Properties

Label 483.2.i.h.277.1
Level $483$
Weight $2$
Character 483.277
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 3 x^{19} + 22 x^{18} - 43 x^{17} + 245 x^{16} - 416 x^{15} + 1707 x^{14} - 2021 x^{13} + 7135 x^{12} - 6640 x^{11} + 20315 x^{10} - 10565 x^{9} + 29358 x^{8} - 9009 x^{7} + 30661 x^{6} - 4026 x^{5} + 15786 x^{4} - 84 x^{3} + 5800 x^{2} + 152 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 277.1
Root \(1.39981 - 2.42454i\) of defining polynomial
Character \(\chi\) \(=\) 483.277
Dual form 483.2.i.h.415.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.39981 - 2.42454i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-2.91893 + 5.05574i) q^{4} +(0.973538 + 1.68622i) q^{5} -2.79962 q^{6} +(-2.64333 + 0.113245i) q^{7} +10.7446 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-1.39981 - 2.42454i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-2.91893 + 5.05574i) q^{4} +(0.973538 + 1.68622i) q^{5} -2.79962 q^{6} +(-2.64333 + 0.113245i) q^{7} +10.7446 q^{8} +(-0.500000 - 0.866025i) q^{9} +(2.72553 - 4.72076i) q^{10} +(1.34384 - 2.32760i) q^{11} +(2.91893 + 5.05574i) q^{12} +4.19039 q^{13} +(3.97472 + 6.25033i) q^{14} +1.94708 q^{15} +(-9.20247 - 15.9391i) q^{16} +(0.316198 - 0.547671i) q^{17} +(-1.39981 + 2.42454i) q^{18} +(-2.77713 - 4.81013i) q^{19} -11.3668 q^{20} +(-1.22359 + 2.34581i) q^{21} -7.52450 q^{22} +(-0.500000 - 0.866025i) q^{23} +(5.37228 - 9.30506i) q^{24} +(0.604448 - 1.04694i) q^{25} +(-5.86574 - 10.1598i) q^{26} -1.00000 q^{27} +(7.14315 - 13.6945i) q^{28} +5.57812 q^{29} +(-2.72553 - 4.72076i) q^{30} +(2.79909 - 4.84817i) q^{31} +(-15.0188 + 26.0134i) q^{32} +(-1.34384 - 2.32760i) q^{33} -1.77047 q^{34} +(-2.76433 - 4.34697i) q^{35} +5.83786 q^{36} +(-2.05806 - 3.56466i) q^{37} +(-7.77490 + 13.4665i) q^{38} +(2.09519 - 3.62898i) q^{39} +(10.4602 + 18.1177i) q^{40} +5.19481 q^{41} +(7.40031 - 0.317043i) q^{42} -1.98626 q^{43} +(7.84517 + 13.5882i) q^{44} +(0.973538 - 1.68622i) q^{45} +(-1.39981 + 2.42454i) q^{46} +(0.146293 + 0.253388i) q^{47} -18.4049 q^{48} +(6.97435 - 0.598687i) q^{49} -3.38445 q^{50} +(-0.316198 - 0.547671i) q^{51} +(-12.2315 + 21.1855i) q^{52} +(5.08608 - 8.80935i) q^{53} +(1.39981 + 2.42454i) q^{54} +5.23313 q^{55} +(-28.4014 + 1.21677i) q^{56} -5.55426 q^{57} +(-7.80831 - 13.5244i) q^{58} +(-3.65980 + 6.33896i) q^{59} +(-5.68338 + 9.84391i) q^{60} +(3.14346 + 5.44464i) q^{61} -15.6728 q^{62} +(1.41974 + 2.23257i) q^{63} +47.2842 q^{64} +(4.07950 + 7.06590i) q^{65} +(-3.76225 + 6.51640i) q^{66} +(-1.57437 + 2.72690i) q^{67} +(1.84592 + 3.19723i) q^{68} -1.00000 q^{69} +(-6.66987 + 12.7872i) q^{70} +6.00227 q^{71} +(-5.37228 - 9.30506i) q^{72} +(-6.93126 + 12.0053i) q^{73} +(-5.76178 + 9.97970i) q^{74} +(-0.604448 - 1.04694i) q^{75} +32.4250 q^{76} +(-3.28863 + 6.30480i) q^{77} -11.7315 q^{78} +(-7.89510 - 13.6747i) q^{79} +(17.9179 - 31.0347i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-7.27175 - 12.5950i) q^{82} +12.4983 q^{83} +(-8.28823 - 13.0334i) q^{84} +1.23132 q^{85} +(2.78038 + 4.81577i) q^{86} +(2.78906 - 4.83079i) q^{87} +(14.4390 - 25.0091i) q^{88} +(-0.905775 - 1.56885i) q^{89} -5.45107 q^{90} +(-11.0766 + 0.474541i) q^{91} +5.83786 q^{92} +(-2.79909 - 4.84817i) q^{93} +(0.409566 - 0.709389i) q^{94} +(5.40728 - 9.36568i) q^{95} +(15.0188 + 26.0134i) q^{96} -2.95190 q^{97} +(-11.2143 - 16.0716i) q^{98} -2.68769 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 3q^{2} + 10q^{3} - 15q^{4} + 5q^{5} - 6q^{6} + 18q^{8} - 10q^{9} + O(q^{10}) \) \( 20q - 3q^{2} + 10q^{3} - 15q^{4} + 5q^{5} - 6q^{6} + 18q^{8} - 10q^{9} - 11q^{10} - 8q^{11} + 15q^{12} + 11q^{14} + 10q^{15} - 37q^{16} + 11q^{17} - 3q^{18} - q^{19} - 30q^{20} + 12q^{22} - 10q^{23} + 9q^{24} - 21q^{25} - q^{26} - 20q^{27} + 44q^{28} + 44q^{29} + 11q^{30} + 3q^{31} - 11q^{32} + 8q^{33} - 6q^{34} - 9q^{35} + 30q^{36} + 3q^{37} - 16q^{38} - 39q^{40} - 52q^{41} + 7q^{42} + 54q^{43} - 16q^{44} + 5q^{45} - 3q^{46} - 11q^{47} - 74q^{48} + 22q^{49} + 4q^{50} - 11q^{51} - 29q^{52} - 5q^{53} + 3q^{54} - 36q^{55} + 43q^{56} - 2q^{57} - 16q^{58} + 10q^{59} - 15q^{60} - 22q^{61} - 64q^{62} + 138q^{64} + 11q^{65} + 6q^{66} + 2q^{67} + 21q^{68} - 20q^{69} + 84q^{70} + 54q^{71} - 9q^{72} + 8q^{73} - 14q^{74} + 21q^{75} - 44q^{76} + 8q^{77} - 2q^{78} - 21q^{79} + 53q^{80} - 10q^{81} - 36q^{82} - 24q^{83} + 25q^{84} + 46q^{85} - 18q^{86} + 22q^{87} + 10q^{88} - 6q^{89} + 22q^{90} - 62q^{91} + 30q^{92} - 3q^{93} - 35q^{94} - 44q^{95} + 11q^{96} + 12q^{97} + 2q^{98} + 16q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39981 2.42454i −0.989815 1.71441i −0.618196 0.786024i \(-0.712136\pi\)
−0.371618 0.928386i \(-0.621197\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) −2.91893 + 5.05574i −1.45947 + 2.52787i
\(5\) 0.973538 + 1.68622i 0.435379 + 0.754099i 0.997327 0.0730740i \(-0.0232809\pi\)
−0.561947 + 0.827173i \(0.689948\pi\)
\(6\) −2.79962 −1.14294
\(7\) −2.64333 + 0.113245i −0.999084 + 0.0428026i
\(8\) 10.7446 3.79878
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 2.72553 4.72076i 0.861890 1.49284i
\(11\) 1.34384 2.32760i 0.405184 0.701799i −0.589159 0.808017i \(-0.700541\pi\)
0.994343 + 0.106218i \(0.0338742\pi\)
\(12\) 2.91893 + 5.05574i 0.842623 + 1.45947i
\(13\) 4.19039 1.16220 0.581102 0.813831i \(-0.302622\pi\)
0.581102 + 0.813831i \(0.302622\pi\)
\(14\) 3.97472 + 6.25033i 1.06229 + 1.67047i
\(15\) 1.94708 0.502733
\(16\) −9.20247 15.9391i −2.30062 3.98479i
\(17\) 0.316198 0.547671i 0.0766893 0.132830i −0.825130 0.564942i \(-0.808898\pi\)
0.901820 + 0.432113i \(0.142232\pi\)
\(18\) −1.39981 + 2.42454i −0.329938 + 0.571470i
\(19\) −2.77713 4.81013i −0.637117 1.10352i −0.986062 0.166376i \(-0.946794\pi\)
0.348946 0.937143i \(-0.386540\pi\)
\(20\) −11.3668 −2.54169
\(21\) −1.22359 + 2.34581i −0.267009 + 0.511898i
