Properties

Label 483.2.i.h.277.10
Level $483$
Weight $2$
Character 483.277
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 3 x^{19} + 22 x^{18} - 43 x^{17} + 245 x^{16} - 416 x^{15} + 1707 x^{14} - 2021 x^{13} + 7135 x^{12} - 6640 x^{11} + 20315 x^{10} - 10565 x^{9} + 29358 x^{8} - 9009 x^{7} + 30661 x^{6} - 4026 x^{5} + 15786 x^{4} - 84 x^{3} + 5800 x^{2} + 152 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 277.10
Root \(-1.37000 + 2.37290i\) of defining polynomial
Character \(\chi\) \(=\) 483.277
Dual form 483.2.i.h.415.10

$q$-expansion

\(f(q)\) \(=\) \(q+(1.37000 + 2.37290i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-2.75378 + 4.76968i) q^{4} +(1.69091 + 2.92874i) q^{5} +2.73999 q^{6} +(-2.19620 - 1.47537i) q^{7} -9.61066 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(1.37000 + 2.37290i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-2.75378 + 4.76968i) q^{4} +(1.69091 + 2.92874i) q^{5} +2.73999 q^{6} +(-2.19620 - 1.47537i) q^{7} -9.61066 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-4.63307 + 8.02471i) q^{10} +(-0.941706 + 1.63108i) q^{11} +(2.75378 + 4.76968i) q^{12} +1.76938 q^{13} +(0.492131 - 7.23261i) q^{14} +3.38181 q^{15} +(-7.65901 - 13.2658i) q^{16} +(2.94798 - 5.10605i) q^{17} +(1.37000 - 2.37290i) q^{18} +(3.31330 + 5.73881i) q^{19} -18.6255 q^{20} +(-2.37581 + 1.16428i) q^{21} -5.16053 q^{22} +(-0.500000 - 0.866025i) q^{23} +(-4.80533 + 8.32307i) q^{24} +(-3.21833 + 5.57432i) q^{25} +(2.42404 + 4.19855i) q^{26} -1.00000 q^{27} +(13.0849 - 6.41231i) q^{28} +8.24468 q^{29} +(4.63307 + 8.02471i) q^{30} +(-1.47179 + 2.54922i) q^{31} +(11.3749 - 19.7020i) q^{32} +(0.941706 + 1.63108i) q^{33} +16.1549 q^{34} +(0.607409 - 8.92680i) q^{35} +5.50755 q^{36} +(2.21781 + 3.84136i) q^{37} +(-9.07841 + 15.7243i) q^{38} +(0.884688 - 1.53232i) q^{39} +(-16.2507 - 28.1471i) q^{40} -5.90495 q^{41} +(-6.01756 - 4.04250i) q^{42} +0.669028 q^{43} +(-5.18649 - 8.98327i) q^{44} +(1.69091 - 2.92874i) q^{45} +(1.37000 - 2.37290i) q^{46} +(-0.897583 - 1.55466i) q^{47} -15.3180 q^{48} +(2.64656 + 6.48041i) q^{49} -17.6364 q^{50} +(-2.94798 - 5.10605i) q^{51} +(-4.87246 + 8.43935i) q^{52} +(4.84250 - 8.38746i) q^{53} +(-1.37000 - 2.37290i) q^{54} -6.36935 q^{55} +(21.1069 + 14.1793i) q^{56} +6.62660 q^{57} +(11.2952 + 19.5638i) q^{58} +(-0.683613 + 1.18405i) q^{59} +(-9.31276 + 16.1302i) q^{60} +(-4.68170 - 8.10894i) q^{61} -8.06540 q^{62} +(-0.179610 + 2.63965i) q^{63} +31.6985 q^{64} +(2.99185 + 5.18203i) q^{65} +(-2.58027 + 4.46915i) q^{66} +(4.08947 - 7.08317i) q^{67} +(16.2361 + 28.1218i) q^{68} -1.00000 q^{69} +(22.0146 - 10.7884i) q^{70} -0.295052 q^{71} +(4.80533 + 8.32307i) q^{72} +(2.22875 - 3.86031i) q^{73} +(-6.07678 + 10.5253i) q^{74} +(3.21833 + 5.57432i) q^{75} -36.4963 q^{76} +(4.47462 - 2.19281i) q^{77} +4.84807 q^{78} +(1.51384 + 2.62205i) q^{79} +(25.9013 - 44.8624i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-8.08975 - 14.0119i) q^{82} -10.5300 q^{83} +(0.989213 - 14.5380i) q^{84} +19.9390 q^{85} +(0.916565 + 1.58754i) q^{86} +(4.12234 - 7.14010i) q^{87} +(9.05041 - 15.6758i) q^{88} +(5.35981 + 9.28346i) q^{89} +9.26614 q^{90} +(-3.88590 - 2.61048i) q^{91} +5.50755 q^{92} +(1.47179 + 2.54922i) q^{93} +(2.45937 - 4.25975i) q^{94} +(-11.2050 + 19.4076i) q^{95} +(-11.3749 - 19.7020i) q^{96} +15.6290 q^{97} +(-11.7516 + 15.1582i) q^{98} +1.88341 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 3q^{2} + 10q^{3} - 15q^{4} + 5q^{5} - 6q^{6} + 18q^{8} - 10q^{9} + O(q^{10}) \) \( 20q - 3q^{2} + 10q^{3} - 15q^{4} + 5q^{5} - 6q^{6} + 18q^{8} - 10q^{9} - 11q^{10} - 8q^{11} + 15q^{12} + 11q^{14} + 10q^{15} - 37q^{16} + 11q^{17} - 3q^{18} - q^{19} - 30q^{20} + 12q^{22} - 10q^{23} + 9q^{24} - 21q^{25} - q^{26} - 20q^{27} + 44q^{28} + 44q^{29} + 11q^{30} + 3q^{31} - 11q^{32} + 8q^{33} - 6q^{34} - 9q^{35} + 30q^{36} + 3q^{37} - 16q^{38} - 39q^{40} - 52q^{41} + 7q^{42} + 54q^{43} - 16q^{44} + 5q^{45} - 3q^{46} - 11q^{47} - 74q^{48} + 22q^{49} + 4q^{50} - 11q^{51} - 29q^{52} - 5q^{53} + 3q^{54} - 36q^{55} + 43q^{56} - 2q^{57} - 16q^{58} + 10q^{59} - 15q^{60} - 22q^{61} - 64q^{62} + 138q^{64} + 11q^{65} + 6q^{66} + 2q^{67} + 21q^{68} - 20q^{69} + 84q^{70} + 54q^{71} - 9q^{72} + 8q^{73} - 14q^{74} + 21q^{75} - 44q^{76} + 8q^{77} - 2q^{78} - 21q^{79} + 53q^{80} - 10q^{81} - 36q^{82} - 24q^{83} + 25q^{84} + 46q^{85} - 18q^{86} + 22q^{87} + 10q^{88} - 6q^{89} + 22q^{90} - 62q^{91} + 30q^{92} - 3q^{93} - 35q^{94} - 44q^{95} + 11q^{96} + 12q^{97} + 2q^{98} + 16q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.37000 + 2.37290i 0.968733 + 1.67789i 0.699232 + 0.714895i \(0.253525\pi\)
0.269501 + 0.963000i \(0.413141\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) −2.75378 + 4.76968i −1.37689 + 2.38484i
\(5\) 1.69091 + 2.92874i 0.756197 + 1.30977i 0.944777 + 0.327713i \(0.106278\pi\)
−0.188581 + 0.982058i \(0.560389\pi\)
\(6\) 2.73999 1.11860
\(7\) −2.19620 1.47537i −0.830084 0.557638i
\(8\) −9.61066 −3.39788
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −4.63307 + 8.02471i −1.46511 + 2.53764i
\(11\) −0.941706 + 1.63108i −0.283935 + 0.491790i −0.972350 0.233527i \(-0.924973\pi\)
0.688415 + 0.725317i \(0.258307\pi\)
\(12\) 2.75378 + 4.76968i 0.794946 + 1.37689i
\(13\) 1.76938 0.490736 0.245368 0.969430i \(-0.421091\pi\)
0.245368 + 0.969430i \(0.421091\pi\)
\(14\) 0.492131 7.23261i 0.131527 1.93300i
\(15\) 3.38181 0.873181
\(16\) −7.65901 13.2658i −1.91475 3.31645i
\(17\) 2.94798 5.10605i 0.714989 1.23840i −0.247974 0.968767i \(-0.579765\pi\)
0.962964 0.269631i \(-0.0869019\pi\)
\(18\) 1.37000 2.37290i 0.322911 0.559298i
\(19\) 3.31330 + 5.73881i 0.760123 + 1.31657i 0.942787 + 0.333397i \(0.108195\pi\)
−0.182663 + 0.983176i \(0.558472\pi\)
\(20\) −18.6255 −4.16479
\(21\) −2.37581 + 1.16428i −0.518444 + 0.254066i
