Properties

Label 483.2.i.h.277.6
Level $483$
Weight $2$
Character 483.277
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 3 x^{19} + 22 x^{18} - 43 x^{17} + 245 x^{16} - 416 x^{15} + 1707 x^{14} - 2021 x^{13} + 7135 x^{12} - 6640 x^{11} + 20315 x^{10} - 10565 x^{9} + 29358 x^{8} - 9009 x^{7} + 30661 x^{6} - 4026 x^{5} + 15786 x^{4} - 84 x^{3} + 5800 x^{2} + 152 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 277.6
Root \(-0.0131282 + 0.0227388i\) of defining polynomial
Character \(\chi\) \(=\) 483.277
Dual form 483.2.i.h.415.6

$q$-expansion

\(f(q)\) \(=\) \(q+(0.0131282 + 0.0227388i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.999655 - 1.73145i) q^{4} +(-1.38914 - 2.40606i) q^{5} +0.0262565 q^{6} +(-2.58821 + 0.548771i) q^{7} +0.105008 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(0.0131282 + 0.0227388i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.999655 - 1.73145i) q^{4} +(-1.38914 - 2.40606i) q^{5} +0.0262565 q^{6} +(-2.58821 + 0.548771i) q^{7} +0.105008 q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.0364740 - 0.0631748i) q^{10} +(-0.330078 + 0.571712i) q^{11} +(-0.999655 - 1.73145i) q^{12} +4.12488 q^{13} +(-0.0464571 - 0.0516484i) q^{14} -2.77828 q^{15} +(-1.99793 - 3.46052i) q^{16} +(-2.06190 + 3.57132i) q^{17} +(0.0131282 - 0.0227388i) q^{18} +(-2.38414 - 4.12946i) q^{19} -5.55465 q^{20} +(-0.818857 + 2.51584i) q^{21} -0.0173334 q^{22} +(-0.500000 - 0.866025i) q^{23} +(0.0525039 - 0.0909395i) q^{24} +(-1.35943 + 2.35460i) q^{25} +(0.0541524 + 0.0937947i) q^{26} -1.00000 q^{27} +(-1.63715 + 5.02995i) q^{28} -1.78025 q^{29} +(-0.0364740 - 0.0631748i) q^{30} +(1.81214 - 3.13872i) q^{31} +(0.157467 - 0.272740i) q^{32} +(0.330078 + 0.571712i) q^{33} -0.108277 q^{34} +(4.91577 + 5.46509i) q^{35} -1.99931 q^{36} +(4.03105 + 6.98199i) q^{37} +(0.0625993 - 0.108425i) q^{38} +(2.06244 - 3.57225i) q^{39} +(-0.145871 - 0.252656i) q^{40} -7.99969 q^{41} +(-0.0679574 + 0.0144088i) q^{42} +12.5842 q^{43} +(0.659929 + 1.14303i) q^{44} +(-1.38914 + 2.40606i) q^{45} +(0.0131282 - 0.0227388i) q^{46} +(-5.88109 - 10.1864i) q^{47} -3.99586 q^{48} +(6.39770 - 2.84067i) q^{49} -0.0713876 q^{50} +(2.06190 + 3.57132i) q^{51} +(4.12346 - 7.14203i) q^{52} +(0.0304128 - 0.0526766i) q^{53} +(-0.0131282 - 0.0227388i) q^{54} +1.83410 q^{55} +(-0.271783 + 0.0576253i) q^{56} -4.76829 q^{57} +(-0.0233715 - 0.0404806i) q^{58} +(4.49359 - 7.78312i) q^{59} +(-2.77732 + 4.81047i) q^{60} +(-1.35633 - 2.34924i) q^{61} +0.0951611 q^{62} +(1.76936 + 1.96707i) q^{63} -7.98346 q^{64} +(-5.73004 - 9.92471i) q^{65} +(-0.00866669 + 0.0150112i) q^{66} +(1.34291 - 2.32600i) q^{67} +(4.12239 + 7.14018i) q^{68} -1.00000 q^{69} +(-0.0597339 + 0.183526i) q^{70} +12.4462 q^{71} +(-0.0525039 - 0.0909395i) q^{72} +(7.14354 - 12.3730i) q^{73} +(-0.105841 + 0.183323i) q^{74} +(1.35943 + 2.35460i) q^{75} -9.53329 q^{76} +(0.540574 - 1.66085i) q^{77} +0.108305 q^{78} +(3.47399 + 6.01712i) q^{79} +(-5.55082 + 9.61430i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-0.105022 - 0.181903i) q^{82} +9.40856 q^{83} +(3.53749 + 3.93279i) q^{84} +11.4571 q^{85} +(0.165208 + 0.286150i) q^{86} +(-0.890123 + 1.54174i) q^{87} +(-0.0346608 + 0.0600343i) q^{88} +(2.96215 + 5.13060i) q^{89} -0.0729480 q^{90} +(-10.6761 + 2.26361i) q^{91} -1.99931 q^{92} +(-1.81214 - 3.13872i) q^{93} +(0.154417 - 0.267458i) q^{94} +(-6.62383 + 11.4728i) q^{95} +(-0.157467 - 0.272740i) q^{96} +2.53740 q^{97} +(0.148584 + 0.108183i) q^{98} +0.660156 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 3q^{2} + 10q^{3} - 15q^{4} + 5q^{5} - 6q^{6} + 18q^{8} - 10q^{9} + O(q^{10}) \) \( 20q - 3q^{2} + 10q^{3} - 15q^{4} + 5q^{5} - 6q^{6} + 18q^{8} - 10q^{9} - 11q^{10} - 8q^{11} + 15q^{12} + 11q^{14} + 10q^{15} - 37q^{16} + 11q^{17} - 3q^{18} - q^{19} - 30q^{20} + 12q^{22} - 10q^{23} + 9q^{24} - 21q^{25} - q^{26} - 20q^{27} + 44q^{28} + 44q^{29} + 11q^{30} + 3q^{31} - 11q^{32} + 8q^{33} - 6q^{34} - 9q^{35} + 30q^{36} + 3q^{37} - 16q^{38} - 39q^{40} - 52q^{41} + 7q^{42} + 54q^{43} - 16q^{44} + 5q^{45} - 3q^{46} - 11q^{47} - 74q^{48} + 22q^{49} + 4q^{50} - 11q^{51} - 29q^{52} - 5q^{53} + 3q^{54} - 36q^{55} + 43q^{56} - 2q^{57} - 16q^{58} + 10q^{59} - 15q^{60} - 22q^{61} - 64q^{62} + 138q^{64} + 11q^{65} + 6q^{66} + 2q^{67} + 21q^{68} - 20q^{69} + 84q^{70} + 54q^{71} - 9q^{72} + 8q^{73} - 14q^{74} + 21q^{75} - 44q^{76} + 8q^{77} - 2q^{78} - 21q^{79} + 53q^{80} - 10q^{81} - 36q^{82} - 24q^{83} + 25q^{84} + 46q^{85} - 18q^{86} + 22q^{87} + 10q^{88} - 6q^{89} + 22q^{90} - 62q^{91} + 30q^{92} - 3q^{93} - 35q^{94} - 44q^{95} + 11q^{96} + 12q^{97} + 2q^{98} + 16q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0131282 + 0.0227388i 0.00928307 + 0.0160788i 0.870630 0.491939i \(-0.163712\pi\)
−0.861347 + 0.508018i \(0.830378\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0.999655 1.73145i 0.499828 0.865727i
\(5\) −1.38914 2.40606i −0.621243 1.07602i −0.989255 0.146203i \(-0.953295\pi\)
0.368012 0.929821i \(-0.380039\pi\)
\(6\) 0.0262565 0.0107192
\(7\) −2.58821 + 0.548771i −0.978253 + 0.207416i
\(8\) 0.105008 0.0371259
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0.0364740 0.0631748i 0.0115341 0.0199776i
\(11\) −0.330078 + 0.571712i −0.0995223 + 0.172378i −0.911487 0.411329i \(-0.865065\pi\)
0.811965 + 0.583706i \(0.198398\pi\)
\(12\) −0.999655 1.73145i −0.288576 0.499828i
\(13\) 4.12488 1.14404 0.572018 0.820241i \(-0.306161\pi\)
0.572018 + 0.820241i \(0.306161\pi\)
\(14\) −0.0464571 0.0516484i −0.0124162 0.0138036i
\(15\) −2.77828 −0.717349
\(16\) −1.99793 3.46052i −0.499483 0.865130i
\(17\) −2.06190 + 3.57132i −0.500085 + 0.866173i 0.499915 + 0.866074i \(0.333365\pi\)
−1.00000 9.81912e-5i \(0.999969\pi\)
\(18\) 0.0131282 0.0227388i 0.00309436 0.00535958i
\(19\) −2.38414 4.12946i −0.546960 0.947363i −0.998481 0.0551022i \(-0.982452\pi\)
0.451520 0.892261i \(-0.350882\pi\)
\(20\) −5.55465 −1.24206
\(21\) −0.818857 + 2.51584i −0.178689 + 0.549002i
\(22\) −0.0173334 −0.00369549