\(22\) −7.52450 −1.60423
\(23\) −0.500000 0.866025i −0.104257 0.180579i
\(24\) 5.37228 9.30506i 1.09661 1.89939i
\(25\) 0.604448 1.04694i 0.120890 0.209387i
\(26\) −5.86574 10.1598i −1.15037 1.99249i
\(27\) −1.00000 −0.192450
\(28\) 7.14315 13.6945i 1.34993 2.58802i
\(29\) 5.57812 1.03583 0.517915 0.855432i \(-0.326708\pi\)
0.517915 + 0.855432i \(0.326708\pi\)
\(30\) −2.72553 4.72076i −0.497612 0.861890i
\(31\) 2.79909 4.84817i 0.502732 0.870757i −0.497263 0.867600i \(-0.665662\pi\)
0.999995 0.00315709i \(-0.00100493\pi\)
\(32\) −15.0188 + 26.0134i −2.65498 + 4.59856i
\(33\) −1.34384 2.32760i −0.233933 0.405184i
\(34\) −1.77047 −0.303633
\(35\) −2.76433 4.34697i −0.467258 0.734773i
\(36\) 5.83786 0.972977
\(37\) −2.05806 3.56466i −0.338343 0.586027i 0.645778 0.763525i \(-0.276533\pi\)
−0.984121 + 0.177498i \(0.943200\pi\)
\(38\) −7.77490 + 13.4665i −1.26126 + 2.18456i
\(39\) 2.09519 3.62898i 0.335500 0.581102i
\(40\) 10.4602 + 18.1177i 1.65391 + 2.86465i
\(41\) 5.19481 0.811293 0.405647 0.914030i \(-0.367046\pi\)
0.405647 + 0.914030i \(0.367046\pi\)
\(42\) 7.40031 0.317043i 1.14189 0.0489208i
\(43\) −1.98626 −0.302902 −0.151451 0.988465i \(-0.548395\pi\)
−0.151451 + 0.988465i \(0.548395\pi\)
\(44\) 7.84517 + 13.5882i 1.18270 + 2.04850i
\(45\) 0.973538 1.68622i 0.145126 0.251366i
\(46\) −1.39981 + 2.42454i −0.206391 + 0.357479i
\(47\) 0.146293 + 0.253388i 0.0213391 + 0.0369604i 0.876498 0.481406i \(-0.159874\pi\)
−0.855159 + 0.518366i \(0.826540\pi\)
\(48\) −18.4049 −2.65652
\(49\) 6.97435 0.598687i 0.996336 0.0855268i
\(50\) −3.38445 −0.478633
\(51\) −0.316198 0.547671i −0.0442766 0.0766893i
\(52\) −12.2315 + 21.1855i −1.69620 + 2.93790i
\(53\) 5.08608 8.80935i 0.698627 1.21006i −0.270315 0.962772i \(-0.587128\pi\)
0.968943 0.247286i \(-0.0795387\pi\)
\(54\) 1.39981 + 2.42454i 0.190490 + 0.329938i
\(55\) 5.23313 0.705635
\(56\) −28.4014 + 1.21677i −3.79529 + 0.162597i
\(57\) −5.55426 −0.735679
\(58\) −7.80831 13.5244i −1.02528 1.77584i
\(59\) −3.65980 + 6.33896i −0.476466 + 0.825262i −0.999636 0.0269653i \(-0.991416\pi\)
0.523171 + 0.852228i \(0.324749\pi\)
\(60\) −5.68338 + 9.84391i −0.733721 + 1.27084i
\(61\) 3.14346 + 5.44464i 0.402479 + 0.697114i 0.994024 0.109158i \(-0.0348153\pi\)
−0.591545 + 0.806272i \(0.701482\pi\)
\(62\) −15.6728 −1.99044
\(63\) 1.41974 + 2.23257i 0.178870 + 0.281277i
\(64\) 47.2842 5.91053
\(65\) 4.07950 + 7.06590i 0.506000 + 0.876417i
\(66\) −3.76225 + 6.51640i −0.463101 + 0.802114i
\(67\) −1.57437 + 2.72690i −0.192340 + 0.333143i −0.946025 0.324092i \(-0.894941\pi\)
0.753685 + 0.657236i \(0.228274\pi\)
\(68\) 1.84592 + 3.19723i 0.223851 + 0.387721i
\(69\) −1.00000 −0.120386
\(70\) −6.66987 + 12.7872i −0.797203 + 1.52836i
\(71\) 6.00227 0.712338 0.356169 0.934422i \(-0.384083\pi\)
0.356169 + 0.934422i \(0.384083\pi\)
\(72\) −5.37228 9.30506i −0.633129 1.09661i
\(73\) −6.93126 + 12.0053i −0.811243 + 1.40511i 0.100752 + 0.994912i \(0.467875\pi\)
−0.911994 + 0.410202i \(0.865458\pi\)
\(74\) −5.76178 + 9.97970i −0.669793 + 1.16012i
\(75\) −0.604448 1.04694i −0.0697957 0.120890i
\(76\) 32.4250 3.71940
\(77\) −3.28863 + 6.30480i −0.374774 + 0.718499i
\(78\) −11.7315 −1.32833
\(79\) −7.89510 13.6747i −0.888268 1.53852i −0.841922 0.539599i \(-0.818576\pi\)
−0.0463457 0.998925i \(-0.514758\pi\)
\(80\) 17.9179 31.0347i 2.00328 3.46979i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −7.27175 12.5950i −0.803030 1.39089i
\(83\) 12.4983 1.37186 0.685931 0.727666i \(-0.259395\pi\)
0.685931 + 0.727666i \(0.259395\pi\)
\(84\) −8.28823 13.0334i −0.904320 1.42206i
\(85\) 1.23132 0.133556
\(86\) 2.78038 + 4.81577i 0.299816 + 0.519297i
\(87\) 2.78906 4.83079i 0.299019 0.517915i
\(88\) 14.4390 25.0091i 1.53920 2.66598i
\(89\) −0.905775 1.56885i −0.0960119 0.166298i 0.814019 0.580839i \(-0.197275\pi\)
−0.910030 + 0.414541i \(0.863942\pi\)
\(90\) −5.45107 −0.574593
\(91\) −11.0766 + 0.474541i −1.16114 + 0.0497454i
\(92\) 5.83786 0.608639
\(93\) −2.79909 4.84817i −0.290252 0.502732i
\(94\) 0.409566 0.709389i 0.0422435 0.0731679i
\(95\) 5.40728 9.36568i 0.554775 0.960898i
\(96\) 15.0188 + 26.0134i 1.53285 + 2.65498i
\(97\) −2.95190 −0.299720 −0.149860 0.988707i \(-0.547882\pi\)
−0.149860 + 0.988707i \(0.547882\pi\)
\(98\) −11.2143 16.0716i −1.13282 1.62347i
\(99\) −2.68769 −0.270123
\(100\) 3.52869 + 6.11187i 0.352869 + 0.611187i
\(101\) 6.40066 11.0863i 0.636889 1.10312i −0.349222 0.937040i \(-0.613554\pi\)
0.986112 0.166084i \(-0.0531124\pi\)
\(102\) −0.885234 + 1.53327i −0.0876512 + 0.151816i
\(103\) −6.52904 11.3086i −0.643325 1.11427i −0.984686 0.174340i \(-0.944221\pi\)
0.341360 0.939933i \(-0.389112\pi\)
\(104\) 45.0239 4.41495
\(105\) −5.14676 + 0.220497i −0.502272 + 0.0215183i
\(106\) −28.4782 −2.76605
\(107\) 6.86084 + 11.8833i 0.663263 + 1.14880i 0.979753 + 0.200209i \(0.0641621\pi\)
−0.316491 + 0.948596i \(0.602505\pi\)
\(108\) 2.91893 5.05574i 0.280874 0.486489i
\(109\) 2.25296 3.90223i 0.215794 0.373766i −0.737724 0.675103i \(-0.764099\pi\)
0.953518 + 0.301336i \(0.0974327\pi\)
\(110\) −7.32538 12.6879i −0.698448 1.20975i
\(111\) −4.11612 −0.390685
\(112\) 26.1302 + 41.0902i 2.46907 + 3.88266i
\(113\) −16.4013 −1.54290 −0.771451 0.636288i \(-0.780469\pi\)
−0.771451 + 0.636288i \(0.780469\pi\)
\(114\) 7.77490 + 13.4665i 0.728186 + 1.26126i
\(115\) 0.973538 1.68622i 0.0907829 0.157241i
\(116\) −16.2822 + 28.2015i −1.51176 + 2.61845i
\(117\) −2.09519 3.62898i −0.193701 0.335500i
\(118\) 20.4921 1.88645
\(119\) −0.773794 + 1.48348i −0.0709335 + 0.135990i
\(120\) 20.9205 1.90977
\(121\) 1.88817 + 3.27041i 0.171652 + 0.297310i
\(122\) 8.80049 15.2429i 0.796759 1.38003i
\(123\) 2.59741 4.49884i 0.234200 0.405647i
\(124\) 16.3407 + 28.3030i 1.46744 + 2.54168i
\(125\) 12.0892 1.08129
\(126\) 3.42559 6.56738i 0.305175 0.585068i
