Properties

Label 483.2.i.h.415.4
Level $483$
Weight $2$
Character 483.415
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 3 x^{19} + 22 x^{18} - 43 x^{17} + 245 x^{16} - 416 x^{15} + 1707 x^{14} - 2021 x^{13} + 7135 x^{12} - 6640 x^{11} + 20315 x^{10} - 10565 x^{9} + 29358 x^{8} - 9009 x^{7} + 30661 x^{6} - 4026 x^{5} + 15786 x^{4} - 84 x^{3} + 5800 x^{2} + 152 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 415.4
Root \(0.599601 + 1.03854i\) of defining polynomial
Character \(\chi\) \(=\) 483.415
Dual form 483.2.i.h.277.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.599601 + 1.03854i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.280958 + 0.486633i) q^{4} +(0.286327 - 0.495932i) q^{5} -1.19920 q^{6} +(-1.87398 + 1.86767i) q^{7} -3.07225 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.599601 + 1.03854i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.280958 + 0.486633i) q^{4} +(0.286327 - 0.495932i) q^{5} -1.19920 q^{6} +(-1.87398 + 1.86767i) q^{7} -3.07225 q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.343363 + 0.594723i) q^{10} +(-1.26255 - 2.18680i) q^{11} +(-0.280958 + 0.486633i) q^{12} -5.05314 q^{13} +(-0.816015 - 3.06606i) q^{14} +0.572653 q^{15} +(1.28021 - 2.21739i) q^{16} +(1.12612 + 1.95049i) q^{17} +(-0.599601 - 1.03854i) q^{18} +(-1.19967 + 2.07789i) q^{19} +0.321783 q^{20} +(-2.55444 - 0.689075i) q^{21} +3.02811 q^{22} +(-0.500000 + 0.866025i) q^{23} +(-1.53613 - 2.66065i) q^{24} +(2.33603 + 4.04613i) q^{25} +(3.02987 - 5.24788i) q^{26} -1.00000 q^{27} +(-1.43538 - 0.387202i) q^{28} +0.796522 q^{29} +(-0.343363 + 0.594723i) q^{30} +(1.72866 + 2.99412i) q^{31} +(-1.53702 - 2.66220i) q^{32} +(1.26255 - 2.18680i) q^{33} -2.70088 q^{34} +(0.389671 + 1.46413i) q^{35} -0.561916 q^{36} +(-4.40243 + 7.62523i) q^{37} +(-1.43865 - 2.49181i) q^{38} +(-2.52657 - 4.37615i) q^{39} +(-0.879668 + 1.52363i) q^{40} +10.9790 q^{41} +(2.24728 - 2.23972i) q^{42} -1.90984 q^{43} +(0.709448 - 1.22880i) q^{44} +(0.286327 + 0.495932i) q^{45} +(-0.599601 - 1.03854i) q^{46} +(0.968258 - 1.67707i) q^{47} +2.56042 q^{48} +(0.0235820 - 6.99996i) q^{49} -5.60275 q^{50} +(-1.12612 + 1.95049i) q^{51} +(-1.41972 - 2.45903i) q^{52} +(-4.78530 - 8.28839i) q^{53} +(0.599601 - 1.03854i) q^{54} -1.44601 q^{55} +(5.75733 - 5.73797i) q^{56} -2.39935 q^{57} +(-0.477595 + 0.827219i) q^{58} +(2.20464 + 3.81854i) q^{59} +(0.160891 + 0.278672i) q^{60} +(-1.06335 + 1.84178i) q^{61} -4.14602 q^{62} +(-0.680465 - 2.55675i) q^{63} +8.80724 q^{64} +(-1.44685 + 2.50602i) q^{65} +(1.51405 + 2.62242i) q^{66} +(-2.00778 - 3.47758i) q^{67} +(-0.632783 + 1.09601i) q^{68} -1.00000 q^{69} +(-1.75420 - 0.473206i) q^{70} +0.424132 q^{71} +(1.53613 - 2.66065i) q^{72} +(7.00045 + 12.1251i) q^{73} +(-5.27940 - 9.14418i) q^{74} +(-2.33603 + 4.04613i) q^{75} -1.34823 q^{76} +(6.45023 + 1.73998i) q^{77} +6.05973 q^{78} +(-2.48666 + 4.30702i) q^{79} +(-0.733116 - 1.26979i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-6.58304 + 11.4022i) q^{82} -10.1555 q^{83} +(-0.382364 - 1.43668i) q^{84} +1.28975 q^{85} +(1.14514 - 1.98344i) q^{86} +(0.398261 + 0.689808i) q^{87} +(3.87888 + 6.71841i) q^{88} +(-1.91357 + 3.31439i) q^{89} -0.686727 q^{90} +(9.46947 - 9.43762i) q^{91} -0.561916 q^{92} +(-1.72866 + 2.99412i) q^{93} +(1.16114 + 2.01115i) q^{94} +(0.686997 + 1.18991i) q^{95} +(1.53702 - 2.66220i) q^{96} +15.4364 q^{97} +(7.25559 + 4.22167i) q^{98} +2.52510 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 3q^{2} + 10q^{3} - 15q^{4} + 5q^{5} - 6q^{6} + 18q^{8} - 10q^{9} + O(q^{10}) \) \( 20q - 3q^{2} + 10q^{3} - 15q^{4} + 5q^{5} - 6q^{6} + 18q^{8} - 10q^{9} - 11q^{10} - 8q^{11} + 15q^{12} + 11q^{14} + 10q^{15} - 37q^{16} + 11q^{17} - 3q^{18} - q^{19} - 30q^{20} + 12q^{22} - 10q^{23} + 9q^{24} - 21q^{25} - q^{26} - 20q^{27} + 44q^{28} + 44q^{29} + 11q^{30} + 3q^{31} - 11q^{32} + 8q^{33} - 6q^{34} - 9q^{35} + 30q^{36} + 3q^{37} - 16q^{38} - 39q^{40} - 52q^{41} + 7q^{42} + 54q^{43} - 16q^{44} + 5q^{45} - 3q^{46} - 11q^{47} - 74q^{48} + 22q^{49} + 4q^{50} - 11q^{51} - 29q^{52} - 5q^{53} + 3q^{54} - 36q^{55} + 43q^{56} - 2q^{57} - 16q^{58} + 10q^{59} - 15q^{60} - 22q^{61} - 64q^{62} + 138q^{64} + 11q^{65} + 6q^{66} + 2q^{67} + 21q^{68} - 20q^{69} + 84q^{70} + 54q^{71} - 9q^{72} + 8q^{73} - 14q^{74} + 21q^{75} - 44q^{76} + 8q^{77} - 2q^{78} - 21q^{79} + 53q^{80} - 10q^{81} - 36q^{82} - 24q^{83} + 25q^{84} + 46q^{85} - 18q^{86} + 22q^{87} + 10q^{88} - 6q^{89} + 22q^{90} - 62q^{91} + 30q^{92} - 3q^{93} - 35q^{94} - 44q^{95} + 11q^{96} + 12q^{97} + 2q^{98} + 16q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.599601 + 1.03854i −0.423982 + 0.734358i −0.996325 0.0856564i \(-0.972701\pi\)
0.572343 + 0.820014i \(0.306035\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0.280958 + 0.486633i 0.140479 + 0.243317i
\(5\) 0.286327 0.495932i 0.128049 0.221788i −0.794872 0.606778i \(-0.792462\pi\)
0.922921 + 0.384990i \(0.125795\pi\)
\(6\) −1.19920 −0.489572
\(7\) −1.87398 + 1.86767i −0.708297 + 0.705915i
\(8\) −3.07225 −1.08621
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0.343363 + 0.594723i 0.108581 + 0.188068i
\(11\) −1.26255 2.18680i −0.380674 0.659346i 0.610485 0.792028i \(-0.290975\pi\)
−0.991159 + 0.132682i \(0.957641\pi\)
\(12\) −0.280958 + 0.486633i −0.0811055 + 0.140479i
\(13\) −5.05314 −1.40149 −0.700744 0.713413i \(-0.747149\pi\)
−0.700744 + 0.713413i \(0.747149\pi\)
\(14\) −0.816015 3.06606i −0.218089 0.819438i
\(15\) 0.572653 0.147858
\(16\) 1.28021 2.21739i 0.320052 0.554347i
\(17\) 1.12612 + 1.95049i 0.273123 + 0.473064i 0.969660 0.244458i \(-0.0786099\pi\)
−0.696537 + 0.717521i \(0.745277\pi\)
\(18\) −0.599601 1.03854i −0.141327 0.244786i
\(19\) −1.19967 + 2.07789i −0.275224 + 0.476702i −0.970192 0.242339i \(-0.922085\pi\)
0.694968 + 0.719041i \(0.255419\pi\)
\(20\) 0.321783 0.0719528
\(21\) −2.55444 0.689075i −0.557425 0.150368i
