −0.276388 + 0.478719i −0.970484 0.241164i $$-0.922471\pi$$
0.694096 + 0.719882i $$0.255804\pi$$
$$108$$ −0.626009 1.08428i −0.0602377 0.104335i
$$109$$ −3.12793 5.41773i −0.299601 0.518924i 0.676444 0.736494i $$-0.263520\pi$$
−0.976045 + 0.217570i $$0.930187\pi$$
$$110$$ −4.29840 + 7.44505i −0.409836 + 0.709857i
$$111$$ 1.47693 0.140184
$$112$$ 0.164986 + 0.0930113i 0.0155897 + 0.00878874i
$$113$$ −3.79544 −0.357045 −0.178523 0.983936i $$-0.557132\pi$$
−0.178523 + 0.983936i $$0.557132\pi$$
$$114$$ −2.58618 + 4.47939i −0.242218 + 0.419534i
$$115$$ 1.24779 + 2.16123i 0.116357 + 0.201536i
$$116$$ −2.54284 4.40432i −0.236096 0.408931i
$$117$$ −1.40349 + 2.43092i −0.129753 + 0.224739i
$$118$$ −7.18368 −0.661311
$$119$$ 15.9152 9.40759i 1.45894 0.862393i
$$120$$ −7.01890 −0.640735
$$121$$ −2.43253 + 4.21327i −0.221139 + 0.383024i
$$122$$ 1.60553 + 2.78086i 0.145358 + 0.251768i
$$123$$ −3.82670 6.62803i −0.345042 0.597630i
$$124$$ −2.15564 + 3.73367i −0.193582 + 0.335294i
$$125$$ 9.41359 0.841977
$$126$$ −1.96980 + 1.16437i −0.175484 + 0.103730i
$$127$$ 20.8819 1.85297 0.926484 0.376333i $$-0.122815\pi$$
0.926484 + 0.376333i $$0.122815\pi$$
$$128$$ 3.62202 6.27352i 0.320144 0.554506i
$$129$$ 3.53997 + 6.13140i 0.311677 + 0.539840i
$$130$$ 3.02919 + 5.24670i 0.265677 + 0.460166i
$$131$$ −6.07439 + 10.5212i −0.530722 + 0.919237i 0.468635 + 0.883392i $$0.344746\pi$$
−0.999357 + 0.0358458i $$0.988587\pi$$
$$132$$ −4.98691 −0.434055
$$133$$ −13.7837 7.77059i −1.19519 0.673795i
$$134$$ 3.86555 0.333933
$$135$$ −1.24779 + 2.16123i −0.107392 + 0.186009i
$$136$$ −9.82658 17.0201i −0.842623 1.45947i
$$137$$ 0.414316 + 0.717617i 0.0353974 + 0.0613102i 0.883181 0.469032i $$-0.155397\pi$$
−0.847784 + 0.530342i $$0.822064\pi$$
$$138$$ 0.432430 0.748990i 0.0368109 0.0637583i
$$139$$ 0.546099 0.0463195 0.0231598 0.999732i $$-0.492627\pi$$
0.0231598 + 0.999732i $$0.492627\pi$$
$$140$$ −0.0847928 8.26622i −0.00716630 0.698623i
$$141$$ 3.04531 0.256461
$$142$$ 4.10388 7.10812i 0.344390 0.596501i
$$143$$ 5.59025 + 9.68259i 0.467480 + 0.809699i
$$144$$ −0.0357927 0.0619948i −0.00298273 0.00516624i
$$145$$ −5.06849 + 8.77887i −0.420915 + 0.729046i
$$146$$ 11.1585 0.923485
$$147$$ −3.62362 5.98911i −0.298871 0.493973i
$$148$$ 1.84914 0.151998
$$149$$ 9.27434 16.0636i 0.759783 1.31598i −0.183178 0.983080i $$-0.558638\pi$$
0.942961 0.332903i $$-0.108028\pi$$
$$150$$ 0.530974 + 0.919674i 0.0433538 + 0.0750911i
$$151$$ 2.88625 + 4.99914i 0.234880 + 0.406824i 0.959238 0.282600i $$-0.0911969\pi$$
−0.724358 + 0.689424i $$0.757864\pi$$
$$152$$ −8.41030 + 14.5671i −0.682166 + 1.18155i
$$153$$ −6.98770 −0.564922
$$154$$ 0.0934855 + 9.11366i 0.00753328 + 0.734399i
$$155$$ 8.59340 0.690239
$$156$$ −1.75720 + 3.04356i −0.140688 + 0.243680i
$$157$$ −7.06448 12.2360i −0.563807 0.976543i −0.997160 0.0753182i $$-0.976003\pi$$
0.433352 0.901225i $$-0.357331\pi$$
$$158$$ −3.08021 5.33509i −0.245049 0.424437i
$$159$$ 4.78552 8.28876i 0.379516 0.657342i
$$160$$ −14.1923 −1.12200
$$161$$ 2.30474 + 1.29930i 0.181639 + 0.102399i
$$162$$ 0.864859 0.0679498
$$163$$ 8.37481 14.5056i 0.655966 1.13617i −0.325685 0.945478i $$-0.605595\pi$$
0.981651 0.190688i $$-0.0610719\pi$$
$$164$$ −4.79109 8.29842i −0.374121 0.647997i
$$165$$ 4.97006 + 8.60839i 0.386918 + 0.670162i
$$166$$ −0.457147 + 0.791803i −0.0354815 + 0.0614558i
$$167$$ 17.8518 1.38141 0.690707 0.723135i $$-0.257299\pi$$
0.690707 + 0.723135i $$0.257299\pi$$
$$168$$ −6.40583 + 3.78654i −0.494221 + 0.292138i
$$169$$ −5.12084 −0.393910
$$170$$ −7.54084 + 13.0611i −0.578356 + 1.00174i
$$171$$ 2.99029 + 5.17933i 0.228673 + 0.396073i
$$172$$ 4.43210 + 7.67663i 0.337945 + 0.585337i
$$173$$ −1.32680 + 2.29808i −0.100874 + 0.174720i −0.912045 0.410090i $$-0.865497\pi$$
0.811171 + 0.584809i $$0.198831\pi$$
$$174$$ 3.51304 0.266323
$$175$$ −2.79663 + 1.65311i −0.211405 + 0.124964i
$$176$$ −0.285132 −0.0214926
$$177$$ −4.15309 + 7.19336i −0.312165 + 0.540686i
$$178$$ 1.42725 + 2.47207i 0.106977 + 0.185289i
$$179$$ −5.73482 9.93299i −0.428640 0.742427i 0.568112 0.822951i $$-0.307674\pi$$
−0.996753 + 0.0805242i $$0.974341\pi$$
$$180$$ −1.56225 + 2.70590i −0.116443 + 0.201686i
$$181$$ −15.8393 −1.17732 −0.588662 0.808380i $$-0.700345\pi$$
−0.588662 + 0.808380i $$0.700345\pi$$
$$182$$ 5.59509 + 3.15425i 0.414735 + 0.233809i
$$183$$ 3.71282 0.274459
$$184$$ 1.40627 2.43573i 0.103672 0.179564i
$$185$$ −1.84289 3.19197i −0.135492 0.234679i
$$186$$ −1.48905 2.57912i −0.109183 0.189110i
$$187$$ −13.9163 + 24.1038i −1.01766 + 1.76264i
