Properties

Label 483.2.i.f.415.3
Level $483$
Weight $2$
Character 483.415
Analytic conductor $3.857$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} + 8 x^{10} - 3 x^{9} + 42 x^{8} - 15 x^{7} + 101 x^{6} + 6 x^{5} + 150 x^{4} - 28 x^{3} + 40 x^{2} + 8 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 415.3
Root \(-0.144978 - 0.251110i\) of defining polynomial
Character \(\chi\) \(=\) 483.415
Dual form 483.2.i.f.277.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.144978 + 0.251110i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.957963 + 1.65924i) q^{4} +(-1.16311 + 2.01456i) q^{5} -0.289957 q^{6} +(2.35341 + 1.20891i) q^{7} -1.13545 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.144978 + 0.251110i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.957963 + 1.65924i) q^{4} +(-1.16311 + 2.01456i) q^{5} -0.289957 q^{6} +(2.35341 + 1.20891i) q^{7} -1.13545 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.337250 - 0.584135i) q^{10} +(-0.365486 - 0.633040i) q^{11} +(-0.957963 + 1.65924i) q^{12} -0.115233 q^{13} +(-0.644763 + 0.415698i) q^{14} -2.32621 q^{15} +(-1.75131 + 3.03336i) q^{16} +(-0.394511 - 0.683313i) q^{17} +(-0.144978 - 0.251110i) q^{18} +(3.46171 - 5.99586i) q^{19} -4.45685 q^{20} +(0.129755 + 2.64257i) q^{21} +0.211950 q^{22} +(0.500000 - 0.866025i) q^{23} +(-0.567725 - 0.983328i) q^{24} +(-0.205629 - 0.356160i) q^{25} +(0.0167063 - 0.0289362i) q^{26} -1.00000 q^{27} +(0.248601 + 5.06296i) q^{28} -6.26700 q^{29} +(0.337250 - 0.584135i) q^{30} +(-0.747919 - 1.29543i) q^{31} +(-1.64325 - 2.84620i) q^{32} +(0.365486 - 0.633040i) q^{33} +0.228782 q^{34} +(-5.17269 + 3.33498i) q^{35} -1.91593 q^{36} +(-2.07147 + 3.58789i) q^{37} +(1.00375 + 1.73854i) q^{38} +(-0.0576166 - 0.0997949i) q^{39} +(1.32065 - 2.28743i) q^{40} +8.20805 q^{41} +(-0.682387 - 0.350532i) q^{42} +1.50333 q^{43} +(0.700243 - 1.21286i) q^{44} +(-1.16311 - 2.01456i) q^{45} +(0.144978 + 0.251110i) q^{46} +(1.89394 - 3.28039i) q^{47} -3.50262 q^{48} +(4.07706 + 5.69013i) q^{49} +0.119247 q^{50} +(0.394511 - 0.683313i) q^{51} +(-0.110389 - 0.191200i) q^{52} +(3.40867 + 5.90399i) q^{53} +(0.144978 - 0.251110i) q^{54} +1.70039 q^{55} +(-2.67218 - 1.37266i) q^{56} +6.92342 q^{57} +(0.908580 - 1.57371i) q^{58} +(3.09423 + 5.35936i) q^{59} +(-2.22842 - 3.85974i) q^{60} +(1.19537 - 2.07044i) q^{61} +0.433729 q^{62} +(-2.22365 + 1.43366i) q^{63} -6.05229 q^{64} +(0.134028 - 0.232144i) q^{65} +(0.105975 + 0.183554i) q^{66} +(4.18603 + 7.25042i) q^{67} +(0.755854 - 1.30918i) q^{68} +1.00000 q^{69} +(-0.0875200 - 1.78241i) q^{70} -1.53737 q^{71} +(0.567725 - 0.983328i) q^{72} +(-4.95047 - 8.57447i) q^{73} +(-0.600637 - 1.04033i) q^{74} +(0.205629 - 0.356160i) q^{75} +13.2647 q^{76} +(-0.0948473 - 1.93164i) q^{77} +0.0334127 q^{78} +(-0.241983 + 0.419128i) q^{79} +(-4.07392 - 7.05623i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-1.18999 + 2.06112i) q^{82} -1.84208 q^{83} +(-4.26035 + 2.74678i) q^{84} +1.83543 q^{85} +(-0.217951 + 0.377501i) q^{86} +(-3.13350 - 5.42738i) q^{87} +(0.414990 + 0.718784i) q^{88} +(-1.53229 + 2.65400i) q^{89} +0.674501 q^{90} +(-0.271191 - 0.139307i) q^{91} +1.91593 q^{92} +(0.747919 - 1.29543i) q^{93} +(0.549160 + 0.951172i) q^{94} +(8.05266 + 13.9476i) q^{95} +(1.64325 - 2.84620i) q^{96} +14.8351 q^{97} +(-2.01993 + 0.198845i) q^{98} +0.730971 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + q^{2} + 6q^{3} - 3q^{4} - 3q^{5} + 2q^{6} - 2q^{7} - 6q^{8} - 6q^{9} + O(q^{10}) \) \( 12q + q^{2} + 6q^{3} - 3q^{4} - 3q^{5} + 2q^{6} - 2q^{7} - 6q^{8} - 6q^{9} + 3q^{10} + 14q^{11} + 3q^{12} - q^{14} - 6q^{15} + 7q^{16} - 15q^{17} + q^{18} + q^{19} + 34q^{20} - 4q^{21} - 12q^{22} + 6q^{23} - 3q^{24} - 9q^{25} + 15q^{26} - 12q^{27} - 2q^{28} - 12q^{29} - 3q^{30} + 11q^{31} - 3q^{32} - 14q^{33} + 30q^{34} - q^{35} + 6q^{36} + 5q^{37} - 14q^{38} + 17q^{40} + 36q^{41} - 17q^{42} - 74q^{43} + 10q^{44} - 3q^{45} - q^{46} - 3q^{47} + 14q^{48} - 6q^{49} - 60q^{50} + 15q^{51} + 7q^{52} + 15q^{53} - q^{54} - 4q^{55} - 21q^{56} + 2q^{57} - 4q^{58} + 2q^{59} + 17q^{60} + 12q^{61} + 72q^{62} - 2q^{63} - 46q^{64} + 17q^{65} - 6q^{66} + 10q^{67} + q^{68} + 12q^{69} - 56q^{70} - 42q^{71} + 3q^{72} + 8q^{73} + 16q^{74} + 9q^{75} + 36q^{76} - 40q^{77} + 30q^{78} + 17q^{79} - 3q^{80} - 6q^{81} + 48q^{82} + 24q^{83} - 25q^{84} - 26q^{85} - 22q^{86} - 6q^{87} + 2q^{88} - 18q^{89} - 6q^{90} + 22q^{91} - 6q^{92} - 11q^{93} - 3q^{94} + 16q^{95} + 3q^{96} - 4q^{97} - 62q^{98} - 28q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.144978 + 0.251110i −0.102515 + 0.177562i −0.912720 0.408585i \(-0.866022\pi\)
0.810205 + 0.586147i \(0.199356\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0.957963 + 1.65924i 0.478981 + 0.829620i