\(22\) −5.16053 −1.10023
\(23\) −0.500000 0.866025i −0.104257 0.180579i
\(24\) −4.80533 + 8.32307i −0.980884 + 1.69894i
\(25\) −3.21833 + 5.57432i −0.643667 + 1.11486i
\(26\) 2.42404 + 4.19855i 0.475393 + 0.823404i
\(27\) −1.00000 −0.192450
\(28\) 13.0849 6.41231i 2.47281 1.21181i
\(29\) 8.24468 1.53100 0.765500 0.643436i \(-0.222492\pi\)
0.765500 + 0.643436i \(0.222492\pi\)
\(30\) 4.63307 + 8.02471i 0.845879 + 1.46511i
\(31\) −1.47179 + 2.54922i −0.264342 + 0.457854i −0.967391 0.253288i \(-0.918488\pi\)
0.703049 + 0.711141i \(0.251821\pi\)
\(32\) 11.3749 19.7020i 2.01083 3.48285i
\(33\) 0.941706 + 1.63108i 0.163930 + 0.283935i
\(34\) 16.1549 2.77054
\(35\) 0.607409 8.92680i 0.102671 1.50890i
\(36\) 5.50755 0.917925
\(37\) 2.21781 + 3.84136i 0.364606 + 0.631516i 0.988713 0.149823i \(-0.0478704\pi\)
−0.624107 + 0.781339i \(0.714537\pi\)
\(38\) −9.07841 + 15.7243i −1.47271 + 2.55081i
\(39\) 0.884688 1.53232i 0.141663 0.245368i
\(40\) −16.2507 28.1471i −2.56947 4.45044i
\(41\) −5.90495 −0.922198 −0.461099 0.887349i \(-0.652545\pi\)
−0.461099 + 0.887349i \(0.652545\pi\)
\(42\) −6.01756 4.04250i −0.928530 0.623772i
\(43\) 0.669028 0.102026 0.0510129 0.998698i \(-0.483755\pi\)
0.0510129 + 0.998698i \(0.483755\pi\)
\(44\) −5.18649 8.98327i −0.781893 1.35428i
\(45\) 1.69091 2.92874i 0.252066 0.436590i
\(46\) 1.37000 2.37290i 0.201995 0.349865i
\(47\) −0.897583 1.55466i −0.130926 0.226770i 0.793108 0.609081i \(-0.208462\pi\)
−0.924034 + 0.382311i \(0.875128\pi\)
\(48\) −15.3180 −2.21096
\(49\) 2.64656 + 6.48041i 0.378080 + 0.925773i
\(50\) −17.6364 −2.49416
\(51\) −2.94798 5.10605i −0.412799 0.714989i
\(52\) −4.87246 + 8.43935i −0.675689 + 1.17033i
\(53\) 4.84250 8.38746i 0.665169 1.15211i −0.314071 0.949400i \(-0.601693\pi\)
0.979240 0.202706i \(-0.0649737\pi\)
\(54\) −1.37000 2.37290i −0.186433 0.322911i
\(55\) −6.36935 −0.858843
\(56\) 21.1069 + 14.1793i 2.82053 + 1.89479i
\(57\) 6.62660 0.877715
\(58\) 11.2952 + 19.5638i 1.48313 + 2.56886i
\(59\) −0.683613 + 1.18405i −0.0889988 + 0.154150i −0.907088 0.420941i \(-0.861700\pi\)
0.818089 + 0.575091i \(0.195033\pi\)
\(60\) −9.31276 + 16.1302i −1.20227 + 2.08240i
\(61\) −4.68170 8.10894i −0.599430 1.03824i −0.992905 0.118908i \(-0.962061\pi\)
0.393475 0.919335i \(-0.371273\pi\)
\(62\) −8.06540 −1.02431
\(63\) −0.179610 + 2.63965i −0.0226288 + 0.332564i
\(64\) 31.6985 3.96231
\(65\) 2.99185 + 5.18203i 0.371093 + 0.642752i
\(66\) −2.58027 + 4.46915i −0.317609 + 0.550115i
\(67\) 4.08947 7.08317i 0.499608 0.865347i −0.500392 0.865799i \(-0.666811\pi\)
1.00000 0.000452542i \(0.000144049\pi\)
\(68\) 16.2361 + 28.1218i 1.96892 + 3.41027i
\(69\) −1.00000 −0.120386
\(70\) 22.0146 10.7884i 2.63124 1.28945i
\(71\) −0.295052 −0.0350162 −0.0175081 0.999847i \(-0.505573\pi\)
−0.0175081 + 0.999847i \(0.505573\pi\)
\(72\) 4.80533 + 8.32307i 0.566313 + 0.980884i
\(73\) 2.22875 3.86031i 0.260856 0.451815i −0.705614 0.708597i \(-0.749329\pi\)
0.966470 + 0.256781i \(0.0826620\pi\)
\(74\) −6.07678 + 10.5253i −0.706411 + 1.22354i
\(75\) 3.21833 + 5.57432i 0.371621 + 0.643667i
\(76\) −36.4963 −4.18642
\(77\) 4.47462 2.19281i 0.509931 0.249894i
\(78\) 4.84807 0.548936
\(79\) 1.51384 + 2.62205i 0.170320 + 0.295004i 0.938532 0.345192i \(-0.112186\pi\)
−0.768211 + 0.640196i \(0.778853\pi\)
\(80\) 25.9013 44.8624i 2.89586 5.01577i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −8.08975 14.0119i −0.893363 1.54735i
\(83\) −10.5300 −1.15582 −0.577910 0.816100i \(-0.696132\pi\)
−0.577910 + 0.816100i \(0.696132\pi\)
\(84\) 0.989213 14.5380i 0.107932 1.58623i
\(85\) 19.9390 2.16269
\(86\) 0.916565 + 1.58754i 0.0988358 + 0.171189i
\(87\) 4.12234 7.14010i 0.441961 0.765500i
\(88\) 9.05041 15.6758i 0.964777 1.67104i
\(89\) 5.35981 + 9.28346i 0.568138 + 0.984044i 0.996750 + 0.0805556i \(0.0256695\pi\)
−0.428612 + 0.903489i \(0.640997\pi\)
\(90\) 9.26614 0.976737
\(91\) −3.88590 2.61048i −0.407353 0.273653i
\(92\) 5.50755 0.574202
\(93\) 1.47179 + 2.54922i 0.152618 + 0.264342i
\(94\) 2.45937 4.25975i 0.253664 0.439360i
\(95\) −11.2050 + 19.4076i −1.14961 + 1.99117i
\(96\) −11.3749 19.7020i −1.16095 2.01083i
\(97\) 15.6290 1.58688 0.793441 0.608648i \(-0.208288\pi\)
0.793441 + 0.608648i \(0.208288\pi\)
\(98\) −11.7516 + 15.1582i −1.18709 + 1.53121i
\(99\) 1.88341 0.189290
\(100\) −17.7251 30.7008i −1.77251 3.07008i
\(101\) −3.78458 + 6.55508i −0.376580 + 0.652255i −0.990562 0.137065i \(-0.956233\pi\)
0.613983 + 0.789320i \(0.289567\pi\)
\(102\) 8.07743 13.9905i 0.799785 1.38527i
\(103\) 1.31063 + 2.27008i 0.129141 + 0.223678i 0.923344 0.383974i \(-0.125445\pi\)
−0.794203 + 0.607652i \(0.792111\pi\)
\(104\) −17.0049 −1.66746
\(105\) −7.42713 4.98943i −0.724814 0.486919i
\(106\) 26.5368 2.57748
\(107\) −8.66609 15.0101i −0.837783 1.45108i −0.891745 0.452539i \(-0.850518\pi\)
0.0539619 0.998543i \(-0.482815\pi\)
\(108\) 2.75378 4.76968i 0.264982 0.458963i
\(109\) 6.68403 11.5771i 0.640214 1.10888i −0.345171 0.938540i \(-0.612179\pi\)
0.985385 0.170343i \(-0.0544876\pi\)
\(110\) −8.72598 15.1138i −0.831990 1.44105i
\(111\) 4.43562 0.421011
\(112\) −2.75127 + 40.4342i −0.259971 + 3.82067i
\(113\) −1.18709 −0.111672 −0.0558360 0.998440i \(-0.517782\pi\)
−0.0558360 + 0.998440i \(0.517782\pi\)
\(114\) 9.07841 + 15.7243i 0.850271 + 1.47271i
\(115\) 1.69091 2.92874i 0.157678 0.273106i
\(116\) −22.7040 + 39.3245i −2.10801 + 3.65119i
\(117\) −0.884688 1.53232i −0.0817894 0.141663i
\(118\) −3.74618 −0.344864
\(119\) −14.0076 + 6.86452i −1.28408 + 0.629270i
\(120\) −32.5015 −2.96696
\(121\) 3.72638 + 6.45428i 0.338762 + 0.586753i
\(122\) 12.8278 22.2184i 1.16138 2.01156i
\(123\) −2.95247 + 5.11383i −0.266216 + 0.461099i
\(124\) −8.10598 14.0400i −0.727938 1.26083i
\(125\) −4.85853 −0.434560
\(126\) −6.50969 + 3.19011i −0.579929 + 0.284197i