\(22\) 3.02811 0.645595
\(23\) −0.500000 + 0.866025i −0.104257 + 0.180579i
\(24\) −1.53613 2.66065i −0.313561 0.543103i
\(25\) 2.33603 + 4.04613i 0.467207 + 0.809226i
\(26\) 3.02987 5.24788i 0.594206 1.02919i
\(27\) −1.00000 −0.192450
\(28\) −1.43538 0.387202i −0.271262 0.0731743i
\(29\) 0.796522 0.147910 0.0739552 0.997262i \(-0.476438\pi\)
0.0739552 + 0.997262i \(0.476438\pi\)
\(30\) −0.343363 + 0.594723i −0.0626893 + 0.108581i
\(31\) 1.72866 + 2.99412i 0.310476 + 0.537760i 0.978465 0.206411i \(-0.0661782\pi\)
−0.667989 + 0.744171i \(0.732845\pi\)
\(32\) −1.53702 2.66220i −0.271710 0.470615i
\(33\) 1.26255 2.18680i 0.219782 0.380674i
\(34\) −2.70088 −0.463197
\(35\) 0.389671 + 1.46413i 0.0658664 + 0.247483i
\(36\) −0.561916 −0.0936526
\(37\) −4.40243 + 7.62523i −0.723754 + 1.25358i 0.235730 + 0.971819i \(0.424252\pi\)
−0.959485 + 0.281761i \(0.909081\pi\)
\(38\) −1.43865 2.49181i −0.233380 0.404226i
\(39\) −2.52657 4.37615i −0.404575 0.700744i
\(40\) −0.879668 + 1.52363i −0.139088 + 0.240907i
\(41\) 10.9790 1.71464 0.857319 0.514785i \(-0.172128\pi\)
0.857319 + 0.514785i \(0.172128\pi\)
\(42\) 2.24728 2.23972i 0.346762 0.345596i
\(43\) −1.90984 −0.291248 −0.145624 0.989340i \(-0.546519\pi\)
−0.145624 + 0.989340i \(0.546519\pi\)
\(44\) 0.709448 1.22880i 0.106953 0.185248i
\(45\) 0.286327 + 0.495932i 0.0426831 + 0.0739292i
\(46\) −0.599601 1.03854i −0.0884063 0.153124i
\(47\) 0.968258 1.67707i 0.141235 0.244626i −0.786727 0.617301i \(-0.788226\pi\)
0.927962 + 0.372675i \(0.121559\pi\)
\(48\) 2.56042 0.369565
\(49\) 0.0235820 6.99996i 0.00336886 0.999994i
\(50\) −5.60275 −0.792349
\(51\) −1.12612 + 1.95049i −0.157688 + 0.273123i
\(52\) −1.41972 2.45903i −0.196880 0.341005i
\(53\) −4.78530 8.28839i −0.657312 1.13850i −0.981309 0.192439i \(-0.938360\pi\)
0.323997 0.946058i \(-0.394973\pi\)
\(54\) 0.599601 1.03854i 0.0815953 0.141327i
\(55\) −1.44601 −0.194980
\(56\) 5.75733 5.73797i 0.769356 0.766768i
\(57\) −2.39935 −0.317801
\(58\) −0.477595 + 0.827219i −0.0627113 + 0.108619i
\(59\) 2.20464 + 3.81854i 0.287019 + 0.497132i 0.973097 0.230397i \(-0.0740023\pi\)
−0.686078 + 0.727528i \(0.740669\pi\)
\(60\) 0.160891 + 0.278672i 0.0207710 + 0.0359764i
\(61\) −1.06335 + 1.84178i −0.136148 + 0.235815i −0.926035 0.377437i \(-0.876806\pi\)
0.789887 + 0.613252i \(0.210139\pi\)
\(62\) −4.14602 −0.526545
\(63\) −0.680465 2.55675i −0.0857305 0.322120i
\(64\) 8.80724 1.10091
\(65\) −1.44685 + 2.50602i −0.179459 + 0.310833i
\(66\) 1.51405 + 2.62242i 0.186367 + 0.322797i
\(67\) −2.00778 3.47758i −0.245289 0.424854i 0.716924 0.697152i \(-0.245550\pi\)
−0.962213 + 0.272298i \(0.912216\pi\)
\(68\) −0.632783 + 1.09601i −0.0767362 + 0.132911i
\(69\) −1.00000 −0.120386
\(70\) −1.75420 0.473206i −0.209668 0.0565589i
\(71\) 0.424132 0.0503353 0.0251676 0.999683i \(-0.491988\pi\)
0.0251676 + 0.999683i \(0.491988\pi\)
\(72\) 1.53613 2.66065i 0.181034 0.313561i
\(73\) 7.00045 + 12.1251i 0.819341 + 1.41914i 0.906168 + 0.422917i \(0.138994\pi\)
−0.0868270 + 0.996223i \(0.527673\pi\)
\(74\) −5.27940 9.14418i −0.613717 1.06299i
\(75\) −2.33603 + 4.04613i −0.269742 + 0.467207i
\(76\) −1.34823 −0.154653
\(77\) 6.45023 + 1.73998i 0.735072 + 0.198290i
\(78\) 6.05973 0.686129
\(79\) −2.48666 + 4.30702i −0.279771 + 0.484577i −0.971328 0.237745i \(-0.923592\pi\)
0.691557 + 0.722322i \(0.256925\pi\)
\(80\) −0.733116 1.26979i −0.0819649 0.141967i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −6.58304 + 11.4022i −0.726975 + 1.25916i
\(83\) −10.1555 −1.11471 −0.557355 0.830275i \(-0.688184\pi\)
−0.557355 + 0.830275i \(0.688184\pi\)
\(84\) −0.382364 1.43668i −0.0417193 0.156754i
\(85\) 1.28975 0.139893
\(86\) 1.14514 1.98344i 0.123484 0.213880i
\(87\) 0.398261 + 0.689808i 0.0426981 + 0.0739552i
\(88\) 3.87888 + 6.71841i 0.413490 + 0.716185i
\(89\) −1.91357 + 3.31439i −0.202838 + 0.351325i −0.949442 0.313944i \(-0.898350\pi\)
0.746604 + 0.665269i \(0.231683\pi\)
\(90\) −0.686727 −0.0723874
\(91\) 9.46947 9.43762i 0.992670 0.989331i
\(92\) −0.561916 −0.0585838
\(93\) −1.72866 + 2.99412i −0.179253 + 0.310476i
\(94\) 1.16114 + 2.01115i 0.119762 + 0.207434i
\(95\) 0.686997 + 1.18991i 0.0704844 + 0.122083i
\(96\) 1.53702 2.66220i 0.156872 0.271710i
\(97\) 15.4364 1.56733 0.783665 0.621184i \(-0.213348\pi\)
0.783665 + 0.621184i \(0.213348\pi\)
\(98\) 7.25559 + 4.22167i 0.732925 + 0.426453i
\(99\) 2.52510 0.253782
\(100\) −1.31265 + 2.27358i −0.131265 + 0.227358i
\(101\) 3.44592 + 5.96851i 0.342882 + 0.593888i 0.984967 0.172745i \(-0.0552637\pi\)
−0.642085 + 0.766634i \(0.721930\pi\)
\(102\) −1.35044 2.33903i −0.133714 0.231599i
\(103\) −5.37963 + 9.31779i −0.530071 + 0.918109i 0.469314 + 0.883031i \(0.344501\pi\)
−0.999385 + 0.0350779i \(0.988832\pi\)
\(104\) 15.5245 1.52230
\(105\) −1.07314 + 1.06953i −0.104728 + 0.104375i
\(106\) 11.4771 1.11475
\(107\) −4.36734 + 7.56446i −0.422207 + 0.731284i −0.996155 0.0876080i \(-0.972078\pi\)
0.573948 + 0.818892i \(0.305411\pi\)
\(108\) −0.280958 0.486633i −0.0270352 0.0468263i
\(109\) 1.49673 + 2.59242i 0.143361 + 0.248309i 0.928760 0.370681i \(-0.120876\pi\)
−0.785399 + 0.618990i \(0.787542\pi\)
\(110\) 0.867028 1.50174i 0.0826679 0.143185i
\(111\) −8.80485 −0.835720
\(112\) 1.74228 + 6.54635i 0.164630 + 0.618572i
\(113\) 16.3312 1.53631 0.768156 0.640263i \(-0.221175\pi\)
0.768156 + 0.640263i \(0.221175\pi\)
\(114\) 1.43865 2.49181i 0.134742 0.233380i
\(115\) 0.286327 + 0.495932i 0.0267001 + 0.0462459i
\(116\) 0.223789 + 0.387614i 0.0207783 + 0.0359891i
\(117\) 2.52657 4.37615i 0.233581 0.404575i
\(118\) −5.28761 −0.486764
\(119\) −5.75320 1.55196i −0.527395 0.142268i
\(120\) −1.75934 −0.160605
\(121\) 2.31193 4.00437i 0.210175 0.364034i
\(122\) −1.27517 2.20866i −0.115449 0.199963i
\(123\) 5.48952 + 9.50813i 0.494973 + 0.857319i
\(124\) −0.971360 + 1.68244i −0.0872307 + 0.151088i
\(125\) 5.53874 0.495400
