Properties

Label 483.2.i.h.277.8
Level $483$
Weight $2$
Character 483.277
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 3 x^{19} + 22 x^{18} - 43 x^{17} + 245 x^{16} - 416 x^{15} + 1707 x^{14} - 2021 x^{13} + 7135 x^{12} - 6640 x^{11} + 20315 x^{10} - 10565 x^{9} + 29358 x^{8} - 9009 x^{7} + 30661 x^{6} - 4026 x^{5} + 15786 x^{4} - 84 x^{3} + 5800 x^{2} + 152 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 277.8
Root \(-0.526755 + 0.912367i\) of defining polynomial
Character \(\chi\) \(=\) 483.277
Dual form 483.2.i.h.415.8

$q$-expansion

\(f(q)\) \(=\) \(q+(0.526755 + 0.912367i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.445058 - 0.770863i) q^{4} +(-1.08806 - 1.88457i) q^{5} +1.05351 q^{6} +(1.36439 + 2.26681i) q^{7} +3.04477 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(0.526755 + 0.912367i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.445058 - 0.770863i) q^{4} +(-1.08806 - 1.88457i) q^{5} +1.05351 q^{6} +(1.36439 + 2.26681i) q^{7} +3.04477 q^{8} +(-0.500000 - 0.866025i) q^{9} +(1.14628 - 1.98542i) q^{10} +(1.31121 - 2.27109i) q^{11} +(-0.445058 - 0.770863i) q^{12} -3.30704 q^{13} +(-1.34946 + 2.43888i) q^{14} -2.17612 q^{15} +(0.713731 + 1.23622i) q^{16} +(1.48456 - 2.57133i) q^{17} +(0.526755 - 0.912367i) q^{18} +(-0.348884 - 0.604285i) q^{19} -1.93700 q^{20} +(2.64531 - 0.0481928i) q^{21} +2.76276 q^{22} +(-0.500000 - 0.866025i) q^{23} +(1.52238 - 2.63685i) q^{24} +(0.132258 - 0.229078i) q^{25} +(-1.74200 - 3.01723i) q^{26} -1.00000 q^{27} +(2.35463 - 0.0428972i) q^{28} +7.31827 q^{29} +(-1.14628 - 1.98542i) q^{30} +(-2.80105 + 4.85155i) q^{31} +(2.29284 - 3.97132i) q^{32} +(-1.31121 - 2.27109i) q^{33} +3.12800 q^{34} +(2.78743 - 5.03772i) q^{35} -0.890116 q^{36} +(2.26348 + 3.92045i) q^{37} +(0.367553 - 0.636621i) q^{38} +(-1.65352 + 2.86398i) q^{39} +(-3.31288 - 5.73808i) q^{40} +2.28774 q^{41} +(1.43740 + 2.38811i) q^{42} -7.79527 q^{43} +(-1.16713 - 2.02153i) q^{44} +(-1.08806 + 1.88457i) q^{45} +(0.526755 - 0.912367i) q^{46} +(1.90697 + 3.30297i) q^{47} +1.42746 q^{48} +(-3.27687 + 6.18564i) q^{49} +0.278671 q^{50} +(-1.48456 - 2.57133i) q^{51} +(-1.47182 + 2.54927i) q^{52} +(-1.56530 + 2.71117i) q^{53} +(-0.526755 - 0.912367i) q^{54} -5.70671 q^{55} +(4.15426 + 6.90191i) q^{56} -0.697769 q^{57} +(3.85494 + 6.67695i) q^{58} +(-6.08141 + 10.5333i) q^{59} +(-0.968498 + 1.67749i) q^{60} +(-0.742296 - 1.28569i) q^{61} -5.90186 q^{62} +(1.28092 - 2.31500i) q^{63} +7.68599 q^{64} +(3.59825 + 6.23236i) q^{65} +(1.38138 - 2.39262i) q^{66} +(-5.63777 + 9.76490i) q^{67} +(-1.32143 - 2.28879i) q^{68} -1.00000 q^{69} +(6.06454 - 0.110485i) q^{70} +13.8643 q^{71} +(-1.52238 - 2.63685i) q^{72} +(-0.352915 + 0.611266i) q^{73} +(-2.38459 + 4.13024i) q^{74} +(-0.132258 - 0.229078i) q^{75} -0.621095 q^{76} +(6.93715 - 0.126382i) q^{77} -3.48400 q^{78} +(4.30203 + 7.45134i) q^{79} +(1.55316 - 2.69015i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(1.20508 + 2.08726i) q^{82} -11.5918 q^{83} +(1.14017 - 2.06062i) q^{84} -6.46115 q^{85} +(-4.10620 - 7.11214i) q^{86} +(3.65914 - 6.33781i) q^{87} +(3.99234 - 6.91494i) q^{88} +(0.166888 + 0.289058i) q^{89} -2.29256 q^{90} +(-4.51210 - 7.49644i) q^{91} -0.890116 q^{92} +(2.80105 + 4.85155i) q^{93} +(-2.00901 + 3.47971i) q^{94} +(-0.759213 + 1.31500i) q^{95} +(-2.29284 - 3.97132i) q^{96} +0.124876 q^{97} +(-7.36968 + 0.268614i) q^{98} -2.62243 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 3q^{2} + 10q^{3} - 15q^{4} + 5q^{5} - 6q^{6} + 18q^{8} - 10q^{9} + O(q^{10}) \) \( 20q - 3q^{2} + 10q^{3} - 15q^{4} + 5q^{5} - 6q^{6} + 18q^{8} - 10q^{9} - 11q^{10} - 8q^{11} + 15q^{12} + 11q^{14} + 10q^{15} - 37q^{16} + 11q^{17} - 3q^{18} - q^{19} - 30q^{20} + 12q^{22} - 10q^{23} + 9q^{24} - 21q^{25} - q^{26} - 20q^{27} + 44q^{28} + 44q^{29} + 11q^{30} + 3q^{31} - 11q^{32} + 8q^{33} - 6q^{34} - 9q^{35} + 30q^{36} + 3q^{37} - 16q^{38} - 39q^{40} - 52q^{41} + 7q^{42} + 54q^{43} - 16q^{44} + 5q^{45} - 3q^{46} - 11q^{47} - 74q^{48} + 22q^{49} + 4q^{50} - 11q^{51} - 29q^{52} - 5q^{53} + 3q^{54} - 36q^{55} + 43q^{56} - 2q^{57} - 16q^{58} + 10q^{59} - 15q^{60} - 22q^{61} - 64q^{62} + 138q^{64} + 11q^{65} + 6q^{66} + 2q^{67} + 21q^{68} - 20q^{69} + 84q^{70} + 54q^{71} - 9q^{72} + 8q^{73} - 14q^{74} + 21q^{75} - 44q^{76} + 8q^{77} - 2q^{78} - 21q^{79} + 53q^{80} - 10q^{81} - 36q^{82} - 24q^{83} + 25q^{84} + 46q^{85} - 18q^{86} + 22q^{87} + 10q^{88} - 6q^{89} + 22q^{90} - 62q^{91} + 30q^{92} - 3q^{93} - 35q^{94} - 44q^{95} + 11q^{96} + 12q^{97} + 2q^{98} + 16q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.526755 + 0.912367i 0.372472 + 0.645141i 0.989945 0.141451i \(-0.0451769\pi\)
−0.617473 + 0.786592i \(0.711844\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0.445058 0.770863i 0.222529 0.385432i
\(5\) −1.08806 1.88457i −0.486594 0.842806i 0.513287 0.858217i \(-0.328428\pi\)
−0.999881 + 0.0154108i \(0.995094\pi\)
\(6\) 1.05351 0.430094
\(7\) 1.36439 + 2.26681i 0.515692 + 0.856774i
\(8\) 3.04477 1.07649
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 1.14628 1.98542i 0.362486 0.627844i
\(11\) 1.31121 2.27109i 0.395346 0.684760i −0.597799 0.801646i \(-0.703958\pi\)
0.993145 + 0.116886i \(0.0372913\pi\)
\(12\) −0.445058 0.770863i −0.128477 0.222529i
\(13\) −3.30704 −0.917208 −0.458604 0.888641i \(-0.651650\pi\)
−0.458604 + 0.888641i \(0.651650\pi\)
\(14\) −1.34946 + 2.43888i −0.360659 + 0.651818i
\(15\) −2.17612 −0.561871
\(16\) 0.713731 + 1.23622i 0.178433 + 0.309054i
\(17\) 1.48456 2.57133i 0.360059 0.623640i −0.627911 0.778285i \(-0.716090\pi\)
0.987970 + 0.154645i \(0.0494233\pi\)
\(18\) 0.526755 0.912367i 0.124157 0.215047i
\(19\) −0.348884 0.604285i −0.0800396 0.138633i 0.823227 0.567712i \(-0.192171\pi\)
−0.903267 + 0.429080i \(0.858838\pi\)
\(20\) −1.93700 −0.433126
\(21\) 2.64531 0.0481928i 0.577254 0.0105165i
\(22\) 2.76276 0.589022