\(23\) −0.500000 0.866025i −0.104257 0.180579i
\(24\) 0.0525039 0.0909395i 0.0107173 0.0185629i
\(25\) −1.35943 + 2.35460i −0.271885 + 0.470919i
\(26\) 0.0541524 + 0.0937947i 0.0106202 + 0.0183947i
\(27\) −1.00000 −0.192450
\(28\) −1.63715 + 5.02995i −0.309392 + 0.950572i
\(29\) −1.78025 −0.330583 −0.165292 0.986245i \(-0.552857\pi\)
−0.165292 + 0.986245i \(0.552857\pi\)
\(30\) −0.0364740 0.0631748i −0.00665921 0.0115341i
\(31\) 1.81214 3.13872i 0.325471 0.563732i −0.656137 0.754642i \(-0.727811\pi\)
0.981607 + 0.190910i \(0.0611440\pi\)
\(32\) 0.157467 0.272740i 0.0278364 0.0482141i
\(33\) 0.330078 + 0.571712i 0.0574592 + 0.0995223i
\(34\) −0.108277 −0.0185693
\(35\) 4.91577 + 5.46509i 0.830917 + 0.923768i
\(36\) −1.99931 −0.333218
\(37\) 4.03105 + 6.98199i 0.662701 + 1.14783i 0.979903 + 0.199474i \(0.0639233\pi\)
−0.317202 + 0.948358i \(0.602743\pi\)
\(38\) 0.0625993 0.108425i 0.0101549 0.0175889i
\(39\) 2.06244 3.57225i 0.330254 0.572018i
\(40\) −0.145871 0.252656i −0.0230642 0.0399484i
\(41\) −7.99969 −1.24934 −0.624671 0.780888i \(-0.714767\pi\)
−0.624671 + 0.780888i \(0.714767\pi\)
\(42\) −0.0679574 + 0.0144088i −0.0104861 + 0.00222333i
\(43\) 12.5842 1.91907 0.959536 0.281585i \(-0.0908601\pi\)
0.959536 + 0.281585i \(0.0908601\pi\)
\(44\) 0.659929 + 1.14303i 0.0994880 + 0.172318i
\(45\) −1.38914 + 2.40606i −0.207081 + 0.358675i
\(46\) 0.0131282 0.0227388i 0.00193565 0.00335265i
\(47\) −5.88109 10.1864i −0.857846 1.48583i −0.873980 0.485962i \(-0.838469\pi\)
0.0161343 0.999870i \(-0.494864\pi\)
\(48\) −3.99586 −0.576753
\(49\) 6.39770 2.84067i 0.913957 0.405811i
\(50\) −0.0713876 −0.0100957
\(51\) 2.06190 + 3.57132i 0.288724 + 0.500085i
\(52\) 4.12346 7.14203i 0.571820 0.990422i
\(53\) 0.0304128 0.0526766i 0.00417752 0.00723568i −0.863929 0.503613i \(-0.832004\pi\)
0.868107 + 0.496378i \(0.165337\pi\)
\(54\) −0.0131282 0.0227388i −0.00178653 0.00309436i
\(55\) 1.83410 0.247310
\(56\) −0.271783 + 0.0576253i −0.0363185 + 0.00770050i
\(57\) −4.76829 −0.631575
\(58\) −0.0233715 0.0404806i −0.00306883 0.00531537i
\(59\) 4.49359 7.78312i 0.585015 1.01328i −0.409859 0.912149i \(-0.634422\pi\)
0.994874 0.101127i \(-0.0322447\pi\)
\(60\) −2.77732 + 4.81047i −0.358551 + 0.621029i
\(61\) −1.35633 2.34924i −0.173661 0.300789i 0.766036 0.642797i \(-0.222226\pi\)
−0.939697 + 0.342008i \(0.888893\pi\)
\(62\) 0.0951611 0.0120855
\(63\) 1.76936 + 1.96707i 0.222918 + 0.247828i
\(64\) −7.98346 −0.997932
\(65\) −5.73004 9.92471i −0.710724 1.23101i
\(66\) −0.00866669 + 0.0150112i −0.00106680 + 0.00184774i
\(67\) 1.34291 2.32600i 0.164063 0.284166i −0.772259 0.635308i \(-0.780873\pi\)
0.936322 + 0.351142i \(0.114207\pi\)
\(68\) 4.12239 + 7.14018i 0.499913 + 0.865874i
\(69\) −1.00000 −0.120386
\(70\) −0.0597339 + 0.183526i −0.00713957 + 0.0219355i
\(71\) 12.4462 1.47709 0.738545 0.674205i \(-0.235513\pi\)
0.738545 + 0.674205i \(0.235513\pi\)
\(72\) −0.0525039 0.0909395i −0.00618765 0.0107173i
\(73\) 7.14354 12.3730i 0.836088 1.44815i −0.0570543 0.998371i \(-0.518171\pi\)
0.893142 0.449775i \(-0.148496\pi\)
\(74\) −0.105841 + 0.183323i −0.0123038 + 0.0213108i
\(75\) 1.35943 + 2.35460i 0.156973 + 0.271885i
\(76\) −9.53329 −1.09354
\(77\) 0.540574 1.66085i 0.0616041 0.189271i
\(78\) 0.108305 0.0122631
\(79\) 3.47399 + 6.01712i 0.390854 + 0.676979i 0.992562 0.121737i \(-0.0388464\pi\)
−0.601708 + 0.798716i \(0.705513\pi\)
\(80\) −5.55082 + 9.61430i −0.620600 + 1.07491i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −0.105022 0.181903i −0.0115977 0.0200879i
\(83\) 9.40856 1.03272 0.516362 0.856371i \(-0.327286\pi\)
0.516362 + 0.856371i \(0.327286\pi\)
\(84\) 3.53749 + 3.93279i 0.385972 + 0.429103i
\(85\) 11.4571 1.24270
\(86\) 0.165208 + 0.286150i 0.0178149 + 0.0308563i
\(87\) −0.890123 + 1.54174i −0.0954312 + 0.165292i
\(88\) −0.0346608 + 0.0600343i −0.00369485 + 0.00639967i
\(89\) 2.96215 + 5.13060i 0.313987 + 0.543842i 0.979222 0.202793i \(-0.0650017\pi\)
−0.665234 + 0.746635i \(0.731668\pi\)
\(90\) −0.0729480 −0.00768939
\(91\) −10.6761 + 2.26361i −1.11916 + 0.237291i
\(92\) −1.99931 −0.208443
\(93\) −1.81214 3.13872i −0.187911 0.325471i
\(94\) 0.154417 0.267458i 0.0159269 0.0275862i
\(95\) −6.62383 + 11.4728i −0.679590 + 1.17708i
\(96\) −0.157467 0.272740i −0.0160714 0.0278364i
\(97\) 2.53740 0.257634 0.128817 0.991668i \(-0.458882\pi\)
0.128817 + 0.991668i \(0.458882\pi\)
\(98\) 0.148584 + 0.108183i 0.0150093 + 0.0109281i
\(99\) 0.660156 0.0663482
\(100\) 2.71792 + 4.70757i 0.271792 + 0.470757i
\(101\) −3.35589 + 5.81257i −0.333923 + 0.578372i −0.983277 0.182114i \(-0.941706\pi\)
0.649354 + 0.760486i \(0.275039\pi\)
\(102\) −0.0541384 + 0.0937704i −0.00536050 + 0.00928465i
\(103\) −5.37391 9.30788i −0.529507 0.917132i −0.999408 0.0344133i \(-0.989044\pi\)
0.469901 0.882719i \(-0.344290\pi\)
\(104\) 0.433145 0.0424733
\(105\) 7.19079 1.52464i 0.701749 0.148790i
\(106\) 0.00159707 0.000155121
\(107\) 0.242278 + 0.419638i 0.0234219 + 0.0405679i 0.877499 0.479579i \(-0.159211\pi\)
−0.854077 + 0.520147i \(0.825877\pi\)
\(108\) −0.999655 + 1.73145i −0.0961919 + 0.166609i
\(109\) −6.23260 + 10.7952i −0.596975 + 1.03399i 0.396290 + 0.918126i \(0.370298\pi\)
−0.993265 + 0.115866i \(0.963036\pi\)
\(110\) 0.0240785 + 0.0417052i 0.00229580 + 0.00397644i
\(111\) 8.06211 0.765221
\(112\) 7.07011 + 7.86016i 0.668062 + 0.742715i
\(113\) 9.28875 0.873812 0.436906 0.899507i \(-0.356074\pi\)
0.436906 + 0.899507i \(0.356074\pi\)
\(114\) −0.0625993 0.108425i −0.00586296 0.0101549i
\(115\) −1.38914 + 2.40606i −0.129538 + 0.224367i
\(116\) −1.77963 + 3.08241i −0.165235 + 0.286195i
\(117\) −2.06244 3.57225i −0.190673 0.330254i
\(118\) 0.235972 0.0217229
\(119\) 3.37681 10.3749i 0.309552 0.951062i
\(120\) −0.291742 −0.0266322
\(121\) 5.28210 + 9.14886i 0.480191 + 0.831715i
\(122\) 0.0356126 0.0616828i 0.00322421 0.00558450i
\(123\) −3.99984 + 6.92793i −0.360654 + 0.624671i
\(124\) −3.62304 6.27529i −0.325358 0.563537i
\(125\) −6.33767 −0.566858
\(126\) −0.0215003 + 0.0660573i −0.00191540 + 0.00588485i