$$188$$ 3.81278 0.278076
$$189$$ 0.0271380 + 2.64561i 0.00197400 + 0.192440i
$$190$$ 12.9080 0.936445
$$191$$ −10.8975 + 18.8751i −0.788518 + 1.36575i 0.138357 + 0.990382i $$0.455818\pi$$
−0.926875 + 0.375370i $$0.877515\pi$$
$$192$$ 2.38764 + 4.13551i 0.172313 + 0.298455i
$$193$$ −8.01667 13.8853i −0.577053 0.999485i −0.995815 0.0913890i $$-0.970869\pi$$
0.418762 0.908096i $$-0.362464\pi$$
$$194$$ 6.88914 11.9323i 0.494612 0.856692i
$$195$$ 7.00504 0.501641
$$196$$ −4.53684 7.49847i −0.324060 0.535605i
$$197$$ 10.6653 0.759870 0.379935 0.925013i $$-0.375946\pi$$
0.379935 + 0.925013i $$0.375946\pi$$
$$198$$ 1.72241 2.98330i 0.122406 0.212014i
$$199$$ 1.82952 + 3.16883i 0.129691 + 0.224632i 0.923557 0.383461i $$-0.125268\pi$$
−0.793866 + 0.608093i $$0.791935\pi$$
$$200$$ 1.72674 + 2.99080i 0.122099 + 0.211481i
$$201$$ 2.23479 3.87076i 0.157630 0.273023i
$$202$$ 6.02313 0.423786
$$203$$ 0.110234 + 10.7464i 0.00773691 + 0.754251i
$$204$$ −8.74872 −0.612533
$$205$$ −9.54980 + 16.5407i −0.666987 + 1.15526i
$$206$$ −2.59669 4.49760i −0.180920 0.313362i
$$207$$ −0.500000 0.866025i −0.0347524 0.0601929i
$$208$$ −0.100470 + 0.174019i −0.00696632 + 0.0120660i
$$209$$ 23.8212 1.64775
$$210$$ 4.97436 + 2.80431i 0.343263 + 0.193516i
$$211$$ −28.1857 −1.94039 −0.970193 0.242332i $$-0.922088\pi$$
−0.970193 + 0.242332i $$0.922088\pi$$
$$212$$ 5.99156 10.3777i 0.411502 0.712742i
$$213$$ −4.74514 8.21882i −0.325131 0.563144i
$$214$$ −2.47262 4.28270i −0.169025 0.292759i
$$215$$ 8.83424 15.3014i 0.602490 1.04354i
$$216$$ 2.81254 0.191369
$$217$$ 7.84282 4.63596i 0.532405 0.314709i
$$218$$ 5.41044 0.366441
$$219$$ 6.45106 11.1736i 0.435922 0.755039i
$$220$$ 6.22260 + 10.7779i 0.419528 + 0.726643i
$$221$$ 9.80718 + 16.9865i 0.659702 + 1.14264i
$$222$$ −0.638666 + 1.10620i −0.0428645 + 0.0742435i
$$223$$ 24.2280 1.62243 0.811215 0.584748i $$-0.198807\pi$$
0.811215 + 0.584748i $$0.198807\pi$$
$$224$$ −12.9527 + 7.65644i −0.865437 + 0.511567i
$$225$$ 1.22789 0.0818590
$$226$$ 1.64126 2.84275i 0.109175 0.189097i
$$227$$ 4.01827 + 6.95985i 0.266702 + 0.461942i 0.968008 0.250919i $$-0.0807327\pi$$
−0.701306 + 0.712860i $$0.747399\pi$$
$$228$$ 3.74390 + 6.48462i 0.247946 + 0.429454i
$$229$$ −6.88950 + 11.9330i −0.455271 + 0.788553i −0.998704 0.0509000i $$-0.983791\pi$$
0.543433 + 0.839453i $$0.317124\pi$$
$$230$$ −2.15832 −0.142315
$$231$$ 9.17999 + 5.17525i 0.603999 + 0.340507i
$$232$$ 11.4245 0.750054
$$233$$ 0.918005 1.59003i 0.0601405 0.104166i −0.834388 0.551178i $$-0.814178\pi$$
0.894528 + 0.447012i $$0.147512\pi$$
$$234$$ −1.21382 2.10240i −0.0793501 0.137438i
$$235$$ −3.79990 6.58161i −0.247878 0.429337i
$$236$$ −5.19974 + 9.00622i −0.338474 + 0.586255i
$$237$$ −7.12304 −0.462691
$$238$$ 0.164005 + 15.9884i 0.0106309 + 1.03638i
$$239$$ −4.42206 −0.286039 −0.143020 0.989720i $$-0.545681\pi$$
−0.143020 + 0.989720i $$0.545681\pi$$
$$240$$ −0.0893234 + 0.154713i −0.00576580 + 0.00998666i
$$241$$ 14.2294 + 24.6461i 0.916598 + 1.58759i 0.804545 + 0.593892i $$0.202409\pi$$
0.112053 + 0.993702i $$0.464257\pi$$
$$242$$ −2.10380 3.64389i −0.135237 0.234238i
$$243$$ 0.500000 0.866025i 0.0320750 0.0555556i
$$244$$ 4.64851 0.297591
$$245$$ −8.42233 + 15.3046i −0.538083 + 0.977775i
$$246$$ 6.61911 0.422019
$$247$$ 8.39369 14.5383i 0.534078 0.925050i
$$248$$ −4.84243 8.38734i −0.307495 0.532596i
$$249$$ 0.528580 + 0.915528i 0.0334974 + 0.0580192i
$$250$$ −4.07072 + 7.05069i −0.257455 + 0.445925i
$$251$$ −26.7064 −1.68569 −0.842846 0.538156i $$-0.819121\pi$$
−0.842846 + 0.538156i $$0.819121\pi$$
$$252$$ 0.0339773 + 3.31235i 0.00214037 + 0.208659i
$$253$$ −3.98310 −0.250415
$$254$$ −9.02995 + 15.6403i −0.566590 + 0.981362i
$$255$$ 8.71915 + 15.1020i 0.546015 + 0.945725i
$$256$$ 7.90781 + 13.6967i 0.494238 + 0.856046i
$$257$$ −2.18216 + 3.77961i −0.136119 + 0.235766i −0.926025 0.377463i $$-0.876796\pi$$
0.789905 + 0.613229i $$0.210130\pi$$
$$258$$ −6.12315 −0.381210
$$259$$ −3.40392 1.91897i −0.211509 0.119239i
$$260$$ 8.77043 0.543919
$$261$$ 2.03099 3.51778i 0.125715 0.217745i
$$262$$ −5.25349 9.09932i −0.324562 0.562158i
$$263$$ −0.774571 1.34160i −0.0477621 0.0827264i 0.841156 0.540793i $$-0.181876\pi$$
−0.888918 + 0.458066i $$0.848542\pi$$
$$264$$ 5.60131 9.70175i 0.344737 0.597101i
$$265$$ −23.8852 −1.46726
$$266$$ 11.7806 6.96359i 0.722312 0.426965i
$$267$$ 3.30053 0.201989
$$268$$ 2.79799 4.84627i 0.170915 0.296033i
$$269$$ 1.85766 + 3.21756i 0.113264 + 0.196178i 0.917084 0.398693i $$-0.130536\pi$$
−0.803821 + 0.594872i $$0.797203\pi$$