\(127\) −18.2031 −1.61527 −0.807634 0.589685i \(-0.799252\pi\)
−0.807634 + 0.589685i \(0.799252\pi\)
\(128\) −36.1512 62.6157i −3.19534 5.53450i
\(129\) −0.993129 + 1.72015i −0.0874402 + 0.151451i
\(130\) 11.4210 19.7818i 1.00169 1.73498i
\(131\) 4.16420 + 7.21261i 0.363828 + 0.630169i 0.988587 0.150649i \(-0.0481362\pi\)
−0.624759 + 0.780817i \(0.714803\pi\)
\(132\) 15.6903 1.36567
\(133\) 7.88558 + 12.4002i 0.683766 + 1.07524i
\(134\) 8.81530 0.761526
\(135\) −0.973538 1.68622i −0.0837888 0.145126i
\(136\) 3.39741 5.88448i 0.291325 0.504590i
\(137\) 6.65217 11.5219i 0.568333 0.984382i −0.428398 0.903590i \(-0.640922\pi\)
0.996731 0.0807919i \(-0.0257449\pi\)
\(138\) 1.39981 + 2.42454i 0.119160 + 0.206391i
\(139\) −5.93319 −0.503247 −0.251623 0.967825i \(-0.580964\pi\)
−0.251623 + 0.967825i \(0.580964\pi\)
\(140\) 30.0461 1.28723i 2.53936 0.108791i
\(141\) 0.292587 0.0246403
\(142\) −8.40203 14.5527i −0.705083 1.22124i
\(143\) 5.63122 9.75356i 0.470907 0.815634i
\(144\) −9.20247 + 15.9391i −0.766872 + 1.32826i
\(145\) 5.43051 + 9.40592i 0.450979 + 0.781119i
\(146\) 38.8098 3.21192
\(147\) 2.96870 6.33931i 0.244854 0.522857i
\(148\) 24.0293 1.97520
\(149\) 2.41533 + 4.18348i 0.197872 + 0.342724i 0.947838 0.318752i \(-0.103264\pi\)
−0.749967 + 0.661476i \(0.769930\pi\)
\(150\) −1.69222 + 2.93102i −0.138170 + 0.239317i
\(151\) −10.4923 + 18.1732i −0.853854 + 1.47892i 0.0238510 + 0.999716i \(0.492407\pi\)
−0.877705 + 0.479202i \(0.840926\pi\)
\(152\) −29.8390 51.6827i −2.42026 4.19202i
\(153\) −0.632396 −0.0511262
\(154\) 19.8897 0.852112i 1.60276 0.0686651i
\(155\) 10.9001 0.875516
\(156\) 12.2315 + 21.1855i 0.979300 + 1.69620i
\(157\) −0.797219 + 1.38082i −0.0636250 + 0.110202i −0.896083 0.443886i \(-0.853599\pi\)
0.832458 + 0.554088i \(0.186933\pi\)
\(158\) −22.1033 + 38.2840i −1.75844 + 3.04571i
\(159\) −5.08608 8.80935i −0.403353 0.698627i
\(160\) −58.4857 −4.62370
\(161\) 1.41974 + 2.23257i 0.111891 + 0.175951i
\(162\) 2.79962 0.219959
\(163\) 5.44883 + 9.43766i 0.426786 + 0.739214i 0.996585 0.0825692i \(-0.0263125\pi\)
−0.569800 + 0.821784i \(0.692979\pi\)
\(164\) −15.1633 + 26.2636i −1.18406 + 2.05084i
\(165\) 2.61656 4.53202i 0.203699 0.352817i
\(166\) −17.4952 30.3026i −1.35789 2.35193i
\(167\) −15.5931 −1.20663 −0.603313 0.797504i \(-0.706153\pi\)
−0.603313 + 0.797504i \(0.706153\pi\)
\(168\) −13.1469 + 25.2047i −1.01431 + 1.94458i
\(169\) 4.55935 0.350719
\(170\) −1.72362 2.98539i −0.132195 0.228969i
\(171\) −2.77713 + 4.81013i −0.212372 + 0.367840i
\(172\) 5.79776 10.0420i 0.442075 0.765696i
\(173\) 5.63605 + 9.76193i 0.428501 + 0.742186i 0.996740 0.0806777i \(-0.0257084\pi\)
−0.568239 + 0.822864i \(0.692375\pi\)
\(174\) −15.6166 −1.18389
\(175\) −1.47919 + 2.83584i −0.111817 + 0.214370i
\(176\) −49.4667 −3.72869
\(177\) 3.65980 + 6.33896i 0.275087 + 0.476466i
\(178\) −2.53582 + 4.39218i −0.190068 + 0.329207i
\(179\) −4.08754 + 7.07983i −0.305517 + 0.529171i −0.977376 0.211508i \(-0.932163\pi\)
0.671859 + 0.740679i \(0.265496\pi\)
\(180\) 5.68338 + 9.84391i 0.423614 + 0.733721i
\(181\) −3.00094 −0.223058 −0.111529 0.993761i \(-0.535575\pi\)
−0.111529 + 0.993761i \(0.535575\pi\)
\(182\) 16.6556 + 26.1913i 1.23460 + 1.94143i
\(183\) 6.28692 0.464743
\(184\) −5.37228 9.30506i −0.396050 0.685978i
\(185\) 4.00720 6.94067i 0.294615 0.510288i
\(186\) −7.83639 + 13.5730i −0.574592 + 0.995222i
\(187\) −0.849841 1.47197i −0.0621465 0.107641i
\(188\) −1.70808 −0.124575
\(189\) 2.64333 0.113245i 0.192274 0.00823737i
\(190\) −30.2766 −2.19650
\(191\) 5.78941 + 10.0276i 0.418907 + 0.725568i 0.995830 0.0912304i \(-0.0290800\pi\)
−0.576923 + 0.816799i \(0.695747\pi\)
\(192\) 23.6421 40.9493i 1.70622 2.95526i
\(193\) −2.84965 + 4.93573i −0.205122 + 0.355282i −0.950172 0.311727i \(-0.899092\pi\)
0.745050 + 0.667009i \(0.232426\pi\)
\(194\) 4.13210 + 7.15700i 0.296667 + 0.513843i
\(195\) 8.15900 0.584278
\(196\) −17.3309 + 37.0080i −1.23792 + 2.64343i
\(197\) −12.9883 −0.925379 −0.462689 0.886521i \(-0.653115\pi\)
−0.462689 + 0.886521i \(0.653115\pi\)
\(198\) 3.76225 + 6.51640i 0.267371 + 0.463101i
\(199\) 10.6628 18.4685i 0.755864 1.30919i −0.189080 0.981962i \(-0.560551\pi\)
0.944944 0.327233i \(-0.106116\pi\)
\(200\) 6.49453 11.2489i 0.459233 0.795414i
\(201\) 1.57437 + 2.72690i 0.111048 + 0.192340i
\(202\) −35.8388 −2.52161
\(203\) −14.7448 + 0.631695i −1.03488 + 0.0443363i
\(204\) 3.69184 0.258481
\(205\) 5.05735 + 8.75958i 0.353220 + 0.611796i
\(206\) −18.2788 + 31.6598i −1.27355 + 2.20585i
\(207\) −0.500000 + 0.866025i −0.0347524 + 0.0601929i
\(208\) −38.5619 66.7912i −2.67379 4.63114i
\(209\) −14.9281 −1.03260
\(210\) 7.73908 + 12.1699i 0.534047 + 0.839801i
\(211\) 7.69191 0.529533 0.264766 0.964313i \(-0.414705\pi\)
0.264766 + 0.964313i \(0.414705\pi\)
\(212\) 29.6919 + 51.4278i 2.03925 + 3.53208i
\(213\) 3.00113 5.19812i 0.205634 0.356169i
\(214\) 19.2077 33.2688i 1.31301 2.27421i
\(215\) −1.93370 3.34926i −0.131877 0.228418i
\(216\) −10.7446 −0.731075
\(217\) −6.84988 + 13.1323i −0.465000 + 0.891477i
\(218\) −12.6148 −0.854384
\(219\) 6.93126 + 12.0053i 0.468371 + 0.811243i
\(220\) −15.2751 + 26.4573i −1.02985 + 1.78375i
\(221\) 1.32499 2.29495i 0.0891286 0.154375i
\(222\) 5.76178 + 9.97970i 0.386705 + 0.669793i
\(223\) 20.9689 1.40418 0.702091 0.712087i \(-0.252250\pi\)
0.702091 + 0.712087i \(0.252250\pi\)
\(224\) 36.7538 70.4627i 2.45572 4.70799i
\(225\) −1.20890 −0.0805931
\(226\) 22.9587 + 39.7656i 1.52719 + 2.64517i
\(227\) 12.0879 20.9369i 0.802302 1.38963i −0.115795 0.993273i \(-0.536941\pi\)
0.918097 0.396355i \(-0.129725\pi\)
\(228\) 16.2125 28.0809i 1.07370 1.85970i
\(229\) 4.33927 + 7.51584i 0.286747 + 0.496661i 0.973031 0.230673i \(-0.0740927\pi\)
−0.686284 + 0.727334i \(0.740759\pi\)
\(230\) −5.45107 −0.359433