\(127\) −12.2311 −1.08533 −0.542667 0.839948i \(-0.682585\pi\)
−0.542667 + 0.839948i \(0.682585\pi\)
\(128\) 20.6769 + 35.8134i 1.82760 + 3.16549i
\(129\) 0.334514 0.579395i 0.0294523 0.0510129i
\(130\) −8.19764 + 14.1987i −0.718981 + 1.24531i
\(131\) 3.02835 + 5.24526i 0.264588 + 0.458280i 0.967456 0.253041i \(-0.0814307\pi\)
−0.702868 + 0.711321i \(0.748097\pi\)
\(132\) −10.3730 −0.902853
\(133\) 1.19021 17.4919i 0.103204 1.51674i
\(134\) 22.4102 1.93595
\(135\) −1.69091 2.92874i −0.145530 0.252066i
\(136\) −28.3320 + 49.0725i −2.42945 + 4.20793i
\(137\) 7.14630 12.3778i 0.610550 1.05750i −0.380598 0.924741i \(-0.624282\pi\)
0.991148 0.132763i \(-0.0423848\pi\)
\(138\) −1.37000 2.37290i −0.116622 0.201995i
\(139\) −16.4290 −1.39349 −0.696743 0.717321i \(-0.745368\pi\)
−0.696743 + 0.717321i \(0.745368\pi\)
\(140\) 40.9053 + 27.4795i 3.45713 + 2.32244i
\(141\) −1.79517 −0.151180
\(142\) −0.404220 0.700129i −0.0339214 0.0587535i
\(143\) −1.66623 + 2.88600i −0.139337 + 0.241339i
\(144\) −7.65901 + 13.2658i −0.638250 + 1.10548i
\(145\) 13.9410 + 24.1465i 1.15774 + 2.00526i
\(146\) 12.2135 1.01080
\(147\) 6.93548 + 0.948216i 0.572029 + 0.0782075i
\(148\) −24.4294 −2.00809
\(149\) −6.90181 11.9543i −0.565418 0.979333i −0.997011 0.0772640i \(-0.975382\pi\)
0.431593 0.902069i \(-0.357952\pi\)
\(150\) −8.81820 + 15.2736i −0.720003 + 1.24708i
\(151\) 2.12357 3.67813i 0.172814 0.299322i −0.766589 0.642138i \(-0.778047\pi\)
0.939403 + 0.342816i \(0.111381\pi\)
\(152\) −31.8430 55.1537i −2.58281 4.47355i
\(153\) −5.89595 −0.476660
\(154\) 11.3335 + 7.61370i 0.913283 + 0.613529i
\(155\) −9.95467 −0.799578
\(156\) 4.87246 + 8.43935i 0.390109 + 0.675689i
\(157\) 0.333896 0.578325i 0.0266478 0.0461554i −0.852394 0.522900i \(-0.824850\pi\)
0.879042 + 0.476745i \(0.158183\pi\)
\(158\) −4.14791 + 7.18440i −0.329990 + 0.571560i
\(159\) −4.84250 8.38746i −0.384035 0.665169i
\(160\) 76.9359 6.08232
\(161\) −0.179610 + 2.63965i −0.0141553 + 0.208033i
\(162\) −2.73999 −0.215274
\(163\) 0.363590 + 0.629757i 0.0284786 + 0.0493263i 0.879913 0.475134i \(-0.157600\pi\)
−0.851435 + 0.524460i \(0.824267\pi\)
\(164\) 16.2609 28.1647i 1.26976 2.19929i
\(165\) −3.18467 + 5.51602i −0.247927 + 0.429421i
\(166\) −14.4261 24.9867i −1.11968 1.93935i
\(167\) 9.42526 0.729349 0.364674 0.931135i \(-0.381180\pi\)
0.364674 + 0.931135i \(0.381180\pi\)
\(168\) 22.8331 11.1895i 1.76161 0.863286i
\(169\) −9.86931 −0.759178
\(170\) 27.3164 + 47.3133i 2.09507 + 3.62877i
\(171\) 3.31330 5.73881i 0.253374 0.438857i
\(172\) −1.84235 + 3.19105i −0.140478 + 0.243315i
\(173\) −5.42568 9.39756i −0.412507 0.714483i 0.582656 0.812719i \(-0.302013\pi\)
−0.995163 + 0.0982357i \(0.968680\pi\)
\(174\) 22.5904 1.71257
\(175\) 15.2923 7.49406i 1.15599 0.566498i
\(176\) 28.8501 2.17466
\(177\) 0.683613 + 1.18405i 0.0513835 + 0.0889988i
\(178\) −14.6858 + 25.4366i −1.10075 + 1.90655i
\(179\) 4.97180 8.61141i 0.371610 0.643647i −0.618204 0.786018i \(-0.712139\pi\)
0.989813 + 0.142371i \(0.0454726\pi\)
\(180\) 9.31276 + 16.1302i 0.694132 + 1.20227i
\(181\) −0.975614 −0.0725168 −0.0362584 0.999342i \(-0.511544\pi\)
−0.0362584 + 0.999342i \(0.511544\pi\)
\(182\) 0.870764 12.7972i 0.0645453 0.948592i
\(183\) −9.36339 −0.692162
\(184\) 4.80533 + 8.32307i 0.354254 + 0.613585i
\(185\) −7.50022 + 12.9908i −0.551427 + 0.955100i
\(186\) −4.03270 + 6.98484i −0.295692 + 0.512154i
\(187\) 5.55226 + 9.61679i 0.406021 + 0.703249i
\(188\) 9.88696 0.721081
\(189\) 2.19620 + 1.47537i 0.159750 + 0.107317i
\(190\) −61.4030 −4.45464
\(191\) −3.50335 6.06798i −0.253494 0.439064i 0.710992 0.703200i \(-0.248246\pi\)
−0.964485 + 0.264137i \(0.914913\pi\)
\(192\) 15.8492 27.4517i 1.14382 1.98116i
\(193\) −6.26011 + 10.8428i −0.450613 + 0.780484i −0.998424 0.0561178i \(-0.982128\pi\)
0.547812 + 0.836602i \(0.315461\pi\)
\(194\) 21.4116 + 37.0860i 1.53726 + 2.66262i
\(195\) 5.98370 0.428502
\(196\) −38.1975 5.22235i −2.72839 0.373025i
\(197\) −25.3287 −1.80459 −0.902296 0.431116i \(-0.858120\pi\)
−0.902296 + 0.431116i \(0.858120\pi\)
\(198\) 2.58027 + 4.46915i 0.183372 + 0.317609i
\(199\) −0.324280 + 0.561669i −0.0229876 + 0.0398156i −0.877290 0.479960i \(-0.840651\pi\)
0.854303 + 0.519776i \(0.173984\pi\)
\(200\) 30.9303 53.5728i 2.18710 3.78817i
\(201\) −4.08947 7.08317i −0.288449 0.499608i
\(202\) −20.7394 −1.45922
\(203\) −18.1069 12.1640i −1.27086 0.853743i
\(204\) 32.4723 2.27351
\(205\) −9.98471 17.2940i −0.697363 1.20787i
\(206\) −3.59113 + 6.22001i −0.250206 + 0.433369i
\(207\) −0.500000 + 0.866025i −0.0347524 + 0.0601929i
\(208\) −13.5517 23.4722i −0.939638 1.62750i
\(209\) −12.4806 −0.863303
\(210\) 1.66429 24.4593i 0.114847 1.68786i
\(211\) 14.4647 0.995790 0.497895 0.867237i \(-0.334106\pi\)
0.497895 + 0.867237i \(0.334106\pi\)
\(212\) 26.6703 + 46.1944i 1.83173 + 3.17264i
\(213\) −0.147526 + 0.255522i −0.0101083 + 0.0175081i
\(214\) 23.7450 41.1276i 1.62318 2.81142i
\(215\) 1.13126 + 1.95941i 0.0771516 + 0.133630i
\(216\) 9.61066 0.653922
\(217\) 6.99340 3.42715i 0.474743 0.232650i
\(218\) 36.6284 2.48079
\(219\) −2.22875 3.86031i −0.150605 0.260856i
\(220\) 17.5398 30.3798i 1.18253 2.04820i
\(221\) 5.21608 9.03451i 0.350871 0.607727i
\(222\) 6.07678 + 10.5253i 0.407847 + 0.706411i
\(223\) −29.7327 −1.99105 −0.995525 0.0945015i \(-0.969874\pi\)
−0.995525 + 0.0945015i \(0.969874\pi\)
\(224\) −54.0494 + 26.4872i −3.61133 + 1.76975i
\(225\) 6.43667 0.429111
\(226\) −1.62631 2.81685i −0.108180 0.187374i
\(227\) 3.24510 5.62067i 0.215385 0.373057i −0.738007 0.674793i \(-0.764233\pi\)
0.953391 + 0.301736i \(0.0975662\pi\)
\(228\) −18.2482 + 31.6068i −1.20851 + 2.09321i
\(229\) 0.618039 + 1.07048i 0.0408412 + 0.0707390i 0.885723 0.464213i \(-0.153663\pi\)
−0.844882 + 0.534952i \(0.820330\pi\)
\(230\) 9.26614 0.610991