$$270$$ −1.07916 1.86916i −0.0656756 0.113753i
$$271$$ −2.01004 + 3.48150i −0.122101 + 0.211486i −0.920596 0.390516i $$-0.872297\pi$$
0.798495 + 0.602002i $$0.205630\pi$$
$$272$$ −0.500218 −0.0303302
$$273$$ 6.39318 3.77907i 0.386933 0.228720i
$$274$$ −0.716651 −0.0432945
$$275$$ 2.44539 4.23554i 0.147463 0.255413i
$$276$$ −0.626009 1.08428i −0.0376813 0.0652660i
$$277$$ 5.69636 + 9.86639i 0.342261 + 0.592814i 0.984852 0.173395i $$-0.0554738\pi$$
−0.642591 + 0.766209i $$0.722140\pi$$
$$278$$ −0.236149 + 0.409023i −0.0141633 + 0.0245316i
$$279$$ −3.44346 −0.206155
$$280$$ 16.1767 + 9.11968i 0.966743 + 0.545005i
$$281$$ −27.9503 −1.66738 −0.833689 0.552235i $$-0.813775\pi$$
−0.833689 + 0.552235i $$0.813775\pi$$
$$282$$ −1.31688 + 2.28091i −0.0784192 + 0.135826i
$$283$$ 14.9877 + 25.9594i 0.890925 + 1.54313i 0.838768 + 0.544488i $$0.183276\pi$$
0.0521567 + 0.998639i $$0.483390\pi$$
$$284$$ −5.94100 10.2901i −0.352533 0.610606i
$$285$$ 7.46248 12.9254i 0.442039 0.765635i
$$286$$ −9.66956 −0.571773
$$287$$ 0.207698 + 20.2479i 0.0122600 + 1.19520i
$$288$$ 5.68699 0.335109
$$289$$ −15.9140 + 27.5638i −0.936115 + 1.62140i
$$290$$ −4.38353 7.59249i −0.257410 0.445847i
$$291$$ −7.96562 13.7969i −0.466953 0.808786i
$$292$$ 8.07684 13.9895i 0.472661 0.818673i
$$293$$ −4.87346 −0.284711 −0.142355 0.989816i $$-0.545468\pi$$
−0.142355 + 0.989816i $$0.545468\pi$$
$$294$$ 6.05274 0.124188i 0.353003 0.00724279i
$$295$$ 20.7287 1.20687
$$296$$ −2.07695 + 3.59739i −0.120721 + 0.209094i
$$297$$ −1.99155 3.44946i −0.115561 0.200158i
$$298$$ 8.02100 + 13.8928i 0.464644 + 0.804787i
$$299$$ −1.40349 + 2.43092i −0.0811661 + 0.140584i
$$300$$ 1.53733 0.0887580
$$301$$ −0.192135 18.7308i −0.0110745 1.07962i
$$302$$ −4.99241 −0.287281
$$303$$ 3.48214 6.03125i 0.200044 0.346486i
$$304$$ 0.214061 + 0.370765i 0.0122773 + 0.0212648i
$$305$$ −4.63280 8.02425i −0.265273 0.459467i
$$306$$ 3.02169 5.23372i 0.172738 0.299192i
$$307$$ −27.9064 −1.59270 −0.796351 0.604835i $$-0.793239\pi$$
−0.796351 + 0.604835i $$0.793239\pi$$
$$308$$ 11.4935 + 6.47951i 0.654904 + 0.369204i
$$309$$ −6.00488 −0.341606
$$310$$ −3.71604 + 6.43638i −0.211057 + 0.365562i
$$311$$ −13.5043 23.3901i −0.765758 1.32633i −0.939845 0.341602i $$-0.889031\pi$$
0.174087 0.984730i $$-0.444303\pi$$
$$312$$ −3.94738 6.83706i −0.223476 0.387072i
$$313$$ −2.10701 + 3.64945i −0.119095 + 0.206279i −0.919409 0.393302i $$-0.871333\pi$$
0.800314 + 0.599581i $$0.204666\pi$$
$$314$$ 12.2196 0.689590
$$315$$ 5.68391 3.35981i 0.320252 0.189304i
$$316$$ −8.91818 −0.501687
$$317$$ 3.99898 6.92643i 0.224605 0.389027i −0.731596 0.681738i $$-0.761224\pi$$
0.956201 + 0.292711i $$0.0945575\pi$$
$$318$$ 4.13880 + 7.16861i 0.232092 + 0.401996i
$$319$$ −8.08963 14.0117i −0.452932 0.784502i
$$320$$ 5.95852 10.3205i 0.333092 0.576932i
$$321$$ −5.71797 −0.319146
$$322$$ −1.96980 + 1.16437i −0.109773 + 0.0648877i
$$323$$ 41.7905 2.32528
$$324$$ 0.626009 1.08428i 0.0347783 0.0602377i
$$325$$ −1.72333 2.98489i −0.0955930 0.165572i
$$326$$ 7.24304 + 12.5453i 0.401155 + 0.694820i
$$327$$ 3.12793 5.41773i 0.172975 0.299601i
$$328$$ 21.5255 1.18854
$$329$$ −7.01864 3.95678i −0.386950 0.218145i
$$330$$ −8.59680 −0.473238
$$331$$ −12.0436 + 20.8601i −0.661974 + 1.14657i 0.318122 + 0.948050i $$0.396948\pi$$
−0.980096 + 0.198523i $$0.936385\pi$$
$$332$$ 0.661792 + 1.14626i 0.0363205 + 0.0629090i
$$333$$ 0.738463 + 1.27905i 0.0404675 + 0.0700918i
$$334$$ −7.71965 + 13.3708i −0.422401 + 0.731619i
$$335$$ −11.1541 −0.609416
$$336$$ 0.00194269 + 0.189387i 0.000105982 + 0.0103319i
$$337$$ −6.91298 −0.376574 −0.188287 0.982114i $$-0.560294\pi$$
−0.188287 + 0.982114i $$0.560294\pi$$
$$338$$ 2.21440 3.83546i 0.120448 0.208621i
$$339$$ −1.89772 3.28695i −0.103070 0.178523i
$$340$$ 10.9165 + 18.9080i 0.592032 + 1.02543i
$$341$$ −6.85782 + 11.8781i −0.371372 + 0.643234i
$$342$$ −5.17236 −0.279689
$$343$$ 0.569818 + 18.5115i 0.0307673 + 0.999527i
$$344$$ −19.9126 −1.07361
$$345$$ −1.24779 + 2.16123i −0.0671786 + 0.116357i
$$346$$ −1.14749 1.98752i −0.0616896 0.106850i
$$347$$ −6.09382 10.5548i −0.327133 0.566611i 0.654809 0.755795i $$-0.272749\pi$$
−0.981942 + 0.189183i $$0.939416\pi$$
$$348$$ 2.54284 4.40432i 0.136310 0.236096i
$$349$$ 27.0701 1.44903 0.724515 0.689259i $$-0.242064\pi$$
0.724515 + 0.689259i $$0.242064\pi$$
$$350$$ −0.0288192 2.80950i −0.00154045 0.150174i
$$351$$ −2.80699 −0.149826
$$352$$ 11.3259 19.6171i 0.603673 1.04559i
$$353$$ 14.2886 + 24.7486i 0.760505 + 1.31723i 0.942590 + 0.333951i $$0.108382\pi$$