\(23\) −0.500000 0.866025i −0.104257 0.180579i
\(24\) 1.52238 2.63685i 0.310755 0.538244i
\(25\) 0.132258 0.229078i 0.0264516 0.0458156i
\(26\) −1.74200 3.01723i −0.341634 0.591728i
\(27\) −1.00000 −0.192450
\(28\) 2.35463 0.0428972i 0.444984 0.00810681i
\(29\) 7.31827 1.35897 0.679485 0.733690i \(-0.262203\pi\)
0.679485 + 0.733690i \(0.262203\pi\)
\(30\) −1.14628 1.98542i −0.209281 0.362486i
\(31\) −2.80105 + 4.85155i −0.503083 + 0.871365i 0.496911 + 0.867801i \(0.334468\pi\)
−0.999994 + 0.00356314i \(0.998866\pi\)
\(32\) 2.29284 3.97132i 0.405321 0.702037i
\(33\) −1.31121 2.27109i −0.228253 0.395346i
\(34\) 3.12800 0.536448
\(35\) 2.78743 5.03772i 0.471162 0.851530i
\(36\) −0.890116 −0.148353
\(37\) 2.26348 + 3.92045i 0.372113 + 0.644519i 0.989890 0.141834i \(-0.0453000\pi\)
−0.617777 + 0.786353i \(0.711967\pi\)
\(38\) 0.367553 0.636621i 0.0596250 0.103274i
\(39\) −1.65352 + 2.86398i −0.264775 + 0.458604i
\(40\) −3.31288 5.73808i −0.523813 0.907271i
\(41\) 2.28774 0.357285 0.178643 0.983914i \(-0.442829\pi\)
0.178643 + 0.983914i \(0.442829\pi\)
\(42\) 1.43740 + 2.38811i 0.221796 + 0.368493i
\(43\) −7.79527 −1.18877 −0.594384 0.804182i \(-0.702604\pi\)
−0.594384 + 0.804182i \(0.702604\pi\)
\(44\) −1.16713 2.02153i −0.175952 0.304758i
\(45\) −1.08806 + 1.88457i −0.162198 + 0.280935i
\(46\) 0.526755 0.912367i 0.0776658 0.134521i
\(47\) 1.90697 + 3.30297i 0.278160 + 0.481788i 0.970928 0.239373i \(-0.0769420\pi\)
−0.692767 + 0.721161i \(0.743609\pi\)
\(48\) 1.42746 0.206036
\(49\) −3.27687 + 6.18564i −0.468124 + 0.883663i
\(50\) 0.278671 0.0394100
\(51\) −1.48456 2.57133i −0.207880 0.360059i
\(52\) −1.47182 + 2.54927i −0.204105 + 0.353521i
\(53\) −1.56530 + 2.71117i −0.215010 + 0.372408i −0.953276 0.302102i \(-0.902312\pi\)
0.738266 + 0.674510i \(0.235645\pi\)
\(54\) −0.526755 0.912367i −0.0716823 0.124157i
\(55\) −5.70671 −0.769493
\(56\) 4.15426 + 6.90191i 0.555136 + 0.922307i
\(57\) −0.697769 −0.0924217
\(58\) 3.85494 + 6.67695i 0.506178 + 0.876727i
\(59\) −6.08141 + 10.5333i −0.791733 + 1.37132i 0.133161 + 0.991094i \(0.457487\pi\)
−0.924893 + 0.380227i \(0.875846\pi\)
\(60\) −0.968498 + 1.67749i −0.125033 + 0.216563i
\(61\) −0.742296 1.28569i −0.0950412 0.164616i 0.814585 0.580045i \(-0.196965\pi\)
−0.909626 + 0.415429i \(0.863632\pi\)
\(62\) −5.90186 −0.749537
\(63\) 1.28092 2.31500i 0.161381 0.291663i
\(64\) 7.68599 0.960749
\(65\) 3.59825 + 6.23236i 0.446308 + 0.773029i
\(66\) 1.38138 2.39262i 0.170036 0.294511i
\(67\) −5.63777 + 9.76490i −0.688763 + 1.19297i 0.283475 + 0.958980i \(0.408513\pi\)
−0.972238 + 0.233993i \(0.924821\pi\)
\(68\) −1.32143 2.28879i −0.160247 0.277556i
\(69\) −1.00000 −0.120386
\(70\) 6.06454 0.110485i 0.724851 0.0132055i
\(71\) 13.8643 1.64539 0.822693 0.568486i \(-0.192471\pi\)
0.822693 + 0.568486i \(0.192471\pi\)
\(72\) −1.52238 2.63685i −0.179415 0.310755i
\(73\) −0.352915 + 0.611266i −0.0413055 + 0.0715433i −0.885939 0.463802i \(-0.846485\pi\)
0.844634 + 0.535345i \(0.179818\pi\)
\(74\) −2.38459 + 4.13024i −0.277203 + 0.480131i
\(75\) −0.132258 0.229078i −0.0152719 0.0264516i
\(76\) −0.621095 −0.0712445
\(77\) 6.93715 0.126382i 0.790561 0.0144026i
\(78\) −3.48400 −0.394485
\(79\) 4.30203 + 7.45134i 0.484016 + 0.838341i 0.999831 0.0183590i \(-0.00584417\pi\)
−0.515815 + 0.856700i \(0.672511\pi\)
\(80\) 1.55316 2.69015i 0.173649 0.300768i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 1.20508 + 2.08726i 0.133079 + 0.230499i
\(83\) −11.5918 −1.27237 −0.636185 0.771537i \(-0.719489\pi\)
−0.636185 + 0.771537i \(0.719489\pi\)
\(84\) 1.14017 2.06062i 0.124402 0.224832i
\(85\) −6.46115 −0.700811
\(86\) −4.10620 7.11214i −0.442783 0.766922i
\(87\) 3.65914 6.33781i 0.392301 0.679485i
\(88\) 3.99234 6.91494i 0.425585 0.737135i
\(89\) 0.166888 + 0.289058i 0.0176901 + 0.0306401i 0.874735 0.484602i \(-0.161035\pi\)
−0.857045 + 0.515242i \(0.827702\pi\)
\(90\) −2.29256 −0.241657
\(91\) −4.51210 7.49644i −0.472997 0.785840i
\(92\) −0.890116 −0.0928010
\(93\) 2.80105 + 4.85155i 0.290455 + 0.503083i
\(94\) −2.00901 + 3.47971i −0.207214 + 0.358905i
\(95\) −0.759213 + 1.31500i −0.0778936 + 0.134916i
\(96\) −2.29284 3.97132i −0.234012 0.405321i
\(97\) 0.124876 0.0126793 0.00633963 0.999980i \(-0.497982\pi\)
0.00633963 + 0.999980i \(0.497982\pi\)
\(98\) −7.36968 + 0.268614i −0.744450 + 0.0271341i
\(99\) −2.62243 −0.263564
\(100\) −0.117725 0.203906i −0.0117725 0.0203906i
\(101\) 4.38986 7.60346i 0.436807 0.756572i −0.560634 0.828064i \(-0.689443\pi\)
0.997441 + 0.0714914i \(0.0227758\pi\)
\(102\) 1.56400 2.70893i 0.154859 0.268224i
\(103\) 2.73241 + 4.73267i 0.269232 + 0.466324i 0.968664 0.248376i \(-0.0798967\pi\)
−0.699432 + 0.714700i \(0.746563\pi\)
\(104\) −10.0692 −0.987363
\(105\) −2.96908 4.93285i −0.289752 0.481396i
\(106\) −3.29811 −0.320341
\(107\) −5.42133 9.39002i −0.524100 0.907767i −0.999606 0.0280551i \(-0.991069\pi\)
0.475507 0.879712i \(-0.342265\pi\)
\(108\) −0.445058 + 0.770863i −0.0428257 + 0.0741763i
\(109\) 0.528680 0.915701i 0.0506384 0.0877083i −0.839595 0.543213i \(-0.817208\pi\)
0.890234 + 0.455504i \(0.150541\pi\)
\(110\) −3.00604 5.20661i −0.286615 0.496431i
\(111\) 4.52695 0.429679
\(112\) −1.82846 + 3.30458i −0.172774 + 0.312253i
\(113\) −14.0938 −1.32584 −0.662918 0.748692i \(-0.730682\pi\)
−0.662918 + 0.748692i \(0.730682\pi\)
\(114\) −0.367553 0.636621i −0.0344245 0.0596250i
\(115\) −1.08806 + 1.88457i −0.101462 + 0.175737i
\(116\) 3.25706 5.64139i 0.302410 0.523790i
\(117\) 1.65352 + 2.86398i 0.152868 + 0.264775i
\(118\) −12.8137 −1.17959
\(119\) 7.85425 0.143090i 0.719998 0.0131171i
\(120\) −6.62577 −0.604847
\(121\) 2.06143 + 3.57050i 0.187403 + 0.324591i
\(122\) 0.782016 1.35449i 0.0708004 0.122630i
\(123\) 1.14387 1.98124i 0.103139 0.178643i
\(124\) 2.49326 + 4.31844i 0.223901 + 0.387808i
\(125\) −11.4562 −1.02467
\(126\) 2.78686 0.0507716i 0.248274 0.00452310i