\(126\) 3.06329 + 0.826339i 0.272900 + 0.0736162i
\(127\) 18.5959 1.65012 0.825061 0.565044i \(-0.191141\pi\)
0.825061 + 0.565044i \(0.191141\pi\)
\(128\) −2.20678 + 3.82226i −0.195054 + 0.337843i
\(129\) −0.954920 1.65397i −0.0840760 0.145624i
\(130\) −1.73506 3.00522i −0.152175 0.263575i
\(131\) −8.95601 + 15.5123i −0.782490 + 1.35531i 0.147997 + 0.988988i \(0.452718\pi\)
−0.930487 + 0.366325i \(0.880616\pi\)
\(132\) 1.41890 0.123499
\(133\) −1.63267 6.13453i −0.141571 0.531931i
\(134\) 4.81547 0.415993
\(135\) −0.286327 + 0.495932i −0.0246431 + 0.0426831i
\(136\) −3.45972 5.99240i −0.296668 0.513844i
\(137\) −8.07612 13.9882i −0.689989 1.19510i −0.971841 0.235638i \(-0.924282\pi\)
0.281852 0.959458i \(-0.409051\pi\)
\(138\) 0.599601 1.03854i 0.0510414 0.0884063i
\(139\) −1.14087 −0.0967677 −0.0483839 0.998829i \(-0.515407\pi\)
−0.0483839 + 0.998829i \(0.515407\pi\)
\(140\) −0.603014 + 0.600986i −0.0509640 + 0.0507926i
\(141\) 1.93652 0.163084
\(142\) −0.254310 + 0.440478i −0.0213412 + 0.0369641i
\(143\) 6.37985 + 11.0502i 0.533510 + 0.924066i
\(144\) 1.28021 + 2.21739i 0.106684 + 0.184782i
\(145\) 0.228066 0.395021i 0.0189398 0.0328047i
\(146\) −16.7899 −1.38954
\(147\) 6.07393 3.47956i 0.500970 0.286989i
\(148\) −4.94758 −0.406689
\(149\) −4.01171 + 6.94849i −0.328652 + 0.569242i −0.982245 0.187604i \(-0.939928\pi\)
0.653592 + 0.756847i \(0.273261\pi\)
\(150\) −2.80138 4.85212i −0.228731 0.396174i
\(151\) −10.1347 17.5539i −0.824753 1.42851i −0.902108 0.431510i \(-0.857981\pi\)
0.0773557 0.997004i \(-0.475352\pi\)
\(152\) 3.68570 6.38382i 0.298950 0.517796i
\(153\) −2.25223 −0.182082
\(154\) −5.67461 + 5.65552i −0.457273 + 0.455735i
\(155\) 1.97984 0.159025
\(156\) 1.41972 2.45903i 0.113668 0.196880i
\(157\) 3.32459 + 5.75836i 0.265331 + 0.459567i 0.967650 0.252295i \(-0.0811853\pi\)
−0.702319 + 0.711862i \(0.747852\pi\)
\(158\) −2.98200 5.16498i −0.237236 0.410904i
\(159\) 4.78530 8.28839i 0.379499 0.657312i
\(160\) −1.76036 −0.139169
\(161\) −0.680465 2.55675i −0.0536282 0.201500i
\(162\) 1.19920 0.0942182
\(163\) −1.87355 + 3.24509i −0.146748 + 0.254175i −0.930024 0.367500i \(-0.880214\pi\)
0.783276 + 0.621674i \(0.213547\pi\)
\(164\) 3.08465 + 5.34277i 0.240871 + 0.417200i
\(165\) −0.723005 1.25228i −0.0562858 0.0974899i
\(166\) 6.08924 10.5469i 0.472616 0.818596i
\(167\) −2.97131 −0.229927 −0.114964 0.993370i \(-0.536675\pi\)
−0.114964 + 0.993370i \(0.536675\pi\)
\(168\) 7.84789 + 2.11701i 0.605478 + 0.163331i
\(169\) 12.5342 0.964170
\(170\) −0.773334 + 1.33945i −0.0593120 + 0.102731i
\(171\) −1.19967 2.07789i −0.0917413 0.158901i
\(172\) −0.536584 0.929391i −0.0409142 0.0708654i
\(173\) −5.75903 + 9.97493i −0.437851 + 0.758380i −0.997523 0.0703340i \(-0.977593\pi\)
0.559673 + 0.828714i \(0.310927\pi\)
\(174\) −0.955190 −0.0724128
\(175\) −11.9345 3.21940i −0.902166 0.243364i
\(176\) −6.46532 −0.487342
\(177\) −2.20464 + 3.81854i −0.165711 + 0.287019i
\(178\) −2.29475 3.97462i −0.171999 0.297911i
\(179\) 5.95674 + 10.3174i 0.445228 + 0.771157i 0.998068 0.0621303i \(-0.0197894\pi\)
−0.552840 + 0.833287i \(0.686456\pi\)
\(180\) −0.160891 + 0.278672i −0.0119921 + 0.0207710i
\(181\) 25.9847 1.93143 0.965713 0.259612i \(-0.0835947\pi\)
0.965713 + 0.259612i \(0.0835947\pi\)
\(182\) 4.12344 + 15.4932i 0.305649 + 1.14843i
\(183\) −2.12670 −0.157210
\(184\) 1.53613 2.66065i 0.113245 0.196146i
\(185\) 2.52106 + 4.36661i 0.185352 + 0.321040i
\(186\) −2.07301 3.59056i −0.152000 0.263272i
\(187\) 2.84356 4.92519i 0.207942 0.360166i
\(188\) 1.08816 0.0793621
\(189\) 1.87398 1.86767i 0.136312 0.135853i
\(190\) −1.64770 −0.119536
\(191\) 9.01168 15.6087i 0.652062 1.12941i −0.330559 0.943785i \(-0.607237\pi\)
0.982622 0.185620i \(-0.0594294\pi\)
\(192\) 4.40362 + 7.62729i 0.317804 + 0.550453i
\(193\) 2.34144 + 4.05550i 0.168541 + 0.291921i 0.937907 0.346887i \(-0.112761\pi\)
−0.769366 + 0.638808i \(0.779428\pi\)
\(194\) −9.25568 + 16.0313i −0.664519 + 1.15098i
\(195\) −2.89370 −0.207222
\(196\) 3.41304 1.95522i 0.243788 0.139658i
\(197\) −22.4797 −1.60161 −0.800804 0.598926i \(-0.795594\pi\)
−0.800804 + 0.598926i \(0.795594\pi\)
\(198\) −1.51405 + 2.62242i −0.107599 + 0.186367i
\(199\) −1.36686 2.36747i −0.0968941 0.167826i 0.813503 0.581560i \(-0.197557\pi\)
−0.910398 + 0.413735i \(0.864224\pi\)
\(200\) −7.17689 12.4307i −0.507483 0.878986i
\(201\) 2.00778 3.47758i 0.141618 0.245289i
\(202\) −8.26470 −0.581502
\(203\) −1.49266 + 1.48764i −0.104764 + 0.104412i
\(204\) −1.26557 −0.0886073
\(205\) 3.14359 5.44486i 0.219558 0.380286i
\(206\) −6.45126 11.1739i −0.449481 0.778523i
\(207\) −0.500000 0.866025i −0.0347524 0.0601929i
\(208\) −6.46908 + 11.2048i −0.448550 + 0.776911i
\(209\) 6.05860 0.419082
\(210\) −0.467294 1.75579i −0.0322463 0.121161i
\(211\) −3.94428 −0.271536 −0.135768 0.990741i \(-0.543350\pi\)
−0.135768 + 0.990741i \(0.543350\pi\)
\(212\) 2.68894 4.65737i 0.184677 0.319870i
\(213\) 0.212066 + 0.367309i 0.0145305 + 0.0251676i
\(214\) −5.23732 9.07131i −0.358016 0.620102i
\(215\) −0.546838 + 0.947151i −0.0372940 + 0.0645952i
\(216\) 3.07225 0.209040
\(217\) −8.83151 2.38235i −0.599522 0.161724i
\(218\) −3.58977 −0.243130
\(219\) −7.00045 + 12.1251i −0.473047 + 0.819341i
\(220\) −0.406268 0.703676i −0.0273906 0.0474418i
\(221\) −5.69042 9.85610i −0.382779 0.662993i
\(222\) 5.27940 9.14418i 0.354330 0.613717i
\(223\) −17.8955 −1.19837 −0.599187 0.800609i \(-0.704509\pi\)
−0.599187 + 0.800609i \(0.704509\pi\)
\(224\) 7.85248 + 2.11825i 0.524666 + 0.141531i
\(225\) −4.67207 −0.311471
\(226\) −9.79221 + 16.9606i −0.651368 + 1.12820i
\(227\) −9.08883 15.7423i −0.603247 1.04485i −0.992326 0.123650i \(-0.960540\pi\)
0.389079 0.921204i \(-0.372793\pi\)
\(228\) −0.674115 1.16760i −0.0446444 0.0773263i
\(229\) −3.58735 + 6.21347i −0.237059 + 0.410597i −0.959869 0.280449i \(-0.909517\pi\)
0.722810 + 0.691046i \(0.242850\pi\)
\(230\) −0.686727 −0.0452814