\(5\) −1.16311 + 2.01456i −0.520157 + 0.900938i 0.479569 + 0.877504i \(0.340793\pi\)
−0.999725 + 0.0234334i \(0.992540\pi\)
\(6\) −0.289957 −0.118374
\(7\) 2.35341 + 1.20891i 0.889505 + 0.456926i
\(8\) −1.13545 −0.401442
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −0.337250 0.584135i −0.106648 0.184720i
\(11\) −0.365486 0.633040i −0.110198 0.190869i 0.805652 0.592389i \(-0.201815\pi\)
−0.915850 + 0.401521i \(0.868482\pi\)
\(12\) −0.957963 + 1.65924i −0.276540 + 0.478981i
\(13\) −0.115233 −0.0319599 −0.0159800 0.999872i \(-0.505087\pi\)
−0.0159800 + 0.999872i \(0.505087\pi\)
\(14\) −0.644763 + 0.415698i −0.172320 + 0.111100i
\(15\) −2.32621 −0.600625
\(16\) −1.75131 + 3.03336i −0.437827 + 0.758339i
\(17\) −0.394511 0.683313i −0.0956830 0.165728i 0.814210 0.580570i \(-0.197170\pi\)
−0.909893 + 0.414842i \(0.863837\pi\)
\(18\) −0.144978 0.251110i −0.0341717 0.0591872i
\(19\) 3.46171 5.99586i 0.794170 1.37554i −0.129194 0.991619i \(-0.541239\pi\)
0.923365 0.383924i \(-0.125428\pi\)
\(20\) −4.45685 −0.996581
\(21\) 0.129755 + 2.64257i 0.0283149 + 0.576656i
\(22\) 0.211950 0.0451879
\(23\) 0.500000 0.866025i 0.104257 0.180579i
\(24\) −0.567725 0.983328i −0.115886 0.200721i
\(25\) −0.205629 0.356160i −0.0411258 0.0712320i
\(26\) 0.0167063 0.0289362i 0.00327638 0.00567486i
\(27\) −1.00000 −0.192450
\(28\) 0.248601 + 5.06296i 0.0469812 + 0.956810i
\(29\) −6.26700 −1.16375 −0.581877 0.813277i \(-0.697681\pi\)
−0.581877 + 0.813277i \(0.697681\pi\)
\(30\) 0.337250 0.584135i 0.0615732 0.106648i
\(31\) −0.747919 1.29543i −0.134330 0.232667i 0.791011 0.611802i \(-0.209555\pi\)
−0.925341 + 0.379135i \(0.876222\pi\)
\(32\) −1.64325 2.84620i −0.290489 0.503142i
\(33\) 0.365486 0.633040i 0.0636229 0.110198i
\(34\) 0.228782 0.0392358
\(35\) −5.17269 + 3.33498i −0.874344 + 0.563715i
\(36\) −1.91593 −0.319321
\(37\) −2.07147 + 3.58789i −0.340548 + 0.589846i −0.984535 0.175191i \(-0.943946\pi\)
0.643987 + 0.765037i \(0.277279\pi\)
\(38\) 1.00375 + 1.73854i 0.162829 + 0.282028i
\(39\) −0.0576166 0.0997949i −0.00922604 0.0159800i
\(40\) 1.32065 2.28743i 0.208813 0.361674i
\(41\) 8.20805 1.28188 0.640941 0.767590i \(-0.278544\pi\)
0.640941 + 0.767590i \(0.278544\pi\)
\(42\) −0.682387 0.350532i −0.105295 0.0540883i
\(43\) 1.50333 0.229256 0.114628 0.993408i \(-0.463432\pi\)
0.114628 + 0.993408i \(0.463432\pi\)
\(44\) 0.700243 1.21286i 0.105566 0.182845i
\(45\) −1.16311 2.01456i −0.173386 0.300313i
\(46\) 0.144978 + 0.251110i 0.0213759 + 0.0370241i
\(47\) 1.89394 3.28039i 0.276259 0.478494i −0.694193 0.719789i \(-0.744239\pi\)
0.970452 + 0.241294i \(0.0775719\pi\)
\(48\) −3.50262 −0.505559
\(49\) 4.07706 + 5.69013i 0.582437 + 0.812876i
\(50\) 0.119247 0.0168641
\(51\) 0.394511 0.683313i 0.0552426 0.0956830i
\(52\) −0.110389 0.191200i −0.0153082 0.0265146i
\(53\) 3.40867 + 5.90399i 0.468217 + 0.810976i 0.999340 0.0363187i \(-0.0115631\pi\)
−0.531123 + 0.847295i \(0.678230\pi\)
\(54\) 0.144978 0.251110i 0.0197291 0.0341717i
\(55\) 1.70039 0.229281
\(56\) −2.67218 1.37266i −0.357084 0.183429i
\(57\) 6.92342 0.917029
\(58\) 0.908580 1.57371i 0.119302 0.206638i
\(59\) 3.09423 + 5.35936i 0.402834 + 0.697729i 0.994067 0.108772i \(-0.0346918\pi\)
−0.591233 + 0.806501i \(0.701359\pi\)
\(60\) −2.22842 3.85974i −0.287688 0.498291i
\(61\) 1.19537 2.07044i 0.153051 0.265093i −0.779296 0.626656i \(-0.784423\pi\)
0.932348 + 0.361563i \(0.117757\pi\)
\(62\) 0.433729 0.0550836
\(63\) −2.22365 + 1.43366i −0.280154 + 0.180624i
\(64\) −6.05229 −0.756537
\(65\) 0.134028 0.232144i 0.0166242 0.0287939i
\(66\) 0.105975 + 0.183554i 0.0130446 + 0.0225940i
\(67\) 4.18603 + 7.25042i 0.511405 + 0.885779i 0.999913 + 0.0132197i \(0.00420809\pi\)
−0.488508 + 0.872560i \(0.662459\pi\)
\(68\) 0.755854 1.30918i 0.0916607 0.158761i
\(69\) 1.00000 0.120386
\(70\) −0.0875200 1.78241i −0.0104606 0.213039i
\(71\) −1.53737 −0.182452 −0.0912260 0.995830i \(-0.529079\pi\)
−0.0912260 + 0.995830i \(0.529079\pi\)
\(72\) 0.567725 0.983328i 0.0669070 0.115886i
\(73\) −4.95047 8.57447i −0.579409 1.00357i −0.995547 0.0942645i \(-0.969950\pi\)
0.416138 0.909301i \(-0.363383\pi\)
\(74\) −0.600637 1.04033i −0.0698226 0.120936i
\(75\) 0.205629 0.356160i 0.0237440 0.0411258i
\(76\) 13.2647 1.52157
\(77\) −0.0948473 1.93164i −0.0108089 0.220131i
\(78\) 0.0334127 0.00378324
\(79\) −0.241983 + 0.419128i −0.0272253 + 0.0471556i −0.879317 0.476237i \(-0.842000\pi\)
0.852092 + 0.523392i \(0.175334\pi\)
\(80\) −4.07392 7.05623i −0.455478 0.788910i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −1.18999 + 2.06112i −0.131412 + 0.227613i
\(83\) −1.84208 −0.202195 −0.101097 0.994877i \(-0.532235\pi\)
−0.101097 + 0.994877i \(0.532235\pi\)
\(84\) −4.26035 + 2.74678i −0.464843 + 0.299698i
\(85\) 1.83543 0.199081
\(86\) −0.217951 + 0.377501i −0.0235022 + 0.0407070i