\(127\) 2.40074 0.213031 0.106515 0.994311i \(-0.466031\pi\)
0.106515 + 0.994311i \(0.466031\pi\)
\(128\) −0.419742 0.727014i −0.0371003 0.0642596i
\(129\) 6.29210 10.8982i 0.553989 0.959536i
\(130\) 0.150451 0.260588i 0.0131954 0.0228551i
\(131\) 10.0752 + 17.4508i 0.880278 + 1.52469i 0.851032 + 0.525114i \(0.175977\pi\)
0.0292458 + 0.999572i \(0.490689\pi\)
\(132\) 1.31986 0.114879
\(133\) 8.43680 + 9.37957i 0.731564 + 0.813312i
\(134\) 0.0705204 0.00609204
\(135\) 1.38914 + 2.40606i 0.119558 + 0.207081i
\(136\) −0.216516 + 0.375017i −0.0185661 + 0.0321574i
\(137\) −3.50329 + 6.06788i −0.299306 + 0.518414i −0.975977 0.217872i \(-0.930089\pi\)
0.676671 + 0.736285i \(0.263422\pi\)
\(138\) −0.0131282 0.0227388i −0.00111755 0.00193565i
\(139\) −2.88510 −0.244711 −0.122356 0.992486i \(-0.539045\pi\)
−0.122356 + 0.992486i \(0.539045\pi\)
\(140\) 14.3766 3.04823i 1.21505 0.257623i
\(141\) −11.7622 −0.990555
\(142\) 0.163396 + 0.283011i 0.0137119 + 0.0237497i
\(143\) −1.36153 + 2.35824i −0.113857 + 0.197206i
\(144\) −1.99793 + 3.46052i −0.166494 + 0.288377i
\(145\) 2.47301 + 4.28338i 0.205373 + 0.355716i
\(146\) 0.375128 0.0310458
\(147\) 0.738754 6.96091i 0.0609314 0.574126i
\(148\) 16.1187 1.32495
\(149\) −9.53041 16.5072i −0.780762 1.35232i −0.931498 0.363745i \(-0.881498\pi\)
0.150737 0.988574i \(-0.451835\pi\)
\(150\) −0.0356938 + 0.0618234i −0.00291438 + 0.00504786i
\(151\) 2.53145 4.38460i 0.206006 0.356813i −0.744447 0.667682i \(-0.767287\pi\)
0.950453 + 0.310869i \(0.100620\pi\)
\(152\) −0.250354 0.433626i −0.0203064 0.0351717i
\(153\) 4.12381 0.333390
\(154\) 0.0448625 0.00951206i 0.00361512 0.000766504i
\(155\) −10.0693 −0.808785
\(156\) −4.12346 7.14203i −0.330141 0.571820i
\(157\) 1.37194 2.37627i 0.109493 0.189647i −0.806072 0.591817i \(-0.798411\pi\)
0.915565 + 0.402170i \(0.131744\pi\)
\(158\) −0.0912147 + 0.157988i −0.00725665 + 0.0125689i
\(159\) −0.0304128 0.0526766i −0.00241189 0.00417752i
\(160\) −0.874973 −0.0691727
\(161\) 1.76936 + 1.96707i 0.139445 + 0.155027i
\(162\) −0.0262565 −0.00206290
\(163\) −7.65440 13.2578i −0.599539 1.03843i −0.992889 0.119043i \(-0.962017\pi\)
0.393350 0.919389i \(-0.371316\pi\)
\(164\) −7.99693 + 13.8511i −0.624455 + 1.08159i
\(165\) 0.917050 1.58838i 0.0713923 0.123655i
\(166\) 0.123518 + 0.213939i 0.00958685 + 0.0166049i
\(167\) 13.0016 1.00610 0.503049 0.864258i \(-0.332212\pi\)
0.503049 + 0.864258i \(0.332212\pi\)
\(168\) −0.0859864 + 0.264183i −0.00663400 + 0.0203822i
\(169\) 4.01461 0.308816
\(170\) 0.150412 + 0.260521i 0.0115360 + 0.0199810i
\(171\) −2.38414 + 4.12946i −0.182320 + 0.315788i
\(172\) 12.5799 21.7890i 0.959206 1.66139i
\(173\) 5.21101 + 9.02574i 0.396186 + 0.686214i 0.993252 0.115978i \(-0.0370002\pi\)
−0.597066 + 0.802192i \(0.703667\pi\)
\(174\) −0.0467430 −0.00354358
\(175\) 2.22635 6.84021i 0.168296 0.517071i
\(176\) 2.63789 0.198839
\(177\) −4.49359 7.78312i −0.337759 0.585015i
\(178\) −0.0777757 + 0.134711i −0.00582953 + 0.0100971i
\(179\) −9.61157 + 16.6477i −0.718402 + 1.24431i 0.243230 + 0.969969i \(0.421793\pi\)
−0.961633 + 0.274341i \(0.911540\pi\)
\(180\) 2.77732 + 4.81047i 0.207010 + 0.358551i
\(181\) −11.1552 −0.829162 −0.414581 0.910012i \(-0.636072\pi\)
−0.414581 + 0.910012i \(0.636072\pi\)
\(182\) −0.191630 0.213043i −0.0142045 0.0157918i
\(183\) −2.71267 −0.200526
\(184\) −0.0525039 0.0909395i −0.00387064 0.00670415i
\(185\) 11.1994 19.3979i 0.823397 1.42616i
\(186\) 0.0475805 0.0824119i 0.00348877 0.00604273i
\(187\) −1.36118 2.35763i −0.0995392 0.172407i
\(188\) −23.5163 −1.71510
\(189\) 2.58821 0.548771i 0.188265 0.0399172i
\(190\) −0.347837 −0.0252347
\(191\) −9.61731 16.6577i −0.695884 1.20531i −0.969882 0.243576i \(-0.921679\pi\)
0.273998 0.961730i \(-0.411654\pi\)
\(192\) −3.99173 + 6.91388i −0.288078 + 0.498966i
\(193\) −8.72634 + 15.1145i −0.628136 + 1.08796i 0.359790 + 0.933033i \(0.382849\pi\)
−0.987925 + 0.154930i \(0.950485\pi\)
\(194\) 0.0333116 + 0.0576974i 0.00239163 + 0.00414243i
\(195\) −11.4601 −0.820673
\(196\) 1.47700 13.9170i 0.105500 0.994073i
\(197\) −1.16239 −0.0828168 −0.0414084 0.999142i \(-0.513184\pi\)
−0.0414084 + 0.999142i \(0.513184\pi\)
\(198\) 0.00866669 + 0.0150112i 0.000615915 + 0.00106680i
\(199\) −8.48842 + 14.7024i −0.601728 + 1.04222i 0.390831 + 0.920462i \(0.372188\pi\)
−0.992559 + 0.121761i \(0.961146\pi\)
\(200\) −0.142751 + 0.247251i −0.0100940 + 0.0174833i
\(201\) −1.34291 2.32600i −0.0947219 0.164063i
\(202\) −0.176228 −0.0123993
\(203\) 4.60766 0.976948i 0.323394 0.0685683i
\(204\) 8.24477 0.577249
\(205\) 11.1127 + 19.2478i 0.776145 + 1.34432i
\(206\) 0.141100 0.244392i 0.00983090 0.0170276i
\(207\) −0.500000 + 0.866025i −0.0347524 + 0.0601929i
\(208\) −8.24122 14.2742i −0.571426 0.989739i
\(209\) 3.14782 0.217739
\(210\) 0.129071 + 0.143494i 0.00890674 + 0.00990202i
\(211\) 11.6924 0.804938 0.402469 0.915434i \(-0.368152\pi\)
0.402469 + 0.915434i \(0.368152\pi\)
\(212\) −0.0608047 0.105317i −0.00417608 0.00723319i
\(213\) 6.22309 10.7787i 0.426399 0.738545i
\(214\) −0.00636137 + 0.0110182i −0.000434854 + 0.000753189i
\(215\) −17.4812 30.2784i −1.19221 2.06497i
\(216\) −0.105008 −0.00714488
\(217\) −2.96777 + 9.11814i −0.201466 + 0.618980i
\(218\) −0.327293 −0.0221671
\(219\) −7.14354 12.3730i −0.482715 0.836088i
\(220\) 1.83347 3.17566i 0.123612 0.214103i
\(221\) −8.50510 + 14.7313i −0.572115 + 0.990932i
\(222\) 0.105841 + 0.183323i 0.00710360 + 0.0123038i
\(223\) −15.5087 −1.03854 −0.519270 0.854610i \(-0.673796\pi\)
−0.519270 + 0.854610i \(0.673796\pi\)
\(224\) −0.257885 + 0.792323i −0.0172307 + 0.0529393i
\(225\) 2.71885 0.181257
\(226\) 0.121945 + 0.211215i 0.00811166 + 0.0140498i
\(227\) 7.66648 13.2787i 0.508842 0.881340i −0.491105 0.871100i \(-0.663407\pi\)
0.999948 0.0102402i \(-0.00325962\pi\)
\(228\) −4.76665 + 8.25607i −0.315679 + 0.546772i
\(229\) 3.20242 + 5.54675i 0.211622 + 0.366540i 0.952222 0.305406i \(-0.0987922\pi\)
−0.740600 + 0.671946i \(0.765459\pi\)
\(230\) −0.0729480 −0.00481005