\(231\) 3.81581 + 6.00043i 0.251062 + 0.394800i
\(232\) 59.9344 3.93489
\(233\) −1.34590 2.33117i −0.0881729 0.152720i 0.818566 0.574413i \(-0.194769\pi\)
−0.906739 + 0.421693i \(0.861436\pi\)
\(234\) −5.86574 + 10.1598i −0.383456 + 0.664165i
\(235\) −0.284844 + 0.493365i −0.0185812 + 0.0321836i
\(236\) −21.3654 37.0060i −1.39077 2.40889i
\(237\) −15.7902 −1.02568
\(238\) 4.67992 0.200497i 0.303354 0.0129963i
\(239\) −0.0523580 −0.00338675 −0.00169338 0.999999i \(-0.500539\pi\)
−0.00169338 + 0.999999i \(0.500539\pi\)
\(240\) −17.9179 31.0347i −1.15660 2.00328i
\(241\) 0.149776 0.259419i 0.00964789 0.0167106i −0.861161 0.508332i \(-0.830262\pi\)
0.870809 + 0.491621i \(0.163596\pi\)
\(242\) 5.28616 9.15590i 0.339807 0.588564i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) −36.7022 −2.34962
\(245\) 7.79931 + 11.1774i 0.498280 + 0.714099i
\(246\) −14.5435 −0.927259
\(247\) −11.6372 20.1563i −0.740460 1.28251i
\(248\) 30.0750 52.0914i 1.90976 3.30781i
\(249\) 6.24913 10.8238i 0.396023 0.685931i
\(250\) −16.9226 29.3107i −1.07028 1.85377i
\(251\) −5.72848 −0.361579 −0.180789 0.983522i \(-0.557865\pi\)
−0.180789 + 0.983522i \(0.557865\pi\)
\(252\) −15.4314 + 0.661109i −0.972086 + 0.0416460i
\(253\) −2.68769 −0.168973
\(254\) 25.4809 + 44.1343i 1.59882 + 2.76923i
\(255\) 0.615661 1.06636i 0.0385542 0.0667779i
\(256\) −53.9253 + 93.4014i −3.37033 + 5.83759i
\(257\) 8.61484 + 14.9213i 0.537379 + 0.930768i 0.999044 + 0.0437133i \(0.0139188\pi\)
−0.461665 + 0.887054i \(0.652748\pi\)
\(258\) 5.56077 0.346198
\(259\) 5.84380 + 9.18950i 0.363116 + 0.571008i
\(260\) −47.6312 −2.95396
\(261\) −2.78906 4.83079i −0.172638 0.299019i
\(262\) 11.6582 20.1926i 0.720245 1.24750i
\(263\) −11.7608 + 20.3703i −0.725202 + 1.25609i 0.233689 + 0.972311i \(0.424920\pi\)
−0.958891 + 0.283775i \(0.908413\pi\)
\(264\) −14.4390 25.0091i −0.888659 1.53920i
\(265\) 19.8060 1.21667
\(266\) 19.0266 36.4769i 1.16659 2.23654i
\(267\) −1.81155 −0.110865
\(268\) −9.19098 15.9193i −0.561429 0.972423i
\(269\) 6.90462 11.9592i 0.420982 0.729163i −0.575054 0.818116i \(-0.695019\pi\)
0.996036 + 0.0889531i \(0.0283521\pi\)
\(270\) −2.72553 + 4.72076i −0.165871 + 0.287297i
\(271\) 11.2211 + 19.4355i 0.681634 + 1.18062i 0.974482 + 0.224466i \(0.0720637\pi\)
−0.292848 + 0.956159i \(0.594603\pi\)
\(272\) −11.6392 −0.705731
\(273\) −5.12732 + 9.82986i −0.310319 + 0.594930i
\(274\) −37.2471 −2.25018
\(275\) −1.62457 2.81383i −0.0979651 0.169681i
\(276\) 2.91893 5.05574i 0.175699 0.304320i
\(277\) −11.1138 + 19.2497i −0.667765 + 1.15660i 0.310763 + 0.950487i \(0.399415\pi\)
−0.978528 + 0.206115i \(0.933918\pi\)
\(278\) 8.30534 + 14.3853i 0.498121 + 0.862771i
\(279\) −5.59818 −0.335154
\(280\) −29.7015 46.7063i −1.77501 2.79124i
\(281\) 6.99680 0.417394 0.208697 0.977980i \(-0.433078\pi\)
0.208697 + 0.977980i \(0.433078\pi\)
\(282\) −0.409566 0.709389i −0.0243893 0.0422435i
\(283\) −4.03188 + 6.98343i −0.239671 + 0.415122i −0.960620 0.277866i \(-0.910373\pi\)
0.720949 + 0.692988i \(0.243706\pi\)
\(284\) −17.5202 + 30.3459i −1.03963 + 1.80070i
\(285\) −5.40728 9.36568i −0.320299 0.554775i
\(286\) −31.5306 −1.86444
\(287\) −13.7316 + 0.588287i −0.810550 + 0.0347255i
\(288\) 30.0377 1.76999
\(289\) 8.30004 + 14.3761i 0.488238 + 0.845652i
\(290\) 15.2034 26.3330i 0.892772 1.54633i
\(291\) −1.47595 + 2.55642i −0.0865217 + 0.149860i
\(292\) −40.4638 70.0853i −2.36796 4.10143i
\(293\) −13.1458 −0.767986 −0.383993 0.923336i \(-0.625451\pi\)
−0.383993 + 0.923336i \(0.625451\pi\)
\(294\) −19.5255 + 1.67610i −1.13875 + 0.0977519i
\(295\) −14.2518 −0.829773
\(296\) −22.1129 38.3007i −1.28529 2.22618i
\(297\) −1.34384 + 2.32760i −0.0779777 + 0.135061i
\(298\) 6.76200 11.7121i 0.391712 0.678466i
\(299\) −2.09519 3.62898i −0.121168 0.209869i
\(300\) 7.05738 0.407458
\(301\) 5.25033 0.224934i 0.302624 0.0129650i
\(302\) 58.7490 3.38063
\(303\) −6.40066 11.0863i −0.367708 0.636889i
\(304\) −51.1129 + 88.5301i −2.93152 + 5.07755i
\(305\) −6.12056 + 10.6011i −0.350462 + 0.607018i
\(306\) 0.885234 + 1.53327i 0.0506054 + 0.0876512i
\(307\) 15.1086 0.862293 0.431147 0.902282i \(-0.358109\pi\)
0.431147 + 0.902282i \(0.358109\pi\)
\(308\) −22.2762 35.0297i −1.26930 1.99600i
\(309\) −13.0581 −0.742848
\(310\) −15.2580 26.4277i −0.866598 1.50099i
\(311\) 10.7414 18.6047i 0.609090 1.05497i −0.382301 0.924038i \(-0.624868\pi\)
0.991391 0.130937i \(-0.0417985\pi\)
\(312\) 22.5119 38.9918i 1.27449 2.20748i
\(313\) −7.41912 12.8503i −0.419353 0.726341i 0.576521 0.817082i \(-0.304410\pi\)
−0.995875 + 0.0907410i \(0.971076\pi\)
\(314\) 4.46382 0.251908
\(315\) −2.38242 + 4.56747i −0.134234 + 0.257348i
\(316\) 92.1810 5.18559
\(317\) 2.35086 + 4.07181i 0.132038 + 0.228696i 0.924462 0.381274i \(-0.124515\pi\)
−0.792424 + 0.609970i \(0.791181\pi\)
\(318\) −14.2391 + 24.6628i −0.798489 + 1.38302i
\(319\) 7.49612 12.9837i 0.419702 0.726945i
\(320\) 46.0330 + 79.7314i 2.57332 + 4.45712i
\(321\) 13.7217 0.765870
\(322\) 3.42559 6.56738i 0.190900 0.365986i
\(323\) −3.51249 −0.195440
\(324\) −2.91893 5.05574i −0.162163 0.280874i
\(325\) 2.53287 4.38706i 0.140499 0.243351i
\(326\) 15.2547 26.4218i 0.844877 1.46337i
\(327\) −2.25296 3.90223i −0.124589 0.215794i
\(328\) 55.8160 3.08192
\(329\) −0.415396 0.653219i −0.0229015 0.0360132i
\(330\) −14.6508 −0.806498
\(331\) 3.93932 + 6.82310i 0.216524 + 0.375031i 0.953743 0.300623i \(-0.0971946\pi\)
−0.737219 + 0.675654i \(0.763861\pi\)
\(332\) −36.4816 + 63.1880i −2.00219 + 3.46789i
\(333\) −2.05806 + 3.56466i −0.112781 + 0.195342i
\(334\) 21.8273 + 37.8060i 1.19434 + 2.06865i
\(335\) −6.13085 −0.334964
\(336\) 48.6503 2.08427i 2.65409 0.113706i
\(337\) −18.3857 −1.00153 −0.500767 0.865582i \(-0.666949\pi\)
−0.500767 + 0.865582i \(0.666949\pi\)
\(338\) −6.38222 11.0543i −0.347147 0.601276i
\(339\) −8.20064 + 14.2039i −0.445398 + 0.771451i