\(127\) 15.7177 1.39472 0.697360 0.716721i \(-0.254358\pi\)
0.697360 + 0.716721i \(0.254358\pi\)
\(128\) −0.537052 0.930201i −0.0474691 0.0822190i
\(129\) −3.89763 + 6.75090i −0.343168 + 0.594384i
\(130\) −3.79080 + 6.56585i −0.332475 + 0.575863i
\(131\) 5.00147 + 8.66280i 0.436980 + 0.756872i 0.997455 0.0712996i \(-0.0227146\pi\)
−0.560475 + 0.828172i \(0.689381\pi\)
\(132\) −2.33427 −0.203172
\(133\) 0.893786 1.61534i 0.0775011 0.140068i
\(134\) −11.8789 −1.02618
\(135\) 1.08806 + 1.88457i 0.0936452 + 0.162198i
\(136\) 4.52014 7.82911i 0.387599 0.671341i
\(137\) −3.03387 + 5.25481i −0.259201 + 0.448949i −0.966028 0.258437i \(-0.916792\pi\)
0.706827 + 0.707386i \(0.250126\pi\)
\(138\) −0.526755 0.912367i −0.0448404 0.0776658i
\(139\) 14.1199 1.19763 0.598815 0.800887i \(-0.295638\pi\)
0.598815 + 0.800887i \(0.295638\pi\)
\(140\) −2.64282 4.39080i −0.223359 0.371091i
\(141\) 3.81394 0.321192
\(142\) 7.30307 + 12.6493i 0.612860 + 1.06150i
\(143\) −4.33624 + 7.51059i −0.362615 + 0.628067i
\(144\) 0.713731 1.23622i 0.0594776 0.103018i
\(145\) −7.96271 13.7918i −0.661267 1.14535i
\(146\) −0.743598 −0.0615406
\(147\) 3.71849 + 5.93067i 0.306696 + 0.489153i
\(148\) 4.02951 0.331224
\(149\) −0.507952 0.879799i −0.0416131 0.0720759i 0.844469 0.535605i \(-0.179916\pi\)
−0.886082 + 0.463529i \(0.846583\pi\)
\(150\) 0.139335 0.241336i 0.0113767 0.0197050i
\(151\) −11.2693 + 19.5190i −0.917080 + 1.58843i −0.113254 + 0.993566i \(0.536127\pi\)
−0.803827 + 0.594864i \(0.797206\pi\)
\(152\) −1.06227 1.83991i −0.0861616 0.149236i
\(153\) −2.96912 −0.240039
\(154\) 3.76948 + 6.26265i 0.303754 + 0.504659i
\(155\) 12.1908 0.979189
\(156\) 1.47182 + 2.54927i 0.117840 + 0.204105i
\(157\) 5.68305 9.84334i 0.453557 0.785584i −0.545047 0.838406i \(-0.683488\pi\)
0.998604 + 0.0528218i \(0.0168215\pi\)
\(158\) −4.53223 + 7.85006i −0.360565 + 0.624517i
\(159\) 1.56530 + 2.71117i 0.124136 + 0.215010i
\(160\) −9.97899 −0.788909
\(161\) 1.28092 2.31500i 0.100951 0.182448i
\(162\) −1.05351 −0.0827716
\(163\) −7.38352 12.7886i −0.578322 1.00168i −0.995672 0.0929373i \(-0.970374\pi\)
0.417350 0.908746i \(-0.362959\pi\)
\(164\) 1.01818 1.76353i 0.0795063 0.137709i
\(165\) −2.85336 + 4.94216i −0.222133 + 0.384746i
\(166\) −6.10606 10.5760i −0.473922 0.820858i
\(167\) −8.85336 −0.685093 −0.342547 0.939501i \(-0.611290\pi\)
−0.342547 + 0.939501i \(0.611290\pi\)
\(168\) 8.05436 0.146736i 0.621407 0.0113209i
\(169\) −2.06349 −0.158730
\(170\) −3.40345 5.89494i −0.261032 0.452121i
\(171\) −0.348884 + 0.604285i −0.0266799 + 0.0462109i
\(172\) −3.46935 + 6.00909i −0.264535 + 0.458188i
\(173\) −7.85202 13.6001i −0.596978 1.03400i −0.993265 0.115869i \(-0.963035\pi\)
0.396287 0.918127i \(-0.370299\pi\)
\(174\) 7.70988 0.584484
\(175\) 0.699728 0.0127478i 0.0528945 0.000963642i
\(176\) 3.74342 0.282171
\(177\) 6.08141 + 10.5333i 0.457107 + 0.791733i
\(178\) −0.175818 + 0.304526i −0.0131781 + 0.0228252i
\(179\) 2.65376 4.59645i 0.198351 0.343555i −0.749643 0.661843i \(-0.769775\pi\)
0.947994 + 0.318288i \(0.103108\pi\)
\(180\) 0.968498 + 1.67749i 0.0721876 + 0.125033i
\(181\) 1.93050 0.143493 0.0717463 0.997423i \(-0.477143\pi\)
0.0717463 + 0.997423i \(0.477143\pi\)
\(182\) 4.46273 8.06548i 0.330799 0.597853i
\(183\) −1.48459 −0.109744
\(184\) −1.52238 2.63685i −0.112232 0.194391i
\(185\) 4.92559 8.53137i 0.362136 0.627238i
\(186\) −2.95093 + 5.11116i −0.216373 + 0.374769i
\(187\) −3.89316 6.74314i −0.284696 0.493107i
\(188\) 3.39485 0.247595
\(189\) −1.36439 2.26681i −0.0992449 0.164886i
\(190\) −1.59968 −0.116053
\(191\) −5.22089 9.04284i −0.377770 0.654317i 0.612967 0.790108i \(-0.289976\pi\)
−0.990737 + 0.135791i \(0.956642\pi\)
\(192\) 3.84300 6.65627i 0.277344 0.480375i
\(193\) −12.3081 + 21.3183i −0.885959 + 1.53453i −0.0413492 + 0.999145i \(0.513166\pi\)
−0.844610 + 0.535382i \(0.820168\pi\)
\(194\) 0.0657792 + 0.113933i 0.00472267 + 0.00817991i
\(195\) 7.19650 0.515352
\(196\) 3.30989 + 5.27898i 0.236420 + 0.377070i
\(197\) 5.17797 0.368915 0.184458 0.982840i \(-0.440947\pi\)
0.184458 + 0.982840i \(0.440947\pi\)
\(198\) −1.38138 2.39262i −0.0981703 0.170036i
\(199\) 8.31855 14.4082i 0.589687 1.02137i −0.404587 0.914500i \(-0.632585\pi\)
0.994273 0.106867i \(-0.0340821\pi\)
\(200\) 0.402695 0.697489i 0.0284749 0.0493199i
\(201\) 5.63777 + 9.76490i 0.397658 + 0.688763i
\(202\) 9.24952 0.650794
\(203\) 9.98500 + 16.5891i 0.700809 + 1.16433i
\(204\) −2.64286 −0.185037
\(205\) −2.48919 4.31141i −0.173853 0.301122i
\(206\) −2.87862 + 4.98592i −0.200563 + 0.347385i
\(207\) −0.500000 + 0.866025i −0.0347524 + 0.0601929i
\(208\) −2.36034 4.08822i −0.163660 0.283467i
\(209\) −1.82985 −0.126573
\(210\) 2.93659 5.30729i 0.202644 0.366238i
\(211\) 28.5995 1.96887 0.984435 0.175751i \(-0.0562354\pi\)
0.984435 + 0.175751i \(0.0562354\pi\)
\(212\) 1.39330 + 2.41326i 0.0956919 + 0.165743i
\(213\) 6.93213 12.0068i 0.474982 0.822693i
\(214\) 5.71143 9.89248i 0.390425 0.676236i
\(215\) 8.48171 + 14.6907i 0.578448 + 1.00190i
\(216\) −3.04477 −0.207170
\(217\) −14.8193 + 0.269981i −1.00600 + 0.0183275i
\(218\) 1.11394 0.0754456
\(219\) 0.352915 + 0.611266i 0.0238478 + 0.0413055i
\(220\) −2.53982 + 4.39909i −0.171234 + 0.296587i
\(221\) −4.90950 + 8.50350i −0.330249 + 0.572008i
\(222\) 2.38459 + 4.13024i 0.160044 + 0.277203i
\(223\) 16.5464 1.10803 0.554016 0.832506i \(-0.313095\pi\)
0.554016 + 0.832506i \(0.313095\pi\)
\(224\) 12.1306 0.220997i 0.810508 0.0147660i
\(225\) −0.264516 −0.0176344
\(226\) −7.42400 12.8587i −0.493837 0.855351i
\(227\) 8.98250 15.5581i 0.596189 1.03263i −0.397189 0.917737i \(-0.630014\pi\)
0.993378 0.114893i \(-0.0366526\pi\)
\(228\) −0.310548 + 0.537884i −0.0205665 + 0.0356222i
\(229\) −14.0030 24.2540i −0.925348 1.60275i −0.791001 0.611815i \(-0.790440\pi\)
−0.134346 0.990934i \(-0.542893\pi\)
\(230\) −2.29256 −0.151167
\(231\) 3.35912 6.07094i 0.221014 0.399438i