−0.182085 + 0.983283i $$0.558285\pi$$
$$354$$ −3.59184 6.22125i −0.190904 0.330656i
$$355$$ −11.8418 + 20.5107i −0.628499 + 1.08859i
$$356$$ 4.13233 0.219013
$$357$$ 16.1048 + 9.07914i 0.852356 + 0.480519i
$$358$$ 9.91962 0.524268
$$359$$ 9.73136 16.8552i 0.513601 0.889584i −0.486274 0.873806i $$-0.661644\pi$$
0.999876 0.0157775i $$-0.00502233\pi$$
$$360$$ −3.50945 6.07854i −0.184964 0.320367i
$$361$$ −8.38365 14.5209i −0.441245 0.764258i
$$362$$ 6.84937 11.8635i 0.359995 0.623529i
$$363$$ −4.86506 −0.255350
$$364$$ 8.00438 4.73146i 0.419544 0.247996i
$$365$$ −32.1982 −1.68533
$$366$$ −1.60553 + 2.78086i −0.0839225 + 0.145358i
$$367$$ −2.40920 4.17286i −0.125759 0.217821i 0.796270 0.604941i $$-0.206803\pi$$
−0.922029 + 0.387120i $$0.873470\pi$$
$$368$$ −0.0357927 0.0619948i −0.00186583 0.00323170i
$$369$$ 3.82670 6.62803i 0.199210 0.345042i
$$370$$ 3.18768 0.165719
$$371$$ −21.7990 + 12.8856i −1.13175 + 0.668985i
$$372$$ −4.31127 −0.223529
$$373$$ 12.3176 21.3347i 0.637782 1.10467i −0.348136 0.937444i $$-0.613185\pi$$
0.985918 0.167227i $$-0.0534813\pi$$
$$374$$ −12.0357 20.8464i −0.622350 1.07794i
$$375$$ 4.70679 + 8.15241i 0.243058 + 0.420988i
$$376$$ −4.28253 + 7.41755i −0.220854 + 0.382531i
$$377$$ −11.4019 −0.587229
$$378$$ −1.99327 1.12372i −0.102523 0.0577977i
$$379$$ 31.7983 1.63337 0.816684 0.577085i $$-0.195810\pi$$
0.816684 + 0.577085i $$0.195810\pi$$
$$380$$ 9.34316 16.1828i 0.479294 0.830162i
$$381$$ 10.4409 + 18.0843i 0.534906 + 0.926484i
$$382$$ −9.42483 16.3243i −0.482216 0.835223i
$$383$$ 11.1827 19.3690i 0.571409 0.989709i −0.425013 0.905187i $$-0.639730\pi$$
0.996422 0.0845218i $$-0.0269363\pi$$
$$384$$ 7.24404 0.369671
$$385$$ −0.269755 26.2977i −0.0137480 1.34025i
$$386$$ 13.8666 0.705791
$$387$$ −3.53997 + 6.13140i −0.179947 + 0.311677i
$$388$$ −9.97310 17.2739i −0.506308 0.876950i
$$389$$ −9.95483 17.2423i −0.504730 0.874218i −0.999985 0.00547015i $$-0.998259\pi$$
0.495255 0.868748i $$-0.335075\pi$$
$$390$$ −3.02919 + 5.24670i −0.153389 + 0.265677i
$$391$$ −6.98770 −0.353383
$$392$$ 19.6836 0.403862i 0.994173 0.0203981i
$$393$$ −12.1488 −0.612825
$$394$$ −4.61198 + 7.98819i −0.232348 + 0.402439i
$$395$$ 8.88803 + 15.3945i 0.447206 + 0.774583i
$$396$$ −2.49345 4.31879i −0.125301 0.217027i
$$397$$ −13.5533 + 23.4750i −0.680222 + 1.17818i 0.294691 + 0.955593i $$0.404783\pi$$
−0.974913 + 0.222586i $$0.928550\pi$$
$$398$$ −3.16456 −0.158625
$$399$$ −0.162301 15.8223i −0.00812521 0.792105i
$$400$$ 0.0878987 0.00439494
$$401$$ 17.0891 29.5992i 0.853390 1.47811i −0.0247414 0.999694i $$-0.507876\pi$$
0.878131 0.478420i $$-0.158790\pi$$
$$402$$ 1.93278 + 3.34767i 0.0963981 + 0.166966i
$$403$$ 4.83287 + 8.37077i 0.240742 + 0.416978i
$$404$$ 4.35971 7.55123i 0.216903 0.375688i
$$405$$ −2.49557 −0.124006
$$406$$ −8.09664 4.56451i −0.401829 0.226533i
$$407$$ 5.88274 0.291596
$$408$$ 9.82658 17.0201i 0.486488 0.842623i
$$409$$ −7.57386 13.1183i −0.374503 0.648659i 0.615749 0.787942i $$-0.288853\pi$$
−0.990253 + 0.139284i $$0.955520\pi$$
$$410$$ −8.25923 14.3054i −0.407895 0.706494i
$$411$$ −0.414316 + 0.717617i −0.0204367 + 0.0353974i
$$412$$ −7.51822 −0.370396
$$413$$ 18.9181 11.1827i 0.930901 0.550264i
$$414$$ 0.864859 0.0425055
$$415$$ 1.31911 2.28477i 0.0647526 0.112155i
$$416$$ −7.98165 13.8246i −0.391332 0.677808i
$$417$$ 0.273050 + 0.472936i 0.0133713 + 0.0231598i
$$418$$ −10.3010 + 17.8419i −0.503839 + 0.872674i
$$419$$ 14.0504 0.686405 0.343202 0.939262i $$-0.388488\pi$$
0.343202 + 0.939262i $$0.388488\pi$$
$$420$$ 7.11636 4.20654i 0.347243 0.205258i
$$421$$ −26.0914 −1.27161 −0.635807 0.771848i $$-0.719333\pi$$
−0.635807 + 0.771848i $$0.719333\pi$$
$$422$$ 12.1884 21.1108i 0.593320 1.02766i
$$423$$ 1.52265 + 2.63732i 0.0740340 + 0.128231i
$$424$$ 13.4595 + 23.3125i 0.653649 + 1.13215i
$$425$$ 4.29004 7.43058i 0.208098 0.360436i
$$426$$ 8.20775 0.397667
$$427$$ −8.55706 4.82408i −0.414105 0.233453i
$$428$$ −7.15900 −0.346043
$$429$$ −5.59025 + 9.68259i −0.269900 + 0.467480i
$$430$$ 7.64038 + 13.2335i 0.368452 + 0.638177i
$$431$$ −1.54723 2.67988i −0.0745274 0.129085i 0.826353 0.563152i $$-0.190411\pi$$
−0.900881 + 0.434067i $$0.857078\pi$$
$$432$$ 0.0357927 0.0619948i 0.00172208 0.00298273i
$$433$$ 18.9836 0.912293 0.456146 0.889905i $$-0.349229\pi$$
0.456146 + 0.889905i $$0.349229\pi$$
$$434$$ 0.0808199 + 7.87892i 0.00387948 + 0.378200i
$$435$$ −10.1370 −0.486031
$$436$$ 3.91622 6.78310i 0.187553 0.324851i
$$437$$ 2.99029 + 5.17933i 0.143045 + 0.247761i
$$438$$ 5.57926 + 9.66356i 0.266587 + 0.461743i