\(87\) −3.13350 5.42738i −0.335947 0.581877i
\(88\) 0.414990 + 0.718784i 0.0442381 + 0.0766227i
\(89\) −1.53229 + 2.65400i −0.162422 + 0.281323i −0.935737 0.352699i \(-0.885264\pi\)
0.773315 + 0.634022i \(0.218597\pi\)
\(90\) 0.674501 0.0710986
\(91\) −0.271191 0.139307i −0.0284285 0.0146033i
\(92\) 1.91593 0.199749
\(93\) 0.747919 1.29543i 0.0775556 0.134330i
\(94\) 0.549160 + 0.951172i 0.0566415 + 0.0981059i
\(95\) 8.05266 + 13.9476i 0.826186 + 1.43100i
\(96\) 1.64325 2.84620i 0.167714 0.290489i
\(97\) 14.8351 1.50628 0.753140 0.657860i \(-0.228538\pi\)
0.753140 + 0.657860i \(0.228538\pi\)
\(98\) −2.01993 + 0.198845i −0.204044 + 0.0200864i
\(99\) 0.730971 0.0734654
\(100\) 0.393970 0.682376i 0.0393970 0.0682376i
\(101\) −5.42346 9.39371i −0.539654 0.934709i −0.998922 0.0464109i \(-0.985222\pi\)
0.459268 0.888298i \(-0.348112\pi\)
\(102\) 0.114391 + 0.198131i 0.0113264 + 0.0196179i
\(103\) 4.69962 8.13998i 0.463067 0.802056i −0.536045 0.844189i \(-0.680082\pi\)
0.999112 + 0.0421338i \(0.0134156\pi\)
\(104\) 0.130841 0.0128301
\(105\) −5.47452 2.81219i −0.534259 0.274441i
\(106\) −1.97674 −0.191998
\(107\) 8.87488 15.3718i 0.857967 1.48604i −0.0158970 0.999874i \(-0.505060\pi\)
0.873864 0.486170i \(-0.161606\pi\)
\(108\) −0.957963 1.65924i −0.0921800 0.159660i
\(109\) 4.88652 + 8.46370i 0.468043 + 0.810675i 0.999333 0.0365152i \(-0.0116257\pi\)
−0.531290 + 0.847190i \(0.678292\pi\)
\(110\) −0.246520 + 0.426986i −0.0235048 + 0.0407115i
\(111\) −4.14294 −0.393231
\(112\) −7.78861 + 5.02155i −0.735954 + 0.474492i
\(113\) −3.68270 −0.346440 −0.173220 0.984883i \(-0.555417\pi\)
−0.173220 + 0.984883i \(0.555417\pi\)
\(114\) −1.00375 + 1.73854i −0.0940094 + 0.162829i
\(115\) 1.16311 + 2.01456i 0.108460 + 0.187858i
\(116\) −6.00355 10.3985i −0.557416 0.965473i
\(117\) 0.0576166 0.0997949i 0.00532666 0.00922604i
\(118\) −1.79438 −0.165186
\(119\) −0.102380 2.08504i −0.00938514 0.191136i
\(120\) 2.64129 0.241116
\(121\) 5.23284 9.06355i 0.475713 0.823959i
\(122\) 0.346606 + 0.600339i 0.0313802 + 0.0543521i
\(123\) 4.10403 + 7.10838i 0.370048 + 0.640941i
\(124\) 1.43296 2.48196i 0.128683 0.222886i
\(125\) −10.6744 −0.954746
\(126\) −0.0376234 0.766231i −0.00335176 0.0682612i
\(127\) −3.53396 −0.313588 −0.156794 0.987631i \(-0.550116\pi\)
−0.156794 + 0.987631i \(0.550116\pi\)
\(128\) 4.16396 7.21219i 0.368045 0.637473i
\(129\) 0.751665 + 1.30192i 0.0661804 + 0.114628i
\(130\) 0.0388624 + 0.0673117i 0.00340846 + 0.00590363i
\(131\) 2.17610 3.76912i 0.190127 0.329310i −0.755165 0.655535i \(-0.772443\pi\)
0.945292 + 0.326225i \(0.105777\pi\)
\(132\) 1.40049 0.121897
\(133\) 15.3953 9.92579i 1.33494 0.860675i
\(134\) −2.42754 −0.209707
\(135\) 1.16311 2.01456i 0.100104 0.173386i
\(136\) 0.447947 + 0.775867i 0.0384112 + 0.0665301i
\(137\) 8.55769 + 14.8223i 0.731133 + 1.26636i 0.956399 + 0.292062i \(0.0943413\pi\)
−0.225267 + 0.974297i \(0.572325\pi\)
\(138\) −0.144978 + 0.251110i −0.0123414 + 0.0213759i
\(139\) 5.41785 0.459536 0.229768 0.973245i \(-0.426203\pi\)
0.229768 + 0.973245i \(0.426203\pi\)
\(140\) −10.4888 5.38794i −0.886464 0.455364i
\(141\) 3.78787 0.318996
\(142\) 0.222885 0.386048i 0.0187041 0.0323965i
\(143\) 0.0421161 + 0.0729472i 0.00352192 + 0.00610015i
\(144\) −1.75131 3.03336i −0.145942 0.252780i
\(145\) 7.28919 12.6252i 0.605334 1.04847i
\(146\) 2.87085 0.237593
\(147\) −2.88927 + 6.37590i −0.238303 + 0.525876i
\(148\) −7.93756 −0.652464
\(149\) 7.61206 13.1845i 0.623604 1.08011i −0.365204 0.930927i \(-0.619001\pi\)
0.988809 0.149187i \(-0.0476657\pi\)
\(150\) 0.0596236 + 0.103271i 0.00486824 + 0.00843205i
\(151\) −7.19027 12.4539i −0.585136 1.01349i −0.994858 0.101275i \(-0.967708\pi\)
0.409722 0.912210i \(-0.365626\pi\)
\(152\) −3.93059 + 6.80799i −0.318813 + 0.552201i
\(153\) 0.789022 0.0637887
\(154\) 0.498805 + 0.256229i 0.0401949 + 0.0206475i
\(155\) 3.47964 0.279491
\(156\) 0.110389 0.191200i 0.00883820 0.0153082i
\(157\) 2.23320 + 3.86802i 0.178229 + 0.308702i 0.941274 0.337644i \(-0.109630\pi\)
−0.763045 + 0.646345i \(0.776297\pi\)
\(158\) −0.0701648 0.121529i −0.00558201 0.00966832i
\(159\) −3.40867 + 5.90399i −0.270325 + 0.468217i
\(160\) 7.64511 0.604399
\(161\) 2.22365 1.43366i 0.175248 0.112988i
\(162\) 0.289957 0.0227812
\(163\) −0.392861 + 0.680455i −0.0307713 + 0.0532974i −0.881001 0.473115i \(-0.843130\pi\)
0.850230 + 0.526412i \(0.176463\pi\)
\(164\) 7.86301 + 13.6191i 0.613998 + 1.06348i
\(165\) 0.850197 + 1.47258i 0.0661877 + 0.114640i
\(166\) 0.267062 0.462565i 0.0207280 0.0359020i
\(167\) 5.52754 0.427734 0.213867 0.976863i \(-0.431394\pi\)
0.213867 + 0.976863i \(0.431394\pi\)
\(168\) −0.147331 3.00050i −0.0113668 0.231494i
\(169\) −12.9867 −0.998979
\(170\) −0.266098 + 0.460895i −0.0204088 + 0.0353491i