\(231\) 1.71824 + 6.45606i 0.113052 + 0.424777i
\(232\) −2.44712 −0.160661
\(233\) 7.19351 12.4595i 0.471262 0.816250i −0.528197 0.849122i \(-0.677132\pi\)
0.999460 + 0.0328714i \(0.0104652\pi\)
\(234\) 3.02987 + 5.24788i 0.198069 + 0.343065i
\(235\) −0.554476 0.960381i −0.0361700 0.0626483i
\(236\) −1.23882 + 2.14570i −0.0806403 + 0.139673i
\(237\) −4.97332 −0.323052
\(238\) 5.06139 5.04437i 0.328081 0.326978i
\(239\) −1.51078 −0.0977241 −0.0488620 0.998806i \(-0.515559\pi\)
−0.0488620 + 0.998806i \(0.515559\pi\)
\(240\) 0.733116 1.26979i 0.0473225 0.0819649i
\(241\) −15.3915 26.6588i −0.991453 1.71725i −0.608712 0.793392i \(-0.708313\pi\)
−0.382741 0.923856i \(-0.625020\pi\)
\(242\) 2.77247 + 4.80205i 0.178221 + 0.308688i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) −1.19503 −0.0765037
\(245\) −3.46475 2.01597i −0.221355 0.128796i
\(246\) −13.1661 −0.839439
\(247\) 6.06211 10.4999i 0.385723 0.668092i
\(248\) −5.31087 9.19870i −0.337241 0.584118i
\(249\) −5.07774 8.79491i −0.321789 0.557355i
\(250\) −3.32103 + 5.75220i −0.210041 + 0.363801i
\(251\) 12.8572 0.811540 0.405770 0.913975i \(-0.367003\pi\)
0.405770 + 0.913975i \(0.367003\pi\)
\(252\) 1.05302 1.04948i 0.0663338 0.0661108i
\(253\) 2.52510 0.158752
\(254\) −11.1501 + 19.3126i −0.699621 + 1.21178i
\(255\) 0.644874 + 1.11696i 0.0403836 + 0.0699465i
\(256\) 6.16087 + 10.6709i 0.385054 + 0.666933i
\(257\) −2.08407 + 3.60971i −0.130000 + 0.225167i −0.923676 0.383173i \(-0.874831\pi\)
0.793676 + 0.608341i \(0.208165\pi\)
\(258\) 2.29028 0.142587
\(259\) −5.99140 22.5118i −0.372287 1.39882i
\(260\) −1.62601 −0.100841
\(261\) −0.398261 + 0.689808i −0.0246517 + 0.0426981i
\(262\) −10.7401 18.6023i −0.663523 1.14926i
\(263\) −4.56752 7.91118i −0.281645 0.487824i 0.690145 0.723671i \(-0.257547\pi\)
−0.971790 + 0.235847i \(0.924213\pi\)
\(264\) −3.87888 + 6.71841i −0.238728 + 0.413490i
\(265\) −5.48064 −0.336673
\(266\) 7.34990 + 1.98267i 0.450651 + 0.121566i
\(267\) −3.82713 −0.234217
\(268\) 1.12820 1.95411i 0.0689160 0.119366i
\(269\) 4.51600 + 7.82195i 0.275346 + 0.476913i 0.970222 0.242216i \(-0.0778744\pi\)
−0.694877 + 0.719129i \(0.744541\pi\)
\(270\) −0.343363 0.594723i −0.0208964 0.0361937i
\(271\) −3.52651 + 6.10809i −0.214220 + 0.371040i −0.953031 0.302873i \(-0.902054\pi\)
0.738811 + 0.673913i \(0.235388\pi\)
\(272\) 5.76666 0.349655
\(273\) 12.9080 + 3.48199i 0.781225 + 0.210740i
\(274\) 19.3698 1.17017
\(275\) 5.89873 10.2169i 0.355707 0.616102i
\(276\) −0.280958 0.486633i −0.0169117 0.0292919i
\(277\) −5.65599 9.79646i −0.339835 0.588612i 0.644566 0.764549i \(-0.277038\pi\)
−0.984402 + 0.175936i \(0.943705\pi\)
\(278\) 0.684069 1.18484i 0.0410277 0.0710621i
\(279\) −3.45731 −0.206984
\(280\) −1.19717 4.49818i −0.0715444 0.268818i
\(281\) −22.3499 −1.33329 −0.666643 0.745377i \(-0.732269\pi\)
−0.666643 + 0.745377i \(0.732269\pi\)
\(282\) −1.16114 + 2.01115i −0.0691447 + 0.119762i
\(283\) 9.23844 + 16.0015i 0.549168 + 0.951188i 0.998332 + 0.0577380i \(0.0183888\pi\)
−0.449163 + 0.893450i \(0.648278\pi\)
\(284\) 0.119163 + 0.206397i 0.00707104 + 0.0122474i
\(285\) −0.686997 + 1.18991i −0.0406942 + 0.0704844i
\(286\) −15.3014 −0.904794
\(287\) −20.5745 + 20.5053i −1.21447 + 1.21039i
\(288\) 3.07405 0.181140
\(289\) 5.96372 10.3295i 0.350807 0.607616i
\(290\) 0.273497 + 0.473710i 0.0160603 + 0.0278172i
\(291\) 7.71820 + 13.3683i 0.452449 + 0.783665i
\(292\) −3.93367 + 6.81331i −0.230200 + 0.398719i
\(293\) 0.717401 0.0419110 0.0209555 0.999780i \(-0.493329\pi\)
0.0209555 + 0.999780i \(0.493329\pi\)
\(294\) −0.0282796 + 8.39436i −0.00164930 + 0.489569i
\(295\) 2.52498 0.147010
\(296\) 13.5254 23.4266i 0.786146 1.36165i
\(297\) 1.26255 + 2.18680i 0.0732607 + 0.126891i
\(298\) −4.81085 8.33264i −0.278685 0.482697i
\(299\) 2.52657 4.37615i 0.146115 0.253079i
\(300\) −2.62531 −0.151572
\(301\) 3.57900 3.56696i 0.206290 0.205596i
\(302\) 24.3072 1.39872
\(303\) −3.44592 + 5.96851i −0.197963 + 0.342882i
\(304\) 3.07167 + 5.32028i 0.176172 + 0.305139i
\(305\) 0.608931 + 1.05470i 0.0348673 + 0.0603919i
\(306\) 1.35044 2.33903i 0.0771996 0.133714i
\(307\) −8.27982 −0.472555 −0.236277 0.971686i \(-0.575927\pi\)
−0.236277 + 0.971686i \(0.575927\pi\)
\(308\) 0.965509 + 3.62776i 0.0550150 + 0.206711i
\(309\) −10.7593 −0.612073
\(310\) −1.18712 + 2.05614i −0.0674236 + 0.116781i
\(311\) 4.47306 + 7.74757i 0.253644 + 0.439325i 0.964526 0.263987i \(-0.0850374\pi\)
−0.710882 + 0.703311i \(0.751704\pi\)
\(312\) 7.76226 + 13.4446i 0.439451 + 0.761152i
\(313\) 2.46922 4.27681i 0.139569 0.241740i −0.787765 0.615976i \(-0.788762\pi\)
0.927333 + 0.374236i \(0.122095\pi\)
\(314\) −7.97371 −0.449983
\(315\) −1.46281 0.394601i −0.0824200 0.0222332i
\(316\) −2.79458 −0.157208
\(317\) 7.87069 13.6324i 0.442062 0.765674i −0.555781 0.831329i \(-0.687581\pi\)
0.997842 + 0.0656555i \(0.0209138\pi\)
\(318\) 5.73854 + 9.93945i 0.321801 + 0.557376i
\(319\) −1.00565 1.74184i −0.0563056 0.0975242i
\(320\) 2.52175 4.36780i 0.140970 0.244167i
\(321\) −8.73468 −0.487522
\(322\) 3.06329 + 0.826339i 0.170711 + 0.0460501i
\(323\) −5.40389 −0.300680
\(324\) 0.280958 0.486633i 0.0156088 0.0270352i
\(325\) −11.8043 20.4457i −0.654785 1.13412i
\(326\) −2.24677 3.89151i −0.124437 0.215531i
\(327\) −1.49673 + 2.59242i −0.0827696 + 0.143361i
\(328\) −33.7304 −1.86245
\(329\) 1.31773 + 4.95119i 0.0726489 + 0.272968i
\(330\) 1.73406 0.0954567
\(331\) 13.6672 23.6723i 0.751218 1.30115i −0.196015 0.980601i \(-0.562800\pi\)
0.947233 0.320547i \(-0.103867\pi\)
\(332\) −2.85326 4.94200i −0.156593 0.271227i
\(333\) −4.40243 7.62523i −0.241251 0.417860i
\(334\) 1.78160 3.08583i 0.0974849 0.168849i
\(335\) −2.29952 −0.125636
\(336\) −4.79817 + 4.78203i −0.261762 + 0.260881i
\(337\) 9.73803 0.530465 0.265232 0.964185i \(-0.414551\pi\)
0.265232 + 0.964185i \(0.414551\pi\)
\(338\) −7.51552 + 13.0173i −0.408790 + 0.708046i