\(231\) 0.338280 4.97154i 0.0222572 0.327104i
\(232\) −79.2368 −5.20215
\(233\) −12.1781 21.0931i −0.797814 1.38185i −0.921037 0.389475i \(-0.872656\pi\)
0.123223 0.992379i \(-0.460677\pi\)
\(234\) 2.42404 4.19855i 0.158464 0.274468i
\(235\) 3.03546 5.25757i 0.198011 0.342966i
\(236\) −3.76503 6.52123i −0.245083 0.424496i
\(237\) 3.02768 0.196669
\(238\) −35.4793 23.8344i −2.29978 1.54496i
\(239\) 15.2471 0.986251 0.493126 0.869958i \(-0.335854\pi\)
0.493126 + 0.869958i \(0.335854\pi\)
\(240\) −25.9013 44.8624i −1.67192 2.89586i
\(241\) −2.06351 + 3.57411i −0.132923 + 0.230229i −0.924802 0.380449i \(-0.875769\pi\)
0.791879 + 0.610678i \(0.209103\pi\)
\(242\) −10.2102 + 17.6847i −0.656339 + 1.13681i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 51.5694 3.30139
\(245\) −14.5043 + 18.7089i −0.926647 + 1.19526i
\(246\) −16.1795 −1.03157
\(247\) 5.86247 + 10.1541i 0.373020 + 0.646090i
\(248\) 14.1449 24.4997i 0.898202 1.55573i
\(249\) −5.26501 + 9.11927i −0.333657 + 0.577910i
\(250\) −6.65617 11.5288i −0.420973 0.729147i
\(251\) 4.82682 0.304666 0.152333 0.988329i \(-0.451321\pi\)
0.152333 + 0.988329i \(0.451321\pi\)
\(252\) −12.0957 8.12568i −0.761955 0.511870i
\(253\) 1.88341 0.118409
\(254\) −16.7565 29.0232i −1.05140 1.82108i
\(255\) 9.96951 17.2677i 0.624315 1.08135i
\(256\) −24.9560 + 43.2251i −1.55975 + 2.70157i
\(257\) 2.37570 + 4.11483i 0.148192 + 0.256676i 0.930559 0.366141i \(-0.119321\pi\)
−0.782367 + 0.622817i \(0.785988\pi\)
\(258\) 1.83313 0.114126
\(259\) 0.796683 11.7085i 0.0495035 0.727529i
\(260\) −32.9555 −2.04381
\(261\) −4.12234 7.14010i −0.255167 0.441961i
\(262\) −8.29765 + 14.3720i −0.512631 + 0.887902i
\(263\) 8.07074 13.9789i 0.497663 0.861978i −0.502333 0.864674i \(-0.667525\pi\)
0.999996 + 0.00269631i \(0.000858265\pi\)
\(264\) −9.05041 15.6758i −0.557014 0.964777i
\(265\) 32.7529 2.01199
\(266\) 43.1371 21.1396i 2.64491 1.29615i
\(267\) 10.7196 0.656030
\(268\) 22.5230 + 39.0109i 1.37581 + 2.38297i
\(269\) −4.79781 + 8.31006i −0.292528 + 0.506673i −0.974407 0.224792i \(-0.927830\pi\)
0.681879 + 0.731465i \(0.261163\pi\)
\(270\) 4.63307 8.02471i 0.281960 0.488368i
\(271\) −10.4810 18.1537i −0.636677 1.10276i −0.986157 0.165813i \(-0.946975\pi\)
0.349480 0.936944i \(-0.386358\pi\)
\(272\) −90.3143 −5.47611
\(273\) −4.20369 + 2.06004i −0.254419 + 0.124679i
\(274\) 39.1616 2.36584
\(275\) −6.06145 10.4987i −0.365519 0.633097i
\(276\) 2.75378 4.76968i 0.165758 0.287101i
\(277\) −7.29118 + 12.6287i −0.438085 + 0.758785i −0.997542 0.0700746i \(-0.977676\pi\)
0.559457 + 0.828859i \(0.311010\pi\)
\(278\) −22.5076 38.9843i −1.34992 2.33812i
\(279\) 2.94359 0.176228
\(280\) −5.83760 + 85.7924i −0.348863 + 5.12708i
\(281\) −10.2706 −0.612694 −0.306347 0.951920i \(-0.599107\pi\)
−0.306347 + 0.951920i \(0.599107\pi\)
\(282\) −2.45937 4.25975i −0.146453 0.253664i
\(283\) −8.54651 + 14.8030i −0.508037 + 0.879946i 0.491920 + 0.870641i \(0.336295\pi\)
−0.999957 + 0.00930538i \(0.997038\pi\)
\(284\) 0.812507 1.40730i 0.0482134 0.0835081i
\(285\) 11.2050 + 19.4076i 0.663725 + 1.14961i
\(286\) −9.13092 −0.539923
\(287\) 12.9684 + 8.71199i 0.765502 + 0.514252i
\(288\) −22.7499 −1.34055
\(289\) −8.88114 15.3826i −0.522420 0.904858i
\(290\) −38.1982 + 66.1612i −2.24307 + 3.88512i
\(291\) 7.81449 13.5351i 0.458093 0.793441i
\(292\) 12.2750 + 21.2609i 0.718338 + 1.24420i
\(293\) 10.9029 0.636955 0.318478 0.947930i \(-0.396828\pi\)
0.318478 + 0.947930i \(0.396828\pi\)
\(294\) 7.25155 + 17.7563i 0.422919 + 1.03557i
\(295\) −4.62370 −0.269202
\(296\) −21.3146 36.9180i −1.23889 2.14582i
\(297\) 0.941706 1.63108i 0.0546433 0.0946450i
\(298\) 18.9109 32.7546i 1.09548 1.89742i
\(299\) −0.884688 1.53232i −0.0511628 0.0886166i
\(300\) −35.4503 −2.04672
\(301\) −1.46932 0.987064i −0.0846900 0.0568934i
\(302\) 11.6371 0.669642
\(303\) 3.78458 + 6.55508i 0.217418 + 0.376580i
\(304\) 50.7532 87.9071i 2.91089 5.04182i
\(305\) 15.8326 27.4229i 0.906574 1.57023i
\(306\) −8.07743 13.9905i −0.461756 0.799785i
\(307\) 26.7973 1.52940 0.764700 0.644386i \(-0.222887\pi\)
0.764700 + 0.644386i \(0.222887\pi\)
\(308\) −1.86310 + 27.3810i −0.106160 + 1.56018i
\(309\) 2.62127 0.149119
\(310\) −13.6378 23.6214i −0.774578 1.34161i
\(311\) −8.93077 + 15.4685i −0.506417 + 0.877141i 0.493555 + 0.869715i \(0.335697\pi\)
−0.999972 + 0.00742604i \(0.997636\pi\)
\(312\) −8.50243 + 14.7266i −0.481355 + 0.833732i
\(313\) 14.5650 + 25.2272i 0.823260 + 1.42593i 0.903242 + 0.429132i \(0.141180\pi\)
−0.0799820 + 0.996796i \(0.525486\pi\)
\(314\) 1.82975 0.103258
\(315\) −8.03454 + 3.93737i −0.452695 + 0.221846i
\(316\) −16.6751 −0.938049
\(317\) −10.9687 18.9983i −0.616062 1.06705i −0.990197 0.139676i \(-0.955394\pi\)
0.374135 0.927374i \(-0.377940\pi\)
\(318\) 13.2684 22.9816i 0.744056 1.28874i
\(319\) −7.76407 + 13.4478i −0.434704 + 0.752930i
\(320\) 53.5992 + 92.8365i 2.99629 + 5.18972i
\(321\) −17.3322 −0.967388
\(322\) −6.50969 + 3.19011i −0.362771 + 0.177778i
\(323\) 39.0701 2.17392
\(324\) −2.75378 4.76968i −0.152988 0.264982i
\(325\) −5.69444 + 9.86306i −0.315871 + 0.547104i
\(326\) −0.996234 + 1.72553i −0.0551763 + 0.0955681i
\(327\) −6.68403 11.5771i −0.369628 0.640214i
\(328\) 56.7504 3.13352
\(329\) −0.322430 + 4.73860i −0.0177762 + 0.261248i
\(330\) −17.4520 −0.960699
\(331\) 2.81522 + 4.87611i 0.154739 + 0.268015i 0.932964 0.359970i \(-0.117213\pi\)
−0.778225 + 0.627985i \(0.783880\pi\)
\(332\) 28.9973 50.2249i 1.59144 2.75645i
\(333\) 2.21781 3.84136i 0.121535 0.210505i
\(334\) 12.9126 + 22.3652i 0.706544 + 1.22377i
\(335\) 27.6596 1.51121
\(336\) 33.6414 + 22.5997i 1.83529 + 1.23292i
\(337\) 21.7330 1.18387 0.591936 0.805985i \(-0.298364\pi\)
0.591936 + 0.805985i \(0.298364\pi\)
\(338\) −13.5209 23.4189i −0.735441 1.27382i
\(339\) −0.593544 + 1.02805i −0.0322369 + 0.0558360i