\(231\) −1.16805 1.29858i −0.0768522 0.0854400i
\(232\) −0.186940 −0.0122732
\(233\) 13.0715 + 22.6405i 0.856344 + 1.48323i 0.875393 + 0.483413i \(0.160603\pi\)
−0.0190487 + 0.999819i \(0.506064\pi\)
\(234\) 0.0541524 0.0937947i 0.00354005 0.00613155i
\(235\) −16.3393 + 28.3006i −1.06586 + 1.84613i
\(236\) −8.98407 15.5609i −0.584813 1.01293i
\(237\) 6.94797 0.451319
\(238\) 0.280243 0.0594191i 0.0181655 0.00385157i
\(239\) 17.6773 1.14345 0.571724 0.820446i \(-0.306275\pi\)
0.571724 + 0.820446i \(0.306275\pi\)
\(240\) 5.55082 + 9.61430i 0.358304 + 0.620600i
\(241\) −2.87985 + 4.98804i −0.185507 + 0.321308i −0.943747 0.330668i \(-0.892726\pi\)
0.758240 + 0.651975i \(0.226059\pi\)
\(242\) −0.138689 + 0.240217i −0.00891529 + 0.0154417i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) −5.42347 −0.347202
\(245\) −15.7222 11.4472i −1.00445 0.731333i
\(246\) −0.210044 −0.0133919
\(247\) −9.83430 17.0335i −0.625742 1.08382i
\(248\) 0.190289 0.329591i 0.0120834 0.0209290i
\(249\) 4.70428 8.14805i 0.298122 0.516362i
\(250\) −0.0832025 0.144111i −0.00526219 0.00911438i
\(251\) −10.3866 −0.655597 −0.327798 0.944748i \(-0.606307\pi\)
−0.327798 + 0.944748i \(0.606307\pi\)
\(252\) 5.17464 1.09716i 0.325972 0.0691148i
\(253\) 0.660156 0.0415037
\(254\) 0.0315175 + 0.0545898i 0.00197758 + 0.00342527i
\(255\) 5.72855 9.92214i 0.358736 0.621348i
\(256\) −7.97244 + 13.8087i −0.498277 + 0.863042i
\(257\) 1.34924 + 2.33695i 0.0841633 + 0.145775i 0.905034 0.425338i \(-0.139845\pi\)
−0.820871 + 0.571114i \(0.806512\pi\)
\(258\) 0.330417 0.0205709
\(259\) −14.2647 15.8588i −0.886368 0.985415i
\(260\) −22.9122 −1.42096
\(261\) 0.890123 + 1.54174i 0.0550972 + 0.0954312i
\(262\) −0.264540 + 0.458198i −0.0163434 + 0.0283075i
\(263\) 10.5745 18.3156i 0.652053 1.12939i −0.330571 0.943781i \(-0.607241\pi\)
0.982624 0.185607i \(-0.0594253\pi\)
\(264\) 0.0346608 + 0.0600343i 0.00213322 + 0.00369485i
\(265\) −0.168991 −0.0103810
\(266\) −0.102520 + 0.314980i −0.00628589 + 0.0193127i
\(267\) 5.92430 0.362561
\(268\) −2.68490 4.65039i −0.164007 0.284068i
\(269\) 14.2705 24.7173i 0.870090 1.50704i 0.00818685 0.999966i \(-0.497394\pi\)
0.861903 0.507073i \(-0.169273\pi\)
\(270\) −0.0364740 + 0.0631748i −0.00221974 + 0.00384469i
\(271\) −7.57362 13.1179i −0.460065 0.796856i 0.538899 0.842371i \(-0.318841\pi\)
−0.998964 + 0.0455148i \(0.985507\pi\)
\(272\) 16.4782 0.999136
\(273\) −3.37768 + 10.3775i −0.204427 + 0.628078i
\(274\) −0.183968 −0.0111139
\(275\) −0.897434 1.55440i −0.0541173 0.0937339i
\(276\) −0.999655 + 1.73145i −0.0601722 + 0.104221i
\(277\) −2.11859 + 3.66950i −0.127294 + 0.220479i −0.922627 0.385693i \(-0.873962\pi\)
0.795334 + 0.606172i \(0.207296\pi\)
\(278\) −0.0378764 0.0656038i −0.00227167 0.00393465i
\(279\) −3.62429 −0.216980
\(280\) 0.516195 + 0.573877i 0.0308485 + 0.0342957i
\(281\) 0.762123 0.0454645 0.0227322 0.999742i \(-0.492763\pi\)
0.0227322 + 0.999742i \(0.492763\pi\)
\(282\) −0.154417 0.267458i −0.00919539 0.0159269i
\(283\) −8.58570 + 14.8709i −0.510367 + 0.883981i 0.489561 + 0.871969i \(0.337157\pi\)
−0.999928 + 0.0120120i \(0.996176\pi\)
\(284\) 12.4419 21.5500i 0.738290 1.27876i
\(285\) 6.62383 + 11.4728i 0.392362 + 0.679590i
\(286\) −0.0714981 −0.00422777
\(287\) 20.7049 4.39000i 1.22217 0.259133i
\(288\) −0.314933 −0.0185576
\(289\) −0.00289139 0.00500804i −0.000170082 0.000294590i
\(290\) −0.0649327 + 0.112467i −0.00381298 + 0.00660427i
\(291\) 1.26870 2.19745i 0.0743724 0.128817i
\(292\) −14.2821 24.7374i −0.835799 1.44765i
\(293\) −1.15566 −0.0675144 −0.0337572 0.999430i \(-0.510747\pi\)
−0.0337572 + 0.999430i \(0.510747\pi\)
\(294\) 0.167981 0.0745861i 0.00979686 0.00434995i
\(295\) −24.9689 −1.45375
\(296\) 0.423292 + 0.733164i 0.0246034 + 0.0426143i
\(297\) 0.330078 0.571712i 0.0191531 0.0331741i
\(298\) 0.250235 0.433420i 0.0144957 0.0251074i
\(299\) −2.06244 3.57225i −0.119274 0.206588i
\(300\) 5.43583 0.313838
\(301\) −32.5706 + 6.90585i −1.87734 + 0.398046i
\(302\) 0.132934 0.00764949
\(303\) 3.35589 + 5.81257i 0.192791 + 0.333923i
\(304\) −9.52672 + 16.5008i −0.546395 + 0.946383i
\(305\) −3.76828 + 6.52685i −0.215771 + 0.373727i
\(306\) 0.0541384 + 0.0937704i 0.00309488 + 0.00536050i
\(307\) 31.0365 1.77135 0.885673 0.464310i \(-0.153698\pi\)
0.885673 + 0.464310i \(0.153698\pi\)
\(308\) −2.33530 2.59626i −0.133066 0.147935i
\(309\) −10.7478 −0.611422
\(310\) −0.132192 0.228964i −0.00750801 0.0130043i
\(311\) −8.80703 + 15.2542i −0.499401 + 0.864987i −1.00000 0.000691900i \(-0.999780\pi\)
0.500599 + 0.865679i \(0.333113\pi\)
\(312\) 0.216572 0.375114i 0.0122610 0.0212367i
\(313\) −7.87031 13.6318i −0.444856 0.770514i 0.553186 0.833058i \(-0.313412\pi\)
−0.998042 + 0.0625441i \(0.980079\pi\)
\(314\) 0.0720446 0.00406571
\(315\) 2.27502 6.98973i 0.128183 0.393826i
\(316\) 13.8912 0.781438
\(317\) 2.61070 + 4.52186i 0.146631 + 0.253973i 0.929980 0.367609i \(-0.119824\pi\)
−0.783349 + 0.621582i \(0.786490\pi\)
\(318\) 0.000798534 0.00138310i 4.47796e−5 7.75605e-5i
\(319\) 0.587620 1.01779i 0.0329004 0.0569852i
\(320\) 11.0902 + 19.2087i 0.619958 + 1.07380i
\(321\) 0.484556 0.0270453
\(322\) −0.0215003 + 0.0660573i −0.00119817 + 0.00368123i
\(323\) 19.6635 1.09411
\(324\) 0.999655 + 1.73145i 0.0555364 + 0.0961919i
\(325\) −5.60747 + 9.71242i −0.311046 + 0.538748i
\(326\) 0.200978 0.348104i 0.0111311 0.0192797i
\(327\) 6.23260 + 10.7952i 0.344664 + 0.596975i
\(328\) −0.840030 −0.0463829
\(329\) 20.8115 + 23.1371i 1.14738 + 1.27559i
\(330\) 0.0481570 0.00265096
\(331\) 6.97246 + 12.0767i 0.383241 + 0.663793i 0.991524 0.129927i \(-0.0414744\pi\)
−0.608282 + 0.793721i \(0.708141\pi\)
\(332\) 9.40532 16.2905i 0.516184 0.894057i
\(333\) 4.03105 6.98199i 0.220900 0.382611i
\(334\) 0.170689 + 0.295642i 0.00933967 + 0.0161768i
\(335\) −7.46199 −0.407692
\(336\) 10.3422 2.19282i 0.564211 0.119628i
\(337\) 9.28645 0.505865 0.252933 0.967484i \(-0.418605\pi\)
0.252933 + 0.967484i \(0.418605\pi\)
\(338\) 0.0527048 + 0.0912874i 0.00286676 + 0.00496538i