\(339\) 8.16561 + 14.1433i 0.443495 + 0.768156i
\(340\) 0.362365 + 0.627635i 0.0196520 + 0.0340383i
\(341\) 4.36504 7.56047i 0.236380 0.409422i
\(342\) 2.87730 0.155587
\(343\) 13.0295 + 13.1618i 0.703525 + 0.710671i
\(344\) 5.86751 0.316355
\(345\) −0.286327 + 0.495932i −0.0154153 + 0.0267001i
\(346\) −6.90623 11.9619i −0.371281 0.643078i
\(347\) 14.4646 + 25.0535i 0.776502 + 1.34494i 0.933947 + 0.357412i \(0.116341\pi\)
−0.157445 + 0.987528i \(0.550326\pi\)
\(348\) −0.223789 + 0.387614i −0.0119964 + 0.0207783i
\(349\) 19.9972 1.07042 0.535212 0.844718i \(-0.320232\pi\)
0.535212 + 0.844718i \(0.320232\pi\)
\(350\) 10.4994 10.4641i 0.561218 0.559331i
\(351\) 5.05314 0.269717
\(352\) −3.88114 + 6.72234i −0.206866 + 0.358302i
\(353\) 12.2984 + 21.3014i 0.654577 + 1.13376i 0.982000 + 0.188883i \(0.0604866\pi\)
−0.327423 + 0.944878i \(0.606180\pi\)
\(354\) −2.64380 4.57920i −0.140517 0.243382i
\(355\) 0.121440 0.210341i 0.00644539 0.0111637i
\(356\) −2.15052 −0.113978
\(357\) −1.53257 5.75840i −0.0811120 0.304767i
\(358\) −14.2867 −0.755074
\(359\) −10.1575 + 17.5933i −0.536091 + 0.928537i 0.463018 + 0.886349i \(0.346766\pi\)
−0.999110 + 0.0421885i \(0.986567\pi\)
\(360\) −0.879668 1.52363i −0.0463626 0.0803023i
\(361\) 6.62157 + 11.4689i 0.348504 + 0.603626i
\(362\) −15.5804 + 26.9861i −0.818889 + 1.41836i
\(363\) 4.62385 0.242689
\(364\) 7.25318 + 1.95658i 0.380170 + 0.102553i
\(365\) 8.01767 0.419664
\(366\) 1.27517 2.20866i 0.0666543 0.115449i
\(367\) 1.74011 + 3.01396i 0.0908330 + 0.157327i 0.907862 0.419269i \(-0.137714\pi\)
−0.817029 + 0.576597i \(0.804380\pi\)
\(368\) 1.28021 + 2.21739i 0.0667355 + 0.115589i
\(369\) −5.48952 + 9.50813i −0.285773 + 0.494973i
\(370\) −6.04653 −0.314344
\(371\) 24.4476 + 6.59486i 1.26925 + 0.342388i
\(372\) −1.94272 −0.100725
\(373\) 15.0544 26.0751i 0.779490 1.35012i −0.152747 0.988265i \(-0.548812\pi\)
0.932236 0.361850i \(-0.117855\pi\)
\(374\) 3.41000 + 5.90630i 0.176327 + 0.305407i
\(375\) 2.76937 + 4.79669i 0.143010 + 0.247700i
\(376\) −2.97473 + 5.15239i −0.153410 + 0.265714i
\(377\) −4.02494 −0.207295
\(378\) 0.816015 + 3.06606i 0.0419713 + 0.157701i
\(379\) −26.6106 −1.36689 −0.683446 0.730001i \(-0.739520\pi\)
−0.683446 + 0.730001i \(0.739520\pi\)
\(380\) −0.386034 + 0.668631i −0.0198031 + 0.0343000i
\(381\) 9.29796 + 16.1045i 0.476349 + 0.825061i
\(382\) 10.8068 + 18.7180i 0.552925 + 0.957695i
\(383\) 11.0088 19.0678i 0.562524 0.974320i −0.434752 0.900550i \(-0.643164\pi\)
0.997275 0.0737692i \(-0.0235028\pi\)
\(384\) −4.41356 −0.225229
\(385\) 2.70979 2.70067i 0.138104 0.137639i
\(386\) −5.61573 −0.285833
\(387\) 0.954920 1.65397i 0.0485413 0.0840760i
\(388\) 4.33698 + 7.51187i 0.220177 + 0.381357i
\(389\) −9.19319 15.9231i −0.466113 0.807332i 0.533138 0.846028i \(-0.321013\pi\)
−0.999251 + 0.0386966i \(0.987679\pi\)
\(390\) 1.73506 3.00522i 0.0878583 0.152175i
\(391\) −2.25223 −0.113900
\(392\) −0.0724500 + 21.5057i −0.00365928 + 1.08620i
\(393\) −17.9120 −0.903542
\(394\) 13.4788 23.3460i 0.679053 1.17615i
\(395\) 1.42399 + 2.46643i 0.0716489 + 0.124099i
\(396\) 0.709448 + 1.22880i 0.0356511 + 0.0617495i
\(397\) −5.03657 + 8.72360i −0.252778 + 0.437825i −0.964290 0.264850i \(-0.914678\pi\)
0.711511 + 0.702675i \(0.248011\pi\)
\(398\) 3.27828 0.164325
\(399\) 4.49632 4.48120i 0.225098 0.224340i
\(400\) 11.9625 0.598123
\(401\) 5.44575 9.43232i 0.271948 0.471028i −0.697413 0.716670i \(-0.745665\pi\)
0.969361 + 0.245642i \(0.0789988\pi\)
\(402\) 2.40773 + 4.17032i 0.120087 + 0.207996i
\(403\) −8.73514 15.1297i −0.435129 0.753665i
\(404\) −1.93632 + 3.35380i −0.0963353 + 0.166858i
\(405\) −0.572653 −0.0284554
\(406\) −0.649974 2.44218i −0.0322577 0.121203i
\(407\) 22.2332 1.10206
\(408\) 3.45972 5.99240i 0.171281 0.296668i
\(409\) 6.25528 + 10.8345i 0.309304 + 0.535730i 0.978210 0.207617i \(-0.0665707\pi\)
−0.668906 + 0.743347i \(0.733237\pi\)
\(410\) 3.76980 + 6.52949i 0.186177 + 0.322468i
\(411\) 8.07612 13.9882i 0.398365 0.689989i
\(412\) −6.04580 −0.297855
\(413\) −11.2632 3.03832i −0.554227 0.149506i
\(414\) 1.19920 0.0589375
\(415\) −2.90779 + 5.03643i −0.142738 + 0.247229i
\(416\) 7.76679 + 13.4525i 0.380798 + 0.659562i
\(417\) −0.570437 0.988026i −0.0279344 0.0483839i
\(418\) −3.63274 + 6.29209i −0.177683 + 0.307756i
\(419\) 32.3891 1.58231 0.791157 0.611613i \(-0.209479\pi\)
0.791157 + 0.611613i \(0.209479\pi\)
\(420\) −0.821976 0.221732i −0.0401083 0.0108194i
\(421\) −2.76745 −0.134877 −0.0674387 0.997723i \(-0.521483\pi\)
−0.0674387 + 0.997723i \(0.521483\pi\)
\(422\) 2.36500 4.09629i 0.115126 0.199404i
\(423\) 0.968258 + 1.67707i 0.0470783 + 0.0815420i
\(424\) 14.7017 + 25.4640i 0.713976 + 1.23664i
\(425\) −5.26129 + 9.11283i −0.255210 + 0.442037i
\(426\) −0.508620 −0.0246427
\(427\) −1.44715 5.43744i −0.0700323 0.263136i
\(428\) −4.90815 −0.237245
\(429\) −6.37985 + 11.0502i −0.308022 + 0.533510i
\(430\) −0.655769 1.13583i −0.0316240 0.0547744i
\(431\) −18.9624 32.8439i −0.913389 1.58204i −0.809243 0.587474i \(-0.800122\pi\)
−0.104146 0.994562i \(-0.533211\pi\)
\(432\) −1.28021 + 2.21739i −0.0615941 + 0.106684i
\(433\) 17.8080 0.855798 0.427899 0.903827i \(-0.359254\pi\)
0.427899 + 0.903827i \(0.359254\pi\)
\(434\) 7.76954 7.74341i 0.372950 0.371696i
\(435\) 0.456131 0.0218698
\(436\) −0.841038 + 1.45672i −0.0402784 + 0.0697643i
\(437\) −1.19967 2.07789i −0.0573881 0.0993992i
\(438\) −8.39496 14.5405i −0.401127 0.694772i
\(439\) −19.5160 + 33.8027i −0.931448 + 1.61332i −0.150600 + 0.988595i \(0.548120\pi\)
−0.780848 + 0.624721i \(0.785213\pi\)
\(440\) 4.44251 0.211788
\(441\) 6.05035 + 3.52040i 0.288112 + 0.167638i
\(442\) 13.6479 0.649166
\(443\) −9.95038 + 17.2346i −0.472757 + 0.818839i −0.999514 0.0311772i \(-0.990074\pi\)
0.526757 + 0.850016i \(0.323408\pi\)
\(444\) −2.47379 4.28473i −0.117401 0.203344i
\(445\) 1.09581 + 1.89800i 0.0519464 + 0.0899737i