\(340\) −54.9076 + 95.1027i −2.97778 + 5.15767i
\(341\) −2.77199 4.80124i −0.150112 0.260001i
\(342\) 18.1568 0.981809
\(343\) 3.74864 18.1369i 0.202408 0.979301i
\(344\) −6.42980 −0.346671
\(345\) −1.69091 2.92874i −0.0910354 0.157678i
\(346\) 14.8663 25.7492i 0.799218 1.38429i
\(347\) −16.2403 + 28.1289i −0.871822 + 1.51004i −0.0117127 + 0.999931i \(0.503728\pi\)
−0.860110 + 0.510109i \(0.829605\pi\)
\(348\) 22.7040 + 39.3245i 1.21706 + 2.10801i
\(349\) 0.230635 0.0123456 0.00617281 0.999981i \(-0.498035\pi\)
0.00617281 + 0.999981i \(0.498035\pi\)
\(350\) 38.7330 + 26.0202i 2.07037 + 1.39084i
\(351\) −1.76938 −0.0944423
\(352\) 21.4237 + 37.1070i 1.14189 + 1.97781i
\(353\) −13.9482 + 24.1590i −0.742388 + 1.28585i 0.209017 + 0.977912i \(0.432974\pi\)
−0.951405 + 0.307942i \(0.900360\pi\)
\(354\) −1.87309 + 3.24429i −0.0995537 + 0.172432i
\(355\) −0.498905 0.864129i −0.0264791 0.0458632i
\(356\) −59.0388 −3.12905
\(357\) −1.05897 + 15.5632i −0.0560469 + 0.823694i
\(358\) 27.2454 1.43996
\(359\) −8.18126 14.1704i −0.431790 0.747883i 0.565237 0.824928i \(-0.308785\pi\)
−0.997028 + 0.0770455i \(0.975451\pi\)
\(360\) −16.2507 + 28.1471i −0.856488 + 1.48348i
\(361\) −12.4559 + 21.5743i −0.655575 + 1.13549i
\(362\) −1.33659 2.31504i −0.0702494 0.121676i
\(363\) 7.45276 0.391168
\(364\) 23.1521 11.3458i 1.21350 0.594681i
\(365\) 15.0745 0.789033
\(366\) −12.8278 22.2184i −0.670520 1.16138i
\(367\) −7.73982 + 13.4058i −0.404016 + 0.699775i −0.994206 0.107488i \(-0.965719\pi\)
0.590191 + 0.807264i \(0.299053\pi\)
\(368\) −7.65901 + 13.2658i −0.399253 + 0.691527i
\(369\) 2.95247 + 5.11383i 0.153700 + 0.266216i
\(370\) −41.1011 −2.13674
\(371\) −23.0097 + 11.2760i −1.19460 + 0.585422i
\(372\) −16.2120 −0.840551
\(373\) 14.7036 + 25.4674i 0.761325 + 1.31865i 0.942168 + 0.335141i \(0.108784\pi\)
−0.180843 + 0.983512i \(0.557883\pi\)
\(374\) −15.2131 + 26.3499i −0.786652 + 1.36252i
\(375\) −2.42927 + 4.20761i −0.125447 + 0.217280i
\(376\) 8.62636 + 14.9413i 0.444870 + 0.770538i
\(377\) 14.5879 0.751317
\(378\) −0.492131 + 7.23261i −0.0253125 + 0.372005i
\(379\) 23.7449 1.21969 0.609846 0.792520i \(-0.291231\pi\)
0.609846 + 0.792520i \(0.291231\pi\)
\(380\) −61.7119 106.888i −3.16575 5.48325i
\(381\) −6.11554 + 10.5924i −0.313309 + 0.542667i
\(382\) 9.59915 16.6262i 0.491135 0.850671i
\(383\) −2.39500 4.14826i −0.122379 0.211966i 0.798327 0.602225i \(-0.205719\pi\)
−0.920705 + 0.390259i \(0.872386\pi\)
\(384\) 41.3538 2.11033
\(385\) 13.9883 + 9.39715i 0.712912 + 0.478923i
\(386\) −34.3053 −1.74609
\(387\) −0.334514 0.579395i −0.0170043 0.0294523i
\(388\) −43.0387 + 74.5452i −2.18496 + 3.78446i
\(389\) −11.2776 + 19.5334i −0.571798 + 0.990384i 0.424583 + 0.905389i \(0.360421\pi\)
−0.996381 + 0.0849949i \(0.972913\pi\)
\(390\) 8.19764 + 14.1987i 0.415104 + 0.718981i
\(391\) −5.89595 −0.298171
\(392\) −25.4352 62.2810i −1.28467 3.14567i
\(393\) 6.05670 0.305520
\(394\) −34.7002 60.1024i −1.74817 3.02792i
\(395\) −5.11953 + 8.86729i −0.257592 + 0.446162i
\(396\) −5.18649 + 8.98327i −0.260631 + 0.451426i
\(397\) −1.79437 3.10794i −0.0900570 0.155983i 0.817478 0.575960i \(-0.195372\pi\)
−0.907535 + 0.419977i \(0.862038\pi\)
\(398\) −1.77705 −0.0890753
\(399\) −14.5533 9.77670i −0.728577 0.489447i
\(400\) 98.5969 4.92985
\(401\) −5.31679 9.20895i −0.265508 0.459873i 0.702189 0.711991i \(-0.252206\pi\)
−0.967697 + 0.252118i \(0.918873\pi\)
\(402\) 11.2051 19.4078i 0.558860 0.967974i
\(403\) −2.60416 + 4.51053i −0.129722 + 0.224685i
\(404\) −20.8438 36.1024i −1.03702 1.79616i
\(405\) −3.38181 −0.168044
\(406\) 4.05746 59.6306i 0.201368 2.95942i
\(407\) −8.35410 −0.414098
\(408\) 28.3320 + 49.0725i 1.40264 + 2.42945i
\(409\) −7.26614 + 12.5853i −0.359288 + 0.622304i −0.987842 0.155461i \(-0.950314\pi\)
0.628554 + 0.777766i \(0.283647\pi\)
\(410\) 27.3580 47.3855i 1.35112 2.34020i
\(411\) −7.14630 12.3778i −0.352501 0.610550i
\(412\) −14.4368 −0.711248
\(413\) 3.24826 1.59183i 0.159837 0.0783288i
\(414\) −2.73999 −0.134663
\(415\) −17.8053 30.8397i −0.874028 1.51386i
\(416\) 20.1266 34.8602i 0.986786 1.70916i
\(417\) −8.21448 + 14.2279i −0.402265 + 0.696743i
\(418\) −17.0984 29.6153i −0.836310 1.44853i
\(419\) −28.8287 −1.40837 −0.704187 0.710015i \(-0.748688\pi\)
−0.704187 + 0.710015i \(0.748688\pi\)
\(420\) 44.2506 21.6852i 2.15921 1.05813i
\(421\) 25.2897 1.23254 0.616271 0.787534i \(-0.288643\pi\)
0.616271 + 0.787534i \(0.288643\pi\)
\(422\) 19.8166 + 34.3233i 0.964655 + 1.67083i
\(423\) −0.897583 + 1.55466i −0.0436420 + 0.0755901i
\(424\) −46.5396 + 80.6090i −2.26016 + 3.91472i
\(425\) 18.9751 + 32.8659i 0.920430 + 1.59423i
\(426\) −0.808440 −0.0391690
\(427\) −1.68176 + 24.7161i −0.0813862 + 1.19609i
\(428\) 95.4579 4.61413
\(429\) 1.66623 + 2.88600i 0.0804464 + 0.139337i
\(430\) −3.09965 + 5.36876i −0.149479 + 0.258904i
\(431\) 0.666648 1.15467i 0.0321113 0.0556184i −0.849523 0.527551i \(-0.823110\pi\)
0.881634 + 0.471933i \(0.156444\pi\)
\(432\) 7.65901 + 13.2658i 0.368494 + 0.638250i
\(433\) −12.4620 −0.598887 −0.299444 0.954114i \(-0.596801\pi\)
−0.299444 + 0.954114i \(0.596801\pi\)
\(434\) 17.7132 + 11.8995i 0.850261 + 0.571192i
\(435\) 27.8820 1.33684
\(436\) 36.8126 + 63.7613i 1.76301 + 3.05361i
\(437\) 3.31330 5.73881i 0.158497 0.274524i
\(438\) 6.10676 10.5772i 0.291792 0.505399i
\(439\) −6.88278 11.9213i −0.328497 0.568974i 0.653717 0.756739i \(-0.273209\pi\)
−0.982214 + 0.187766i \(0.939875\pi\)
\(440\) 61.2136 2.91825
\(441\) 4.28892 5.53219i 0.204234 0.263438i
\(442\) 28.5840 1.35960
\(443\) 3.53406 + 6.12117i 0.167908 + 0.290826i 0.937684 0.347489i \(-0.112965\pi\)
−0.769776 + 0.638314i \(0.779632\pi\)
\(444\) −12.2147 + 21.1565i −0.579684 + 1.00404i
\(445\) −18.1259 + 31.3949i −0.859248 + 1.48826i
\(446\) −40.7337 70.5528i −1.92880 3.34077i