$$439$$ 5.98560 10.3674i 0.285677 0.494808i −0.687096 0.726567i $$-0.741115\pi$$
0.972773 + 0.231759i $$0.0744481\pi$$
$$440$$ −27.9569 −1.33280
$$441$$ 3.37491 6.13270i 0.160710 0.292033i
$$442$$ −16.9637 −0.806879
$$443$$ −9.74098 + 16.8719i −0.462808 + 0.801607i −0.999100 0.0424256i $$-0.986491\pi$$
0.536291 + 0.844033i $$0.319825\pi$$
$$444$$ 0.924569 + 1.60140i 0.0438781 + 0.0759991i
$$445$$ −4.11836 7.13321i −0.195229 0.338147i
$$446$$ −10.4769 + 18.1466i −0.496097 + 0.859265i
$$447$$ 18.5487 0.877322
$$448$$ −0.129591 12.6335i −0.00612262 0.596878i
$$449$$ −25.9358 −1.22399 −0.611993 0.790864i $$-0.709632\pi$$
−0.611993 + 0.790864i $$0.709632\pi$$
$$450$$ −0.530974 + 0.919674i −0.0250304 + 0.0433538i
$$451$$ −15.2421 26.4001i −0.717723 1.24313i
$$452$$ −2.37598 4.11532i −0.111757 0.193568i
$$453$$ −2.88625 + 4.99914i −0.135608 + 0.234880i
$$454$$ −6.95048 −0.326202
$$455$$ −16.1448 9.10167i −0.756878 0.426693i
$$456$$ −16.8206 −0.787697
$$457$$ −2.30666 + 3.99525i −0.107901 + 0.186890i −0.914920 0.403636i $$-0.867746\pi$$
0.807019 + 0.590526i $$0.201080\pi$$
$$458$$ −5.95845 10.3203i −0.278420 0.482238i
$$459$$ −3.49385 6.05152i −0.163079 0.282461i
$$460$$ −1.56225 + 2.70590i −0.0728403 + 0.126163i
$$461$$ 13.8181 0.643571 0.321786 0.946813i $$-0.395717\pi$$
0.321786 + 0.946813i $$0.395717\pi$$
$$462$$ −7.84591 + 4.63779i −0.365025 + 0.215769i
$$463$$ −34.1291 −1.58611 −0.793057 0.609147i $$-0.791512\pi$$
−0.793057 + 0.609147i $$0.791512\pi$$
$$464$$ 0.145389 0.251822i 0.00674954 0.0116905i
$$465$$ 4.29670 + 7.44211i 0.199255 + 0.345119i
$$466$$ 0.793946 + 1.37515i 0.0367788 + 0.0637028i
$$467$$ 13.9858 24.2241i 0.647185 1.12096i −0.336608 0.941645i $$-0.609280\pi$$
0.983792 0.179312i $$-0.0573871\pi$$
$$468$$ −3.51440 −0.162453
$$469$$ −10.1799 + 6.01742i −0.470064 + 0.277859i
$$470$$ 6.57275 0.303179
$$471$$ 7.06448 12.2360i 0.325514 0.563807i
$$472$$ −11.6807 20.2316i −0.537649 0.931235i
$$473$$ 14.1000 + 24.4220i 0.648320 + 1.12292i
$$474$$ 3.08021 5.33509i 0.141479 0.245049i
$$475$$ −7.34346 −0.336941
$$476$$ 20.1635 + 11.3673i 0.924193 + 0.521017i
$$477$$ 9.57104 0.438228
$$478$$ 1.91223 3.31208i 0.0874634 0.151491i
$$479$$ 16.3134 + 28.2557i 0.745380 + 1.29104i 0.950017 + 0.312199i $$0.101065\pi$$
−0.204637 + 0.978838i $$0.565601\pi$$
$$480$$ −7.09615 12.2909i −0.323893 0.561000i
$$481$$ 2.07285 3.59029i 0.0945140 0.163703i
$$482$$ −24.6129 −1.12109
$$483$$ 0.0271380 + 2.64561i 0.00123482 + 0.120380i
$$484$$ −6.09115 −0.276870
$$485$$ −19.8788 + 34.4311i −0.902649 + 1.56343i
$$486$$ 0.432430 + 0.748990i 0.0196154 + 0.0339749i
$$487$$ 12.9711 + 22.4665i 0.587775 + 1.01806i 0.994523 + 0.104516i $$0.0333293\pi$$
−0.406748 + 0.913540i $$0.633337\pi$$
$$488$$ −5.22122 + 9.04342i −0.236354 + 0.409376i
$$489$$ 16.7496 0.757444
$$490$$ −7.82093 12.9264i −0.353314 0.583956i
$$491$$ 26.0005 1.17339 0.586693 0.809810i $$-0.300430\pi$$
0.586693 + 0.809810i $$0.300430\pi$$
$$492$$ 4.79109 8.29842i 0.215999 0.374121i
$$493$$ −14.1919 24.5812i −0.639173 1.10708i
$$494$$ 7.25937 + 12.5736i 0.326614 + 0.565713i
$$495$$ −4.97006 + 8.60839i −0.223387 + 0.386918i
$$496$$ −0.246502 −0.0110683
$$497$$ 0.257547 + 25.1076i 0.0115526 + 1.12623i
$$498$$ −0.914295 −0.0409705
$$499$$ 11.6036 20.0980i 0.519448 0.899711i −0.480296 0.877106i $$-0.659471\pi$$
0.999744 0.0226043i $$-0.00719577\pi$$
$$500$$ 5.89299 + 10.2070i 0.263543 + 0.456469i
$$501$$ 8.92590 + 15.4601i 0.398780 + 0.690707i
$$502$$ 11.5486 20.0028i 0.515441 0.892769i
$$503$$ 12.5204 0.558256 0.279128 0.960254i $$-0.409955\pi$$
0.279128 + 0.960254i $$0.409955\pi$$
$$504$$ −6.48216 3.65434i −0.288738 0.162777i
$$505$$ −17.3799 −0.773395
$$506$$ 1.72241 2.98330i 0.0765705 0.132624i
$$507$$ −2.56042 4.43477i −0.113712 0.196955i
$$508$$ 13.0723 + 22.6418i 0.579988 + 1.00457i
$$509$$ 12.1059 20.9680i 0.536585 0.929392i −0.462500 0.886619i $$-0.653048\pi$$
0.999085 0.0427725i $$-0.0136191\pi$$
$$510$$ −15.0817 −0.667828
$$511$$ −29.3858 + 17.3702i −1.29995 + 0.768413i
$$512$$ 0.809780 0.0357875
$$513$$ −2.99029 + 5.17933i −0.132024 + 0.228673i
$$514$$ −1.88726 3.26883i −0.0832436 0.144182i
$$515$$ 7.49281 + 12.9779i 0.330172 + 0.571876i
$$516$$ −4.43210 + 7.67663i −0.195112 + 0.337945i
$$517$$ 12.1298 0.533466
$$518$$ 2.90925 1.71968i 0.127825 0.0755586i
$$519$$ −2.65359 −0.116480
$$520$$ −9.85097 + 17.0624i −0.431994 + 0.748235i
$$521$$ 3.41410 + 5.91340i 0.149575 + 0.259071i 0.931070 0.364840i $$-0.118876\pi$$
−0.781496 + 0.623911i $$0.785543\pi$$