\(446\) 10.7302 18.5852i 0.508088 0.880035i
\(447\) −8.02342 −0.379495
\(448\) −16.5046 + 16.4491i −0.779768 + 0.777145i
\(449\) 31.7323 1.49754 0.748769 0.662831i \(-0.230645\pi\)
0.748769 + 0.662831i \(0.230645\pi\)
\(450\) 2.80138 4.85212i 0.132058 0.228731i
\(451\) −13.8616 24.0090i −0.652718 1.13054i
\(452\) 4.58838 + 7.94731i 0.215819 + 0.373810i
\(453\) 10.1347 17.5539i 0.476171 0.824753i
\(454\) 21.7987 1.02306
\(455\) −1.96906 7.39846i −0.0923110 0.346845i
\(456\) 7.37140 0.345197
\(457\) 3.13923 5.43730i 0.146847 0.254346i −0.783214 0.621753i \(-0.786421\pi\)
0.930060 + 0.367407i \(0.119754\pi\)
\(458\) −4.30195 7.45120i −0.201017 0.348172i
\(459\) −1.12612 1.95049i −0.0525626 0.0910411i
\(460\) −0.160891 + 0.278672i −0.00750160 + 0.0129932i
\(461\) −20.4402 −0.951996 −0.475998 0.879446i \(-0.657913\pi\)
−0.475998 + 0.879446i \(0.657913\pi\)
\(462\) −7.73513 2.08659i −0.359871 0.0970771i
\(463\) −8.31436 −0.386401 −0.193201 0.981159i \(-0.561887\pi\)
−0.193201 + 0.981159i \(0.561887\pi\)
\(464\) 1.01972 1.76620i 0.0473391 0.0819937i
\(465\) 0.989921 + 1.71459i 0.0459065 + 0.0795124i
\(466\) 8.62646 + 14.9415i 0.399613 + 0.692150i
\(467\) −1.73920 + 3.01239i −0.0804807 + 0.139397i −0.903457 0.428680i \(-0.858979\pi\)
0.822976 + 0.568076i \(0.192312\pi\)
\(468\) 2.83944 0.131253
\(469\) 10.2575 + 2.76702i 0.473648 + 0.127769i
\(470\) 1.32986 0.0613417
\(471\) −3.32459 + 5.75836i −0.153189 + 0.265331i
\(472\) −6.77320 11.7315i −0.311762 0.539987i
\(473\) 2.41127 + 4.17644i 0.110870 + 0.192033i
\(474\) 2.98200 5.16498i 0.136968 0.237236i
\(475\) −11.2099 −0.514346
\(476\) −0.861173 3.23573i −0.0394718 0.148310i
\(477\) 9.57060 0.438208
\(478\) 0.905863 1.56900i 0.0414332 0.0717645i
\(479\) −10.3767 17.9730i −0.474124 0.821208i 0.525437 0.850833i \(-0.323902\pi\)
−0.999561 + 0.0296251i \(0.990569\pi\)
\(480\) −0.880182 1.52452i −0.0401746 0.0695845i
\(481\) 22.2461 38.5313i 1.01433 1.75688i
\(482\) 36.9150 1.68143
\(483\) 1.87398 1.86767i 0.0852689 0.0849821i
\(484\) 2.59822 0.118101
\(485\) 4.41986 7.65541i 0.200695 0.347614i
\(486\) 0.599601 + 1.03854i 0.0271984 + 0.0471091i
\(487\) 13.1481 + 22.7731i 0.595796 + 1.03195i 0.993434 + 0.114407i \(0.0364968\pi\)
−0.397638 + 0.917543i \(0.630170\pi\)
\(488\) 3.26688 5.65840i 0.147885 0.256144i
\(489\) −3.74710 −0.169450
\(490\) 4.17113 2.38951i 0.188433 0.107947i
\(491\) −5.35237 −0.241549 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(492\) −3.08465 + 5.34277i −0.139067 + 0.240871i
\(493\) 0.896977 + 1.55361i 0.0403978 + 0.0699710i
\(494\) 7.26970 + 12.5915i 0.327079 + 0.566518i
\(495\) 0.723005 1.25228i 0.0324966 0.0562858i
\(496\) 8.85217 0.397474
\(497\) −0.794814 + 0.792141i −0.0356523 + 0.0355324i
\(498\) 12.1785 0.545730
\(499\) −19.4297 + 33.6533i −0.869794 + 1.50653i −0.00758604 + 0.999971i \(0.502415\pi\)
−0.862207 + 0.506555i \(0.830919\pi\)
\(500\) 1.55615 + 2.69534i 0.0695933 + 0.120539i
\(501\) −1.48566 2.57323i −0.0663743 0.114964i
\(502\) −7.70919 + 13.3527i −0.344078 + 0.595961i
\(503\) −22.5980 −1.00760 −0.503798 0.863822i \(-0.668064\pi\)
−0.503798 + 0.863822i \(0.668064\pi\)
\(504\) 2.09056 + 7.85498i 0.0931210 + 0.349889i
\(505\) 3.94663 0.175623
\(506\) −1.51405 + 2.62242i −0.0673079 + 0.116581i
\(507\) 6.26710 + 10.8549i 0.278332 + 0.482085i
\(508\) 5.22467 + 9.04939i 0.231807 + 0.401502i
\(509\) 20.8219 36.0645i 0.922913 1.59853i 0.128028 0.991771i \(-0.459135\pi\)
0.794884 0.606761i \(-0.207531\pi\)
\(510\) −1.54667 −0.0684877
\(511\) −35.7645 9.64767i −1.58213 0.426788i
\(512\) −23.6034 −1.04313
\(513\) 1.19967 2.07789i 0.0529669 0.0917413i
\(514\) −2.49922 4.32877i −0.110236 0.190934i
\(515\) 3.08066 + 5.33586i 0.135750 + 0.235126i
\(516\) 0.536584 0.929391i 0.0236218 0.0409142i
\(517\) −4.88990 −0.215058
\(518\) 26.9718 + 7.27580i 1.18507 + 0.319680i
\(519\) −11.5181 −0.505586
\(520\) 4.44509 7.69911i 0.194930 0.337628i
\(521\) −8.70386 15.0755i −0.381323 0.660471i 0.609929 0.792456i \(-0.291198\pi\)
−0.991252 + 0.131986i \(0.957865\pi\)
\(522\) −0.477595 0.827219i −0.0209038 0.0362064i
\(523\) −9.21577 + 15.9622i −0.402977 + 0.697977i −0.994084 0.108616i \(-0.965358\pi\)
0.591106 + 0.806594i \(0.298691\pi\)
\(524\) −10.0650 −0.439694
\(525\) −3.17918 11.9453i −0.138751 0.521336i
\(526\) 10.9548 0.477650
\(527\) −3.89334 + 6.74346i −0.169597 + 0.293750i
\(528\) −3.23266 5.59913i −0.140684 0.243671i
\(529\) −0.500000 0.866025i −0.0217391 0.0376533i
\(530\) 3.28620 5.69186i 0.142743 0.247239i
\(531\) −4.40927 −0.191346
\(532\) 2.52655 2.51806i 0.109540 0.109172i
\(533\) −55.4786 −2.40305
\(534\) 2.29475 3.97462i 0.0993036 0.171999i
\(535\) 2.50097 + 4.33181i 0.108126 + 0.187281i
\(536\) 6.16841 + 10.6840i 0.266435 + 0.461478i
\(537\) −5.95674 + 10.3174i −0.257052 + 0.445228i
\(538\) −10.8312 −0.466966
\(539\) −15.3373 + 8.78624i −0.660625 + 0.378450i
\(540\) −0.321783 −0.0138473
\(541\) 8.42701 14.5960i 0.362305 0.627531i −0.626034 0.779795i \(-0.715323\pi\)
0.988340 + 0.152264i \(0.0486564\pi\)
\(542\) −4.22899 7.32483i −0.181651 0.314628i
\(543\) 12.9923 + 22.5034i 0.557555 + 0.965713i
\(544\) 3.46174 5.99590i 0.148421 0.257072i
\(545\) 1.71422 0.0734291
\(546\) −11.3558 + 11.3176i −0.485983 + 0.484349i
\(547\) 34.9994 1.49647 0.748233 0.663436i \(-0.230903\pi\)
0.748233 + 0.663436i \(0.230903\pi\)
\(548\) 4.53810 7.86021i 0.193858 0.335772i
\(549\) −1.06335 1.84178i −0.0453827 0.0786051i
\(550\) 7.07376 + 12.2521i 0.301626 + 0.522432i
\(551\) −0.955566 + 1.65509i −0.0407085 + 0.0705092i
\(552\) 3.07225 0.130764
\(553\) −3.38417 12.7155i −0.143909 0.540719i
\(554\) 13.5653 0.576336
\(555\) −2.52106 + 4.36661i −0.107013 + 0.185352i
\(556\) −0.320538 0.555187i −0.0135938 0.0235452i
\(557\) 12.7006 + 21.9981i 0.538143 + 0.932091i 0.999004 + 0.0446189i \(0.0142074\pi\)
−0.460861 + 0.887472i \(0.652459\pi\)
\(558\) 2.07301 3.59056i 0.0877574 0.152000i