\(232\) 22.2824 1.46291
\(233\) −11.6231 20.1318i −0.761454 1.31888i −0.942101 0.335329i \(-0.891153\pi\)
0.180648 0.983548i \(-0.442181\pi\)
\(234\) −1.74200 + 3.01723i −0.113878 + 0.197243i
\(235\) 4.14979 7.18765i 0.270703 0.468871i
\(236\) 5.41316 + 9.37587i 0.352367 + 0.610317i
\(237\) 8.60406 0.558894
\(238\) 4.26782 + 7.09058i 0.276642 + 0.459614i
\(239\) 6.43482 0.416234 0.208117 0.978104i \(-0.433267\pi\)
0.208117 + 0.978104i \(0.433267\pi\)
\(240\) −1.55316 2.69015i −0.100256 0.173649i
\(241\) −11.7589 + 20.3669i −0.757455 + 1.31195i 0.186690 + 0.982419i \(0.440224\pi\)
−0.944145 + 0.329531i \(0.893109\pi\)
\(242\) −2.17174 + 3.76156i −0.139605 + 0.241802i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) −1.32146 −0.0845977
\(245\) 15.2227 0.554845i 0.972543 0.0354477i
\(246\) 2.41016 0.153666
\(247\) 1.15377 + 1.99840i 0.0734129 + 0.127155i
\(248\) −8.52853 + 14.7718i −0.541562 + 0.938013i
\(249\) −5.79592 + 10.0388i −0.367302 + 0.636185i
\(250\) −6.03461 10.4523i −0.381662 0.661059i
\(251\) −3.12594 −0.197307 −0.0986537 0.995122i \(-0.531454\pi\)
−0.0986537 + 0.995122i \(0.531454\pi\)
\(252\) −1.21447 2.01773i −0.0765043 0.127105i
\(253\) −2.62243 −0.164871
\(254\) 8.27937 + 14.3403i 0.519494 + 0.899790i
\(255\) −3.23058 + 5.59552i −0.202307 + 0.350405i
\(256\) 8.25178 14.2925i 0.515736 0.893282i
\(257\) 10.2668 + 17.7826i 0.640426 + 1.10925i 0.985338 + 0.170615i \(0.0545756\pi\)
−0.344912 + 0.938635i \(0.612091\pi\)
\(258\) −8.21240 −0.511282
\(259\) −5.79866 + 10.4799i −0.360311 + 0.651190i
\(260\) 6.40572 0.397266
\(261\) −3.65914 6.33781i −0.226495 0.392301i
\(262\) −5.26910 + 9.12634i −0.325526 + 0.563827i
\(263\) −9.72378 + 16.8421i −0.599594 + 1.03853i 0.393287 + 0.919416i \(0.371338\pi\)
−0.992881 + 0.119112i \(0.961995\pi\)
\(264\) −3.99234 6.91494i −0.245712 0.425585i
\(265\) 6.81254 0.418491
\(266\) 1.94459 0.0354269i 0.119230 0.00217216i
\(267\) 0.333776 0.0204267
\(268\) 5.01827 + 8.69190i 0.306540 + 0.530942i
\(269\) −3.85970 + 6.68520i −0.235330 + 0.407604i −0.959369 0.282156i \(-0.908950\pi\)
0.724038 + 0.689760i \(0.242284\pi\)
\(270\) −1.14628 + 1.98542i −0.0697604 + 0.120829i
\(271\) −15.4319 26.7288i −0.937418 1.62366i −0.770263 0.637726i \(-0.779875\pi\)
−0.167155 0.985931i \(-0.553458\pi\)
\(272\) 4.23831 0.256985
\(273\) −8.74815 + 0.159376i −0.529462 + 0.00964585i
\(274\) −6.39242 −0.386180
\(275\) −0.346838 0.600741i −0.0209151 0.0362260i
\(276\) −0.445058 + 0.770863i −0.0267893 + 0.0464005i
\(277\) −3.20072 + 5.54381i −0.192313 + 0.333095i −0.946016 0.324119i \(-0.894932\pi\)
0.753704 + 0.657214i \(0.228265\pi\)
\(278\) 7.43771 + 12.8825i 0.446084 + 0.772640i
\(279\) 5.60209 0.335388
\(280\) 8.48708 15.3387i 0.507200 0.916661i
\(281\) −4.79227 −0.285883 −0.142941 0.989731i \(-0.545656\pi\)
−0.142941 + 0.989731i \(0.545656\pi\)
\(282\) 2.00901 + 3.47971i 0.119635 + 0.207214i
\(283\) 5.85073 10.1338i 0.347790 0.602389i −0.638067 0.769981i \(-0.720266\pi\)
0.985857 + 0.167592i \(0.0535990\pi\)
\(284\) 6.17040 10.6874i 0.366146 0.634183i
\(285\) 0.759213 + 1.31500i 0.0449719 + 0.0778936i
\(286\) −9.13655 −0.540255
\(287\) 3.12138 + 5.18588i 0.184249 + 0.306113i
\(288\) −4.58569 −0.270214
\(289\) 4.09216 + 7.08783i 0.240715 + 0.416931i
\(290\) 8.38880 14.5298i 0.492607 0.853221i
\(291\) 0.0624381 0.108146i 0.00366019 0.00633963i
\(292\) 0.314135 + 0.544098i 0.0183834 + 0.0318409i
\(293\) 19.9031 1.16275 0.581376 0.813635i \(-0.302515\pi\)
0.581376 + 0.813635i \(0.302515\pi\)
\(294\) −3.45221 + 6.51664i −0.201337 + 0.380058i
\(295\) 26.4677 1.54101
\(296\) 6.89175 + 11.9369i 0.400575 + 0.693816i
\(297\) −1.31121 + 2.27109i −0.0760844 + 0.131782i
\(298\) 0.535133 0.926877i 0.0309994 0.0536925i
\(299\) 1.65352 + 2.86398i 0.0956255 + 0.165628i
\(300\) −0.235450 −0.0135937
\(301\) −10.6358 17.6704i −0.613038 1.01851i
\(302\) −23.7446 −1.36635
\(303\) −4.38986 7.60346i −0.252191 0.436807i
\(304\) 0.498019 0.862594i 0.0285633 0.0494732i
\(305\) −1.61532 + 2.79782i −0.0924931 + 0.160203i
\(306\) −1.56400 2.70893i −0.0894079 0.154859i
\(307\) 21.7588 1.24184 0.620920 0.783874i \(-0.286759\pi\)
0.620920 + 0.783874i \(0.286759\pi\)
\(308\) 2.99001 5.40384i 0.170372 0.307912i
\(309\) 5.46482 0.310883
\(310\) 6.42157 + 11.1225i 0.364721 + 0.631715i
\(311\) 4.07173 7.05244i 0.230886 0.399907i −0.727183 0.686444i \(-0.759171\pi\)
0.958069 + 0.286537i \(0.0925041\pi\)
\(312\) −5.03458 + 8.72015i −0.285027 + 0.493681i
\(313\) −0.525219 0.909706i −0.0296871 0.0514196i 0.850800 0.525489i \(-0.176118\pi\)
−0.880487 + 0.474070i \(0.842784\pi\)
\(314\) 11.9743 0.675749
\(315\) −5.75651 + 0.104873i −0.324342 + 0.00590894i
\(316\) 7.65861 0.430831
\(317\) −8.18399 14.1751i −0.459658 0.796152i 0.539284 0.842124i \(-0.318695\pi\)
−0.998943 + 0.0459720i \(0.985361\pi\)
\(318\) −1.64906 + 2.85625i −0.0924745 + 0.160171i
\(319\) 9.59583 16.6205i 0.537263 0.930567i
\(320\) −8.36281 14.4848i −0.467495 0.809725i
\(321\) −10.8427 −0.605178
\(322\) 2.78686 0.0507716i 0.155306 0.00282939i
\(323\) −2.07176 −0.115276
\(324\) 0.445058 + 0.770863i 0.0247254 + 0.0428257i
\(325\) −0.437383 + 0.757570i −0.0242616 + 0.0420224i
\(326\) 7.77862 13.4730i 0.430818 0.746198i
\(327\) −0.528680 0.915701i −0.0292361 0.0506384i
\(328\) 6.96564 0.384613
\(329\) −4.88535 + 8.82929i −0.269338 + 0.486775i
\(330\) −6.01208 −0.330954
\(331\) −14.6464 25.3684i −0.805042 1.39437i −0.916263 0.400577i \(-0.868810\pi\)
0.111221 0.993796i \(-0.464524\pi\)
\(332\) −5.15904 + 8.93572i −0.283139 + 0.490412i
\(333\) 2.26348 3.92045i 0.124038 0.214840i
\(334\) −4.66355 8.07751i −0.255178 0.441982i
\(335\) 24.5369 1.34059
\(336\) 1.94762 + 3.23579i 0.106251 + 0.176527i
\(337\) −4.27417 −0.232829 −0.116414 0.993201i \(-0.537140\pi\)
−0.116414 + 0.993201i \(0.537140\pi\)
\(338\) −1.08695 1.88266i −0.0591224 0.102403i
\(339\) −7.04691 + 12.2056i −0.382736 + 0.662918i