\(447\) −13.8036 −0.652888
\(448\) −69.6161 46.7670i −3.28905 2.20953i
\(449\) −22.4140 −1.05778 −0.528892 0.848689i \(-0.677392\pi\)
−0.528892 + 0.848689i \(0.677392\pi\)
\(450\) 8.81820 + 15.2736i 0.415694 + 0.720003i
\(451\) 5.56072 9.63146i 0.261844 0.453528i
\(452\) 3.26898 5.66203i 0.153760 0.266320i
\(453\) −2.12357 3.67813i −0.0997741 0.172814i
\(454\) 17.7831 0.834601
\(455\) 1.07473 15.7949i 0.0503843 0.740474i
\(456\) −63.6860 −2.98237
\(457\) 1.34517 + 2.32990i 0.0629244 + 0.108988i 0.895771 0.444515i \(-0.146624\pi\)
−0.832847 + 0.553503i \(0.813291\pi\)
\(458\) −1.69342 + 2.93309i −0.0791284 + 0.137054i
\(459\) −2.94798 + 5.10605i −0.137600 + 0.238330i
\(460\) 9.31276 + 16.1302i 0.434209 + 0.752073i
\(461\) 30.1064 1.40220 0.701098 0.713065i \(-0.252693\pi\)
0.701098 + 0.713065i \(0.252693\pi\)
\(462\) 12.2604 6.00829i 0.570407 0.279531i
\(463\) −14.0463 −0.652787 −0.326394 0.945234i \(-0.605834\pi\)
−0.326394 + 0.945234i \(0.605834\pi\)
\(464\) −63.1461 109.372i −2.93148 5.07748i
\(465\) −4.97733 + 8.62099i −0.230818 + 0.399789i
\(466\) 33.3679 57.7949i 1.54574 2.67730i
\(467\) 5.30205 + 9.18342i 0.245350 + 0.424958i 0.962230 0.272238i \(-0.0877639\pi\)
−0.716880 + 0.697196i \(0.754431\pi\)
\(468\) 9.74492 0.450459
\(469\) −19.4316 + 9.52255i −0.897267 + 0.439710i
\(470\) 16.6343 0.767281
\(471\) −0.333896 0.578325i −0.0153851 0.0266478i
\(472\) 6.56997 11.3795i 0.302407 0.523785i
\(473\) −0.630028 + 1.09124i −0.0289687 + 0.0501753i
\(474\) 4.14791 + 7.18440i 0.190520 + 0.329990i
\(475\) −42.6532 −1.95706
\(476\) 5.83235 85.7153i 0.267326 3.92876i
\(477\) −9.68500 −0.443446
\(478\) 20.8884 + 36.1798i 0.955414 + 1.65483i
\(479\) 5.63196 9.75483i 0.257331 0.445710i −0.708195 0.706017i \(-0.750490\pi\)
0.965526 + 0.260307i \(0.0838237\pi\)
\(480\) 38.4680 66.6285i 1.75581 3.04116i
\(481\) 3.92414 + 6.79681i 0.178925 + 0.309908i
\(482\) −11.3080 −0.515066
\(483\) 2.19620 + 1.47537i 0.0999304 + 0.0671317i
\(484\) −41.0464 −1.86575
\(485\) 26.4271 + 45.7731i 1.19999 + 2.07845i
\(486\) −1.37000 + 2.37290i −0.0621443 + 0.107637i
\(487\) −0.951673 + 1.64835i −0.0431244 + 0.0746937i −0.886782 0.462188i \(-0.847065\pi\)
0.843658 + 0.536882i \(0.180398\pi\)
\(488\) 44.9942 + 77.9322i 2.03679 + 3.52783i
\(489\) 0.727180 0.0328842
\(490\) −64.2651 8.78630i −2.90320 0.396925i
\(491\) 20.8742 0.942040 0.471020 0.882123i \(-0.343886\pi\)
0.471020 + 0.882123i \(0.343886\pi\)
\(492\) −16.2609 28.1647i −0.733098 1.26976i
\(493\) 24.3051 42.0977i 1.09465 1.89599i
\(494\) −16.0631 + 27.8221i −0.722714 + 1.25178i
\(495\) 3.18467 + 5.51602i 0.143140 + 0.247927i
\(496\) 45.0899 2.02460
\(497\) 0.647992 + 0.435311i 0.0290664 + 0.0195264i
\(498\) −28.8522 −1.29290
\(499\) 18.5467 + 32.1239i 0.830266 + 1.43806i 0.897828 + 0.440347i \(0.145145\pi\)
−0.0675618 + 0.997715i \(0.521522\pi\)
\(500\) 13.3793 23.1736i 0.598341 1.03636i
\(501\) 4.71263 8.16252i 0.210545 0.364674i
\(502\) 6.61272 + 11.4536i 0.295140 + 0.511198i
\(503\) 0.702967 0.0313437 0.0156719 0.999877i \(-0.495011\pi\)
0.0156719 + 0.999877i \(0.495011\pi\)
\(504\) 1.72617 25.3687i 0.0768899 1.13001i
\(505\) −25.5975 −1.13907
\(506\) 2.58027 + 4.46915i 0.114707 + 0.198678i
\(507\) −4.93466 + 8.54707i −0.219156 + 0.379589i
\(508\) 33.6817 58.3384i 1.49438 2.58835i
\(509\) −9.46193 16.3885i −0.419393 0.726409i 0.576486 0.817107i \(-0.304424\pi\)
−0.995878 + 0.0906978i \(0.971090\pi\)
\(510\) 54.6327 2.41918
\(511\) −10.5902 + 5.18977i −0.468482 + 0.229582i
\(512\) −54.0509 −2.38874
\(513\) −3.31330 5.73881i −0.146286 0.253374i
\(514\) −6.50939 + 11.2746i −0.287117 + 0.497301i
\(515\) −4.43232 + 7.67700i −0.195311 + 0.338289i
\(516\) 1.84235 + 3.19105i 0.0811050 + 0.140478i
\(517\) 3.38104 0.148698
\(518\) 28.8745 14.1501i 1.26867 0.621720i
\(519\) −10.8514 −0.476322
\(520\) −28.7536 49.8028i −1.26093 2.18400i
\(521\) −9.57227 + 16.5797i −0.419369 + 0.726368i −0.995876 0.0907240i \(-0.971082\pi\)
0.576507 + 0.817092i \(0.304415\pi\)
\(522\) 11.2952 19.5638i 0.494376 0.856285i
\(523\) −6.95888 12.0531i −0.304291 0.527047i 0.672813 0.739813i \(-0.265086\pi\)
−0.977103 + 0.212766i \(0.931753\pi\)
\(524\) −33.3576 −1.45723
\(525\) 1.15609 16.9905i 0.0504560 0.741527i
\(526\) 44.2275 1.92841
\(527\) 8.67763 + 15.0301i 0.378003 + 0.654721i
\(528\) 14.4251 24.9849i 0.627770 1.08733i
\(529\) −0.500000 + 0.866025i −0.0217391 + 0.0376533i
\(530\) 44.8713 + 77.7194i 1.94908 + 3.37591i
\(531\) 1.36723 0.0593325
\(532\) 80.1532 + 53.8456i 3.47508 + 2.33450i
\(533\) −10.4481 −0.452556
\(534\) 14.6858 + 25.4366i 0.635518 + 1.10075i
\(535\) 29.3071 50.7614i 1.26706 2.19461i
\(536\) −39.3025 + 68.0739i −1.69761 + 2.94034i
\(537\) −4.97180 8.61141i −0.214549 0.371610i
\(538\) −26.2919 −1.13353
\(539\) −13.0624 1.78588i −0.562636 0.0769234i
\(540\) 18.6255 0.801514
\(541\) −14.3756 24.8992i −0.618053 1.07050i −0.989841 0.142182i \(-0.954588\pi\)
0.371787 0.928318i \(-0.378745\pi\)
\(542\) 28.7179 49.7409i 1.23354 2.13656i
\(543\) −0.487807 + 0.844906i −0.0209338 + 0.0362584i
\(544\) −67.0662 116.162i −2.87544 4.98041i
\(545\) 45.2083 1.93651
\(546\) −10.6473 7.15271i −0.455663 0.306108i
\(547\) 25.9067 1.10769 0.553845 0.832620i \(-0.313160\pi\)
0.553845 + 0.832620i \(0.313160\pi\)
\(548\) 39.3586 + 68.1711i 1.68132 + 2.91213i
\(549\) −4.68170 + 8.10894i −0.199810 + 0.346081i
\(550\) 16.6083 28.7664i 0.708181 1.22660i
\(551\) 27.3171 + 47.3146i 1.16375 + 2.01567i
\(552\) 9.61066 0.409057
\(553\) 0.543803 7.99202i 0.0231249 0.339855i
\(554\) −39.9555 −1.69755
\(555\) 7.50022 + 12.9908i 0.318367 + 0.551427i
\(556\) 45.2416 78.3608i 1.91867 3.32324i
\(557\) 2.31799 4.01488i 0.0982164 0.170116i −0.812730 0.582640i \(-0.802020\pi\)
0.910946 + 0.412525i \(0.135353\pi\)
\(558\) 4.03270 + 6.98484i 0.170718 + 0.295692i
\(559\) 1.18376 0.0500678