$$522$$ 1.75652 + 3.04238i 0.0768809 + 0.133162i
$$523$$ 4.77002 8.26192i 0.208579 0.361269i −0.742688 0.669637i $$-0.766450\pi$$
0.951267 + 0.308369i $$0.0997830\pi$$
$$524$$ −15.2105 −0.664474
$$525$$ −2.82995 1.59540i −0.123509 0.0696288i
$$526$$ 1.33979 0.0584177
$$527$$ −12.0309 + 20.8382i −0.524075 + 0.907725i
$$528$$ −0.142566 0.246932i −0.00620439 0.0107463i
$$529$$ −0.500000 0.866025i −0.0217391 0.0376533i
$$530$$ 10.3287 17.8898i 0.448649 0.777083i
$$531$$ −8.30618 −0.360457
$$532$$ −0.203204 19.8098i −0.00881000 0.858863i
$$533$$ −21.4830 −0.930530
$$534$$ −1.42725 + 2.47207i −0.0617631 + 0.106977i
$$535$$ 7.13480 + 12.3578i 0.308464 + 0.534276i
$$536$$ 6.28542 + 10.8867i 0.271489 + 0.470233i
$$537$$ 5.73482 9.93299i 0.247476 0.428640i
$$538$$ −3.21323 −0.138532
$$539$$ −14.4332 23.8552i −0.621683 1.02752i
$$540$$ −3.12450 −0.134457
$$541$$ −16.5874 + 28.7302i −0.713147 + 1.23521i 0.250522 + 0.968111i $$0.419398\pi$$
−0.963670 + 0.267097i $$0.913936\pi$$
$$542$$ −1.73840 3.01100i −0.0746709 0.129334i
$$543$$ −7.91963 13.7172i −0.339864 0.588662i
$$544$$ 19.8695 34.4149i 0.851897 1.47553i
$$545$$ −15.6119 −0.668742
$$546$$ 0.0658815 + 6.42261i 0.00281947 + 0.274863i
$$547$$ 17.2100 0.735848 0.367924 0.929856i $$-0.380069\pi$$
0.367924 + 0.929856i $$0.380069\pi$$
$$548$$ −0.518732 + 0.898470i −0.0221591 + 0.0383807i
$$549$$ 1.85641 + 3.21539i 0.0792296 + 0.137230i
$$550$$ 2.11492 + 3.66315i 0.0901805 + 0.156197i
$$551$$ −12.1465 + 21.0383i −0.517458 + 0.896264i
$$552$$ 2.81254 0.119710
$$553$$ 16.4167 + 9.25499i 0.698110 + 0.393562i
$$554$$ −9.85311 −0.418619
$$555$$ 1.84289 3.19197i 0.0782262 0.135492i
$$556$$ 0.341863 + 0.592124i 0.0144982 + 0.0251117i
$$557$$ −8.94619 15.4953i −0.379062 0.656555i 0.611864 0.790963i $$-0.290420\pi$$
−0.990926 + 0.134408i $$0.957087\pi$$
$$558$$ 1.48905 2.57912i 0.0630367 0.109183i
$$559$$ 19.8733 0.840550
$$560$$ 0.406886 0.240514i 0.0171941 0.0101636i
$$561$$ −27.8327 −1.17510
$$562$$ 12.0866 20.9345i 0.509841 0.883070i
$$563$$ −8.20800 14.2167i −0.345926 0.599161i 0.639596 0.768712i $$-0.279102\pi$$
−0.985522 + 0.169550i $$0.945768\pi$$
$$564$$ 1.90639 + 3.30197i 0.0802736 + 0.139038i
$$565$$ −4.73590 + 8.20282i −0.199241 + 0.345095i
$$566$$ −25.9245 −1.08969
$$567$$ −2.27760 + 1.34631i −0.0956501 + 0.0565396i
$$568$$ 26.6918 1.11996
$$569$$ −2.47067 + 4.27933i −0.103576 + 0.179399i −0.913155 0.407611i $$-0.866362\pi$$
0.809580 + 0.587010i $$0.199695\pi$$
$$570$$ 6.45400 + 11.1787i 0.270328 + 0.468222i
$$571$$ 21.4309 + 37.1194i 0.896855 + 1.55340i 0.831492 + 0.555537i $$0.187487\pi$$
0.0653629 + 0.997862i $$0.479179\pi$$
$$572$$ −6.99909 + 12.1228i −0.292647 + 0.506879i
$$573$$ −21.7951 −0.910502
$$574$$ −15.2553 8.60023i −0.636744 0.358967i
$$575$$ 1.22789 0.0512063
$$576$$ −2.38764 + 4.13551i −0.0994849 + 0.172313i
$$577$$ −6.90651 11.9624i −0.287522 0.498002i 0.685696 0.727888i $$-0.259498\pi$$
−0.973218 + 0.229886i $$0.926165\pi$$
$$578$$ −13.7633 23.8388i −0.572479 0.991563i
$$579$$ 8.01667 13.8853i 0.333162 0.577053i
$$580$$ −12.6917 −0.526993
$$581$$ −0.0286892 2.79684i −0.00119023 0.116032i
$$582$$ 13.7783 0.571128
$$583$$ 19.0612 33.0149i 0.789434 1.36734i
$$584$$ 18.1438 + 31.4261i 0.750798 + 1.30042i
$$585$$ 3.50252 + 6.06654i 0.144811 + 0.250821i
$$586$$ 2.10743 3.65018i 0.0870572 0.150787i
$$587$$ 19.9885 0.825012 0.412506 0.910955i $$-0.364654\pi$$
0.412506 + 0.910955i $$0.364654\pi$$
$$588$$ 4.22545 7.67825i 0.174254 0.316646i
$$589$$ 20.5939 0.848556
$$590$$ −8.96370 + 15.5256i −0.369029 + 0.639178i
$$591$$ 5.33264 + 9.23640i 0.219355 + 0.379935i
$$592$$ 0.0528632 + 0.0915617i 0.00217266 + 0.00376316i
$$593$$ 1.36034 2.35618i 0.0558625 0.0967566i −0.836742 0.547598i $$-0.815542\pi$$
0.892604 + 0.450841i $$0.148876\pi$$
$$594$$ 3.44482 0.141343
$$595$$ −0.473241 46.1350i −0.0194010 1.89135i
$$596$$ 23.2233 0.951262
$$597$$ −1.82952 + 3.16883i −0.0748774 + 0.129691i
$$598$$ −1.21382 2.10240i −0.0496369 0.0859737i
$$599$$ −8.73492 15.1293i −0.356899 0.618168i 0.630542 0.776155i $$-0.282833\pi$$
−0.987441 + 0.157988i $$0.949499\pi$$
$$600$$ −1.72674 + 2.99080i −0.0704937 + 0.122099i
$$601$$ 27.6015 1.12589 0.562944 0.826495i $$-0.309669\pi$$
0.562944 + 0.826495i $$0.309669\pi$$
$$602$$ 14.1122 + 7.95583i 0.575172 + 0.324255i
$$603$$ 4.46957 0.182015
$$604$$ −3.61364 + 6.25901i −0.147037 + 0.254676i
$$605$$ 6.07056 + 10.5145i 0.246803 + 0.427476i
$$606$$ 3.01156 + 5.21618i 0.122336 + 0.211893i
$$607$$ 6.45863 11.1867i 0.262148 0.454053i −0.704665 0.709540i $$-0.748903\pi$$