\(340\) −2.87559 + 4.98066i −0.155951 + 0.270114i
\(341\) 7.34554 + 12.7229i 0.397784 + 0.688981i
\(342\) −0.735106 −0.0397500
\(343\) −18.4926 + 1.01160i −0.998507 + 0.0546214i
\(344\) −23.7348 −1.27969
\(345\) 1.08806 + 1.88457i 0.0585791 + 0.101462i
\(346\) 8.27218 14.3278i 0.444715 0.770269i
\(347\) −9.22195 + 15.9729i −0.495060 + 0.857469i −0.999984 0.00569469i \(-0.998187\pi\)
0.504924 + 0.863164i \(0.331521\pi\)
\(348\) −3.25706 5.64139i −0.174597 0.302410i
\(349\) −19.9398 −1.06736 −0.533678 0.845688i \(-0.679190\pi\)
−0.533678 + 0.845688i \(0.679190\pi\)
\(350\) 0.380216 + 0.631694i 0.0203234 + 0.0337655i
\(351\) 3.30704 0.176517
\(352\) −6.01282 10.4145i −0.320485 0.555095i
\(353\) 11.0427 19.1266i 0.587746 1.01801i −0.406781 0.913526i \(-0.633349\pi\)
0.994527 0.104480i \(-0.0333179\pi\)
\(354\) −6.40683 + 11.0970i −0.340519 + 0.589797i
\(355\) −15.0851 26.1282i −0.800635 1.38674i
\(356\) 0.297099 0.0157462
\(357\) 3.80321 6.87353i 0.201287 0.363786i
\(358\) 5.59153 0.295521
\(359\) 6.01948 + 10.4261i 0.317696 + 0.550266i 0.980007 0.198963i \(-0.0637575\pi\)
−0.662311 + 0.749229i \(0.730424\pi\)
\(360\) −3.31288 + 5.73808i −0.174604 + 0.302424i
\(361\) 9.25656 16.0328i 0.487187 0.843833i
\(362\) 1.01690 + 1.76132i 0.0534470 + 0.0925730i
\(363\) 4.12286 0.216394
\(364\) −7.78687 + 0.141863i −0.408143 + 0.00743563i
\(365\) 1.53597 0.0803962
\(366\) −0.782016 1.35449i −0.0408766 0.0708004i
\(367\) −10.8238 + 18.7474i −0.565000 + 0.978608i 0.432050 + 0.901850i \(0.357790\pi\)
−0.997050 + 0.0767584i \(0.975543\pi\)
\(368\) 0.713731 1.23622i 0.0372058 0.0644423i
\(369\) −1.14387 1.98124i −0.0595475 0.103139i
\(370\) 10.3783 0.539543
\(371\) −8.28140 + 0.150872i −0.429949 + 0.00783289i
\(372\) 4.98651 0.258539
\(373\) −10.9713 19.0029i −0.568074 0.983933i −0.996756 0.0804778i \(-0.974355\pi\)
0.428682 0.903455i \(-0.358978\pi\)
\(374\) 4.10148 7.10397i 0.212082 0.367338i
\(375\) −5.72810 + 9.92136i −0.295798 + 0.512337i
\(376\) 5.80628 + 10.0568i 0.299436 + 0.518639i
\(377\) −24.2018 −1.24646
\(378\) 1.34946 2.43888i 0.0694089 0.125442i
\(379\) 11.8759 0.610026 0.305013 0.952348i \(-0.401339\pi\)
0.305013 + 0.952348i \(0.401339\pi\)
\(380\) 0.675788 + 1.17050i 0.0346672 + 0.0600453i
\(381\) 7.85884 13.6119i 0.402621 0.697360i
\(382\) 5.50026 9.52673i 0.281418 0.487430i
\(383\) 2.23345 + 3.86846i 0.114124 + 0.197669i 0.917429 0.397899i \(-0.130260\pi\)
−0.803305 + 0.595568i \(0.796927\pi\)
\(384\) −1.07410 −0.0548126
\(385\) −7.78620 12.9360i −0.396821 0.659282i
\(386\) −25.9335 −1.31998
\(387\) 3.89763 + 6.75090i 0.198128 + 0.343168i
\(388\) 0.0555772 0.0962625i 0.00282150 0.00488699i
\(389\) 1.35712 2.35061i 0.0688089 0.119181i −0.829568 0.558405i \(-0.811413\pi\)
0.898377 + 0.439225i \(0.144747\pi\)
\(390\) 3.79080 + 6.56585i 0.191954 + 0.332475i
\(391\) −2.96912 −0.150155
\(392\) −9.97730 + 18.8338i −0.503930 + 0.951252i
\(393\) 10.0029 0.504581
\(394\) 2.72752 + 4.72421i 0.137411 + 0.238002i
\(395\) 9.36172 16.2150i 0.471039 0.815864i
\(396\) −1.16713 + 2.02153i −0.0586507 + 0.101586i
\(397\) 3.69088 + 6.39280i 0.185240 + 0.320845i 0.943657 0.330924i \(-0.107360\pi\)
−0.758417 + 0.651769i \(0.774027\pi\)
\(398\) 17.5274 0.878567
\(399\) −0.952030 1.58171i −0.0476611 0.0791845i
\(400\) 0.377587 0.0188793
\(401\) −1.35095 2.33992i −0.0674634 0.116850i 0.830321 0.557286i \(-0.188157\pi\)
−0.897784 + 0.440436i \(0.854824\pi\)
\(402\) −5.93945 + 10.2874i −0.296233 + 0.513090i
\(403\) 9.26317 16.0443i 0.461431 0.799222i
\(404\) −3.90748 6.76796i −0.194405 0.336719i
\(405\) 2.17612 0.108132
\(406\) −9.87574 + 17.8484i −0.490125 + 0.885801i
\(407\) 11.8716 0.588454
\(408\) −4.52014 7.82911i −0.223780 0.387599i
\(409\) −12.4048 + 21.4857i −0.613376 + 1.06240i 0.377292 + 0.926094i \(0.376855\pi\)
−0.990667 + 0.136303i \(0.956478\pi\)
\(410\) 2.62239 4.54212i 0.129511 0.224319i
\(411\) 3.03387 + 5.25481i 0.149650 + 0.259201i
\(412\) 4.86432 0.239648
\(413\) −32.1745 + 0.586161i −1.58320 + 0.0288431i
\(414\) −1.05351 −0.0517772
\(415\) 12.6126 + 21.8457i 0.619128 + 1.07236i
\(416\) −7.58253 + 13.1333i −0.371764 + 0.643914i
\(417\) 7.05993 12.2282i 0.345726 0.598815i
\(418\) −0.963882 1.66949i −0.0471450 0.0816576i
\(419\) −20.0785 −0.980899 −0.490450 0.871470i \(-0.663167\pi\)
−0.490450 + 0.871470i \(0.663167\pi\)
\(420\) −5.12396 + 0.0933493i −0.250024 + 0.00455498i
\(421\) −26.5979 −1.29630 −0.648151 0.761512i \(-0.724458\pi\)
−0.648151 + 0.761512i \(0.724458\pi\)
\(422\) 15.0649 + 26.0932i 0.733349 + 1.27020i
\(423\) 1.90697 3.30297i 0.0927201 0.160596i
\(424\) −4.76596 + 8.25489i −0.231456 + 0.400893i
\(425\) −0.392691 0.680160i −0.0190483 0.0329926i
\(426\) 14.6061 0.707670
\(427\) 1.90164 3.43683i 0.0920269 0.166320i
\(428\) −9.65122 −0.466509
\(429\) 4.33624 + 7.51059i 0.209356 + 0.362615i
\(430\) −8.93557 + 15.4769i −0.430911 + 0.746360i
\(431\) 12.0110 20.8036i 0.578548 1.00207i −0.417098 0.908861i \(-0.636953\pi\)
0.995646 0.0932128i \(-0.0297137\pi\)
\(432\) −0.713731 1.23622i −0.0343394 0.0594776i
\(433\) −14.0909 −0.677165 −0.338582 0.940937i \(-0.609947\pi\)
−0.338582 + 0.940937i \(0.609947\pi\)
\(434\) −8.05245 13.3784i −0.386530 0.642184i
\(435\) −15.9254 −0.763565
\(436\) −0.470587 0.815080i −0.0225370 0.0390353i
\(437\) −0.348884 + 0.604285i −0.0166894 + 0.0289069i
\(438\) −0.371799 + 0.643975i −0.0177653 + 0.0307703i
\(439\) −1.44976 2.51106i −0.0691933 0.119846i 0.829353 0.558725i \(-0.188709\pi\)
−0.898546 + 0.438878i \(0.855376\pi\)
\(440\) −17.3756 −0.828350
\(441\) 6.99535 0.254970i 0.333112 0.0121414i
\(442\) −10.3444 −0.492034
\(443\) −6.99794 12.1208i −0.332482 0.575876i 0.650516 0.759493i \(-0.274553\pi\)
−0.982998 + 0.183617i \(0.941220\pi\)
\(444\) 2.01476 3.48966i 0.0956161 0.165612i
\(445\) 0.363167 0.629024i 0.0172158 0.0298186i
\(446\) 8.71593 + 15.0964i 0.412711 + 0.714837i
\(447\) −1.01590 −0.0480506