\(560\) −123.073 + 60.3126i −5.20079 + 2.54867i
\(561\) 11.1045 0.468833
\(562\) −14.0707 24.3712i −0.593537 1.02804i
\(563\) −2.61558 + 4.53031i −0.110233 + 0.190930i −0.915864 0.401488i \(-0.868493\pi\)
0.805631 + 0.592418i \(0.201827\pi\)
\(564\) 4.94348 8.56236i 0.208158 0.360540i
\(565\) −2.00726 3.47667i −0.0844459 0.146265i
\(566\) −46.8347 −1.96861
\(567\) 2.37581 1.16428i 0.0997745 0.0488950i
\(568\) 2.83564 0.118981
\(569\) −3.85568 6.67823i −0.161638 0.279966i 0.773818 0.633408i \(-0.218344\pi\)
−0.935456 + 0.353442i \(0.885011\pi\)
\(570\) −30.7015 + 53.1766i −1.28594 + 2.22732i
\(571\) −8.77576 + 15.2001i −0.367254 + 0.636103i −0.989135 0.147009i \(-0.953035\pi\)
0.621881 + 0.783112i \(0.286369\pi\)
\(572\) −9.17685 15.8948i −0.383704 0.664594i
\(573\) −7.00670 −0.292709
\(574\) −2.90601 + 42.7082i −0.121294 + 1.78260i
\(575\) 6.43667 0.268427
\(576\) −15.8492 27.4517i −0.660385 1.14382i
\(577\) −7.82632 + 13.5556i −0.325814 + 0.564327i −0.981677 0.190554i \(-0.938972\pi\)
0.655863 + 0.754880i \(0.272305\pi\)
\(578\) 24.3342 42.1481i 1.01217 1.75313i
\(579\) 6.26011 + 10.8428i 0.260161 + 0.450613i
\(580\) −153.561 −6.37629
\(581\) 23.1260 + 15.5357i 0.959429 + 0.644529i
\(582\) 42.8232 1.77508
\(583\) 9.12043 + 15.7970i 0.377729 + 0.654247i
\(584\) −21.4198 + 37.1001i −0.886357 + 1.53521i
\(585\) 2.99185 5.18203i 0.123698 0.214251i
\(586\) 14.9369 + 25.8715i 0.617039 + 1.06874i
\(587\) 29.3900 1.21305 0.606527 0.795063i \(-0.292562\pi\)
0.606527 + 0.795063i \(0.292562\pi\)
\(588\) −23.6214 + 30.4688i −0.974132 + 1.25651i
\(589\) −19.5060 −0.803730
\(590\) −6.33445 10.9716i −0.260785 0.451693i
\(591\) −12.6643 + 21.9353i −0.520941 + 0.902296i
\(592\) 33.9724 58.8420i 1.39626 2.41839i
\(593\) 9.00362 + 15.5947i 0.369734 + 0.640399i 0.989524 0.144369i \(-0.0461154\pi\)
−0.619789 + 0.784768i \(0.712782\pi\)
\(594\) 5.16053 0.211739
\(595\) −43.7900 29.4175i −1.79522 1.20600i
\(596\) 76.0241 3.11407
\(597\) 0.324280 + 0.561669i 0.0132719 + 0.0229876i
\(598\) 2.42404 4.19855i 0.0991262 0.171692i
\(599\) 6.16954 10.6860i 0.252081 0.436617i −0.712018 0.702161i \(-0.752218\pi\)
0.964099 + 0.265545i \(0.0855518\pi\)
\(600\) −30.9303 53.5728i −1.26272 2.18710i
\(601\) 0.594459 0.0242485 0.0121243 0.999926i \(-0.496141\pi\)
0.0121243 + 0.999926i \(0.496141\pi\)
\(602\) 0.329249 4.83882i 0.0134192 0.197216i
\(603\) −8.17894 −0.333072
\(604\) 11.6957 + 20.2575i 0.475890 + 0.824266i
\(605\) −12.6019 + 21.8272i −0.512341 + 0.887401i
\(606\) −10.3697 + 17.9609i −0.421241 + 0.729610i
\(607\) 0.0338873 + 0.0586945i 0.00137544 + 0.00238233i 0.866712 0.498808i \(-0.166229\pi\)
−0.865337 + 0.501191i \(0.832896\pi\)
\(608\) 150.755 6.11390
\(609\) −19.5878 + 9.59909i −0.793737 + 0.388975i
\(610\) 86.7625 3.51291
\(611\) −1.58816 2.75077i −0.0642501 0.111284i
\(612\) 16.2361 28.1218i 0.656307 1.13676i
\(613\) −10.7516 + 18.6224i −0.434254 + 0.752150i −0.997234 0.0743201i \(-0.976321\pi\)
0.562980 + 0.826470i \(0.309655\pi\)
\(614\) 36.7121 + 63.5873i 1.48158 + 2.56617i
\(615\) −19.9694 −0.805245
\(616\) −43.0041 + 21.0744i −1.73268 + 0.849111i
\(617\) 10.0024 0.402683 0.201341 0.979521i \(-0.435470\pi\)
0.201341 + 0.979521i \(0.435470\pi\)
\(618\) 3.59113 + 6.22001i 0.144456 + 0.250206i
\(619\) 6.57468 11.3877i 0.264259 0.457710i −0.703110 0.711081i \(-0.748206\pi\)
0.967369 + 0.253371i \(0.0815394\pi\)
\(620\) 27.4129 47.4806i 1.10093 1.90686i
\(621\) 0.500000 + 0.866025i 0.0200643 + 0.0347524i
\(622\) −48.9404 −1.96233
\(623\) 1.92535 28.2960i 0.0771376 1.13366i
\(624\) −27.1033 −1.08500
\(625\) 7.87633 + 13.6422i 0.315053 + 0.545688i
\(626\) −39.9078 + 69.1224i −1.59504 + 2.76269i
\(627\) −6.24031 + 10.8085i −0.249214 + 0.431651i
\(628\) 1.83895 + 3.18516i 0.0733821 + 0.127102i
\(629\) 26.1522 1.04276
\(630\) −20.3503 13.6710i −0.810774 0.544665i
\(631\) 27.0831 1.07816 0.539081 0.842254i \(-0.318772\pi\)
0.539081 + 0.842254i \(0.318772\pi\)
\(632\) −14.5490 25.1996i −0.578729 1.00239i
\(633\) 7.23235 12.5268i 0.287460 0.497895i
\(634\) 30.0541 52.0552i 1.19360 2.06737i
\(635\) −20.6816 35.8216i −0.820725 1.42154i
\(636\) 53.3406 2.11509
\(637\) 4.68276 + 11.4663i 0.185538 + 0.454310i
\(638\) −42.5469 −1.68445
\(639\) 0.147526 + 0.255522i 0.00583604 + 0.0101083i
\(640\) −69.9254 + 121.114i −2.76404 + 4.78747i
\(641\) 18.8298 32.6142i 0.743733 1.28818i −0.207051 0.978330i \(-0.566387\pi\)
0.950784 0.309854i \(-0.100280\pi\)
\(642\) −23.7450 41.1276i −0.937141 1.62318i
\(643\) 0.584100 0.0230347 0.0115173 0.999934i \(-0.496334\pi\)
0.0115173 + 0.999934i \(0.496334\pi\)
\(644\) −12.0957 8.12568i −0.476636 0.320197i
\(645\) 2.26253 0.0890869
\(646\) 53.5259 + 92.7096i 2.10595 + 3.64761i
\(647\) −2.90401 + 5.02990i −0.114169 + 0.197746i −0.917447 0.397858i \(-0.869754\pi\)
0.803279 + 0.595604i \(0.203087\pi\)
\(648\) 4.80533 8.32307i 0.188771 0.326961i
\(649\) −1.28752 2.23006i −0.0505398 0.0875374i
\(650\) −31.2054 −1.22398
\(651\) 0.528699 7.77003i 0.0207213 0.304532i
\(652\) −4.00498 −0.156847
\(653\) −12.3522 21.3946i −0.483378 0.837235i 0.516440 0.856323i \(-0.327257\pi\)
−0.999818 + 0.0190884i \(0.993924\pi\)
\(654\) 18.3142 31.7211i 0.716141 1.24039i
\(655\) −10.2413 + 17.7385i −0.400161 + 0.693100i
\(656\) 45.2260 + 78.3338i 1.76578 + 3.05842i
\(657\) −4.45751 −0.173904
\(658\) −11.6860 + 5.72677i −0.455567 + 0.223253i
\(659\) 24.0716 0.937697 0.468848 0.883279i \(-0.344669\pi\)
0.468848 + 0.883279i \(0.344669\pi\)
\(660\) −17.5398 30.3798i −0.682734 1.18253i
\(661\) −5.08195 + 8.80219i −0.197665 + 0.342366i −0.947771 0.318952i \(-0.896669\pi\)
0.750106 + 0.661318i \(0.230002\pi\)
\(662\) −7.71369 + 13.3605i −0.299801 + 0.519271i
\(663\) −5.21608 9.03451i −0.202576 0.350871i
\(664\) 101.200 3.92734
\(665\) 53.2417 26.0914i 2.06462 1.01178i