\(171\) 3.46171 + 5.99586i 0.264723 + 0.458514i
\(172\) 1.44013 + 2.49439i 0.109809 + 0.190195i
\(173\) 4.97558 8.61796i 0.378286 0.655211i −0.612527 0.790450i \(-0.709847\pi\)
0.990813 + 0.135239i \(0.0431801\pi\)
\(174\) 1.81716 0.137759
\(175\) −0.0533629 1.08678i −0.00403386 0.0821527i
\(176\) 2.56031 0.192991
\(177\) −3.09423 + 5.35936i −0.232576 + 0.402834i
\(178\) −0.444297 0.769544i −0.0333014 0.0576798i
\(179\) 8.74582 + 15.1482i 0.653693 + 1.13223i 0.982220 + 0.187735i \(0.0601147\pi\)
−0.328526 + 0.944495i \(0.606552\pi\)
\(180\) 2.22842 3.85974i 0.166097 0.287688i
\(181\) −19.8587 −1.47608 −0.738042 0.674754i \(-0.764250\pi\)
−0.738042 + 0.674754i \(0.764250\pi\)
\(182\) 0.0742981 0.0479022i 0.00550735 0.00355075i
\(183\) 2.39074 0.176729
\(184\) −0.567725 + 0.983328i −0.0418532 + 0.0724919i
\(185\) −4.81868 8.34620i −0.354276 0.613624i
\(186\) 0.216864 + 0.375620i 0.0159013 + 0.0275418i
\(187\) −0.288376 + 0.499482i −0.0210882 + 0.0365258i
\(188\) 7.25728 0.529291
\(189\) −2.35341 1.20891i −0.171185 0.0879354i
\(190\) −4.66985 −0.338787
\(191\) −7.05493 + 12.2195i −0.510477 + 0.884172i 0.489450 + 0.872032i \(0.337198\pi\)
−0.999926 + 0.0121400i \(0.996136\pi\)
\(192\) −3.02615 5.24144i −0.218393 0.378268i
\(193\) 6.36241 + 11.0200i 0.457976 + 0.793238i 0.998854 0.0478631i \(-0.0152411\pi\)
−0.540878 + 0.841101i \(0.681908\pi\)
\(194\) −2.15078 + 3.72525i −0.154417 + 0.267458i
\(195\) 0.268057 0.0191959
\(196\) −5.53562 + 12.2158i −0.395401 + 0.872554i
\(197\) −14.1582 −1.00873 −0.504364 0.863491i \(-0.668273\pi\)
−0.504364 + 0.863491i \(0.668273\pi\)
\(198\) −0.105975 + 0.183554i −0.00753132 + 0.0130446i
\(199\) 2.11973 + 3.67147i 0.150263 + 0.260264i 0.931324 0.364191i \(-0.118654\pi\)
−0.781061 + 0.624455i \(0.785321\pi\)
\(200\) 0.233481 + 0.404402i 0.0165096 + 0.0285955i
\(201\) −4.18603 + 7.25042i −0.295260 + 0.511405i
\(202\) 3.14514 0.221291
\(203\) −14.7488 7.57626i −1.03516 0.531749i
\(204\) 1.51171 0.105841
\(205\) −9.54683 + 16.5356i −0.666780 + 1.15490i
\(206\) 1.36269 + 2.36024i 0.0949428 + 0.164446i
\(207\) 0.500000 + 0.866025i 0.0347524 + 0.0601929i
\(208\) 0.201809 0.349543i 0.0139929 0.0242365i
\(209\) −5.06082 −0.350064
\(210\) 1.49986 0.967002i 0.103500 0.0667294i
\(211\) −26.3917 −1.81688 −0.908440 0.418015i \(-0.862726\pi\)
−0.908440 + 0.418015i \(0.862726\pi\)
\(212\) −6.53076 + 11.3116i −0.448535 + 0.776885i
\(213\) −0.768684 1.33140i −0.0526693 0.0912260i
\(214\) 2.57333 + 4.45714i 0.175909 + 0.304684i
\(215\) −1.74853 + 3.02855i −0.119249 + 0.206545i
\(216\) 1.13545 0.0772575
\(217\) −0.194093 3.95285i −0.0131759 0.268337i
\(218\) −2.83376 −0.191926
\(219\) 4.95047 8.57447i 0.334522 0.579409i
\(220\) 1.62891 + 2.82136i 0.109821 + 0.190216i
\(221\) 0.0454608 + 0.0787404i 0.00305802 + 0.00529665i
\(222\) 0.600637 1.04033i 0.0403121 0.0698226i
\(223\) −9.57370 −0.641102 −0.320551 0.947231i \(-0.603868\pi\)
−0.320551 + 0.947231i \(0.603868\pi\)
\(224\) −0.426442 8.68482i −0.0284928 0.580279i
\(225\) 0.411258 0.0274172
\(226\) 0.533913 0.924764i 0.0355153 0.0615144i
\(227\) 11.4297 + 19.7968i 0.758614 + 1.31396i 0.943558 + 0.331209i \(0.107456\pi\)
−0.184944 + 0.982749i \(0.559210\pi\)
\(228\) 6.63237 + 11.4876i 0.439240 + 0.760785i
\(229\) 1.04031 1.80187i 0.0687458 0.119071i −0.829604 0.558353i \(-0.811434\pi\)
0.898349 + 0.439282i \(0.144767\pi\)
\(230\) −0.674501 −0.0444753
\(231\) 1.62543 1.04796i 0.106945 0.0689507i
\(232\) 7.11586 0.467179
\(233\) −2.50851 + 4.34486i −0.164338 + 0.284642i −0.936420 0.350881i \(-0.885882\pi\)
0.772082 + 0.635523i \(0.219215\pi\)
\(234\) 0.0167063 + 0.0289362i 0.00109213 + 0.00189162i
\(235\) 4.40569 + 7.63089i 0.287396 + 0.497784i
\(236\) −5.92831 + 10.2681i −0.385900 + 0.668398i
\(237\) −0.483967 −0.0314370
\(238\) 0.538418 + 0.276578i 0.0349005 + 0.0179279i
\(239\) 20.5640 1.33018 0.665089 0.746764i \(-0.268394\pi\)
0.665089 + 0.746764i \(0.268394\pi\)
\(240\) 4.07392 7.05623i 0.262970 0.455478i
\(241\) −13.3130 23.0587i −0.857563 1.48534i −0.874247 0.485482i \(-0.838644\pi\)
0.0166841 0.999861i \(-0.494689\pi\)
\(242\) 1.51730 + 2.62804i 0.0975356 + 0.168937i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 4.58048 0.293235
\(245\) −16.2051 + 1.59526i −1.03531 + 0.101917i
\(246\) −2.37998 −0.151742
\(247\) −0.398904 + 0.690922i −0.0253816 + 0.0439623i
\(248\) 0.849224 + 1.47090i 0.0539258 + 0.0934022i
\(249\) −0.921040 1.59529i −0.0583686 0.101097i
\(250\) 1.54756 2.68044i 0.0978760 0.169526i
\(251\) −1.18435 −0.0747552 −0.0373776 0.999301i \(-0.511900\pi\)
−0.0373776 + 0.999301i \(0.511900\pi\)
\(252\) −4.50895 2.31619i −0.284037 0.145906i
\(253\) −0.730971 −0.0459558
\(254\) 0.512347 0.887412i 0.0321475 0.0556811i
\(255\) 0.917716 + 1.58953i 0.0574696 + 0.0995403i