\(339\) 4.64438 8.04429i 0.252248 0.436906i
\(340\) 11.4532 19.8374i 0.621134 1.07584i
\(341\) 1.19630 + 2.07205i 0.0647832 + 0.112208i
\(342\) −0.125199 −0.00676996
\(343\) −14.9997 + 10.8631i −0.809910 + 0.586555i
\(344\) 1.32144 0.0712473
\(345\) 1.38914 + 2.40606i 0.0747888 + 0.129538i
\(346\) −0.136823 + 0.236984i −0.00735565 + 0.0127404i
\(347\) −3.83747 + 6.64670i −0.206006 + 0.356813i −0.950453 0.310869i \(-0.899380\pi\)
0.744447 + 0.667682i \(0.232713\pi\)
\(348\) 1.77963 + 3.08241i 0.0953983 + 0.165235i
\(349\) 5.71924 0.306144 0.153072 0.988215i \(-0.451083\pi\)
0.153072 + 0.988215i \(0.451083\pi\)
\(350\) 0.184766 0.0391754i 0.00987617 0.00209401i
\(351\) −4.12488 −0.220170
\(352\) 0.103953 + 0.180051i 0.00554069 + 0.00959675i
\(353\) −6.70980 + 11.6217i −0.357127 + 0.618561i −0.987480 0.157747i \(-0.949577\pi\)
0.630353 + 0.776309i \(0.282910\pi\)
\(354\) 0.117986 0.204357i 0.00627087 0.0108615i
\(355\) −17.2895 29.9463i −0.917631 1.58938i
\(356\) 11.8445 0.627758
\(357\) −7.29649 8.11183i −0.386171 0.429324i
\(358\) −0.504732 −0.0266759
\(359\) −8.93291 15.4723i −0.471461 0.816594i 0.528006 0.849241i \(-0.322940\pi\)
−0.999467 + 0.0326463i \(0.989607\pi\)
\(360\) −0.145871 + 0.252656i −0.00768806 + 0.0133161i
\(361\) −1.86829 + 3.23597i −0.0983311 + 0.170314i
\(362\) −0.146449 0.253656i −0.00769717 0.0133319i
\(363\) 10.5642 0.554476
\(364\) −6.75304 + 20.7479i −0.353956 + 1.08749i
\(365\) −39.6935 −2.07765
\(366\) −0.0356126 0.0616828i −0.00186150 0.00322421i
\(367\) −13.0761 + 22.6484i −0.682566 + 1.18224i 0.291630 + 0.956531i \(0.405803\pi\)
−0.974195 + 0.225707i \(0.927531\pi\)
\(368\) −1.99793 + 3.46052i −0.104149 + 0.180392i
\(369\) 3.99984 + 6.92793i 0.208224 + 0.360654i
\(370\) 0.588114 0.0305746
\(371\) −0.0498075 + 0.153028i −0.00258588 + 0.00794481i
\(372\) −7.24608 −0.375692
\(373\) −10.0650 17.4331i −0.521147 0.902653i −0.999698 0.0245929i \(-0.992171\pi\)
0.478551 0.878060i \(-0.341162\pi\)
\(374\) 0.0357398 0.0619031i 0.00184806 0.00320093i
\(375\) −3.16883 + 5.48858i −0.163638 + 0.283429i
\(376\) −0.617561 1.06965i −0.0318483 0.0551628i
\(377\) −7.34330 −0.378199
\(378\) 0.0464571 + 0.0516484i 0.00238950 + 0.00265651i
\(379\) 8.04896 0.413447 0.206724 0.978399i \(-0.433720\pi\)
0.206724 + 0.978399i \(0.433720\pi\)
\(380\) 13.2431 + 22.9377i 0.679356 + 1.17668i
\(381\) 1.20037 2.07910i 0.0614967 0.106515i
\(382\) 0.252517 0.437372i 0.0129199 0.0223779i
\(383\) −10.0347 17.3806i −0.512749 0.888107i −0.999891 0.0147842i \(-0.995294\pi\)
0.487142 0.873323i \(-0.338039\pi\)
\(384\) −0.839484 −0.0428397
\(385\) −4.74704 + 1.00650i −0.241932 + 0.0512961i
\(386\) −0.458246 −0.0233241
\(387\) −6.29210 10.8982i −0.319845 0.553989i
\(388\) 2.53652 4.39339i 0.128772 0.223040i
\(389\) −6.22581 + 10.7834i −0.315661 + 0.546741i −0.979578 0.201066i \(-0.935560\pi\)
0.663917 + 0.747806i \(0.268893\pi\)
\(390\) −0.150451 0.260588i −0.00761837 0.0131954i
\(391\) 4.12381 0.208550
\(392\) 0.671809 0.298293i 0.0339315 0.0150661i
\(393\) 20.1505 1.01646
\(394\) −0.0152601 0.0264313i −0.000768795 0.00133159i
\(395\) 9.65171 16.7173i 0.485630 0.841137i
\(396\) 0.659929 1.14303i 0.0331627 0.0574394i
\(397\) 3.46764 + 6.00613i 0.174036 + 0.301439i 0.939827 0.341650i \(-0.110986\pi\)
−0.765791 + 0.643089i \(0.777652\pi\)
\(398\) −0.445752 −0.0223435
\(399\) 12.3414 2.61670i 0.617840 0.130999i
\(400\) 10.8642 0.543208
\(401\) 7.20807 + 12.4847i 0.359954 + 0.623458i 0.987953 0.154756i \(-0.0494591\pi\)
−0.627999 + 0.778214i \(0.716126\pi\)
\(402\) 0.0352602 0.0610725i 0.00175862 0.00304602i
\(403\) 7.47487 12.9469i 0.372350 0.644929i
\(404\) 6.70946 + 11.6211i 0.333808 + 0.578173i
\(405\) 2.77828 0.138054
\(406\) 0.0827051 + 0.0919469i 0.00410458 + 0.00456325i
\(407\) −5.32225 −0.263814
\(408\) 0.216516 + 0.375017i 0.0107191 + 0.0185661i
\(409\) −12.0132 + 20.8075i −0.594016 + 1.02887i 0.399668 + 0.916660i \(0.369125\pi\)
−0.993685 + 0.112207i \(0.964208\pi\)
\(410\) −0.291780 + 0.505379i −0.0144100 + 0.0249589i
\(411\) 3.50329 + 6.06788i 0.172805 + 0.299306i
\(412\) −21.4882 −1.05865
\(413\) −7.35921 + 22.6103i −0.362123 + 1.11258i
\(414\) −0.0262565 −0.00129044
\(415\) −13.0698 22.6376i −0.641572 1.11124i
\(416\) 0.649530 1.12502i 0.0318458 0.0551586i
\(417\) −1.44255 + 2.49857i −0.0706421 + 0.122356i
\(418\) 0.0413253 + 0.0715775i 0.00202129 + 0.00350097i
\(419\) 31.8946 1.55815 0.779076 0.626930i \(-0.215689\pi\)
0.779076 + 0.626930i \(0.215689\pi\)
\(420\) 4.54846 13.9746i 0.221942 0.681892i
\(421\) −18.8400 −0.918205 −0.459102 0.888383i \(-0.651829\pi\)
−0.459102 + 0.888383i \(0.651829\pi\)
\(422\) 0.153501 + 0.265871i 0.00747230 + 0.0129424i
\(423\) −5.88109 + 10.1864i −0.285949 + 0.495277i
\(424\) 0.00319359 0.00553145i 0.000155094 0.000268631i
\(425\) −5.60601 9.70990i −0.271932 0.470999i
\(426\) 0.326793 0.0158332
\(427\) 4.79968 + 5.33602i 0.232273 + 0.258228i
\(428\) 0.968777 0.0468276
\(429\) 1.36153 + 2.35824i 0.0657354 + 0.113857i
\(430\) 0.458996 0.795004i 0.0221347 0.0383385i
\(431\) 18.1715 31.4740i 0.875292 1.51605i 0.0188408 0.999822i \(-0.494002\pi\)
0.856451 0.516228i \(-0.172664\pi\)
\(432\) 1.99793 + 3.46052i 0.0961255 + 0.166494i
\(433\) 21.5486 1.03556 0.517780 0.855514i \(-0.326759\pi\)
0.517780 + 0.855514i \(0.326759\pi\)
\(434\) −0.246297 + 0.0522217i −0.0118226 + 0.00250672i
\(435\) 4.94603 0.237144
\(436\) 12.4609 + 21.5829i 0.596769 + 1.03363i
\(437\) −2.38414 + 4.12946i −0.114049 + 0.197539i
\(438\) 0.187564 0.324871i 0.00896216 0.0155229i
\(439\) 5.36875 + 9.29896i 0.256237 + 0.443815i 0.965231 0.261400i \(-0.0841840\pi\)
−0.708994 + 0.705215i \(0.750851\pi\)
\(440\) 0.192595 0.00918160
\(441\) −5.65895 4.12023i −0.269474 0.196202i
\(442\) −0.446628 −0.0212439
\(443\) 16.9765 + 29.4042i 0.806580 + 1.39704i 0.915219 + 0.402957i \(0.132017\pi\)
−0.108639 + 0.994081i \(0.534649\pi\)
\(444\) 8.05933 13.9592i 0.382479 0.662473i
\(445\) 8.22969 14.2542i 0.390125 0.675716i
\(446\) −0.203602 0.352649i −0.00964083 0.0166984i