\(666\) 12.1536 0.470941
\(667\) −4.12234 7.14010i −0.159618 0.276466i
\(668\) −25.9550 + 44.9555i −1.00423 + 1.73938i
\(669\) −14.8664 + 25.7493i −0.574766 + 0.995525i
\(670\) 37.8936 + 65.6336i 1.46396 + 2.53565i
\(671\) 17.6351 0.680797
\(672\) −4.08612 + 60.0517i −0.157625 + 2.31655i
\(673\) 21.4374 0.826350 0.413175 0.910652i \(-0.364420\pi\)
0.413175 + 0.910652i \(0.364420\pi\)
\(674\) 29.7741 + 51.5703i 1.14686 + 1.98641i
\(675\) 3.21833 5.57432i 0.123874 0.214556i
\(676\) 27.1779 47.0734i 1.04530 1.81052i
\(677\) −14.5934 25.2765i −0.560869 0.971454i −0.997421 0.0717746i \(-0.977134\pi\)
0.436552 0.899679i \(-0.356200\pi\)
\(678\) −3.25261 −0.124916
\(679\) −34.3243 23.0585i −1.31725 0.884905i
\(680\) −191.627 −7.34856
\(681\) −3.24510 5.62067i −0.124352 0.215385i
\(682\) 7.59524 13.1553i 0.290837 0.503744i
\(683\) 24.8388 43.0221i 0.950432 1.64620i 0.205940 0.978565i \(-0.433975\pi\)
0.744492 0.667631i \(-0.232692\pi\)
\(684\) 18.2482 + 31.6068i 0.697736 + 1.20851i
\(685\) 48.3349 1.84678
\(686\) 48.1727 15.9523i 1.83924 0.609063i
\(687\) 1.23608 0.0471593
\(688\) −5.12409 8.87518i −0.195354 0.338363i
\(689\) 8.56820 14.8406i 0.326423 0.565380i
\(690\) 4.63307 8.02471i 0.176378 0.305496i
\(691\) −3.61070 6.25391i −0.137357 0.237910i 0.789138 0.614216i \(-0.210528\pi\)
−0.926496 + 0.376306i \(0.877194\pi\)
\(692\) 59.7644 2.27190
\(693\) −4.13634 2.77873i −0.157127 0.105555i
\(694\) −88.9963 −3.37825
\(695\) −27.7798 48.1161i −1.05375 1.82515i
\(696\) −39.6184 + 68.6211i −1.50173 + 2.60108i
\(697\) −17.4076 + 30.1509i −0.659362 + 1.14205i
\(698\) 0.315969 + 0.547274i 0.0119596 + 0.0207146i
\(699\) −24.3562 −0.921236
\(700\) −6.36723 + 93.5762i −0.240659 + 3.53685i
\(701\) −43.4759 −1.64206 −0.821031 0.570884i \(-0.806601\pi\)
−0.821031 + 0.570884i \(0.806601\pi\)
\(702\) −2.42404 4.19855i −0.0914894 0.158464i
\(703\) −14.6965 + 25.4552i −0.554291 + 0.960060i
\(704\) −29.8507 + 51.7029i −1.12504 + 1.94863i
\(705\) −3.03546 5.25757i −0.114322 0.198011i
\(706\) −76.4359 −2.87670
\(707\) 17.9829 8.81259i 0.676315 0.331432i
\(708\) −7.53006 −0.282997
\(709\) −11.6132 20.1146i −0.436143 0.755421i 0.561245 0.827649i \(-0.310322\pi\)
−0.997388 + 0.0722280i \(0.976989\pi\)
\(710\) 1.36700 2.36771i 0.0513024 0.0888584i
\(711\) 1.51384 2.62205i 0.0567735 0.0983346i
\(712\) −51.5112 89.2201i −1.93047 3.34366i
\(713\) 2.94359 0.110238
\(714\) −38.3808 + 18.8087i −1.43637 + 0.703899i
\(715\) −11.2698 −0.421466
\(716\) 27.3824 + 47.4278i 1.02333 + 1.77246i
\(717\) 7.62354 13.2044i 0.284706 0.493126i
\(718\) 22.4166 38.8267i 0.836579 1.44900i
\(719\) −19.9020 34.4712i −0.742218 1.28556i −0.951483 0.307701i \(-0.900440\pi\)
0.209265 0.977859i \(-0.432893\pi\)
\(720\) −51.8027 −1.93057
\(721\) 0.470807 6.91922i 0.0175338 0.257685i
\(722\) −68.2582 −2.54031
\(723\) 2.06351 + 3.57411i 0.0767429 + 0.132923i
\(724\) 2.68662 4.65336i 0.0998475 0.172941i
\(725\) −26.5341 + 45.9585i −0.985453 + 1.70685i
\(726\) 10.2102 + 17.6847i 0.378938 + 0.656339i
\(727\) −22.3786 −0.829978 −0.414989 0.909826i \(-0.636215\pi\)
−0.414989 + 0.909826i \(0.636215\pi\)
\(728\) 37.3460 + 25.0885i 1.38414 + 0.929841i
\(729\) 1.00000 0.0370370
\(730\) 20.6519 + 35.7702i 0.764362 + 1.32391i
\(731\) 1.97228 3.41609i 0.0729474 0.126349i
\(732\) 25.7847 44.6604i 0.953029 1.65070i
\(733\) 15.6130 + 27.0426i 0.576681 + 0.998840i 0.995857 + 0.0909352i \(0.0289856\pi\)
−0.419176 + 0.907905i \(0.637681\pi\)
\(734\) −42.4141 −1.56553
\(735\) 8.95018 + 21.9155i 0.330132 + 0.808367i
\(736\) −22.7499 −0.838572
\(737\) 7.70215 + 13.3405i 0.283712 + 0.491404i
\(738\) −8.08975 + 14.0119i −0.297788 + 0.515784i
\(739\) −17.3219 + 30.0024i −0.637197 + 1.10366i 0.348848 + 0.937179i \(0.386573\pi\)
−0.986045 + 0.166478i \(0.946760\pi\)
\(740\) −41.3079 71.5473i −1.51851 2.63013i
\(741\) 11.7249 0.430727
\(742\) −58.2801 39.1517i −2.13953 1.43730i
\(743\) −23.7961 −0.872996 −0.436498 0.899705i \(-0.643781\pi\)
−0.436498 + 0.899705i \(0.643781\pi\)
\(744\) −14.1449 24.4997i −0.518577 0.898202i
\(745\) 23.3406 40.4271i 0.855134 1.48114i
\(746\) −40.2878 + 69.7805i −1.47504 + 2.55485i
\(747\) 5.26501 + 9.11927i 0.192637 + 0.333657i
\(748\) −61.1587 −2.23618
\(749\) −3.11304 + 45.7509i −0.113748 + 1.67170i
\(750\) −13.3123 −0.486098
\(751\) 1.27430 + 2.20715i 0.0464999 + 0.0805401i 0.888339 0.459189i \(-0.151860\pi\)
−0.841839 + 0.539729i \(0.818527\pi\)
\(752\) −13.7492 + 23.8143i −0.501381 + 0.868417i
\(753\) 2.41341 4.18015i 0.0879495 0.152333i
\(754\) 19.9854 + 34.6157i 0.727826 + 1.26063i
\(755\) 14.3630 0.522725
\(756\) −13.0849 + 6.41231i −0.475892 + 0.233214i
\(757\) −35.5043 −1.29042 −0.645212 0.764004i \(-0.723231\pi\)
−0.645212 + 0.764004i \(0.723231\pi\)
\(758\) 32.5303 + 56.3442i 1.18156 + 2.04651i
\(759\) 0.941706 1.63108i 0.0341818 0.0592046i
\(760\) 107.687 186.520i 3.90622 6.76577i
\(761\) 15.0000 + 25.9808i 0.543749 + 0.941802i 0.998684 + 0.0512770i \(0.0163291\pi\)
−0.454935 + 0.890525i \(0.650338\pi\)
\(762\) −33.5131 −1.21405
\(763\) −31.7599 + 15.5641i −1.14979 + 0.563459i
\(764\) 38.5898 1.39613
\(765\) −9.96951 17.2677i −0.360448 0.624315i
\(766\) 6.56228 11.3662i 0.237105 0.410677i
\(767\) −1.20957 + 2.09503i −0.0436749 + 0.0756472i
\(768\) 24.9560 + 43.2251i 0.900523 + 1.55975i
\(769\) 39.7222 1.43242 0.716210 0.697885i \(-0.245875\pi\)
0.716210 + 0.697885i \(0.245875\pi\)
\(770\) −3.13455 + 46.0670i −0.112961 + 1.66014i
\(771\) 4.75140 0.171117
\(772\) −34.4779 59.7174i −1.24089 2.14928i
\(773\) −5.99665 + 10.3865i −0.215684 + 0.373576i −0.953484 0.301443i \(-0.902532\pi\)
0.737800 + 0.675020i \(0.235865\pi\)
\(774\) 0.916565 1.58754i 0.0329453 0.0570629i
\(775\) −9.47344 16.4085i −0.340296 0.589410i
\(776\) −150.205 −5.39203
\(777\) −9.74150 6.54419i −0.349474 0.234771i
\(778\) −61.8012