\(340\) −3.59415 + 6.22525i −0.194920 + 0.337611i
\(341\) −7.52308 13.0304i −0.407398 0.705633i
\(342\) 15.5498 0.840837
\(343\) −18.3677 + 2.37234i −0.991762 + 0.128094i
\(344\) −21.3415 −1.15066
\(345\) −0.973538 1.68622i −0.0524135 0.0907829i
\(346\) 15.7788 27.3297i 0.848274 1.46925i
\(347\) −3.01039 + 5.21415i −0.161606 + 0.279910i −0.935445 0.353473i \(-0.885001\pi\)
0.773839 + 0.633383i \(0.218334\pi\)
\(348\) 16.2822 + 28.2015i 0.872815 + 1.51176i
\(349\) 13.3378 0.713956 0.356978 0.934113i \(-0.383807\pi\)
0.356978 + 0.934113i \(0.383807\pi\)
\(350\) 8.94621 0.383272i 0.478195 0.0204868i
\(351\) −4.19039 −0.223666
\(352\) 40.3659 + 69.9159i 2.15151 + 3.72653i
\(353\) −8.74350 + 15.1442i −0.465369 + 0.806043i −0.999218 0.0395367i \(-0.987412\pi\)
0.533849 + 0.845580i \(0.320745\pi\)
\(354\) 10.2460 17.7467i 0.544571 0.943225i
\(355\) 5.84343 + 10.1211i 0.310137 + 0.537174i
\(356\) 10.5756 0.560505
\(357\) 0.897836 + 1.41187i 0.0475185 + 0.0747238i
\(358\) 22.8871 1.20962
\(359\) 4.28362 + 7.41944i 0.226081 + 0.391583i 0.956643 0.291263i \(-0.0940754\pi\)
−0.730562 + 0.682846i \(0.760742\pi\)
\(360\) 10.4602 18.1177i 0.551303 0.954884i
\(361\) −5.92488 + 10.2622i −0.311836 + 0.540115i
\(362\) 4.20075 + 7.27591i 0.220787 + 0.382413i
\(363\) 3.77634 0.198207
\(364\) 29.9326 57.3854i 1.56889 3.00781i
\(365\) −26.9914 −1.41279
\(366\) −8.80049 15.2429i −0.460009 0.796759i
\(367\) 9.85576 17.0707i 0.514467 0.891082i −0.485392 0.874296i \(-0.661323\pi\)
0.999859 0.0167860i \(-0.00534340\pi\)
\(368\) −9.20247 + 15.9391i −0.479712 + 0.830885i
\(369\) −2.59741 4.49884i −0.135216 0.234200i
\(370\) −22.4372 −1.16646
\(371\) −12.4466 + 23.8620i −0.646193 + 1.23885i
\(372\) 32.6814 1.69445
\(373\) −10.9629 18.9883i −0.567639 0.983179i −0.996799 0.0799507i \(-0.974524\pi\)
0.429160 0.903228i \(-0.358810\pi\)
\(374\) −2.37923 + 4.12095i −0.123027 + 0.213089i
\(375\) 6.04460 10.4695i 0.312142 0.540645i
\(376\) 1.57186 + 2.72254i 0.0810624 + 0.140404i
\(377\) 23.3745 1.20385
\(378\) −3.97472 6.25033i −0.204438 0.321482i
\(379\) 9.89943 0.508500 0.254250 0.967139i \(-0.418171\pi\)
0.254250 + 0.967139i \(0.418171\pi\)
\(380\) 31.5670 + 54.6756i 1.61935 + 2.80480i
\(381\) −9.10157 + 15.7644i −0.466288 + 0.807634i
\(382\) 16.2081 28.0733i 0.829281 1.43636i
\(383\) 8.76893 + 15.1882i 0.448071 + 0.776083i 0.998260 0.0589576i \(-0.0187777\pi\)
−0.550189 + 0.835040i \(0.685444\pi\)
\(384\) −72.3024 −3.68966
\(385\) −13.8329 + 0.592626i −0.704988 + 0.0302030i
\(386\) 15.9558 0.812131
\(387\) 0.993129 + 1.72015i 0.0504836 + 0.0874402i
\(388\) 8.61639 14.9240i 0.437431 0.757653i
\(389\) −9.62382 + 16.6689i −0.487947 + 0.845149i −0.999904 0.0138623i \(-0.995587\pi\)
0.511957 + 0.859011i \(0.328921\pi\)
\(390\) −11.4210 19.7818i −0.578327 1.00169i
\(391\) −0.632396 −0.0319816
\(392\) 74.9363 6.43263i 3.78486 0.324897i
\(393\) 8.32841 0.420113
\(394\) 18.1812 + 31.4907i 0.915953 + 1.58648i
\(395\) 15.3723 26.6257i 0.773467 1.33968i
\(396\) 7.84517 13.5882i 0.394235 0.682835i
\(397\) 12.2997 + 21.3037i 0.617304 + 1.06920i 0.989976 + 0.141239i \(0.0451086\pi\)
−0.372671 + 0.927963i \(0.621558\pi\)
\(398\) −59.7034 −2.99266
\(399\) 14.6817 0.628992i 0.735005 0.0314890i
\(400\) −22.2497 −1.11248
\(401\) 3.94256 + 6.82871i 0.196882 + 0.341010i 0.947516 0.319709i \(-0.103585\pi\)
−0.750634 + 0.660718i \(0.770252\pi\)
\(402\) 4.40765 7.63427i 0.219833 0.380763i
\(403\) 11.7293 20.3157i 0.584277 1.01200i
\(404\) 37.3662 + 64.7201i 1.85904 + 3.21995i
\(405\) −1.94708 −0.0967510
\(406\) 22.1715 + 34.8651i 1.10035 + 1.73033i
\(407\) −11.0628 −0.548364
\(408\) −3.39741 5.88448i −0.168197 0.291325i
\(409\) −2.40339 + 4.16279i −0.118840 + 0.205836i −0.919308 0.393538i \(-0.871251\pi\)
0.800468 + 0.599375i \(0.204584\pi\)
\(410\) 14.1586 24.5235i 0.699245 1.21113i
\(411\) −6.65217 11.5219i −0.328127 0.568333i
\(412\) 76.2313 3.75565
\(413\) 8.95619 17.1704i 0.440705 0.844900i
\(414\) 2.79962 0.137594
\(415\) 12.1675 + 21.0748i 0.597281 + 1.03452i
\(416\) −62.9348 + 109.006i −3.08563 + 5.34447i
\(417\) −2.96660 + 5.13830i −0.145275 + 0.251623i
\(418\) 20.8965 + 36.1938i 1.02208 + 1.77030i
\(419\) 4.37312 0.213641 0.106820 0.994278i \(-0.465933\pi\)
0.106820 + 0.994278i \(0.465933\pi\)
\(420\) 13.9083 26.6643i 0.678654 1.30108i
\(421\) −15.6894 −0.764655 −0.382327 0.924027i \(-0.624877\pi\)
−0.382327 + 0.924027i \(0.624877\pi\)
\(422\) −10.7672 18.6493i −0.524139 0.907836i
\(423\) 0.146293 0.253388i 0.00711303 0.0123201i
\(424\) 54.6477 94.6526i 2.65393 4.59674i
\(425\) −0.382251 0.662078i −0.0185419 0.0321155i
\(426\) −16.8041 −0.814159
\(427\) −8.92577 14.0360i −0.431948 0.679248i
\(428\) −80.1053 −3.87204
\(429\) −5.63122 9.75356i −0.271878 0.470907i
\(430\) −5.41362 + 9.37666i −0.261068 + 0.452183i
\(431\) 1.67317 2.89801i 0.0805935 0.139592i −0.822912 0.568170i \(-0.807652\pi\)
0.903505 + 0.428577i \(0.140985\pi\)
\(432\) 9.20247 + 15.9391i 0.442754 + 0.766872i
\(433\) −15.2273 −0.731779 −0.365889 0.930658i \(-0.619235\pi\)
−0.365889 + 0.930658i \(0.619235\pi\)
\(434\) 41.4283 1.77486i 1.98862 0.0851962i
\(435\) 10.8610 0.520746
\(436\) 13.1524 + 22.7807i 0.629888 + 1.09100i
\(437\) −2.77713 + 4.81013i −0.132848 + 0.230100i
\(438\) 19.4049 33.6103i 0.927202 1.60596i
\(439\) −10.7457 18.6121i −0.512865 0.888308i −0.999889 0.0149196i \(-0.995251\pi\)
0.487024 0.873389i \(-0.338083\pi\)
\(440\) 56.2276 2.68055
\(441\) −4.00565 5.74062i −0.190745 0.273363i
\(442\) −7.41895 −0.352883
\(443\) −11.8923 20.5980i −0.565019 0.978642i −0.997048 0.0767822i \(-0.975535\pi\)
0.432029 0.901860i \(-0.357798\pi\)
\(444\) 12.0147 20.8100i 0.570191 0.987600i
\(445\) 1.76361 3.05467i 0.0836032 0.144805i
\(446\) −29.3525 50.8400i −1.38988 2.40734i
\(447\) 4.83066 0.228482