\(256\) −4.84492 8.39166i −0.302808 0.524478i
\(257\) 4.60903 7.98307i 0.287503 0.497970i −0.685710 0.727875i \(-0.740508\pi\)
0.973213 + 0.229905i \(0.0738415\pi\)
\(258\) −0.435901 −0.0271380
\(259\) −9.21246 + 5.93955i −0.572435 + 0.369066i
\(260\) 0.513577 0.0318507
\(261\) 3.13350 5.42738i 0.193959 0.335947i
\(262\) 0.630976 + 1.09288i 0.0389818 + 0.0675185i
\(263\) 11.0508 + 19.1406i 0.681422 + 1.18026i 0.974547 + 0.224183i \(0.0719714\pi\)
−0.293125 + 0.956074i \(0.594695\pi\)
\(264\) −0.414990 + 0.718784i −0.0255409 + 0.0442381i
\(265\) −15.8586 −0.974185
\(266\) 0.260483 + 5.30493i 0.0159712 + 0.325266i
\(267\) −3.06457 −0.187549
\(268\) −8.02012 + 13.8913i −0.489907 + 0.848543i
\(269\) −14.6763 25.4201i −0.894829 1.54989i −0.834016 0.551741i \(-0.813964\pi\)
−0.0608136 0.998149i \(-0.519370\pi\)
\(270\) 0.337250 + 0.584135i 0.0205244 + 0.0355493i
\(271\) −7.92265 + 13.7224i −0.481266 + 0.833578i −0.999769 0.0214982i \(-0.993156\pi\)
0.518502 + 0.855076i \(0.326490\pi\)
\(272\) 2.76364 0.167571
\(273\) −0.0149521 0.304512i −0.000904943 0.0184299i
\(274\) −4.96272 −0.299809
\(275\) −0.150309 + 0.260343i −0.00906397 + 0.0156993i
\(276\) 0.957963 + 1.65924i 0.0576626 + 0.0998745i
\(277\) −12.2189 21.1637i −0.734160 1.27160i −0.955091 0.296313i \(-0.904243\pi\)
0.220931 0.975289i \(-0.429090\pi\)
\(278\) −0.785472 + 1.36048i −0.0471095 + 0.0815960i
\(279\) 1.49584 0.0895535
\(280\) 5.87332 3.78671i 0.350998 0.226299i
\(281\) −9.53666 −0.568910 −0.284455 0.958689i \(-0.591813\pi\)
−0.284455 + 0.958689i \(0.591813\pi\)
\(282\) −0.549160 + 0.951172i −0.0327020 + 0.0566415i
\(283\) −2.11423 3.66195i −0.125678 0.217680i 0.796320 0.604876i \(-0.206777\pi\)
−0.921998 + 0.387195i \(0.873444\pi\)
\(284\) −1.47274 2.55086i −0.0873911 0.151366i
\(285\) −8.05266 + 13.9476i −0.476999 + 0.826186i
\(286\) −0.0244237 −0.00144420
\(287\) 19.3169 + 9.92282i 1.14024 + 0.585725i
\(288\) 3.28651 0.193659
\(289\) 8.18872 14.1833i 0.481690 0.834311i
\(290\) 2.11355 + 3.66077i 0.124112 + 0.214968i
\(291\) 7.41757 + 12.8476i 0.434826 + 0.753140i
\(292\) 9.48474 16.4280i 0.555052 0.961379i
\(293\) 30.9919 1.81057 0.905283 0.424809i \(-0.139659\pi\)
0.905283 + 0.424809i \(0.139659\pi\)
\(294\) −1.18217 1.64989i −0.0689457 0.0962236i
\(295\) −14.3956 −0.838147
\(296\) 2.35205 4.07387i 0.136710 0.236789i
\(297\) 0.365486 + 0.633040i 0.0212076 + 0.0367327i
\(298\) 2.20717 + 3.82293i 0.127858 + 0.221456i
\(299\) −0.0576166 + 0.0997949i −0.00333205 + 0.00577129i
\(300\) 0.787940 0.0454917
\(301\) 3.53795 + 1.81740i 0.203924 + 0.104753i
\(302\) 4.16974 0.239941
\(303\) 5.42346 9.39371i 0.311570 0.539654i
\(304\) 12.1250 + 21.0012i 0.695419 + 1.20450i
\(305\) 2.78068 + 4.81628i 0.159221 + 0.275780i
\(306\) −0.114391 + 0.198131i −0.00653931 + 0.0113264i
\(307\) −15.9601 −0.910888 −0.455444 0.890264i \(-0.650520\pi\)
−0.455444 + 0.890264i \(0.650520\pi\)
\(308\) 3.11419 2.00781i 0.177448 0.114406i
\(309\) 9.39923 0.534704
\(310\) −0.504472 + 0.873771i −0.0286521 + 0.0496269i
\(311\) 7.66126 + 13.2697i 0.434430 + 0.752455i 0.997249 0.0741253i \(-0.0236165\pi\)
−0.562819 + 0.826580i \(0.690283\pi\)
\(312\) 0.0654207 + 0.113312i 0.00370372 + 0.00641503i
\(313\) 8.38668 14.5262i 0.474043 0.821067i −0.525515 0.850784i \(-0.676127\pi\)
0.999558 + 0.0297173i \(0.00946072\pi\)
\(314\) −1.29507 −0.0730848
\(315\) −0.301838 6.14717i −0.0170067 0.346354i
\(316\) −0.927244 −0.0521616
\(317\) −16.2005 + 28.0601i −0.909912 + 1.57601i −0.0957284 + 0.995407i \(0.530518\pi\)
−0.814184 + 0.580607i \(0.802815\pi\)
\(318\) −0.988368 1.71190i −0.0554249 0.0959988i
\(319\) 2.29050 + 3.96726i 0.128243 + 0.222124i
\(320\) 7.03946 12.1927i 0.393518 0.681592i
\(321\) 17.7498 0.990695
\(322\) 0.0376234 + 0.766231i 0.00209667 + 0.0427004i
\(323\) −5.46273 −0.303954
\(324\) 0.957963 1.65924i 0.0532201 0.0921800i
\(325\) 0.0236953 + 0.0410415i 0.00131438 + 0.00227657i
\(326\) −0.113913 0.197303i −0.00630904 0.0109276i
\(327\) −4.88652 + 8.46370i −0.270225 + 0.468043i
\(328\) −9.31983 −0.514601
\(329\) 8.42291 5.43050i 0.464370 0.299393i
\(330\) −0.493041 −0.0271410
\(331\) −12.9793 + 22.4807i −0.713404 + 1.23565i 0.250167 + 0.968203i \(0.419514\pi\)
−0.963572 + 0.267450i \(0.913819\pi\)
\(332\) −1.76464 3.05645i −0.0968474 0.167745i
\(333\) −2.07147 3.58789i −0.113516 0.196615i
\(334\) −0.801374 + 1.38802i −0.0438492 + 0.0759491i
\(335\) −19.4752 −1.06404
\(336\) −8.24309 4.23436i −0.449698 0.231003i
\(337\) 19.2372 1.04791 0.523957 0.851744i \(-0.324455\pi\)
0.523957 + 0.851744i \(0.324455\pi\)
\(338\) 1.88279 3.26110i 0.102411 0.177380i
\(339\) −1.84135 3.18932i −0.100009 0.173220i
\(340\) 1.75827 + 3.04542i 0.0953558 + 0.165161i
\(341\) −0.546707 + 0.946925i −0.0296059 + 0.0512789i