\(448\) 10.4867 + 17.4227i 0.495451 + 0.823145i
\(449\) 12.6648 0.597690 0.298845 0.954302i \(-0.403399\pi\)
0.298845 + 0.954302i \(0.403399\pi\)
\(450\) −0.139335 0.241336i −0.00656833 0.0113767i
\(451\) 2.99972 5.19567i 0.141251 0.244654i
\(452\) −6.27257 + 10.8644i −0.295037 + 0.511019i
\(453\) 11.2693 + 19.5190i 0.529477 + 0.917080i
\(454\) 18.9263 0.888256
\(455\) −9.21815 + 16.6599i −0.432153 + 0.781030i
\(456\) −2.12454 −0.0994908
\(457\) 1.77836 + 3.08021i 0.0831881 + 0.144086i 0.904618 0.426224i \(-0.140156\pi\)
−0.821430 + 0.570310i \(0.806823\pi\)
\(458\) 14.7524 25.5518i 0.689332 1.19396i
\(459\) −1.48456 + 2.57133i −0.0692934 + 0.120020i
\(460\) 0.968498 + 1.67749i 0.0451565 + 0.0782133i
\(461\) 16.1441 0.751904 0.375952 0.926639i \(-0.377316\pi\)
0.375952 + 0.926639i \(0.377316\pi\)
\(462\) 7.30835 0.133145i 0.340015 0.00619447i
\(463\) 9.78687 0.454834 0.227417 0.973797i \(-0.426972\pi\)
0.227417 + 0.973797i \(0.426972\pi\)
\(464\) 5.22328 + 9.04698i 0.242485 + 0.419996i
\(465\) 6.09540 10.5575i 0.282667 0.489594i
\(466\) 12.2450 21.2090i 0.567241 0.982490i
\(467\) 15.0788 + 26.1172i 0.697763 + 1.20856i 0.969240 + 0.246116i \(0.0791544\pi\)
−0.271478 + 0.962445i \(0.587512\pi\)
\(468\) 2.94365 0.136070
\(469\) −29.8273 + 0.543400i −1.37730 + 0.0250919i
\(470\) 8.74370 0.403317
\(471\) −5.68305 9.84334i −0.261861 0.453557i
\(472\) −18.5165 + 32.0715i −0.852290 + 1.47621i
\(473\) −10.2213 + 17.7038i −0.469975 + 0.814020i
\(474\) 4.53223 + 7.85006i 0.208172 + 0.360565i
\(475\) −0.184571 −0.00846871
\(476\) 3.38529 6.11824i 0.155165 0.280429i
\(477\) 3.13059 0.143340
\(478\) 3.38957 + 5.87091i 0.155035 + 0.268529i
\(479\) −1.46083 + 2.53024i −0.0667471 + 0.115609i −0.897468 0.441080i \(-0.854595\pi\)
0.830721 + 0.556690i \(0.187929\pi\)
\(480\) −4.98950 + 8.64206i −0.227738 + 0.394454i
\(481\) −7.48540 12.9651i −0.341305 0.591158i
\(482\) −24.7762 −1.12852
\(483\) −1.36439 2.26681i −0.0620820 0.103143i
\(484\) 3.66983 0.166810
\(485\) −0.135873 0.235338i −0.00616966 0.0106862i
\(486\) −0.526755 + 0.912367i −0.0238941 + 0.0413858i
\(487\) −16.1191 + 27.9191i −0.730427 + 1.26514i 0.226274 + 0.974064i \(0.427346\pi\)
−0.956701 + 0.291073i \(0.905988\pi\)
\(488\) −2.26012 3.91464i −0.102311 0.177207i
\(489\) −14.7670 −0.667789
\(490\) 8.52486 + 13.5964i 0.385114 + 0.614224i
\(491\) −12.1670 −0.549091 −0.274546 0.961574i \(-0.588527\pi\)
−0.274546 + 0.961574i \(0.588527\pi\)
\(492\) −1.01818 1.76353i −0.0459030 0.0795063i
\(493\) 10.8644 18.8177i 0.489309 0.847508i
\(494\) −1.21551 + 2.10533i −0.0546885 + 0.0947233i
\(495\) 2.85336 + 4.94216i 0.128249 + 0.222133i
\(496\) −7.99677 −0.359066
\(497\) 18.9163 + 31.4277i 0.848512 + 1.40972i
\(498\) −12.2121 −0.547238
\(499\) −15.9148 27.5652i −0.712444 1.23399i −0.963937 0.266131i \(-0.914255\pi\)
0.251492 0.967859i \(-0.419079\pi\)
\(500\) −5.09867 + 8.83116i −0.228020 + 0.394942i
\(501\) −4.42668 + 7.66723i −0.197769 + 0.342547i
\(502\) −1.64660 2.85200i −0.0734915 0.127291i
\(503\) 0.217299 0.00968890 0.00484445 0.999988i \(-0.498458\pi\)
0.00484445 + 0.999988i \(0.498458\pi\)
\(504\) 3.90010 7.04865i 0.173724 0.313972i
\(505\) −19.1057 −0.850192
\(506\) −1.38138 2.39262i −0.0614098 0.106365i
\(507\) −1.03174 + 1.78703i −0.0458213 + 0.0793649i
\(508\) 6.99528 12.1162i 0.310366 0.537569i
\(509\) −7.57985 13.1287i −0.335971 0.581919i 0.647700 0.761896i \(-0.275731\pi\)
−0.983671 + 0.179977i \(0.942398\pi\)
\(510\) −6.80689 −0.301414
\(511\) −1.86714 + 0.0340159i −0.0825973 + 0.00150477i
\(512\) 15.2385 0.673452
\(513\) 0.348884 + 0.604285i 0.0154036 + 0.0266799i
\(514\) −10.8162 + 18.7342i −0.477082 + 0.826330i
\(515\) 5.94604 10.2988i 0.262014 0.453821i
\(516\) 3.46935 + 6.00909i 0.152729 + 0.264535i
\(517\) 10.0018 0.439878
\(518\) −12.6160 + 0.229841i −0.554315 + 0.0100986i
\(519\) −15.7040 −0.689330
\(520\) 10.9558 + 18.9761i 0.480445 + 0.832156i
\(521\) 13.2885 23.0163i 0.582179 1.00836i −0.413041 0.910712i \(-0.635534\pi\)
0.995221 0.0976518i \(-0.0311331\pi\)
\(522\) 3.85494 6.67695i 0.168726 0.292242i
\(523\) 18.2681 + 31.6412i 0.798807 + 1.38357i 0.920394 + 0.390993i \(0.127868\pi\)
−0.121587 + 0.992581i \(0.538798\pi\)
\(524\) 8.90377 0.388963
\(525\) 0.338824 0.612356i 0.0147875 0.0267254i
\(526\) −20.4882 −0.893328
\(527\) 8.31664 + 14.4048i 0.362279 + 0.627485i
\(528\) 1.87171 3.24189i 0.0814557 0.141085i
\(529\) −0.500000 + 0.866025i −0.0217391 + 0.0376533i
\(530\) 3.58854 + 6.21553i 0.155876 + 0.269985i
\(531\) 12.1628 0.527822
\(532\) −0.847417 1.40791i −0.0367402 0.0610404i
\(533\) −7.56565 −0.327705
\(534\) 0.175818 + 0.304526i 0.00760839 + 0.0131781i
\(535\) −11.7974 + 20.4338i −0.510048 + 0.883429i
\(536\) −17.1657 + 29.7319i −0.741445 + 1.28422i
\(537\) −2.65376 4.59645i −0.114518 0.198351i
\(538\) −8.13247 −0.350616
\(539\) 9.75147 + 15.5528i 0.420026 + 0.669905i
\(540\) 1.93700 0.0833550
\(541\) −4.97320 8.61383i −0.213814 0.370337i 0.739091 0.673606i \(-0.235255\pi\)
−0.952905 + 0.303268i \(0.901922\pi\)
\(542\) 16.2576 28.1590i 0.698325 1.20953i
\(543\) 0.965248 1.67186i 0.0414228 0.0717463i
\(544\) −6.80773 11.7913i −0.291879 0.505549i
\(545\) −2.30094 −0.0985614
\(546\) −4.75354 7.89757i −0.203433 0.337985i
\(547\) −35.8124 −1.53123 −0.765614 0.643300i \(-0.777565\pi\)
−0.765614 + 0.643300i \(0.777565\pi\)
\(548\) 2.70049 + 4.67739i 0.115359 + 0.199808i
\(549\) −0.742296 + 1.28569i −0.0316804 + 0.0548721i
\(550\) 0.365397 0.632886i 0.0155806 0.0269864i
\(551\) −2.55323 4.42233i −0.108771 0.188397i
\(552\) −3.04477 −0.129594
\(553\) −11.0211 + 19.9184i −0.468666 + 0.847018i
\(554\) −6.74398 −0.286524
\(555\) −4.92559 8.53137i −0.209079 0.362136i
\(556\) 6.28415 10.8845i 0.266507 0.461604i
\(557\) 6.75130 11.6936i 0.286062 0.495474i −0.686804 0.726842i \(-0.740987\pi\)
0.972866 + 0.231369i \(0.0743204\pi\)
\(558\) 2.95093 + 5.11116i 0.124923 + 0.216373i