\(448\) −124.988 + 5.35470i −5.90511 + 0.252986i
\(449\) −8.36232 −0.394642 −0.197321 0.980339i \(-0.563224\pi\)
−0.197321 + 0.980339i \(0.563224\pi\)
\(450\) 1.69222 + 2.93102i 0.0797722 + 0.138170i
\(451\) 6.98101 12.0915i 0.328723 0.569365i
\(452\) 47.8742 82.9206i 2.25181 3.90026i
\(453\) 10.4923 + 18.1732i 0.492973 + 0.853854i
\(454\) −67.6831 −3.17652
\(455\) −11.5836 18.2155i −0.543049 0.853956i
\(456\) −59.6780 −2.79468
\(457\) 7.96569 + 13.7970i 0.372619 + 0.645395i 0.989968 0.141295i \(-0.0451265\pi\)
−0.617349 + 0.786690i \(0.711793\pi\)
\(458\) 12.1483 21.0415i 0.567653 0.983204i
\(459\) −0.316198 + 0.547671i −0.0147589 + 0.0255631i
\(460\) 5.68338 + 9.84391i 0.264989 + 0.458975i
\(461\) −11.6774 −0.543873 −0.271936 0.962315i \(-0.587664\pi\)
−0.271936 + 0.962315i \(0.587664\pi\)
\(462\) 9.20690 17.6510i 0.428344 0.821201i
\(463\) −6.74188 −0.313322 −0.156661 0.987652i \(-0.550073\pi\)
−0.156661 + 0.987652i \(0.550073\pi\)
\(464\) −51.3325 88.9105i −2.38305 4.12756i
\(465\) 5.45004 9.43975i 0.252740 0.437758i
\(466\) −3.76801 + 6.52638i −0.174550 + 0.302329i
\(467\) −7.73999 13.4061i −0.358164 0.620358i 0.629490 0.777009i \(-0.283264\pi\)
−0.987654 + 0.156650i \(0.949931\pi\)
\(468\) 24.4629 1.13080
\(469\) 3.85278 7.38637i 0.177905 0.341071i
\(470\) 1.59491 0.0735678
\(471\) 0.797219 + 1.38082i 0.0367339 + 0.0636250i
\(472\) −39.3229 + 68.1093i −1.80999 + 3.13499i
\(473\) −2.66922 + 4.62322i −0.122731 + 0.212576i
\(474\) 22.1033 + 38.2840i 1.01524 + 1.75844i
\(475\) −6.71452 −0.308083
\(476\) −5.24144 8.24228i −0.240241 0.377784i
\(477\) −10.1722 −0.465751
\(478\) 0.0732912 + 0.126944i 0.00335226 + 0.00580628i
\(479\) −9.28598 + 16.0838i −0.424287 + 0.734887i −0.996354 0.0853204i \(-0.972809\pi\)
0.572066 + 0.820207i \(0.306142\pi\)
\(480\) −29.2428 + 50.6501i −1.33475 + 2.31185i
\(481\) −8.62407 14.9373i −0.393224 0.681083i
\(482\) −0.838629 −0.0381985
\(483\) 2.64333 0.113245i 0.120276 0.00515283i
\(484\) −22.0458 −1.00208
\(485\) −2.87379 4.97754i −0.130492 0.226019i
\(486\) 1.39981 2.42454i 0.0634966 0.109979i
\(487\) −9.08084 + 15.7285i −0.411492 + 0.712725i −0.995053 0.0993441i \(-0.968326\pi\)
0.583561 + 0.812069i \(0.301659\pi\)
\(488\) 33.7751 + 58.5002i 1.52893 + 2.64818i
\(489\) 10.8977 0.492810
\(490\) 16.1826 34.5560i 0.731054 1.56108i
\(491\) 14.1905 0.640410 0.320205 0.947348i \(-0.396248\pi\)
0.320205 + 0.947348i \(0.396248\pi\)
\(492\) 15.1633 + 26.2636i 0.683615 + 1.18406i
\(493\) 1.76379 3.05497i 0.0794371 0.137589i
\(494\) −32.5798 + 56.4299i −1.46584 + 2.53890i
\(495\) −2.61656 4.53202i −0.117606 0.203699i
\(496\) −103.034 −4.62637
\(497\) −15.8660 + 0.679727i −0.711685 + 0.0304899i
\(498\) −34.9904 −1.56796
\(499\) −7.16937 12.4177i −0.320945 0.555893i 0.659738 0.751495i \(-0.270667\pi\)
−0.980683 + 0.195603i \(0.937334\pi\)
\(500\) −35.2875 + 61.1198i −1.57811 + 2.73336i
\(501\) −7.79653 + 13.5040i −0.348323 + 0.603313i
\(502\) 8.01878 + 13.8889i 0.357896 + 0.619894i
\(503\) 10.8254 0.482681 0.241341 0.970440i \(-0.422413\pi\)
0.241341 + 0.970440i \(0.422413\pi\)
\(504\) 15.2544 + 23.9879i 0.679487 + 1.06851i
\(505\) 24.9251 1.10915
\(506\) 3.76225 + 6.51640i 0.167252 + 0.289690i
\(507\) 2.27968 3.94851i 0.101244 0.175360i
\(508\) 53.1337 92.0303i 2.35743 4.08319i
\(509\) −13.7751 23.8592i −0.610570 1.05754i −0.991144 0.132788i \(-0.957607\pi\)
0.380574 0.924750i \(-0.375726\pi\)
\(510\) −3.44723 −0.152646
\(511\) 16.9621 32.5189i 0.750357 1.43855i
\(512\) 157.336 6.95333
\(513\) 2.77713 + 4.81013i 0.122613 + 0.212372i
\(514\) 24.1183 41.7741i 1.06381 1.84257i
\(515\) 12.7125 22.0187i 0.560181 0.970262i
\(516\) −5.79776 10.0420i −0.255232 0.442075i
\(517\) 0.786382 0.0345850
\(518\) 14.1001 27.0321i 0.619524 1.18772i
\(519\) 11.2721 0.494791
\(520\) 43.8324 + 75.9200i 1.92218 + 3.32931i
\(521\) 6.81822 11.8095i 0.298712 0.517384i −0.677130 0.735864i \(-0.736776\pi\)
0.975841 + 0.218480i \(0.0701098\pi\)
\(522\) −7.80831 + 13.5244i −0.341760 + 0.591946i
\(523\) 5.28178 + 9.14831i 0.230956 + 0.400028i 0.958090 0.286468i \(-0.0924813\pi\)
−0.727134 + 0.686496i \(0.759148\pi\)
\(524\) −48.6201 −2.12398
\(525\) 1.71631 + 2.69894i 0.0749061 + 0.117791i
\(526\) 65.8515 2.87126
\(527\) −1.77013 3.06596i −0.0771083 0.133555i
\(528\) −24.7333 + 42.8394i −1.07638 + 1.86435i
\(529\) −0.500000 + 0.866025i −0.0217391 + 0.0376533i
\(530\) −27.7246 48.0204i −1.20428 2.08587i
\(531\) 7.31960 0.317644
\(532\) −85.7098 + 3.67197i −3.71599 + 0.159200i
\(533\) 21.7683 0.942889
\(534\) 2.53582 + 4.39218i 0.109736 + 0.190068i
\(535\) −13.3586 + 23.1377i −0.577542 + 1.00033i
\(536\) −16.9160 + 29.2993i −0.730658 + 1.26554i
\(537\) 4.08754 + 7.07983i 0.176390 + 0.305517i
\(538\) −38.6606 −1.66678
\(539\) 7.97893 17.0381i 0.343677 0.733882i
\(540\) 11.3668 0.489148
\(541\) −15.8326 27.4229i −0.680696 1.17900i −0.974769 0.223218i \(-0.928344\pi\)
0.294072 0.955783i \(-0.404989\pi\)
\(542\) 31.4148 54.4121i 1.34938 2.33720i
\(543\) −1.50047 + 2.59889i −0.0643914 + 0.111529i
\(544\) 9.49786 + 16.4508i 0.407217 + 0.705321i
\(545\) 8.77335 0.375809
\(546\) 31.0102 1.32853i 1.32711 0.0568560i
\(547\) −30.4882 −1.30358 −0.651792 0.758398i \(-0.725982\pi\)
−0.651792 + 0.758398i \(0.725982\pi\)
\(548\) 38.8345 + 67.2633i 1.65893 + 2.87335i
\(549\) 3.14346 5.44464i 0.134160 0.232371i
\(550\) −4.54817 + 7.87766i −0.193935 + 0.335905i
\(551\) −15.4912 26.8315i −0.659945 1.14306i
\(552\) −10.7446 −0.457319
\(553\) 22.4179 + 35.2526i 0.953307 + 1.49909i
\(554\) 62.2289 2.64385
\(555\) −4.00720 6.94067i −0.170096 0.294615i
\(556\) 17.3186 29.9967i 0.734472 1.27214i
\(557\) −7.06138 + 12.2307i −0.299200 + 0.518230i −0.975953 0.217980i \(-0.930053\pi\)
0.676753 + 0.736210i \(0.263387\pi\)
\(558\) 7.83639 + 13.5730i 0.331741 + 0.574592i
\(559\) −8.32319 −0.352034