\(447\) −19.0608 −0.901546
\(448\) 20.6629 4.38109i 0.976230 0.206987i
\(449\) 6.94219 0.327622 0.163811 0.986492i \(-0.447621\pi\)
0.163811 + 0.986492i \(0.447621\pi\)
\(450\) 0.0356938 + 0.0618234i 0.00168262 + 0.00291438i
\(451\) 2.64052 4.57352i 0.124337 0.215359i
\(452\) 9.28555 16.0830i 0.436755 0.756483i
\(453\) −2.53145 4.38460i −0.118938 0.206006i
\(454\) 0.402590 0.0188945
\(455\) 20.2770 + 22.5428i 0.950598 + 1.05682i
\(456\) −0.500708 −0.0234478
\(457\) 19.7755 + 34.2521i 0.925057 + 1.60225i 0.791470 + 0.611208i \(0.209316\pi\)
0.133587 + 0.991037i \(0.457350\pi\)
\(458\) −0.0840843 + 0.145638i −0.00392900 + 0.00680523i
\(459\) 2.06190 3.57132i 0.0962414 0.166695i
\(460\) 2.77732 + 4.81047i 0.129493 + 0.224289i
\(461\) −4.90582 −0.228487 −0.114243 0.993453i \(-0.536444\pi\)
−0.114243 + 0.993453i \(0.536444\pi\)
\(462\) 0.0141936 0.0436081i 0.000660344 0.00202883i
\(463\) −0.772106 −0.0358828 −0.0179414 0.999839i \(-0.505711\pi\)
−0.0179414 + 0.999839i \(0.505711\pi\)
\(464\) 3.55681 + 6.16058i 0.165121 + 0.285998i
\(465\) −5.03465 + 8.72026i −0.233476 + 0.404393i
\(466\) −0.343212 + 0.594461i −0.0158990 + 0.0275379i
\(467\) 9.59886 + 16.6257i 0.444182 + 0.769347i 0.997995 0.0632949i \(-0.0201609\pi\)
−0.553812 + 0.832641i \(0.686828\pi\)
\(468\) −8.24691 −0.381214
\(469\) −2.19931 + 6.75713i −0.101555 + 0.312015i
\(470\) −0.858027 −0.0395778
\(471\) −1.37194 2.37627i −0.0632156 0.109493i
\(472\) 0.471862 0.817289i 0.0217192 0.0376188i
\(473\) −4.15377 + 7.19454i −0.190990 + 0.330805i
\(474\) 0.0912147 + 0.157988i 0.00418963 + 0.00725665i
\(475\) 12.9643 0.594842
\(476\) −14.5879 16.2181i −0.668637 0.743354i
\(477\) −0.0608257 −0.00278502
\(478\) 0.232072 + 0.401960i 0.0106147 + 0.0183852i
\(479\) 9.10522 15.7707i 0.416028 0.720582i −0.579508 0.814967i \(-0.696755\pi\)
0.995536 + 0.0943848i \(0.0300884\pi\)
\(480\) −0.437487 + 0.757749i −0.0199684 + 0.0345864i
\(481\) 16.6276 + 28.7998i 0.758153 + 1.31316i
\(482\) −0.151229 −0.00688830
\(483\) 2.58821 0.548771i 0.117768 0.0249700i
\(484\) 21.1211 0.960050
\(485\) −3.52480 6.10514i −0.160053 0.277220i
\(486\) −0.0131282 + 0.0227388i −0.000595509 + 0.00103145i
\(487\) 14.4406 25.0119i 0.654367 1.13340i −0.327684 0.944787i \(-0.606268\pi\)
0.982052 0.188611i \(-0.0603984\pi\)
\(488\) −0.142426 0.246689i −0.00644731 0.0111671i
\(489\) −15.3088 −0.692288
\(490\) 0.0538906 0.507784i 0.00243453 0.0229393i
\(491\) −23.6817 −1.06874 −0.534369 0.845251i \(-0.679451\pi\)
−0.534369 + 0.845251i \(0.679451\pi\)
\(492\) 7.99693 + 13.8511i 0.360530 + 0.624455i
\(493\) 3.67070 6.35783i 0.165320 0.286342i
\(494\) 0.258214 0.447240i 0.0116176 0.0201223i
\(495\) −0.917050 1.58838i −0.0412183 0.0713923i
\(496\) −14.4822 −0.650268
\(497\) −32.2134 + 6.83010i −1.44497 + 0.306372i
\(498\) 0.247036 0.0110699
\(499\) −12.6849 21.9710i −0.567856 0.983556i −0.996778 0.0802139i \(-0.974440\pi\)
0.428922 0.903342i \(-0.358894\pi\)
\(500\) −6.33548 + 10.9734i −0.283332 + 0.490745i
\(501\) 6.50082 11.2598i 0.290435 0.503049i
\(502\) −0.136358 0.236179i −0.00608595 0.0105412i
\(503\) −29.2636 −1.30480 −0.652400 0.757874i \(-0.726238\pi\)
−0.652400 + 0.757874i \(0.726238\pi\)
\(504\) 0.185796 + 0.206558i 0.00827603 + 0.00920083i
\(505\) 18.6472 0.829790
\(506\) 0.00866669 + 0.0150112i 0.000385281 + 0.000667327i
\(507\) 2.00731 3.47676i 0.0891476 0.154408i
\(508\) 2.39991 4.15676i 0.106479 0.184427i
\(509\) 20.3431 + 35.2353i 0.901692 + 1.56178i 0.825297 + 0.564699i \(0.191008\pi\)
0.0763952 + 0.997078i \(0.475659\pi\)
\(510\) 0.300823 0.0133207
\(511\) −11.6991 + 35.9440i −0.517536 + 1.59007i
\(512\) −2.09762 −0.0927028
\(513\) 2.38414 + 4.12946i 0.105263 + 0.182320i
\(514\) −0.0354263 + 0.0613602i −0.00156259 + 0.00270648i
\(515\) −14.9302 + 25.8599i −0.657904 + 1.13952i
\(516\) −12.5799 21.7890i −0.553798 0.959206i
\(517\) 7.76488 0.341499
\(518\) 0.173338 0.532561i 0.00761603 0.0233994i
\(519\) 10.4220 0.457476
\(520\) −0.601699 1.04217i −0.0263862 0.0457023i
\(521\) 16.8982 29.2686i 0.740326 1.28228i −0.212021 0.977265i \(-0.568005\pi\)
0.952347 0.305017i \(-0.0986621\pi\)
\(522\) −0.0233715 + 0.0404806i −0.00102294 + 0.00177179i
\(523\) −6.42837 11.1343i −0.281093 0.486867i 0.690561 0.723274i \(-0.257364\pi\)
−0.971654 + 0.236407i \(0.924030\pi\)
\(524\) 40.2871 1.75995
\(525\) −4.81062 5.34818i −0.209953 0.233414i
\(526\) 0.555300 0.0242122
\(527\) 7.47293 + 12.9435i 0.325526 + 0.563827i
\(528\) 1.31895 2.28448i 0.0573998 0.0994194i
\(529\) −0.500000 + 0.866025i −0.0217391 + 0.0376533i
\(530\) −0.00221855 0.00384265i −9.63678e−5 0.000166914i
\(531\) −8.98717 −0.390010
\(532\) 24.6742 5.23160i 1.06976 0.226818i
\(533\) −32.9977 −1.42929
\(534\) 0.0777757 + 0.134711i 0.00336568 + 0.00582953i
\(535\) 0.673116 1.16587i 0.0291014 0.0504050i
\(536\) 0.141017 0.244248i 0.00609099 0.0105499i
\(537\) 9.61157 + 16.6477i 0.414770 + 0.718402i
\(538\) 0.749388 0.0323084
\(539\) −0.487693 + 4.59529i −0.0210064 + 0.197933i
\(540\) 5.55465 0.239034
\(541\) 5.75329 + 9.96499i 0.247353 + 0.428428i 0.962791 0.270248i \(-0.0871059\pi\)
−0.715437 + 0.698677i \(0.753773\pi\)
\(542\) 0.198857 0.344430i 0.00854163 0.0147945i
\(543\) −5.57762 + 9.66071i −0.239358 + 0.414581i
\(544\) 0.649362 + 1.12473i 0.0278412 + 0.0482223i
\(545\) 34.6319 1.48347
\(546\) −0.280316 + 0.0594346i −0.0119964 + 0.00254356i
\(547\) 8.26280 0.353292 0.176646 0.984274i \(-0.443475\pi\)
0.176646 + 0.984274i \(0.443475\pi\)
\(548\) 7.00417 + 12.1316i 0.299203 + 0.518235i
\(549\) −1.35633 + 2.34924i −0.0578869 + 0.100263i
\(550\) 0.0235635 0.0408131i 0.00100475 0.00174028i
\(551\) 4.24436 + 7.35145i 0.180816 + 0.313182i
\(552\) −0.105008 −0.00446943
\(553\) −12.2934 13.6672i −0.522770 0.581187i
\(554\) −0.111253 −0.00472670
\(555\) −11.1994 19.3979i −0.475388 0.823397i
\(556\) −2.88411 + 4.99542i −0.122314 + 0.211853i
\(557\) 11.3001 19.5724i 0.478802 0.829309i −0.520903 0.853616i \(-0.674405\pi\)
0.999705 + 0.0243068i \(0.00773785\pi\)
\(558\) −0.0475805 0.0824119i −0.00201424 0.00348877i