0.966812 + 0.255487i $$0.0822359\pi$$
$$608$$ −34.0115 −1.37935
$$609$$ −9.25156 + 5.46868i −0.374892 + 0.221602i
$$610$$ 8.01345 0.324455
$$611$$ 4.27407 7.40291i 0.172910 0.299490i
$$612$$ −4.37436 7.57662i −0.176823 0.306267i
$$613$$ 19.4271 + 33.6486i 0.784651 + 1.35906i 0.929207 + 0.369559i $$0.120491\pi$$
−0.144556 + 0.989497i $$0.546175\pi$$
$$614$$ 12.0675 20.9016i 0.487007 0.843520i
$$615$$ −19.0996 −0.770170
$$616$$ −25.5151 + 15.0822i −1.02803 + 0.607678i
$$617$$ −25.3417 −1.02022 −0.510108 0.860110i $$-0.670395\pi$$
−0.510108 + 0.860110i $$0.670395\pi$$
$$618$$ 2.59669 4.49760i 0.104454 0.180920i
$$619$$ −17.7926 30.8177i −0.715145 1.23867i −0.962904 0.269846i $$-0.913027\pi$$
0.247758 0.968822i $$-0.420306\pi$$
$$620$$ 5.37955 + 9.31765i 0.216048 + 0.374206i
$$621$$ 0.500000 0.866025i 0.0200643 0.0347524i
$$622$$ 23.3586 0.936596
$$623$$ −7.60686 4.28840i −0.304762 0.171811i
$$624$$ −0.200939 −0.00804401
$$625$$ 14.8159 25.6618i 0.592634 1.02647i
$$626$$ −1.82227 3.15626i −0.0728324 0.126149i
$$627$$ 11.9106 + 20.6298i 0.475664 + 0.823874i
$$628$$ 8.84486 15.3198i 0.352948 0.611325i
$$629$$ 10.3203 0.411498
$$630$$ 0.0585725 + 5.71008i 0.00233358 + 0.227495i
$$631$$ −12.5559 −0.499842 −0.249921 0.968266i $$-0.580405\pi$$
−0.249921 + 0.968266i $$0.580405\pi$$
$$632$$ 10.0169 17.3498i 0.398451 0.690138i
$$633$$ −14.0929 24.4096i −0.560141 0.970193i
$$634$$ 3.45855 + 5.99039i 0.137357 + 0.237909i
$$635$$ 26.0562 45.1306i 1.03401 1.79095i
$$636$$ 11.9831 0.475161
$$637$$ −19.6448 + 0.403064i −0.778354 + 0.0159700i
$$638$$ 13.9928 0.553980
$$639$$ 4.74514 8.21882i 0.187715 0.325131i
$$640$$ −9.03901 15.6560i −0.357298 0.618859i
$$641$$ 22.0244 + 38.1474i 0.869912 + 1.50673i 0.862086 + 0.506763i $$0.169158\pi$$
0.00782674 + 0.999969i $$0.497509\pi$$
$$642$$ 2.47262 4.28270i 0.0975865 0.169025i
$$643$$ 27.1797 1.07186 0.535931 0.844262i $$-0.319961\pi$$
0.535931 + 0.844262i $$0.319961\pi$$
$$644$$ 0.0339773 + 3.31235i 0.00133889 + 0.130525i
$$645$$ 17.6685 0.695696
$$646$$ −18.0714 + 31.3006i −0.711011 + 1.23151i
$$647$$ −16.8824 29.2412i −0.663716 1.14959i −0.979632 0.200803i $$-0.935645\pi$$
0.315916 0.948787i $$-0.397688\pi$$
$$648$$ 1.40627 + 2.43573i 0.0552435 + 0.0956845i
$$649$$ −16.5422 + 28.6519i −0.649336 + 1.12468i
$$650$$ 2.98087 0.116919
$$651$$ 7.93627 + 4.47410i 0.311047 + 0.175354i
$$652$$ 20.9708 0.821281
$$653$$ −15.9665 + 27.6548i −0.624817 + 1.08221i 0.363759 + 0.931493i $$0.381493\pi$$
−0.988576 + 0.150722i $$0.951840\pi$$
$$654$$ 2.70522 + 4.68558i 0.105782 + 0.183220i
$$655$$ 15.1591 + 26.2563i 0.592315 + 1.02592i
$$656$$ 0.273936 0.474471i 0.0106954 0.0185250i
$$657$$ 12.9021 0.503359
$$658$$ 5.99866 3.54586i 0.233852 0.138232i
$$659$$ 47.4986 1.85028 0.925142 0.379622i $$-0.123946\pi$$
0.925142 + 0.379622i $$0.123946\pi$$
$$660$$ −6.22260 + 10.7779i −0.242214 + 0.419528i
$$661$$ 14.7146 + 25.4865i 0.572332 + 0.991308i 0.996326 + 0.0856431i $$0.0272945\pi$$
−0.423994 + 0.905665i $$0.639372\pi$$
$$662$$ −10.4160 18.0410i −0.404829 0.701184i
$$663$$ −9.80718 + 16.9865i −0.380879 + 0.659702i
$$664$$ −2.97330 −0.115387
$$665$$ −33.9931 + 20.0936i −1.31820 + 0.779197i
$$666$$ −1.27733 −0.0494956
$$667$$ 2.03099 3.51778i 0.0786403 0.136209i
$$668$$ 11.1754 + 19.3563i 0.432389 + 0.748920i
$$669$$ 12.1140 + 20.9821i 0.468355 + 0.811215i
$$670$$ 4.82338 8.35435i 0.186344 0.322757i
$$671$$ 14.7885 0.570904
$$672$$ −13.1070 7.38913i −0.505614 0.285042i
$$673$$ −21.8311 −0.841528 −0.420764 0.907170i $$-0.638238\pi$$
−0.420764 + 0.907170i $$0.638238\pi$$
$$674$$ 2.98938 5.17776i 0.115147 0.199440i
$$675$$ 0.613943 + 1.06338i 0.0236307 + 0.0409295i
$$676$$ −3.20569 5.55242i −0.123296 0.213554i
$$677$$ −15.9797 + 27.6776i −0.614148 + 1.06374i 0.376385 + 0.926463i $$0.377167\pi$$
−0.990533 + 0.137272i $$0.956167\pi$$
$$678$$ 3.28252 0.126065
$$679$$ 0.432342 + 42.1479i 0.0165918 + 1.61749i
$$680$$ −49.0459 −1.88083
$$681$$ −4.01827 + 6.95985i −0.153981 + 0.266702i
$$682$$ −5.93105 10.2729i −0.227112 0.393369i
$$683$$ −2.90119 5.02502i −0.111011 0.192277i 0.805167 0.593048i $$-0.202076\pi$$
−0.916178 + 0.400771i $$0.868742\pi$$
$$684$$ −3.74390 + 6.48462i −0.143151 + 0.247946i
$$685$$ 2.06791 0.0790109
$$686$$ −14.1113 7.57813i −0.538773 0.289334i
$$687$$ −13.7790 −0.525702
$$688$$ −0.253410 + 0.438919i −0.00966117 + 0.0167336i
$$689$$ −13.4329 23.2664i −0.511752 0.886380i
$$690$$ −1.07916 1.86916i −0.0410829 0.0711577i
$$691$$ −25.2129 + 43.6701i −0.959145 + 1.66129i −0.234559 + 0.972102i $$0.575365\pi$$