\(342\) −2.00749 −0.108553
\(343\) 2.71612 + 18.3200i 0.146657 + 0.989187i
\(344\) −1.70696 −0.0920329
\(345\) −1.16311 + 2.01456i −0.0626195 + 0.108460i
\(346\) 1.44270 + 2.49884i 0.0775602 + 0.134338i
\(347\) −10.8583 18.8071i −0.582905 1.00962i −0.995133 0.0985400i \(-0.968583\pi\)
0.412228 0.911081i \(-0.364751\pi\)
\(348\) 6.00355 10.3985i 0.321824 0.557416i
\(349\) −33.3948 −1.78758 −0.893792 0.448482i \(-0.851965\pi\)
−0.893792 + 0.448482i \(0.851965\pi\)
\(350\) 0.280637 + 0.144159i 0.0150007 + 0.00770564i
\(351\) 0.115233 0.00615069
\(352\) −1.20117 + 2.08049i −0.0640226 + 0.110890i
\(353\) −13.7712 23.8524i −0.732967 1.26954i −0.955609 0.294637i \(-0.904801\pi\)
0.222642 0.974900i \(-0.428532\pi\)
\(354\) −0.897192 1.55398i −0.0476852 0.0825932i
\(355\) 1.78812 3.09712i 0.0949036 0.164378i
\(356\) −5.87149 −0.311188
\(357\) 1.75451 1.13119i 0.0928586 0.0598687i
\(358\) −5.07182 −0.268054
\(359\) 6.57045 11.3804i 0.346775 0.600632i −0.638899 0.769290i \(-0.720610\pi\)
0.985675 + 0.168658i \(0.0539434\pi\)
\(360\) 1.32065 + 2.28743i 0.0696042 + 0.120558i
\(361\) −14.4669 25.0573i −0.761413 1.31881i
\(362\) 2.87908 4.98672i 0.151321 0.262096i
\(363\) 10.4657 0.549306
\(364\) −0.0286471 0.583421i −0.00150152 0.0305796i
\(365\) 23.0317 1.20553
\(366\) −0.346606 + 0.600339i −0.0181174 + 0.0313802i
\(367\) 14.9919 + 25.9668i 0.782572 + 1.35545i 0.930439 + 0.366448i \(0.119426\pi\)
−0.147866 + 0.989007i \(0.547241\pi\)
\(368\) 1.75131 + 3.03336i 0.0912933 + 0.158125i
\(369\) −4.10403 + 7.10838i −0.213647 + 0.370048i
\(370\) 2.79442 0.145275
\(371\) 0.884586 + 18.0153i 0.0459254 + 0.935308i
\(372\) 2.86591 0.148591
\(373\) −7.72460 + 13.3794i −0.399965 + 0.692759i −0.993721 0.111885i \(-0.964311\pi\)
0.593756 + 0.804645i \(0.297644\pi\)
\(374\) −0.0836166 0.144828i −0.00432371 0.00748889i
\(375\) −5.33719 9.24429i −0.275611 0.477373i
\(376\) −2.15047 + 3.72472i −0.110902 + 0.192088i
\(377\) 0.722167 0.0371935
\(378\) 0.644763 0.415698i 0.0331631 0.0213812i
\(379\) −28.0665 −1.44168 −0.720840 0.693101i \(-0.756244\pi\)
−0.720840 + 0.693101i \(0.756244\pi\)
\(380\) −15.4283 + 26.7226i −0.791455 + 1.37084i
\(381\) −1.76698 3.06050i −0.0905250 0.156794i
\(382\) −2.04562 3.54313i −0.104663 0.181282i
\(383\) 10.4320 18.0688i 0.533051 0.923271i −0.466204 0.884677i \(-0.654379\pi\)
0.999255 0.0385937i \(-0.0122878\pi\)
\(384\) 8.32792 0.424982
\(385\) 4.00172 + 2.05563i 0.203947 + 0.104764i
\(386\) −3.68965 −0.187798
\(387\) −0.751665 + 1.30192i −0.0382093 + 0.0661804i
\(388\) 14.2115 + 24.6151i 0.721480 + 1.24964i
\(389\) −1.53651 2.66131i −0.0779039 0.134934i 0.824441 0.565947i \(-0.191489\pi\)
−0.902345 + 0.431014i \(0.858156\pi\)
\(390\) −0.0388624 + 0.0673117i −0.00196788 + 0.00340846i
\(391\) −0.789022 −0.0399026
\(392\) −4.62930 6.46085i −0.233815 0.326322i
\(393\) 4.35221 0.219540
\(394\) 2.05263 3.55526i 0.103410 0.179111i
\(395\) −0.562905 0.974980i −0.0283228 0.0490565i
\(396\) 0.700243 + 1.21286i 0.0351885 + 0.0609483i
\(397\) 17.2427 29.8652i 0.865385 1.49889i −0.00127899 0.999999i \(-0.500407\pi\)
0.866664 0.498892i \(-0.166260\pi\)
\(398\) −1.22926 −0.0616171
\(399\) 16.2936 + 8.36981i 0.815702 + 0.419014i
\(400\) 1.44048 0.0720240
\(401\) 16.9713 29.3952i 0.847508 1.46793i −0.0359181 0.999355i \(-0.511436\pi\)
0.883426 0.468571i \(-0.155231\pi\)
\(402\) −1.21377 2.10231i −0.0605372 0.104854i
\(403\) 0.0861851 + 0.149277i 0.00429319 + 0.00743602i
\(404\) 10.3909 17.9976i 0.516969 0.895416i
\(405\) 2.32621 0.115590
\(406\) 4.04073 2.60518i 0.200538 0.129293i
\(407\) 3.02837 0.150111
\(408\) −0.447947 + 0.775867i −0.0221767 + 0.0384112i
\(409\) −7.16031 12.4020i −0.354055 0.613241i 0.632901 0.774233i \(-0.281864\pi\)
−0.986956 + 0.160992i \(0.948531\pi\)
\(410\) −2.76817 4.79461i −0.136710 0.236789i
\(411\) −8.55769 + 14.8223i −0.422120 + 0.731133i
\(412\) 18.0082 0.887202
\(413\) 0.802984 + 16.3534i 0.0395123 + 0.804699i
\(414\) −0.289957 −0.0142506
\(415\) 2.14253 3.71098i 0.105173 0.182165i
\(416\) 0.189357 + 0.327977i 0.00928401 + 0.0160804i
\(417\) 2.70893 + 4.69200i 0.132657 + 0.229768i
\(418\) 0.733709 1.27082i 0.0358869 0.0621579i
\(419\) 14.0322 0.685520 0.342760 0.939423i \(-0.388638\pi\)
0.342760 + 0.939423i \(0.388638\pi\)
\(420\) −0.578299 11.7775i −0.0282181 0.574684i
\(421\) −33.9644 −1.65532 −0.827662 0.561227i \(-0.810329\pi\)
−0.827662 + 0.561227i \(0.810329\pi\)
\(422\) 3.82623 6.62722i 0.186258 0.322608i
\(423\) 1.89394 + 3.28039i 0.0920863 + 0.159498i
\(424\) −3.87037 6.70369i −0.187962 0.325560i
\(425\) −0.162246 + 0.281018i −0.00787008 + 0.0136314i
\(426\) 0.445770 0.0215976
\(427\) 5.31617 3.42750i 0.257268 0.165868i
\(428\) 34.0072 1.64380
\(429\) −0.0421161 + 0.0729472i −0.00203338 + 0.00352192i
\(430\) −0.506999 0.878148i −0.0244497 0.0423481i