\(559\) 9.65068 0.408180
\(560\) 3.74541 + 1.01034i 0.158272 + 0.0426948i
\(561\) 5.68712 0.240110
\(562\) 13.4010 23.2113i 0.565289 0.979109i
\(563\) 5.23673 + 9.07029i 0.220702 + 0.382267i 0.955021 0.296537i \(-0.0958318\pi\)
−0.734319 + 0.678804i \(0.762499\pi\)
\(564\) 0.544079 + 0.942373i 0.0229099 + 0.0396811i
\(565\) 4.67606 8.09918i 0.196723 0.340735i
\(566\) −22.1575 −0.931350
\(567\) 2.55444 + 0.689075i 0.107276 + 0.0289384i
\(568\) −1.30304 −0.0546744
\(569\) −12.0421 + 20.8575i −0.504830 + 0.874392i 0.495154 + 0.868805i \(0.335112\pi\)
−0.999984 + 0.00558658i \(0.998222\pi\)
\(570\) −0.823848 1.42695i −0.0345072 0.0597682i
\(571\) −12.8985 22.3408i −0.539783 0.934932i −0.998915 0.0465641i \(-0.985173\pi\)
0.459132 0.888368i \(-0.348161\pi\)
\(572\) −3.58494 + 6.20929i −0.149894 + 0.259624i
\(573\) 18.0234 0.752937
\(574\) −8.95906 33.6624i −0.373944 1.40504i
\(575\) −4.67207 −0.194839
\(576\) −4.40362 + 7.62729i −0.183484 + 0.317804i
\(577\) −5.79294 10.0337i −0.241163 0.417707i 0.719883 0.694096i \(-0.244196\pi\)
−0.961046 + 0.276389i \(0.910862\pi\)
\(578\) 7.15171 + 12.3871i 0.297472 + 0.515236i
\(579\) −2.34144 + 4.05550i −0.0973071 + 0.168541i
\(580\) 0.256307 0.0106426
\(581\) 19.0311 18.9671i 0.789545 0.786890i
\(582\) −18.5114 −0.767321
\(583\) −12.0834 + 20.9290i −0.500443 + 0.866792i
\(584\) −21.5072 37.2515i −0.889973 1.54148i
\(585\) −1.44685 2.50602i −0.0598198 0.103611i
\(586\) −0.430154 + 0.745049i −0.0177695 + 0.0307777i
\(587\) −8.06567 −0.332906 −0.166453 0.986049i \(-0.553231\pi\)
−0.166453 + 0.986049i \(0.553231\pi\)
\(588\) 3.39979 + 1.97817i 0.140205 + 0.0815783i
\(589\) −8.29529 −0.341802
\(590\) −1.51398 + 2.62230i −0.0623297 + 0.107958i
\(591\) −11.2398 19.4680i −0.462345 0.800804i
\(592\) 11.2721 + 19.5238i 0.463279 + 0.802422i
\(593\) 12.2969 21.2988i 0.504973 0.874639i −0.495010 0.868887i \(-0.664836\pi\)
0.999983 0.00575190i \(-0.00183090\pi\)
\(594\) −3.02811 −0.124245
\(595\) −2.41696 + 2.40883i −0.0990857 + 0.0987525i
\(596\) −4.50849 −0.184675
\(597\) 1.36686 2.36747i 0.0559418 0.0968941i
\(598\) 3.02987 + 5.24788i 0.123900 + 0.214602i
\(599\) 8.71370 + 15.0926i 0.356032 + 0.616666i 0.987294 0.158904i \(-0.0507960\pi\)
−0.631262 + 0.775570i \(0.717463\pi\)
\(600\) 7.17689 12.4307i 0.292995 0.507483i
\(601\) 46.7989 1.90897 0.954484 0.298263i \(-0.0964071\pi\)
0.954484 + 0.298263i \(0.0964071\pi\)
\(602\) 1.55846 + 5.85568i 0.0635180 + 0.238660i
\(603\) 4.01556 0.163526
\(604\) 5.69486 9.86379i 0.231721 0.401352i
\(605\) −1.32393 2.29312i −0.0538255 0.0932285i
\(606\) −4.13235 7.15744i −0.167865 0.290751i
\(607\) 8.95156 15.5046i 0.363333 0.629311i −0.625174 0.780485i \(-0.714972\pi\)
0.988507 + 0.151174i \(0.0483055\pi\)
\(608\) 7.37570 0.299124
\(609\) −2.03467 0.548863i −0.0824490 0.0222411i
\(610\) −1.46046 −0.0591324
\(611\) −4.89274 + 8.47448i −0.197939 + 0.342841i
\(612\) −0.632783 1.09601i −0.0255787 0.0443036i
\(613\) 17.4493 + 30.2230i 0.704770 + 1.22070i 0.966775 + 0.255631i \(0.0822831\pi\)
−0.262005 + 0.965067i \(0.584384\pi\)
\(614\) 4.96459 8.59892i 0.200354 0.347024i
\(615\) 6.28719 0.253524
\(616\) −19.8167 5.34567i −0.798439 0.215383i
\(617\) −47.6661 −1.91896 −0.959482 0.281771i \(-0.909078\pi\)
−0.959482 + 0.281771i \(0.909078\pi\)
\(618\) 6.45126 11.1739i 0.259508 0.449481i
\(619\) −19.7161 34.1492i −0.792455 1.37257i −0.924443 0.381321i \(-0.875469\pi\)
0.131988 0.991251i \(-0.457864\pi\)
\(620\) 0.556252 + 0.963457i 0.0223396 + 0.0386934i
\(621\) 0.500000 0.866025i 0.0200643 0.0347524i
\(622\) −10.7282 −0.430162
\(623\) −2.60423 9.78501i −0.104336 0.392028i
\(624\) −12.9382 −0.517941
\(625\) −10.0943 + 17.4838i −0.403771 + 0.699352i
\(626\) 2.96109 + 5.12876i 0.118349 + 0.204987i
\(627\) 3.02930 + 5.24690i 0.120979 + 0.209541i
\(628\) −1.86814 + 3.23571i −0.0745469 + 0.129119i
\(629\) −19.8306 −0.790697
\(630\) 1.28691 1.28258i 0.0512717 0.0510993i
\(631\) −6.93619 −0.276125 −0.138063 0.990423i \(-0.544088\pi\)
−0.138063 + 0.990423i \(0.544088\pi\)
\(632\) 7.63964 13.2323i 0.303889 0.526351i
\(633\) −1.97214 3.41585i −0.0783856 0.135768i
\(634\) 9.43854 + 16.3480i 0.374852 + 0.649263i
\(635\) 5.32451 9.22232i 0.211297 0.365977i
\(636\) 5.37787 0.213247
\(637\) −0.119163 + 35.3718i −0.00472142 + 1.40148i
\(638\) 2.41195 0.0954902
\(639\) −0.212066 + 0.367309i −0.00838921 + 0.0145305i
\(640\) 1.26372 + 2.18883i 0.0499530 + 0.0865210i
\(641\) −12.8180 22.2015i −0.506281 0.876905i −0.999974 0.00726846i \(-0.997686\pi\)
0.493692 0.869637i \(-0.335647\pi\)
\(642\) 5.23732 9.07131i 0.206701 0.358016i
\(643\) 14.2975 0.563840 0.281920 0.959438i \(-0.409029\pi\)
0.281920 + 0.959438i \(0.409029\pi\)
\(644\) 1.05302 1.04948i 0.0414947 0.0413551i
\(645\) −1.09368 −0.0430635
\(646\) 3.24017 5.61215i 0.127483 0.220807i
\(647\) 16.6635 + 28.8621i 0.655111 + 1.13469i 0.981866 + 0.189577i \(0.0607116\pi\)
−0.326755 + 0.945109i \(0.605955\pi\)
\(648\) 1.53613 + 2.66065i 0.0603448 + 0.104520i
\(649\) 5.56693 9.64221i 0.218521 0.378490i
\(650\) 28.3115 1.11047
\(651\) −2.35258 8.83949i −0.0922049 0.346447i
\(652\) −2.10556 −0.0824599
\(653\) −0.358495 + 0.620931i −0.0140290 + 0.0242989i −0.872955 0.487801i \(-0.837799\pi\)
0.858926 + 0.512100i \(0.171132\pi\)
\(654\) −1.79489 3.10883i −0.0701856 0.121565i
\(655\) 5.12869 + 8.88315i 0.200394 + 0.347093i
\(656\) 14.0555 24.3448i 0.548774 0.950505i
\(657\) −14.0009 −0.546228
\(658\) −5.93211 1.60022i −0.231258 0.0623830i
\(659\) −22.0825 −0.860214 −0.430107 0.902778i \(-0.641524\pi\)
−0.430107 + 0.902778i \(0.641524\pi\)
\(660\) 0.406268 0.703676i 0.0158139 0.0273906i
\(661\) 10.3855 + 17.9882i 0.403949 + 0.699660i 0.994199 0.107561i \(-0.0343040\pi\)
−0.590250 + 0.807221i \(0.700971\pi\)
\(662\) 16.3897 + 28.3879i 0.637006 + 1.10333i
\(663\) 5.69042 9.85610i 0.220998 0.382779i
\(664\) 31.2002 1.21080
\(665\) −3.50979 0.946784i −0.136104 0.0367147i