\(560\) −43.8483 + 84.0640i −1.85293 + 3.55235i
\(561\) −1.69968 −0.0717606
\(562\) −9.79418 16.9640i −0.413143 0.715584i
\(563\) 8.64204 14.9685i 0.364219 0.630845i −0.624432 0.781079i \(-0.714669\pi\)
0.988650 + 0.150234i \(0.0480027\pi\)
\(564\) −0.854041 + 1.47924i −0.0359616 + 0.0622874i
\(565\) −15.9673 27.6561i −0.671748 1.16350i
\(566\) 22.5755 0.948918
\(567\) 1.22359 2.34581i 0.0513860 0.0985148i
\(568\) 64.4917 2.70601
\(569\) −1.37078 2.37427i −0.0574662 0.0995345i 0.835861 0.548941i \(-0.184969\pi\)
−0.893327 + 0.449406i \(0.851635\pi\)
\(570\) −15.1383 + 26.2203i −0.634074 + 1.09825i
\(571\) −15.5954 + 27.0120i −0.652647 + 1.13042i 0.329832 + 0.944040i \(0.393008\pi\)
−0.982478 + 0.186377i \(0.940325\pi\)
\(572\) 32.8743 + 56.9400i 1.37454 + 2.38078i
\(573\) 11.5788 0.483712
\(574\) 20.6479 + 32.4693i 0.861828 + 1.35524i
\(575\) −1.20890 −0.0504145
\(576\) −23.6421 40.9493i −0.985088 1.70622i
\(577\) 2.12410 3.67904i 0.0884273 0.153161i −0.818419 0.574622i \(-0.805149\pi\)
0.906847 + 0.421461i \(0.138483\pi\)
\(578\) 23.2369 40.2476i 0.966529 1.67408i
\(579\) 2.84965 + 4.93573i 0.118427 + 0.205122i
\(580\) −63.4052 −2.63276
\(581\) −33.0370 + 1.41537i −1.37061 + 0.0587193i
\(582\) 8.26419 0.342562
\(583\) −13.6698 23.6768i −0.566145 0.980592i
\(584\) −74.4734 + 128.992i −3.08173 + 5.33771i
\(585\) 4.07950 7.06590i 0.168667 0.292139i
\(586\) 18.4016 + 31.8725i 0.760164 + 1.31664i
\(587\) −27.9648 −1.15423 −0.577116 0.816662i \(-0.695822\pi\)
−0.577116 + 0.816662i \(0.695822\pi\)
\(588\) 23.3845 + 33.5130i 0.964359 + 1.38205i
\(589\) −31.0937 −1.28119
\(590\) 19.9498 + 34.5541i 0.821321 + 1.42257i
\(591\) −6.49415 + 11.2482i −0.267134 + 0.462689i
\(592\) −37.8784 + 65.6074i −1.55679 + 2.69645i
\(593\) 12.2413 + 21.2026i 0.502690 + 0.870685i 0.999995 + 0.00310888i \(0.000989590\pi\)
−0.497305 + 0.867576i \(0.665677\pi\)
\(594\) 7.52450 0.308734
\(595\) −3.25479 + 0.139441i −0.133433 + 0.00571653i
\(596\) −28.2007 −1.15515
\(597\) −10.6628 18.4685i −0.436398 0.755864i
\(598\) −5.86574 + 10.1598i −0.239868 + 0.415464i
\(599\) 21.9951 38.0966i 0.898696 1.55659i 0.0695327 0.997580i \(-0.477849\pi\)
0.829163 0.559007i \(-0.188817\pi\)
\(600\) −6.49453 11.2489i −0.265138 0.459233i
\(601\) 9.57098 0.390408 0.195204 0.980763i \(-0.437463\pi\)
0.195204 + 0.980763i \(0.437463\pi\)
\(602\) −7.89482 12.4148i −0.321769 0.505989i
\(603\) 3.14875 0.128227
\(604\) −61.2528 106.093i −2.49234 4.31686i
\(605\) −3.67641 + 6.36774i −0.149467 + 0.258885i
\(606\) −17.9194 + 31.0373i −0.727926 + 1.26080i
\(607\) 0.795419 + 1.37771i 0.0322851 + 0.0559194i 0.881716 0.471780i \(-0.156388\pi\)
−0.849431 + 0.527699i \(0.823055\pi\)
\(608\) 166.837 6.76613
\(609\) −6.82533 + 13.0852i −0.276576 + 0.530240i
\(610\) 34.2705 1.38757
\(611\) 0.613026 + 1.06179i 0.0248004 + 0.0429555i
\(612\) 1.84592 3.19723i 0.0746169 0.129240i
\(613\) −8.61461 + 14.9209i −0.347941 + 0.602651i −0.985883 0.167433i \(-0.946452\pi\)
0.637943 + 0.770084i \(0.279786\pi\)
\(614\) −21.1492 36.6314i −0.853511 1.47832i
\(615\) 10.1147 0.407864
\(616\) −35.3348 + 67.7423i −1.42368 + 2.72942i
\(617\) −28.9242 −1.16444 −0.582222 0.813030i \(-0.697817\pi\)
−0.582222 + 0.813030i \(0.697817\pi\)
\(618\) 18.2788 + 31.6598i 0.735282 + 1.27355i
\(619\) 10.9323 18.9352i 0.439404 0.761071i −0.558239 0.829680i \(-0.688523\pi\)
0.997644 + 0.0686093i \(0.0218562\pi\)
\(620\) −31.8166 + 55.1080i −1.27779 + 2.21319i
\(621\) 0.500000 + 0.866025i 0.0200643 + 0.0347524i
\(622\) −60.1438 −2.41154
\(623\) 2.57192 + 4.04440i 0.103042 + 0.162036i
\(624\) −77.1238 −3.08742
\(625\) 8.74704 + 15.1503i 0.349882 + 0.606013i
\(626\) −20.7707 + 35.9759i −0.830164 + 1.43789i
\(627\) −7.46405 + 12.9281i −0.298085 + 0.516299i
\(628\) −4.65406 8.06107i −0.185717 0.321672i
\(629\) −2.60302 −0.103789
\(630\) 14.4090 0.617307i 0.574067 0.0245941i
\(631\) −11.5152 −0.458412 −0.229206 0.973378i \(-0.573613\pi\)
−0.229206 + 0.973378i \(0.573613\pi\)
\(632\) −84.8293 146.929i −3.37433 5.84451i
\(633\) 3.84595 6.66139i 0.152863 0.264766i
\(634\) 6.58152 11.3995i 0.261386 0.452733i
\(635\) −17.7214 30.6944i −0.703254 1.21807i
\(636\) 59.3837 2.35472
\(637\) 29.2252 2.50873i 1.15795 0.0993996i
\(638\) −41.9725 −1.66171
\(639\) −3.00113 5.19812i −0.118723 0.205634i
\(640\) 70.3891 121.917i 2.78237 4.81921i
\(641\) −4.63400 + 8.02633i −0.183032 + 0.317021i −0.942912 0.333043i \(-0.891925\pi\)
0.759879 + 0.650064i \(0.225258\pi\)
\(642\) −19.2077 33.2688i −0.758069 1.31301i
\(643\) 13.8712 0.547025 0.273513 0.961868i \(-0.411814\pi\)
0.273513 + 0.961868i \(0.411814\pi\)
\(644\) −15.4314 + 0.661109i −0.608082 + 0.0260514i
\(645\) −3.86740 −0.152279
\(646\) 4.91681 + 8.51617i 0.193449 + 0.335064i
\(647\) 3.65031 6.32253i 0.143509 0.248564i −0.785307 0.619107i \(-0.787495\pi\)
0.928816 + 0.370542i \(0.120828\pi\)
\(648\) −5.37228 + 9.30506i −0.211043 + 0.365537i
\(649\) 9.83640 + 17.0371i 0.386112 + 0.668766i
\(650\) −14.1822 −0.556270
\(651\) 7.94794 + 12.4983i 0.311504 + 0.489847i
\(652\) −63.6191 −2.49152
\(653\) 14.1389 + 24.4892i 0.553296 + 0.958337i 0.998034 + 0.0626765i \(0.0199636\pi\)
−0.444737 + 0.895661i \(0.646703\pi\)
\(654\) −6.30742 + 10.9248i −0.246639 + 0.427192i
\(655\) −8.10802 + 14.0435i −0.316806 + 0.548725i
\(656\) −47.8051 82.8008i −1.86648 3.23283i
\(657\) 13.8625 0.540829
\(658\) −1.00228 + 1.92153i −0.0390730 + 0.0749090i
\(659\) 26.3606 1.02686 0.513431 0.858131i \(-0.328374\pi\)
0.513431 + 0.858131i \(0.328374\pi\)
\(660\) 15.2751 + 26.4573i 0.594584 + 1.02985i
\(661\) 8.46466 14.6612i 0.329237 0.570255i −0.653124 0.757251i \(-0.726542\pi\)
0.982361 + 0.186996i \(0.0598751\pi\)
\(662\) 11.0286 19.1021i 0.428638 0.742423i
\(663\) −1.32499 2.29495i −0.0514584 0.0891286i
\(664\) 134.288 5.21140
\(665\) −13.2326 + 25.3689i −0.513138 + 0.983764i