\(431\) −11.4813 19.8861i −0.553033 0.957882i −0.998054 0.0623614i \(-0.980137\pi\)
0.445020 0.895521i \(-0.353196\pi\)
\(432\) 1.75131 3.03336i 0.0842599 0.145942i
\(433\) 19.1710 0.921299 0.460650 0.887582i \(-0.347616\pi\)
0.460650 + 0.887582i \(0.347616\pi\)
\(434\) 1.02074 + 0.524340i 0.0489971 + 0.0251691i
\(435\) 14.5784 0.698979
\(436\) −9.36220 + 16.2158i −0.448368 + 0.776596i
\(437\) −3.46171 5.99586i −0.165596 0.286821i
\(438\) 1.43542 + 2.48623i 0.0685872 + 0.118796i
\(439\) 14.7613 25.5673i 0.704518 1.22026i −0.262347 0.964974i \(-0.584496\pi\)
0.966865 0.255288i \(-0.0821703\pi\)
\(440\) −1.93071 −0.0920430
\(441\) −6.96633 + 0.685774i −0.331730 + 0.0326559i
\(442\) −0.0263633 −0.00125398
\(443\) 6.13803 10.6314i 0.291627 0.505112i −0.682568 0.730822i \(-0.739137\pi\)
0.974195 + 0.225710i \(0.0724702\pi\)
\(444\) −3.96878 6.87413i −0.188350 0.326232i
\(445\) −3.56442 6.17376i −0.168970 0.292664i
\(446\) 1.38798 2.40405i 0.0657227 0.113835i
\(447\) 15.2241 0.720076
\(448\) −14.2435 7.31669i −0.672943 0.345681i
\(449\) 33.5155 1.58169 0.790847 0.612014i \(-0.209640\pi\)
0.790847 + 0.612014i \(0.209640\pi\)
\(450\) −0.0596236 + 0.103271i −0.00281068 + 0.00486824i
\(451\) −2.99993 5.19602i −0.141261 0.244671i
\(452\) −3.52789 6.11049i −0.165938 0.287413i
\(453\) 7.19027 12.4539i 0.337828 0.585136i
\(454\) −6.62822 −0.311078
\(455\) 0.596065 0.384301i 0.0279440 0.0180163i
\(456\) −7.86119 −0.368134
\(457\) 13.4390 23.2770i 0.628650 1.08885i −0.359172 0.933271i \(-0.616941\pi\)
0.987823 0.155583i \(-0.0497257\pi\)
\(458\) 0.301646 + 0.522466i 0.0140950 + 0.0244132i
\(459\) 0.394511 + 0.683313i 0.0184142 + 0.0318943i
\(460\) −2.22842 + 3.85974i −0.103901 + 0.179961i
\(461\) −33.3536 −1.55343 −0.776715 0.629852i \(-0.783115\pi\)
−0.776715 + 0.629852i \(0.783115\pi\)
\(462\) 0.0275016 + 0.560092i 0.00127949 + 0.0260579i
\(463\) −15.9403 −0.740806 −0.370403 0.928871i \(-0.620780\pi\)
−0.370403 + 0.928871i \(0.620780\pi\)
\(464\) 10.9755 19.0101i 0.509523 0.882520i
\(465\) 1.73982 + 3.01345i 0.0806821 + 0.139746i
\(466\) −0.727359 1.25982i −0.0336943 0.0583602i
\(467\) −1.86261 + 3.22613i −0.0861912 + 0.149287i −0.905898 0.423496i \(-0.860803\pi\)
0.819707 + 0.572783i \(0.194136\pi\)
\(468\) 0.220778 0.0102055
\(469\) 1.08632 + 22.1237i 0.0501615 + 1.02158i
\(470\) −2.55492 −0.117850
\(471\) −2.23320 + 3.86802i −0.102901 + 0.178229i
\(472\) −3.51334 6.08528i −0.161714 0.280098i
\(473\) −0.549446 0.951668i −0.0252635 0.0437577i
\(474\) 0.0701648 0.121529i 0.00322277 0.00558201i
\(475\) −2.84731 −0.130644
\(476\) 3.36151 2.16727i 0.154075 0.0993365i
\(477\) −6.81735 −0.312145
\(478\) −2.98134 + 5.16384i −0.136363 + 0.236188i
\(479\) −0.512438 0.887569i −0.0234139 0.0405541i 0.854081 0.520140i \(-0.174120\pi\)
−0.877495 + 0.479586i \(0.840787\pi\)
\(480\) 3.82255 + 6.62086i 0.174475 + 0.302199i
\(481\) 0.238702 0.413444i 0.0108839 0.0188514i
\(482\) 7.72036 0.351653
\(483\) 2.35341 + 1.20891i 0.107084 + 0.0550074i
\(484\) 20.0515 0.911430
\(485\) −17.2548 + 29.8863i −0.783502 + 1.35706i
\(486\) 0.144978 + 0.251110i 0.00657635 + 0.0113906i
\(487\) −4.06377 7.03866i −0.184147 0.318952i 0.759142 0.650925i \(-0.225619\pi\)
−0.943289 + 0.331973i \(0.892286\pi\)
\(488\) −1.35728 + 2.35088i −0.0614412 + 0.106419i
\(489\) −0.785722 −0.0355316
\(490\) 1.94881 4.30055i 0.0880384 0.194279i
\(491\) −3.42514 −0.154574 −0.0772871 0.997009i \(-0.524626\pi\)
−0.0772871 + 0.997009i \(0.524626\pi\)
\(492\) −7.86301 + 13.6191i −0.354492 + 0.613998i
\(493\) 2.47240 + 4.28233i 0.111351 + 0.192866i
\(494\) −0.115665 0.200337i −0.00520401 0.00901361i
\(495\) −0.850197 + 1.47258i −0.0382135 + 0.0661877i
\(496\) 5.23935 0.235254
\(497\) −3.61805 1.85854i −0.162292 0.0833670i
\(498\) 0.534124 0.0239347
\(499\) 2.98901 5.17711i 0.133806 0.231759i −0.791334 0.611383i \(-0.790613\pi\)
0.925141 + 0.379624i \(0.123947\pi\)
\(500\) −10.2257 17.7114i −0.457305 0.792076i
\(501\) 2.76377 + 4.78699i 0.123476 + 0.213867i
\(502\) 0.171705 0.297401i 0.00766355 0.0132737i
\(503\) 30.6662 1.36734 0.683669 0.729793i \(-0.260383\pi\)
0.683669 + 0.729793i \(0.260383\pi\)
\(504\) 2.52485 1.62784i 0.112466 0.0725099i
\(505\) 25.2322 1.12282
\(506\) 0.105975 0.183554i 0.00471116 0.00815998i
\(507\) −6.49336 11.2468i −0.288380 0.499489i
\(508\) −3.38540 5.86368i −0.150203 0.260159i
\(509\) −21.6478 + 37.4952i −0.959523 + 1.66194i −0.235864 + 0.971786i \(0.575792\pi\)
−0.723659 + 0.690157i \(0.757541\pi\)
\(510\) −0.532196 −0.0235660
\(511\) −1.28470 26.1639i −0.0568318 1.15742i
\(512\) 19.4655 0.860260
\(513\) −3.46171 + 5.99586i −0.152838 + 0.264723i
\(514\) 1.33642 + 2.31475i 0.0589469 + 0.102099i
\(515\) 10.9323 + 18.9353i 0.481735 + 0.834389i
\(516\) −1.44013 + 2.49439i −0.0633984 + 0.109809i