\(559\) 51.9083 2.19549
\(560\) 9.09066 27.9300i 0.384150 1.18026i
\(561\) −2.72236 −0.114938
\(562\) 0.0100053 + 0.0173298i 0.000422050 + 0.000731012i
\(563\) 5.07518 8.79046i 0.213893 0.370474i −0.739036 0.673665i \(-0.764719\pi\)
0.952930 + 0.303192i \(0.0980522\pi\)
\(564\) −11.7581 + 20.3657i −0.495107 + 0.857550i
\(565\) −12.9034 22.3493i −0.542850 0.940243i
\(566\) −0.450860 −0.0189511
\(567\) 0.818857 2.51584i 0.0343888 0.105656i
\(568\) 1.30695 0.0548382
\(569\) −18.2877 31.6752i −0.766659 1.32789i −0.939365 0.342918i \(-0.888585\pi\)
0.172707 0.984973i \(-0.444749\pi\)
\(570\) −0.173918 + 0.301236i −0.00728464 + 0.0126174i
\(571\) −4.07243 + 7.05365i −0.170426 + 0.295186i −0.938569 0.345092i \(-0.887848\pi\)
0.768143 + 0.640278i \(0.221181\pi\)
\(572\) 2.72212 + 4.71486i 0.113818 + 0.197138i
\(573\) −19.2346 −0.803538
\(574\) 0.371642 + 0.413172i 0.0155121 + 0.0172454i
\(575\) 2.71885 0.113384
\(576\) 3.99173 + 6.91388i 0.166322 + 0.288078i
\(577\) 3.65944 6.33833i 0.152344 0.263868i −0.779745 0.626098i \(-0.784651\pi\)
0.932089 + 0.362230i \(0.117984\pi\)
\(578\) 7.59178e−5 0 0.000131493i 3.15776e−6 0 5.46941e-6i
\(579\) 8.72634 + 15.1145i 0.362654 + 0.628136i
\(580\) 9.88864 0.410604
\(581\) −24.3514 + 5.16315i −1.01026 + 0.214203i
\(582\) 0.0666232 0.00276162
\(583\) 0.0200772 + 0.0347748i 0.000831513 + 0.00144022i
\(584\) 0.750127 1.29926i 0.0310405 0.0537637i
\(585\) −5.73004 + 9.92471i −0.236908 + 0.410336i
\(586\) −0.0151718 0.0262783i −0.000626741 0.00108555i
\(587\) −46.8386 −1.93324 −0.966618 0.256223i \(-0.917522\pi\)
−0.966618 + 0.256223i \(0.917522\pi\)
\(588\) −11.3140 8.23763i −0.466581 0.339714i
\(589\) −17.2816 −0.712078
\(590\) −0.327798 0.567763i −0.0134952 0.0233744i
\(591\) −0.581195 + 1.00666i −0.0239072 + 0.0414084i
\(592\) 16.1075 27.8991i 0.662016 1.14664i
\(593\) 8.03777 + 13.9218i 0.330072 + 0.571701i 0.982526 0.186128i \(-0.0595938\pi\)
−0.652454 + 0.757828i \(0.726260\pi\)
\(594\) 0.0173334 0.000711197
\(595\) −29.6534 + 6.28733i −1.21567 + 0.257755i
\(596\) −38.1085 −1.56099
\(597\) 8.48842 + 14.7024i 0.347408 + 0.601728i
\(598\) 0.0541524 0.0937947i 0.00221446 0.00383555i
\(599\) 13.7899 23.8848i 0.563439 0.975905i −0.433754 0.901031i \(-0.642811\pi\)
0.997193 0.0748736i \(-0.0238553\pi\)
\(600\) 0.142751 + 0.247251i 0.00582776 + 0.0100940i
\(601\) −32.9659 −1.34471 −0.672353 0.740231i \(-0.734716\pi\)
−0.672353 + 0.740231i \(0.734716\pi\)
\(602\) −0.584625 0.649954i −0.0238276 0.0264902i
\(603\) −2.68583 −0.109375
\(604\) −5.06115 8.76617i −0.205935 0.356690i
\(605\) 14.6752 25.4181i 0.596630 1.03339i
\(606\) −0.0881139 + 0.152618i −0.00357938 + 0.00619967i
\(607\) 18.4202 + 31.9047i 0.747653 + 1.29497i 0.948945 + 0.315442i \(0.102153\pi\)
−0.201292 + 0.979531i \(0.564514\pi\)
\(608\) −1.50169 −0.0609017
\(609\) 1.45777 4.47882i 0.0590717 0.181491i
\(610\) −0.197884 −0.00801208
\(611\) −24.2588 42.0174i −0.981405 1.69984i
\(612\) 4.12239 7.14018i 0.166638 0.288625i
\(613\) −11.0658 + 19.1665i −0.446943 + 0.774129i −0.998185 0.0602168i \(-0.980821\pi\)
0.551242 + 0.834345i \(0.314154\pi\)
\(614\) 0.407455 + 0.705732i 0.0164435 + 0.0284810i
\(615\) 22.2254 0.896214
\(616\) 0.0567645 0.174402i 0.00228711 0.00702687i
\(617\) 25.5349 1.02800 0.513998 0.857792i \(-0.328164\pi\)
0.513998 + 0.857792i \(0.328164\pi\)
\(618\) −0.141100 0.244392i −0.00567587 0.00983090i
\(619\) −15.1917 + 26.3129i −0.610607 + 1.05760i 0.380531 + 0.924768i \(0.375741\pi\)
−0.991138 + 0.132835i \(0.957592\pi\)
\(620\) −10.0658 + 17.4345i −0.404253 + 0.700187i
\(621\) 0.500000 + 0.866025i 0.0200643 + 0.0347524i
\(622\) −0.462483 −0.0185439
\(623\) −10.4822 11.6535i −0.419961 0.466889i
\(624\) −16.4824 −0.659826
\(625\) 15.6011 + 27.0218i 0.624042 + 1.08087i
\(626\) 0.206647 0.357923i 0.00825927 0.0143055i
\(627\) 1.57391 2.72609i 0.0628558 0.108869i
\(628\) −2.74293 4.75090i −0.109455 0.189581i
\(629\) −33.2466 −1.32563
\(630\) 0.188805 0.0400317i 0.00752217 0.00159490i
\(631\) −23.5164 −0.936175 −0.468087 0.883682i \(-0.655057\pi\)
−0.468087 + 0.883682i \(0.655057\pi\)
\(632\) 0.364796 + 0.631845i 0.0145108 + 0.0251334i
\(633\) 5.84620 10.1259i 0.232366 0.402469i
\(634\) −0.0685477 + 0.118728i −0.00272238 + 0.00471530i
\(635\) −3.33496 5.77632i −0.132344 0.229226i
\(636\) −0.121609 −0.00482213
\(637\) 26.3897 11.7174i 1.04560 0.464262i
\(638\) 0.0308577 0.00122167
\(639\) −6.22309 10.7787i −0.246182 0.426399i
\(640\) −1.16616 + 2.01985i −0.0460966 + 0.0798416i
\(641\) −10.8055 + 18.7157i −0.426793 + 0.739227i −0.996586 0.0825610i \(-0.973690\pi\)
0.569793 + 0.821788i \(0.307023\pi\)
\(642\) 0.00636137 + 0.0110182i 0.000251063 + 0.000434854i
\(643\) −12.5132 −0.493472 −0.246736 0.969083i \(-0.579358\pi\)
−0.246736 + 0.969083i \(0.579358\pi\)
\(644\) 5.17464 1.09716i 0.203910 0.0432343i
\(645\) −34.9625 −1.37665
\(646\) 0.258147 + 0.447124i 0.0101567 + 0.0175919i
\(647\) −9.42170 + 16.3189i −0.370405 + 0.641561i −0.989628 0.143655i \(-0.954115\pi\)
0.619223 + 0.785216i \(0.287448\pi\)
\(648\) −0.0525039 + 0.0909395i −0.00206255 + 0.00357244i
\(649\) 2.96647 + 5.13807i 0.116444 + 0.201687i
\(650\) −0.294465 −0.0115499
\(651\) 6.41266 + 7.12924i 0.251332 + 0.279417i
\(652\) −30.6071 −1.19866
\(653\) −16.3318 28.2874i −0.639111 1.10697i −0.985628 0.168929i \(-0.945969\pi\)
0.346517 0.938044i \(-0.387364\pi\)
\(654\) −0.163646 + 0.283444i −0.00639908 + 0.0110835i
\(655\) 27.9919 48.4833i 1.09373 1.89440i
\(656\) 15.9828 + 27.6831i 0.624025 + 1.08084i
\(657\) −14.2871 −0.557392
\(658\) −0.252891 + 0.776978i −0.00985871 + 0.0302897i
\(659\) −31.3480 −1.22114 −0.610571 0.791961i \(-0.709060\pi\)
−0.610571 + 0.791961i \(0.709060\pi\)
\(660\) −1.83347 3.17566i −0.0713676 0.123612i
\(661\) −18.9962 + 32.9024i −0.738866 + 1.27975i 0.214140 + 0.976803i \(0.431305\pi\)
−0.953006 + 0.302951i \(0.902028\pi\)
\(662\) −0.183072 + 0.317091i −0.00711531 + 0.0123241i
\(663\) 8.50510 + 14.7313i 0.330311 + 0.572115i
\(664\) 0.987973 0.0383408