\(559\) 25.7793 1.09035
\(560\) 8.21719 0.149702i 0.347240 0.00632608i
\(561\) −7.78631 −0.328738
\(562\) −2.52435 4.37231i −0.106483 0.184435i
\(563\) −18.7091 + 32.4051i −0.788495 + 1.36571i 0.138394 + 0.990377i \(0.455806\pi\)
−0.926889 + 0.375336i \(0.877527\pi\)
\(564\) 1.69743 2.94003i 0.0714745 0.123797i
\(565\) 15.3349 + 26.5608i 0.645144 + 1.11742i
\(566\) 12.3276 0.518168
\(567\) −2.64531 + 0.0481928i −0.111093 + 0.00202391i
\(568\) 42.2135 1.77124
\(569\) −21.4927 37.2264i −0.901019 1.56061i −0.826174 0.563416i \(-0.809487\pi\)
−0.0748455 0.997195i \(-0.523846\pi\)
\(570\) −0.799839 + 1.38536i −0.0335016 + 0.0580264i
\(571\) 10.3749 17.9698i 0.434175 0.752012i −0.563053 0.826421i \(-0.690373\pi\)
0.997228 + 0.0744082i \(0.0237068\pi\)
\(572\) 3.85976 + 6.68529i 0.161385 + 0.279526i
\(573\) −10.4418 −0.436211
\(574\) −3.08722 + 5.57953i −0.128858 + 0.232885i
\(575\) −0.264516 −0.0110311
\(576\) −3.84300 6.65627i −0.160125 0.277344i
\(577\) 19.1817 33.2237i 0.798544 1.38312i −0.122020 0.992528i \(-0.538937\pi\)
0.920564 0.390592i \(-0.127730\pi\)
\(578\) −4.31113 + 7.46710i −0.179319 + 0.310590i
\(579\) 12.3081 + 21.3183i 0.511509 + 0.885959i
\(580\) −14.1755 −0.588604
\(581\) −15.8158 26.2765i −0.656151 1.09013i
\(582\) 0.131558 0.00545327
\(583\) 4.10488 + 7.10986i 0.170007 + 0.294460i
\(584\) −1.07454 + 1.86116i −0.0444649 + 0.0770155i
\(585\) 3.59825 6.23236i 0.148769 0.257676i
\(586\) 10.4841 + 18.1589i 0.433093 + 0.750139i
\(587\) −21.7316 −0.896958 −0.448479 0.893793i \(-0.648034\pi\)
−0.448479 + 0.893793i \(0.648034\pi\)
\(588\) 6.22668 0.226953i 0.256784 0.00935938i
\(589\) 3.90896 0.161066
\(590\) 13.9420 + 24.1483i 0.573984 + 0.994169i
\(591\) 2.58899 4.48426i 0.106497 0.184458i
\(592\) −3.23102 + 5.59630i −0.132794 + 0.230006i
\(593\) 0.434004 + 0.751716i 0.0178224 + 0.0308693i 0.874799 0.484486i \(-0.160993\pi\)
−0.856977 + 0.515355i \(0.827660\pi\)
\(594\) −2.76276 −0.113357
\(595\) −8.81555 14.6462i −0.361402 0.600436i
\(596\) −0.904273 −0.0370404
\(597\) −8.31855 14.4082i −0.340456 0.589687i
\(598\) −1.74200 + 3.01723i −0.0712357 + 0.123384i
\(599\) 6.53259 11.3148i 0.266914 0.462309i −0.701149 0.713015i \(-0.747329\pi\)
0.968063 + 0.250706i \(0.0806626\pi\)
\(600\) −0.402695 0.697489i −0.0164400 0.0284749i
\(601\) −14.4244 −0.588385 −0.294192 0.955746i \(-0.595051\pi\)
−0.294192 + 0.955746i \(0.595051\pi\)
\(602\) 10.5194 19.0117i 0.428740 0.774860i
\(603\) 11.2755 0.459176
\(604\) 10.0310 + 17.3741i 0.408154 + 0.706943i
\(605\) 4.48592 7.76983i 0.182378 0.315889i
\(606\) 4.62476 8.01032i 0.187868 0.325397i
\(607\) −14.4916 25.1002i −0.588195 1.01878i −0.994469 0.105032i \(-0.966505\pi\)
0.406274 0.913751i \(-0.366828\pi\)
\(608\) −3.19975 −0.129767
\(609\) 19.3591 0.352688i 0.784471 0.0142917i
\(610\) −3.40352 −0.137804
\(611\) −6.30643 10.9231i −0.255131 0.441900i
\(612\) −1.32143 + 2.28879i −0.0534157 + 0.0925187i
\(613\) 2.97847 5.15886i 0.120299 0.208364i −0.799586 0.600551i \(-0.794948\pi\)
0.919886 + 0.392187i \(0.128281\pi\)
\(614\) 11.4616 + 19.8520i 0.462551 + 0.801161i
\(615\) −4.97839 −0.200748
\(616\) 21.1220 0.384805i 0.851029 0.0155042i
\(617\) −40.0363 −1.61180 −0.805901 0.592050i \(-0.798319\pi\)
−0.805901 + 0.592050i \(0.798319\pi\)
\(618\) 2.87862 + 4.98592i 0.115795 + 0.200563i
\(619\) −5.25875 + 9.10842i −0.211367 + 0.366098i −0.952143 0.305654i \(-0.901125\pi\)
0.740776 + 0.671752i \(0.234458\pi\)
\(620\) 5.42561 9.39744i 0.217898 0.377410i
\(621\) 0.500000 + 0.866025i 0.0200643 + 0.0347524i
\(622\) 8.57921 0.343995
\(623\) −0.427540 + 0.772692i −0.0171290 + 0.0309573i
\(624\) −4.72067 −0.188978
\(625\) 11.8037 + 20.4447i 0.472149 + 0.817786i
\(626\) 0.553324 0.958385i 0.0221153 0.0383048i
\(627\) −0.914925 + 1.58470i −0.0365386 + 0.0632867i
\(628\) −5.05858 8.76171i −0.201859 0.349630i
\(629\) 13.4411 0.535930
\(630\) −3.12795 5.19680i −0.124621 0.207046i
\(631\) 44.9392 1.78900 0.894501 0.447065i \(-0.147531\pi\)
0.894501 + 0.447065i \(0.147531\pi\)
\(632\) 13.0987 + 22.6876i 0.521038 + 0.902464i
\(633\) 14.2997 24.7679i 0.568364 0.984435i
\(634\) 8.62191 14.9336i 0.342420 0.593089i
\(635\) −17.1018 29.6211i −0.678663 1.17548i
\(636\) 2.78659 0.110496
\(637\) 10.8367 20.4562i 0.429367 0.810503i
\(638\) 20.2186 0.800462
\(639\) −6.93213 12.0068i −0.274231 0.474982i
\(640\) −1.16869 + 2.02423i −0.0461964 + 0.0800146i
\(641\) 16.0204 27.7482i 0.632769 1.09599i −0.354214 0.935164i \(-0.615252\pi\)
0.986983 0.160824i \(-0.0514151\pi\)
\(642\) −5.71143 9.89248i −0.225412 0.390425i
\(643\) 38.5772 1.52134 0.760669 0.649140i \(-0.224871\pi\)
0.760669 + 0.649140i \(0.224871\pi\)
\(644\) −1.21447 2.01773i −0.0478567 0.0795095i
\(645\) 16.9634 0.667934
\(646\) −1.09131 1.89020i −0.0429370 0.0743691i
\(647\) −15.4667 + 26.7891i −0.608058 + 1.05319i 0.383502 + 0.923540i \(0.374718\pi\)
−0.991560 + 0.129648i \(0.958615\pi\)
\(648\) −1.52238 + 2.63685i −0.0598049 + 0.103585i
\(649\) 15.9481 + 27.6229i 0.626017 + 1.08429i
\(650\) −0.921575 −0.0361472
\(651\) −7.17583 + 12.9689i −0.281243 + 0.508290i
\(652\) −13.1444 −0.514774
\(653\) −21.2788 36.8560i −0.832704 1.44229i −0.895886 0.444284i \(-0.853458\pi\)
0.0631822 0.998002i \(-0.479875\pi\)
\(654\) 0.556970 0.964701i 0.0217793 0.0377228i
\(655\) 10.8838 18.8513i 0.425264 0.736579i
\(656\) 1.63283 + 2.82815i 0.0637513 + 0.110421i
\(657\) 0.705829 0.0275370
\(658\) −10.6289 + 0.193640i −0.414359 + 0.00754888i
\(659\) 32.5053 1.26623 0.633113 0.774059i \(-0.281777\pi\)
0.633113 + 0.774059i \(0.281777\pi\)
\(660\) 2.53982 + 4.39909i 0.0988623 + 0.171234i
\(661\) −16.7914 + 29.0835i −0.653109 + 1.13122i 0.329255 + 0.944241i \(0.393202\pi\)
−0.982364 + 0.186977i \(0.940131\pi\)
\(662\) 15.4302 26.7259i 0.599711 1.03873i
\(663\) 4.90950 + 8.50350i 0.190669 + 0.330249i
\(664\) −35.2945 −1.36969
\(665\) −4.01671 + 0.0731772i −0.155761 + 0.00283769i