\(666\) 11.5236 0.446529
\(667\) −2.78906 4.83079i −0.107993 0.187049i
\(668\) 45.5151 78.8344i 1.76103 3.05020i
\(669\) 10.4845 18.1596i 0.405353 0.702091i
\(670\) 8.58202 + 14.8645i 0.331552 + 0.574266i
\(671\) 16.8973 0.652312
\(672\) −42.6456 67.0611i −1.64509 2.58694i
\(673\) −23.7746 −0.916444 −0.458222 0.888838i \(-0.651513\pi\)
−0.458222 + 0.888838i \(0.651513\pi\)
\(674\) 25.7365 + 44.5770i 0.991334 + 1.71704i
\(675\) −0.604448 + 1.04694i −0.0232652 + 0.0402966i
\(676\) −13.3084 + 23.0509i −0.511863 + 0.886573i
\(677\) −11.3542 19.6661i −0.436377 0.755828i 0.561030 0.827796i \(-0.310405\pi\)
−0.997407 + 0.0719679i \(0.977072\pi\)
\(678\) 45.9173 1.76344
\(679\) 7.80283 0.334288i 0.299445 0.0128288i
\(680\) 13.2300 0.507348
\(681\) −12.0879 20.9369i −0.463210 0.802302i
\(682\) −21.0618 + 36.4800i −0.806496 + 1.39689i
\(683\) −5.42079 + 9.38908i −0.207421 + 0.359263i −0.950901 0.309494i \(-0.899840\pi\)
0.743481 + 0.668757i \(0.233174\pi\)
\(684\) −16.2125 28.0809i −0.619900 1.07370i
\(685\) 25.9046 0.989762
\(686\) 31.4631 + 41.2124i 1.20127 + 1.57350i
\(687\) 8.67855 0.331107
\(688\) 18.2785 + 31.6593i 0.696861 + 1.20700i
\(689\) 21.3127 36.9146i 0.811948 1.40633i
\(690\) −2.72553 + 4.72076i −0.103759 + 0.179716i
\(691\) −7.50102 12.9921i −0.285352 0.494245i 0.687342 0.726334i \(-0.258777\pi\)
−0.972695 + 0.232089i \(0.925444\pi\)
\(692\) −65.8050 −2.50153
\(693\) 7.10443 0.304367i 0.269875 0.0115620i
\(694\) 16.8559 0.639841
\(695\) −5.77619 10.0047i −0.219103 0.379498i
\(696\) 29.9672 51.9047i 1.13590 1.96744i
\(697\) 1.64259 2.84505i 0.0622175 0.107764i
\(698\) −18.6704 32.3380i −0.706684 1.22401i
\(699\) −2.69180 −0.101813
\(700\) −10.0196 15.7561i −0.378706 0.595523i
\(701\) −8.60412 −0.324973 −0.162486 0.986711i \(-0.551951\pi\)
−0.162486 + 0.986711i \(0.551951\pi\)
\(702\) 5.86574 + 10.1598i 0.221388 + 0.383456i
\(703\) −11.4310 + 19.7990i −0.431128 + 0.746735i
\(704\) 63.5425 110.059i 2.39485 4.14800i
\(705\) 0.284844 + 0.493365i 0.0107279 + 0.0185812i
\(706\) 48.9569 1.84252
\(707\) −15.6636 + 30.0295i −0.589089 + 1.12937i
\(708\) −42.7308 −1.60592
\(709\) 14.5604 + 25.2194i 0.546829 + 0.947135i 0.998489 + 0.0549454i \(0.0174985\pi\)
−0.451661 + 0.892190i \(0.649168\pi\)
\(710\) 16.3594 28.3353i 0.613957 1.06340i
\(711\) −7.89510 + 13.6747i −0.296089 + 0.512842i
\(712\) −9.73215 16.8566i −0.364728 0.631727i
\(713\) −5.59818 −0.209654
\(714\) 2.16633 4.15318i 0.0810727 0.155429i
\(715\) 21.9288 0.820092
\(716\) −23.8625 41.3311i −0.891784 1.54462i
\(717\) −0.0261790 + 0.0453433i −0.000977672 + 0.00169338i
\(718\) 11.9925 20.7716i 0.447556 0.775189i
\(719\) 7.65789 + 13.2639i 0.285591 + 0.494658i 0.972752 0.231847i \(-0.0744767\pi\)
−0.687161 + 0.726505i \(0.741143\pi\)
\(720\) −35.8358 −1.33552
\(721\) 18.5390 + 29.1530i 0.690429 + 1.08571i
\(722\) 33.1748 1.23464
\(723\) −0.149776 0.259419i −0.00557021 0.00964789i
\(724\) 8.75955 15.1720i 0.325546 0.563863i
\(725\) 3.37169 5.83993i 0.125221 0.216890i
\(726\) −5.28616 9.15590i −0.196188 0.339807i
\(727\) 32.6484 1.21086 0.605432 0.795897i \(-0.293000\pi\)
0.605432 + 0.795897i \(0.293000\pi\)
\(728\) −119.013 + 5.09873i −4.41091 + 0.188972i
\(729\) 1.00000 0.0370370
\(730\) 37.7828 + 65.4417i 1.39840 + 2.42211i
\(731\) −0.628051 + 1.08782i −0.0232293 + 0.0402343i
\(732\) −18.3511 + 31.7850i −0.678276 + 1.17481i
\(733\) 21.7266 + 37.6316i 0.802490 + 1.38995i 0.917972 + 0.396644i \(0.129825\pi\)
−0.115482 + 0.993310i \(0.536841\pi\)
\(734\) −55.1848 −2.03691
\(735\) 13.5796 1.16569i 0.500891 0.0429971i
\(736\) 30.0377 1.10720
\(737\) 4.23142 + 7.32904i 0.155867 + 0.269969i
\(738\) −7.27175 + 12.5950i −0.267677 + 0.463630i
\(739\) −1.74434 + 3.02129i −0.0641667 + 0.111140i −0.896324 0.443400i \(-0.853772\pi\)
0.832157 + 0.554540i \(0.187106\pi\)
\(740\) 23.3935 + 40.5187i 0.859961 + 1.48950i
\(741\) −23.2745 −0.855010
\(742\) 75.2771 3.22501i 2.76351 0.118394i
\(743\) 22.0130 0.807577 0.403789 0.914852i \(-0.367693\pi\)
0.403789 + 0.914852i \(0.367693\pi\)
\(744\) −30.0750 52.0914i −1.10260 1.90976i
\(745\) −4.70283 + 8.14554i −0.172298 + 0.298430i
\(746\) −30.6920 + 53.1601i −1.12371 + 1.94633i
\(747\) −6.24913 10.8238i −0.228644 0.396023i
\(748\) 9.92251 0.362803
\(749\) −19.4812 30.6346i −0.711827 1.11936i
\(750\) −33.8451 −1.23585
\(751\) −7.71696 13.3662i −0.281596 0.487739i 0.690182 0.723636i \(-0.257530\pi\)
−0.971778 + 0.235897i \(0.924197\pi\)
\(752\) 2.69252 4.66358i 0.0981862 0.170063i
\(753\) −2.86424 + 4.96101i −0.104379 + 0.180789i
\(754\) −32.7198 56.6724i −1.19159 2.06389i
\(755\) −40.8587 −1.48700
\(756\) −7.14315 + 13.6945i −0.259794 + 0.498065i
\(757\) −13.1778 −0.478955 −0.239478 0.970902i \(-0.576976\pi\)
−0.239478 + 0.970902i \(0.576976\pi\)
\(758\) −13.8573 24.0016i −0.503321 0.871777i
\(759\) −1.34384 + 2.32760i −0.0487784 + 0.0844867i
\(760\) 58.0988 100.630i 2.10747 3.65024i
\(761\) −5.35343 9.27241i −0.194062 0.336125i 0.752531 0.658557i \(-0.228833\pi\)
−0.946592 + 0.322432i \(0.895499\pi\)
\(762\) 50.9618 1.84615
\(763\) −5.51339 + 10.5700i −0.199598 + 0.382660i
\(764\) −67.5956 −2.44552
\(765\) −0.615661 1.06636i −0.0222593 0.0385542i
\(766\) 24.5497 42.5213i 0.887015 1.53636i
\(767\) −15.3360 + 26.5627i −0.553750 + 0.959124i
\(768\) 53.9253 + 93.4014i 1.94586 + 3.37033i
\(769\) 30.1544 1.08739 0.543697 0.839282i \(-0.317024\pi\)
0.543697 + 0.839282i \(0.317024\pi\)
\(770\) 20.8002 + 32.7088i 0.749588 + 1.17874i
\(771\) 17.2297 0.620512
\(772\) −16.6358 28.8141i −0.598737 1.03704i
\(773\) −23.1191 + 40.0435i −0.831537 + 1.44026i 0.0652818 + 0.997867i \(0.479205\pi\)
−0.896819 + 0.442398i \(0.854128\pi\)
\(774\) 2.78038 4.81577i 0.0999388 0.173099i
\(775\) −3.38381 5.86093i −0.121550 0.210531i
\(776\) −31.7169 −1.13857
\(777\) 10.8802 0.466130i 0.390327 0.0167223i