\(665\) 10.8479 33.3290i 0.420665 1.29244i
\(666\) 0.211683 0.00820253
\(667\) 0.890123 + 1.54174i 0.0344657 + 0.0596963i
\(668\) 12.9972 22.5117i 0.502875 0.871006i
\(669\) −7.75435 + 13.4309i −0.299800 + 0.519270i
\(670\) −0.0979629 0.169677i −0.00378464 0.00655518i
\(671\) 1.79079 0.0691325
\(672\) 0.557229 + 0.619496i 0.0214956 + 0.0238976i
\(673\) 10.3170 0.397691 0.198845 0.980031i \(-0.436281\pi\)
0.198845 + 0.980031i \(0.436281\pi\)
\(674\) 0.121915 + 0.211163i 0.00469598 + 0.00813368i
\(675\) 1.35943 2.35460i 0.0523244 0.0906284i
\(676\) 4.01323 6.95111i 0.154355 0.267351i
\(677\) 13.6599 + 23.6597i 0.524993 + 0.909315i 0.999576 + 0.0291045i \(0.00926556\pi\)
−0.474583 + 0.880211i \(0.657401\pi\)
\(678\) 0.243890 0.00936654
\(679\) −6.56733 + 1.39245i −0.252031 + 0.0534374i
\(680\) 1.20309 0.0461362
\(681\) −7.66648 13.2787i −0.293780 0.508842i
\(682\) −0.0314106 + 0.0544047i −0.00120277 + 0.00208326i
\(683\) 10.6541 18.4535i 0.407669 0.706103i −0.586959 0.809616i \(-0.699675\pi\)
0.994628 + 0.103514i \(0.0330085\pi\)
\(684\) 4.76665 + 8.25607i 0.182257 + 0.315679i
\(685\) 19.4663 0.743768
\(686\) −0.443935 0.198462i −0.0169495 0.00757731i
\(687\) 6.40484 0.244360
\(688\) −25.1424 43.5479i −0.958544 1.66025i
\(689\) 0.125449 0.217284i 0.00477923 0.00827788i
\(690\) −0.0364740 + 0.0631748i −0.00138854 + 0.00240502i
\(691\) 10.3351 + 17.9009i 0.393166 + 0.680984i 0.992865 0.119242i \(-0.0380464\pi\)
−0.599699 + 0.800226i \(0.704713\pi\)
\(692\) 20.8369 0.792099
\(693\) −1.70863 + 0.362275i −0.0649053 + 0.0137617i
\(694\) −0.201517 −0.00764949
\(695\) 4.00782 + 6.94174i 0.152025 + 0.263315i
\(696\) −0.0934699 + 0.161895i −0.00354297 + 0.00613660i
\(697\) 16.4946 28.5695i 0.624777 1.08215i
\(698\) 0.0750836 + 0.130049i 0.00284195 + 0.00492241i
\(699\) 26.1430 0.988821
\(700\) −9.61793 10.6927i −0.363523 0.404145i
\(701\) −1.93401 −0.0730465 −0.0365232 0.999333i \(-0.511628\pi\)
−0.0365232 + 0.999333i \(0.511628\pi\)
\(702\) −0.0541524 0.0937947i −0.00204385 0.00354005i
\(703\) 19.2212 33.2921i 0.724942 1.25564i
\(704\) 2.63516 4.56424i 0.0993165 0.172021i
\(705\) 16.3393 + 28.3006i 0.615375 + 1.06586i
\(706\) −0.352352 −0.0132609
\(707\) 5.49599 16.8858i 0.206698 0.635055i
\(708\) −17.9681 −0.675284
\(709\) −12.6664 21.9389i −0.475698 0.823933i 0.523915 0.851771i \(-0.324471\pi\)
−0.999612 + 0.0278379i \(0.991138\pi\)
\(710\) 0.453961 0.786284i 0.0170369 0.0295087i
\(711\) 3.47399 6.01712i 0.130285 0.225660i
\(712\) 0.311049 + 0.538753i 0.0116571 + 0.0201906i
\(713\) −3.62429 −0.135731
\(714\) 0.0886631 0.272407i 0.00331813 0.0101946i
\(715\) 7.56544 0.282931
\(716\) 19.2165 + 33.2840i 0.718155 + 1.24388i
\(717\) 8.83864 15.3090i 0.330085 0.571724i
\(718\) 0.234547 0.406247i 0.00875321 0.0151610i
\(719\) 5.86374 + 10.1563i 0.218681 + 0.378766i 0.954405 0.298515i \(-0.0964914\pi\)
−0.735724 + 0.677281i \(0.763158\pi\)
\(720\) 11.1016 0.413734
\(721\) 19.0167 + 21.1417i 0.708219 + 0.787359i
\(722\) −0.0981095 −0.00365126
\(723\) 2.87985 + 4.98804i 0.107103 + 0.185507i
\(724\) −11.1514 + 19.3148i −0.414438 + 0.717828i
\(725\) 2.42011 4.19176i 0.0898808 0.155678i
\(726\) 0.138689 + 0.240217i 0.00514724 + 0.00891529i
\(727\) 13.4547 0.499007 0.249503 0.968374i \(-0.419733\pi\)
0.249503 + 0.968374i \(0.419733\pi\)
\(728\) −1.12107 + 0.237697i −0.0415496 + 0.00880965i
\(729\) 1.00000 0.0370370
\(730\) −0.521106 0.902583i −0.0192870 0.0334061i
\(731\) −25.9474 + 44.9422i −0.959700 + 1.66225i
\(732\) −2.71173 + 4.69686i −0.100229 + 0.173601i
\(733\) −10.3971 18.0083i −0.384025 0.665151i 0.607608 0.794237i \(-0.292129\pi\)
−0.991633 + 0.129086i \(0.958796\pi\)
\(734\) −0.686664 −0.0253452
\(735\) −17.7746 + 7.89220i −0.655627 + 0.291108i
\(736\) −0.314933 −0.0116086
\(737\) 0.886533 + 1.53552i 0.0326559 + 0.0565616i
\(738\) −0.105022 + 0.181903i −0.00386591 + 0.00669595i
\(739\) 11.6762 20.2238i 0.429517 0.743945i −0.567313 0.823502i \(-0.692017\pi\)
0.996830 + 0.0795569i \(0.0253505\pi\)
\(740\) −22.3911 38.7825i −0.823113 1.42567i
\(741\) −19.6686 −0.722544
\(742\) −0.00413356 0.000876425i −0.000151748 3.21746e-5i
\(743\) 6.11578 0.224366 0.112183 0.993688i \(-0.464216\pi\)
0.112183 + 0.993688i \(0.464216\pi\)
\(744\) −0.190289 0.329591i −0.00697635 0.0120834i
\(745\) −26.4782 + 45.8616i −0.970085 + 1.68024i
\(746\) 0.264272 0.457733i 0.00967569 0.0167588i
\(747\) −4.70428 8.14805i −0.172121 0.298122i
\(748\) −5.44284 −0.199010
\(749\) −0.857352 0.953157i −0.0313270 0.0348276i
\(750\) −0.166405 −0.00607625
\(751\) −12.2516 21.2204i −0.447068 0.774344i 0.551126 0.834422i \(-0.314198\pi\)
−0.998194 + 0.0600780i \(0.980865\pi\)
\(752\) −23.5000 + 40.7033i −0.856959 + 1.48430i
\(753\) −5.19330 + 8.99506i −0.189254 + 0.327798i
\(754\) −0.0964046 0.166978i −0.00351085 0.00608097i
\(755\) −14.0662 −0.511920
\(756\) 1.63715 5.02995i 0.0595426 0.182938i
\(757\) 23.0058 0.836160 0.418080 0.908410i \(-0.362703\pi\)
0.418080 + 0.908410i \(0.362703\pi\)
\(758\) 0.105669 + 0.183024i 0.00383806 + 0.00664771i
\(759\) 0.330078 0.571712i 0.0119811 0.0207518i
\(760\) −0.695554 + 1.20473i −0.0252304 + 0.0437003i
\(761\) 5.32349 + 9.22056i 0.192976 + 0.334245i 0.946235 0.323479i \(-0.104853\pi\)
−0.753259 + 0.657724i \(0.771519\pi\)
\(762\) 0.0630349 0.00228351
\(763\) 10.2072 31.3605i 0.369526 1.13533i
\(764\) −38.4560 −1.39129
\(765\) −5.72855 9.92214i −0.207116 0.358736i
\(766\) 0.263476 0.456354i 0.00951977 0.0164887i
\(767\) 18.5355 32.1044i 0.669278 1.15922i
\(768\) 7.97244 + 13.8087i 0.287681 + 0.498277i
\(769\) 17.0235 0.613883 0.306942 0.951728i \(-0.400694\pi\)
0.306942 + 0.951728i \(0.400694\pi\)
\(770\) −0.0852070 0.0947284i −0.00307065 0.00341378i
\(771\) 2.69848 0.0971834
\(772\) 17.4467 + 30.2185i 0.627919 + 1.08759i
\(773\) 3.92164 6.79247i 0.141051 0.244308i −0.786841 0.617155i \(-0.788285\pi\)
0.927893 + 0.372847i \(0.121618\pi\)
\(774\) 0.165208 0.286150i 0.00593830 0.0102854i
\(775\) 4.92695 + 8.53373i 0.176981 + 0.306541i
\(776\) 0.266447 0.00956488