−0.724585 + 0.689185i $$0.757969\pi$$
$$692$$ −3.32235 −0.126297
$$693$$ 0.108093 + 10.5377i 0.00410613 + 0.400295i
$$694$$ 10.5406 0.400115
$$695$$ 0.681415 1.18025i 0.0258475 0.0447693i
$$696$$ 5.71224 + 9.89389i 0.216522 + 0.375027i
$$697$$ −26.7398 46.3147i −1.01284 1.75429i
$$698$$ −11.7059 + 20.2752i −0.443076 + 0.767430i
$$699$$ 1.83601 0.0694443
$$700$$ −3.54315 1.99746i −0.133918 0.0754971i
$$701$$ 28.8283 1.08883 0.544414 0.838817i $$-0.316752\pi$$
0.544414 + 0.838817i $$0.316752\pi$$
$$702$$ 1.21382 2.10240i 0.0458128 0.0793501i
$$703$$ −4.41643 7.64948i −0.166569 0.288506i
$$704$$ 9.51019 + 16.4721i 0.358429 + 0.620817i
$$705$$ 3.79990 6.58161i 0.143112 0.247878i
$$706$$ −24.7153 −0.930171
$$707$$ −15.8618 + 9.37608i −0.596546 + 0.352624i
$$708$$ −10.3995 −0.390837
$$709$$ −16.2278 + 28.1074i −0.609447 + 1.05559i 0.381884 + 0.924210i $$0.375275\pi$$
−0.991332 + 0.131384i $$0.958058\pi$$
$$710$$ −10.2415 17.7388i −0.384358 0.665727i
$$711$$ −3.56152 6.16873i −0.133567 0.231346i
$$712$$ −4.64144 + 8.03921i −0.173945 + 0.301282i
$$713$$ −3.44346 −0.128959
$$714$$ −13.7644 + 8.13625i −0.515119 + 0.304491i
$$715$$ 27.9017 1.04347
$$716$$ 7.18009 12.4363i 0.268333 0.464766i
$$717$$ −2.21103 3.82962i −0.0825725 0.143020i
$$718$$ 8.41626 + 14.5774i 0.314092 + 0.544023i
$$719$$ 8.01756 13.8868i 0.299004 0.517891i −0.676904 0.736071i $$-0.736679\pi$$
0.975908 + 0.218180i $$0.0700121\pi$$
$$720$$ −0.178647 −0.00665777
$$721$$ 13.8397 + 7.80216i 0.515416 + 0.290568i
$$722$$ 14.5014 0.539685
$$723$$ −14.2294 + 24.6461i −0.529198 + 0.916598i
$$724$$ −9.91552 17.1742i −0.368508 0.638274i
$$725$$ 2.49382 + 4.31943i 0.0926183 + 0.160420i
$$726$$ 2.10380 3.64389i 0.0780793 0.135237i
$$727$$ 40.6150 1.50633 0.753164 0.657833i $$-0.228527\pi$$
0.753164 + 0.657833i $$0.228527\pi$$
$$728$$ 0.214248 + 20.8865i 0.00794055 + 0.774104i
$$729$$ 1.00000 0.0370370
$$730$$ 13.9234 24.1161i 0.515330 0.892577i
$$731$$ 24.7362 + 42.8444i 0.914902 + 1.58466i
$$732$$ 2.32426 + 4.02573i 0.0859070 + 0.148795i
$$733$$ 1.20729 2.09108i 0.0445922 0.0772359i −0.842868 0.538121i $$-0.819134\pi$$
0.887460 + 0.460885i $$0.152468\pi$$
$$734$$ 4.16724 0.153816
$$735$$ −17.4653 + 0.358348i −0.644219 + 0.0132178i
$$736$$ 5.68699 0.209625
$$737$$ 8.90137 15.4176i 0.327886 0.567916i
$$738$$ 3.30955 + 5.73232i 0.121826 + 0.211009i
$$739$$ −1.39817 2.42171i −0.0514327 0.0890840i 0.839163 0.543880i $$-0.183045\pi$$
−0.890596 + 0.454796i $$0.849712\pi$$
$$740$$ 2.30733 3.99641i 0.0848191 0.146911i
$$741$$ 16.7874 0.616700
$$742$$ −0.224638 21.8993i −0.00824671 0.803950i
$$743$$ 3.56515 0.130793 0.0653964 0.997859i $$-0.479169\pi$$
0.0653964 + 0.997859i $$0.479169\pi$$
$$744$$ 4.84243 8.38734i 0.177532 0.307495i
$$745$$ −23.1448 40.0879i −0.847959 1.46871i
$$746$$ 10.6530 + 18.4516i 0.390034 + 0.675559i
$$747$$ −0.528580 + 0.915528i −0.0193397 + 0.0334974i
$$748$$ −34.8470 −1.27413
$$749$$ 13.1784 + 7.42938i 0.481529 + 0.271464i
$$750$$ −8.14143 −0.297283
$$751$$ 1.89657 3.28495i 0.0692067 0.119870i −0.829346 0.558736i $$-0.811287\pi$$
0.898552 + 0.438866i $$0.144620\pi$$
$$752$$ 0.109000 + 0.188794i 0.00397482 + 0.00688459i
$$753$$ −13.3532 23.1284i −0.486617 0.842846i
$$754$$ 4.93053 8.53993i 0.179559 0.311006i
$$755$$ 14.4057 0.524278
$$756$$ −2.85159 + 1.68560i −0.103711 + 0.0613048i
$$757$$ −6.45659 −0.234669 −0.117334 0.993092i $$-0.537435\pi$$
−0.117334 + 0.993092i $$0.537435\pi$$
$$758$$ −13.7505 + 23.8166i −0.499441 + 0.865058i
$$759$$ −1.99155 3.44946i −0.0722886 0.125208i
$$760$$ 20.9885 + 36.3532i 0.761334 + 1.31867i
$$761$$ 11.2002 19.3993i 0.406007 0.703225i −0.588431 0.808547i $$-0.700254\pi$$
0.994438 + 0.105322i $$0.0335875\pi$$
$$762$$ −18.0599 −0.654241
$$763$$ −14.2483 + 8.42231i −0.515824 + 0.304908i
$$764$$ −27.2878 −0.987239
$$765$$ −8.71915 + 15.1020i −0.315242 + 0.546015i
$$766$$ 9.67146 + 16.7515i 0.349444 + 0.605255i
$$767$$ 11.6577 + 20.1917i 0.420934 + 0.729078i
$$768$$ −7.90781 + 13.6967i −0.285349 + 0.494238i
$$769$$ 53.5732 1.93190 0.965950 0.258731i $$-0.0833042\pi$$
0.965950 + 0.258731i $$0.0833042\pi$$
$$770$$ 19.8134 + 11.1699i 0.714024 + 0.402534i
$$771$$ −4.36432 −0.157177
$$772$$ 10.0370 17.3846i 0.361240 0.625687i
$$773$$ 22.2622 + 38.5592i 0.800715 + 1.38688i 0.919146 + 0.393917i $$0.128880\pi$$
−0.118431 + 0.992962i $$0.537786\pi$$
$$774$$ −3.06157 5.30280i −0.110046 0.190605i
$$775$$ 2.11409 3.66170i 0.0759402 0.131532i
$$776$$ 44.8072 1.60849
$$777$$ −0.0400808 3.90737i −0.00143789 0.140176i