\(666\) 10.5588 0.409145
\(667\) −0.398261 + 0.689808i −0.0154207 + 0.0267095i
\(668\) −0.834814 1.44594i −0.0322999 0.0559451i
\(669\) −8.94776 15.4980i −0.345941 0.599187i
\(670\) 1.37880 2.38815i 0.0532676 0.0922621i
\(671\) 5.37014 0.207312
\(672\) 2.09178 + 7.85957i 0.0806922 + 0.303189i
\(673\) 10.5462 0.406525 0.203262 0.979124i \(-0.434846\pi\)
0.203262 + 0.979124i \(0.434846\pi\)
\(674\) −5.83893 + 10.1133i −0.224907 + 0.389551i
\(675\) −2.33603 4.04613i −0.0899140 0.155736i
\(676\) 3.52158 + 6.09956i 0.135446 + 0.234599i
\(677\) 7.01729 12.1543i 0.269696 0.467128i −0.699087 0.715037i \(-0.746410\pi\)
0.968783 + 0.247909i \(0.0797434\pi\)
\(678\) −19.5844 −0.752135
\(679\) −28.9275 + 28.8302i −1.11013 + 1.10640i
\(680\) −3.96244 −0.151952
\(681\) 9.08883 15.7423i 0.348285 0.603247i
\(682\) 5.23456 + 9.06652i 0.200442 + 0.347175i
\(683\) −21.6615 37.5189i −0.828856 1.43562i −0.898936 0.438079i \(-0.855659\pi\)
0.0700803 0.997541i \(-0.477674\pi\)
\(684\) 0.674115 1.16760i 0.0257754 0.0446444i
\(685\) −9.24963 −0.353410
\(686\) −21.4815 + 5.63977i −0.820168 + 0.215327i
\(687\) −7.17469 −0.273732
\(688\) −2.44499 + 4.23486i −0.0932146 + 0.161452i
\(689\) 24.1808 + 41.8824i 0.921215 + 1.59559i
\(690\) −0.343363 0.594723i −0.0130716 0.0226407i
\(691\) −18.9514 + 32.8247i −0.720944 + 1.24871i 0.239678 + 0.970852i \(0.422958\pi\)
−0.960622 + 0.277859i \(0.910375\pi\)
\(692\) −6.47217 −0.246035
\(693\) −4.73199 + 4.71607i −0.179753 + 0.179149i
\(694\) −34.6920 −1.31689
\(695\) −0.326663 + 0.565797i −0.0123910 + 0.0214619i
\(696\) −1.22356 2.11927i −0.0463789 0.0803306i
\(697\) 12.3637 + 21.4145i 0.468308 + 0.811133i
\(698\) −11.9903 + 20.7678i −0.453840 + 0.786075i
\(699\) 14.3870 0.544167
\(700\) −1.78643 6.71226i −0.0675207 0.253699i
\(701\) −17.9525 −0.678058 −0.339029 0.940776i \(-0.610099\pi\)
−0.339029 + 0.940776i \(0.610099\pi\)
\(702\) −3.02987 + 5.24788i −0.114355 + 0.198069i
\(703\) −10.5629 18.2956i −0.398389 0.690030i
\(704\) −11.1196 19.2597i −0.419086 0.725878i
\(705\) 0.554476 0.960381i 0.0208828 0.0361700i
\(706\) −29.4965 −1.11011
\(707\) −17.6048 4.74899i −0.662097 0.178604i
\(708\) −2.47764 −0.0931154
\(709\) −15.9553 + 27.6353i −0.599213 + 1.03787i 0.393725 + 0.919228i \(0.371186\pi\)
−0.992938 + 0.118638i \(0.962147\pi\)
\(710\) 0.145632 + 0.252241i 0.00546545 + 0.00946644i
\(711\) −2.48666 4.30702i −0.0932570 0.161526i
\(712\) 5.87896 10.1827i 0.220323 0.381611i
\(713\) −3.45731 −0.129477
\(714\) 6.89925 + 1.86111i 0.258198 + 0.0696502i
\(715\) 7.30688 0.273262
\(716\) −3.34719 + 5.79749i −0.125090 + 0.216663i
\(717\) −0.755389 1.30837i −0.0282105 0.0488620i
\(718\) −12.1809 21.0979i −0.454586 0.787366i
\(719\) −5.16417 + 8.94461i −0.192591 + 0.333578i −0.946108 0.323851i \(-0.895022\pi\)
0.753517 + 0.657428i \(0.228356\pi\)
\(720\) 1.46623 0.0546433
\(721\) −7.32130 27.5087i −0.272659 1.02448i
\(722\) −15.8812 −0.591037
\(723\) 15.3915 26.6588i 0.572416 0.991453i
\(724\) 7.30060 + 12.6450i 0.271325 + 0.469948i
\(725\) 1.86070 + 3.22283i 0.0691048 + 0.119693i
\(726\) −2.77247 + 4.80205i −0.102896 + 0.178221i
\(727\) 32.5415 1.20690 0.603448 0.797402i \(-0.293793\pi\)
0.603448 + 0.797402i \(0.293793\pi\)
\(728\) −29.0926 + 28.9948i −1.07824 + 1.07462i
\(729\) 1.00000 0.0370370
\(730\) −4.80740 + 8.32666i −0.177930 + 0.308184i
\(731\) −2.15070 3.72512i −0.0795466 0.137779i
\(732\) −0.597513 1.03492i −0.0220847 0.0382519i
\(733\) −15.4663 + 26.7885i −0.571262 + 0.989454i 0.425175 + 0.905111i \(0.360212\pi\)
−0.996437 + 0.0843430i \(0.973121\pi\)
\(734\) −4.17349 −0.154046
\(735\) 0.0135043 4.00855i 0.000498115 0.147858i
\(736\) 3.07405 0.113311
\(737\) −5.06985 + 8.78124i −0.186750 + 0.323461i
\(738\) −6.58304 11.4022i −0.242325 0.419719i
\(739\) −15.8009 27.3679i −0.581244 1.00674i −0.995332 0.0965070i \(-0.969233\pi\)
0.414089 0.910237i \(-0.364100\pi\)
\(740\) −1.41663 + 2.45367i −0.0520762 + 0.0901986i
\(741\) 12.1242 0.445395
\(742\) −21.5078 + 21.4355i −0.789576 + 0.786921i
\(743\) −10.6217 −0.389674 −0.194837 0.980836i \(-0.562418\pi\)
−0.194837 + 0.980836i \(0.562418\pi\)
\(744\) 5.31087 9.19870i 0.194706 0.337241i
\(745\) 2.29732 + 3.97908i 0.0841673 + 0.145782i
\(746\) 18.0533 + 31.2693i 0.660979 + 1.14485i
\(747\) 5.07774 8.79491i 0.185785 0.321789i
\(748\) 3.19568 0.116846
\(749\) −5.94365 22.3324i −0.217176 0.816008i
\(750\) −6.64207 −0.242534
\(751\) 0.0130557 0.0226132i 0.000476410 0.000825167i −0.865787 0.500413i \(-0.833182\pi\)
0.866264 + 0.499587i \(0.166515\pi\)
\(752\) −2.47915 4.29401i −0.0904052 0.156586i
\(753\) 6.42860 + 11.1347i 0.234271 + 0.405770i
\(754\) 2.41335 4.18005i 0.0878892 0.152229i
\(755\) −11.6074 −0.422436
\(756\) 1.43538 + 0.387202i 0.0522043 + 0.0140824i
\(757\) 1.50079 0.0545471 0.0272735 0.999628i \(-0.491317\pi\)
0.0272735 + 0.999628i \(0.491317\pi\)
\(758\) 15.9557 27.6361i 0.579537 1.00379i
\(759\) 1.26255 + 2.18680i 0.0458277 + 0.0793759i
\(760\) −2.11063 3.65572i −0.0765605 0.132607i
\(761\) 18.7466 32.4700i 0.679562 1.17704i −0.295551 0.955327i \(-0.595503\pi\)
0.975113 0.221709i \(-0.0711635\pi\)
\(762\) −22.3003 −0.807853
\(763\) −7.64664 2.06272i −0.276827 0.0746756i
\(764\) 10.1276 0.366404
\(765\) −0.644874 + 1.11696i −0.0233155 + 0.0403836i
\(766\) 13.2018 + 22.8661i 0.477000 + 0.826187i
\(767\) −11.1403 19.2956i −0.402254 0.696725i
\(768\) −6.16087 + 10.6709i −0.222311 + 0.385054i
\(769\) 32.9794 1.18927 0.594633 0.803997i \(-0.297297\pi\)
0.594633 + 0.803997i \(0.297297\pi\)
\(770\) 1.17996 + 4.43355i 0.0425230 + 0.159774i
\(771\) −4.16813 −0.150112
\(772\) −1.31569 + 2.27885i −0.0473529 + 0.0820176i
\(773\) 21.3621 + 37.0002i 0.768340 + 1.33080i 0.938463 + 0.345381i \(0.112250\pi\)
−0.170123 + 0.985423i \(0.554416\pi\)
\(774\) 1.14514 + 1.98344i 0.0411612 + 0.0712934i
\(775\) −8.07640 + 13.9887i −0.290113 + 0.502490i
\(776\) −47.4245 −1.70244
\(777\)