\(666\) 4.76919 0.184802
\(667\) −3.65914 6.33781i −0.141682 0.245401i
\(668\) −3.94026 + 6.82473i −0.152453 + 0.264057i
\(669\) 8.27322 14.3296i 0.319861 0.554016i
\(670\) 12.9249 + 22.3866i 0.499334 + 0.864871i
\(671\) −3.89324 −0.150297
\(672\) 5.87390 10.6159i 0.226591 0.409517i
\(673\) −1.23960 −0.0477832 −0.0238916 0.999715i \(-0.507606\pi\)
−0.0238916 + 0.999715i \(0.507606\pi\)
\(674\) −2.25144 3.89961i −0.0867222 0.150207i
\(675\) −0.132258 + 0.229078i −0.00509062 + 0.00881721i
\(676\) −0.918371 + 1.59067i −0.0353220 + 0.0611795i
\(677\) −2.84916 4.93490i −0.109502 0.189663i 0.806066 0.591825i \(-0.201592\pi\)
−0.915569 + 0.402162i \(0.868259\pi\)
\(678\) −14.8480 −0.570234
\(679\) 0.170380 + 0.283071i 0.00653859 + 0.0108633i
\(680\) −19.6727 −0.754414
\(681\) −8.98250 15.5581i −0.344210 0.596189i
\(682\) −7.73861 + 13.4037i −0.296327 + 0.513253i
\(683\) −13.6259 + 23.6007i −0.521380 + 0.903056i 0.478311 + 0.878190i \(0.341249\pi\)
−0.999691 + 0.0248657i \(0.992084\pi\)
\(684\) 0.310548 + 0.537884i 0.0118741 + 0.0205665i
\(685\) 13.2041 0.504503
\(686\) −10.6640 16.3392i −0.407155 0.623833i
\(687\) −28.0061 −1.06850
\(688\) −5.56372 9.63665i −0.212115 0.367394i
\(689\) 5.17650 8.96596i 0.197209 0.341576i
\(690\) −1.14628 + 1.98542i −0.0436382 + 0.0755835i
\(691\) 22.5757 + 39.1023i 0.858820 + 1.48752i 0.873055 + 0.487622i \(0.162136\pi\)
−0.0142345 + 0.999899i \(0.504531\pi\)
\(692\) −13.9784 −0.531379
\(693\) −3.57802 5.94455i −0.135918 0.225815i
\(694\) −19.4308 −0.737584
\(695\) −15.3632 26.6099i −0.582760 1.00937i
\(696\) 11.1412 19.2972i 0.422307 0.731457i
\(697\) 3.39629 5.88255i 0.128644 0.222817i
\(698\) −10.5034 18.1925i −0.397560 0.688594i
\(699\) −23.2462 −0.879251
\(700\) 0.301593 0.545068i 0.0113991 0.0206016i
\(701\) −0.456514 −0.0172423 −0.00862116 0.999963i \(-0.502744\pi\)
−0.00862116 + 0.999963i \(0.502744\pi\)
\(702\) 1.74200 + 3.01723i 0.0657476 + 0.113878i
\(703\) 1.57938 2.73557i 0.0595675 0.103174i
\(704\) 10.0780 17.4556i 0.379828 0.657882i
\(705\) −4.14979 7.18765i −0.156290 0.270703i
\(706\) 23.2673 0.875676
\(707\) 23.2251 0.423119i 0.873470 0.0159130i
\(708\) 10.8263 0.406878
\(709\) 4.95123 + 8.57579i 0.185948 + 0.322071i 0.943895 0.330245i \(-0.107131\pi\)
−0.757948 + 0.652315i \(0.773798\pi\)
\(710\) 15.8923 27.5263i 0.596429 1.03304i
\(711\) 4.30203 7.45134i 0.161339 0.279447i
\(712\) 0.508135 + 0.880115i 0.0190431 + 0.0329837i
\(713\) 5.60209 0.209800
\(714\) 8.27454 0.150747i 0.309667 0.00564157i
\(715\) 18.8723 0.705785
\(716\) −2.36215 4.09137i −0.0882779 0.152902i
\(717\) 3.21741 5.57271i 0.120156 0.208117i
\(718\) −6.34159 + 10.9840i −0.236666 + 0.409918i
\(719\) 13.6043 + 23.5633i 0.507355 + 0.878764i 0.999964 + 0.00851331i \(0.00270990\pi\)
−0.492609 + 0.870251i \(0.663957\pi\)
\(720\) −3.10632 −0.115766
\(721\) −6.99999 + 12.6511i −0.260693 + 0.471151i
\(722\) 19.5038 0.725855
\(723\) 11.7589 + 20.3669i 0.437317 + 0.757455i
\(724\) 0.859183 1.48815i 0.0319313 0.0553066i
\(725\) 0.967902 1.67645i 0.0359470 0.0622620i
\(726\) 2.17174 + 3.76156i 0.0806008 + 0.139605i
\(727\) −29.0386 −1.07698 −0.538491 0.842631i \(-0.681006\pi\)
−0.538491 + 0.842631i \(0.681006\pi\)
\(728\) −13.7383 22.8249i −0.509175 0.845947i
\(729\) 1.00000 0.0370370
\(730\) 0.809078 + 1.40136i 0.0299453 + 0.0518668i
\(731\) −11.5725 + 20.0442i −0.428026 + 0.741363i
\(732\) −0.660729 + 1.14442i −0.0244213 + 0.0422989i
\(733\) 10.3993 + 18.0121i 0.384108 + 0.665294i 0.991645 0.128997i \(-0.0411758\pi\)
−0.607537 + 0.794291i \(0.707843\pi\)
\(734\) −22.8060 −0.841786
\(735\) 7.13084 13.4607i 0.263025 0.496504i
\(736\) −4.58569 −0.169031
\(737\) 14.7847 + 25.6078i 0.544600 + 0.943275i
\(738\) 1.20508 2.08726i 0.0443596 0.0768330i
\(739\) −8.42350 + 14.5899i −0.309864 + 0.536699i −0.978332 0.207041i \(-0.933617\pi\)
0.668469 + 0.743740i \(0.266950\pi\)
\(740\) −4.38434 7.59391i −0.161172 0.279158i
\(741\) 2.30755 0.0847699
\(742\) −4.49992 7.47620i −0.165197 0.274460i
\(743\) −38.5982 −1.41603 −0.708016 0.706197i \(-0.750409\pi\)
−0.708016 + 0.706197i \(0.750409\pi\)
\(744\) 8.52853 + 14.7718i 0.312671 + 0.541562i
\(745\) −1.10536 + 1.91454i −0.0404974 + 0.0701435i
\(746\) 11.5584 20.0198i 0.423183 0.732975i
\(747\) 5.79592 + 10.0388i 0.212062 + 0.367302i
\(748\) −6.93072 −0.253412
\(749\) 13.8886 25.1008i 0.507477 0.917163i
\(750\) −12.0692 −0.440706
\(751\) −12.0016 20.7874i −0.437945 0.758542i 0.559586 0.828772i \(-0.310960\pi\)
−0.997531 + 0.0702297i \(0.977627\pi\)
\(752\) −2.72213 + 4.71486i −0.0992658 + 0.171933i
\(753\) −1.56297 + 2.70714i −0.0569577 + 0.0986537i
\(754\) −12.7484 22.0809i −0.464271 0.804140i
\(755\) 49.0465 1.78498
\(756\) −2.35463 + 0.0428972i −0.0856372 + 0.00156016i
\(757\) −6.54398 −0.237845 −0.118923 0.992904i \(-0.537944\pi\)
−0.118923 + 0.992904i \(0.537944\pi\)
\(758\) 6.25571 + 10.8352i 0.227218 + 0.393553i
\(759\) −1.31121 + 2.27109i −0.0475941 + 0.0824354i
\(760\) −2.31163 + 4.00385i −0.0838515 + 0.145235i
\(761\) −8.00453 13.8642i −0.290164 0.502579i 0.683684 0.729778i \(-0.260376\pi\)
−0.973848 + 0.227199i \(0.927043\pi\)
\(762\) 16.5587 0.599860
\(763\) 2.79705 0.0509572i 0.101260 0.00184477i
\(764\) −9.29439 −0.336259
\(765\) 3.23058 + 5.59552i 0.116802 + 0.202307i
\(766\) −2.35297 + 4.07546i −0.0850162 + 0.147252i
\(767\) 20.1115 34.8341i 0.726183 1.25779i
\(768\) −8.25178 14.2925i −0.297761 0.515736i
\(769\) 35.3103 1.27332 0.636661 0.771144i \(-0.280315\pi\)
0.636661 + 0.771144i \(0.280315\pi\)
\(770\) 7.70099 13.9180i 0.277525 0.501570i
\(771\) 20.5336 0.739500
\(772\) 10.9557 + 18.9758i 0.394303 + 0.682953i
\(773\) 27.1450 47.0166i 0.976339 1.69107i 0.300895 0.953657i \(-0.402714\pi\)
0.675444 0.737412i \(-0.263952\pi\)
\(774\) −4.10620 + 7.11214i −0.147594 + 0.255641i
\(775\) 0.740922 + 1.28332i 0.0266147 + 0.0460980i
\(776\) 0.380219 0.0136491
\(777\) 6.17654 +