\(517\) −2.76882 −0.121773
\(518\) −0.155872 3.17445i −0.00684861 0.139477i
\(519\) 9.95116 0.436808
\(520\) −0.152182 + 0.263588i −0.00667364 + 0.0115591i
\(521\) −19.9488 34.5524i −0.873974 1.51377i −0.857852 0.513898i \(-0.828201\pi\)
−0.0161226 0.999870i \(-0.505132\pi\)
\(522\) 0.908580 + 1.57371i 0.0397675 + 0.0688793i
\(523\) −9.28460 + 16.0814i −0.405987 + 0.703191i −0.994436 0.105344i \(-0.966406\pi\)
0.588449 + 0.808535i \(0.299739\pi\)
\(524\) 8.33850 0.364269
\(525\) 0.914496 0.589602i 0.0399119 0.0257324i
\(526\) −6.40851 −0.279424
\(527\) −0.590125 + 1.02213i −0.0257062 + 0.0445245i
\(528\) 1.28016 + 2.21730i 0.0557117 + 0.0964954i
\(529\) −0.500000 0.866025i −0.0217391 0.0376533i
\(530\) 2.29915 3.98225i 0.0998688 0.172978i
\(531\) −6.18845 −0.268556
\(532\) 31.2174 + 16.0359i 1.35344 + 0.695245i
\(533\) −0.945840 −0.0409689
\(534\) 0.444297 0.769544i 0.0192266 0.0333014i
\(535\) 20.6449 + 35.7579i 0.892555 + 1.54595i
\(536\) −4.75302 8.23248i −0.205299 0.355589i
\(537\) −8.74582 + 15.1482i −0.377410 + 0.653693i
\(538\) 8.51098 0.366934
\(539\) 2.11197 4.66060i 0.0909690 0.200746i
\(540\) 4.45685 0.191792
\(541\) 20.5298 35.5587i 0.882646 1.52879i 0.0342589 0.999413i \(-0.489093\pi\)
0.848388 0.529376i \(-0.177574\pi\)
\(542\) −2.29723 3.97891i −0.0986743 0.170909i
\(543\) −9.92934 17.1981i −0.426109 0.738042i
\(544\) −1.29656 + 2.24571i −0.0555897 + 0.0962842i
\(545\) −22.7341 −0.973824
\(546\) 0.0786336 + 0.0403930i 0.00336521 + 0.00172866i
\(547\) 13.7117 0.586268 0.293134 0.956071i \(-0.405302\pi\)
0.293134 + 0.956071i \(0.405302\pi\)
\(548\) −16.3959 + 28.3985i −0.700398 + 1.21312i
\(549\) 1.19537 + 2.07044i 0.0510171 + 0.0883643i
\(550\) −0.0435831 0.0754882i −0.00185839 0.00321883i
\(551\) −21.6945 + 37.5760i −0.924218 + 1.60079i
\(552\) −1.13545 −0.0483279
\(553\) −1.07617 + 0.693842i −0.0457636 + 0.0295052i
\(554\) 7.08588 0.301050
\(555\) 4.81868 8.34620i 0.204541 0.354276i
\(556\) 5.19010 + 8.98952i 0.220109 + 0.381240i
\(557\) 0.0463551 + 0.0802894i 0.00196413 + 0.00340197i 0.867006 0.498298i \(-0.166041\pi\)
−0.865042 + 0.501700i \(0.832708\pi\)
\(558\) −0.216864 + 0.375620i −0.00918060 + 0.0159013i
\(559\) −0.173234 −0.00732700
\(560\) −1.05722 21.5312i −0.0446759 0.909859i
\(561\) −0.576752 −0.0243505
\(562\) 1.38261 2.39475i 0.0583219 0.101016i
\(563\) −20.7489 35.9382i −0.874464 1.51462i −0.857333 0.514762i \(-0.827880\pi\)
−0.0171307 0.999853i \(-0.505453\pi\)
\(564\) 3.62864 + 6.28499i 0.152793 + 0.264646i
\(565\) 4.28337 7.41902i 0.180203 0.312121i
\(566\) 1.22607 0.0515355
\(567\) −0.129755 2.64257i −0.00544921 0.110977i
\(568\) 1.74560 0.0732439
\(569\) −7.47013 + 12.9386i −0.313164 + 0.542416i −0.979046 0.203642i \(-0.934722\pi\)
0.665881 + 0.746058i \(0.268056\pi\)
\(570\) −2.33493 4.04421i −0.0977993 0.169393i
\(571\) −12.2330 21.1882i −0.511935 0.886698i −0.999904 0.0138372i \(-0.995595\pi\)
0.487969 0.872861i \(-0.337738\pi\)
\(572\) −0.0806912 + 0.139761i −0.00337387 + 0.00584371i
\(573\) −14.1099 −0.589448
\(574\) −5.29225 + 3.41207i −0.220894 + 0.142417i
\(575\) −0.411258 −0.0171507
\(576\) 3.02615 5.24144i 0.126089 0.218393i
\(577\) 6.96129 + 12.0573i 0.289802 + 0.501953i 0.973762 0.227567i \(-0.0730771\pi\)
−0.683960 + 0.729520i \(0.739744\pi\)
\(578\) 2.37438 + 4.11254i 0.0987610 + 0.171059i
\(579\) −6.36241 + 11.0200i −0.264413 + 0.457976i
\(580\) 27.9311 1.15977
\(581\) −4.33517 2.22691i −0.179853 0.0923880i
\(582\) −4.30155 −0.178305
\(583\) 2.49164 4.31565i 0.103193 0.178736i
\(584\) 5.62101 + 9.73588i 0.232599 + 0.402873i
\(585\) 0.134028 + 0.232144i 0.00554139 + 0.00959797i
\(586\) −4.49316 + 7.78237i −0.185611 + 0.321487i
\(587\) −16.3231 −0.673728 −0.336864 0.941553i \(-0.609366\pi\)
−0.336864 + 0.941553i \(0.609366\pi\)
\(588\) −13.3470 + 1.31389i −0.550419 + 0.0541840i
\(589\) −10.3563 −0.426725
\(590\) 2.08706 3.61489i 0.0859228 0.148823i
\(591\) −7.07908 12.2613i −0.291195 0.504364i
\(592\) −7.25557 12.5670i −0.298202 0.516501i
\(593\) −21.8493 + 37.8441i −0.897244 + 1.55407i −0.0662422 + 0.997804i \(0.521101\pi\)
−0.831002 + 0.556269i \(0.812232\pi\)
\(594\) −0.211950 −0.00869642
\(595\) 4.31952 + 2.21888i 0.177083 + 0.0909651i
\(596\) 29.1683 1.19478
\(597\) −2.11973 + 3.67147i −0.0867546 + 0.150263i
\(598\) −0.0167063 0.0289362i −0.000683173 0.00118329i
\(599\) −5.51281 9.54847i −0.225247 0.390140i 0.731146 0.682221i \(-0.238986\pi\)
−0.956394 + 0.292081i \(0.905652\pi\)
\(600\) −0.233481 + 0.404402i −0.00953184 + 0.0165096i
\(601\) −6.86484 −0.280023 −0.140011 0.990150i \(-0.544714\pi\)
−0.140011 + 0.990150i \(0.544714\pi\)
\(602\) −0.969293 + 0.624932i −0.0395054 + 0.0254703i
\(603\) −8.37206 −0.340937
\(604\) 13.7760 23.8608i 0.560538 0.970881i
\(605\) 12.1727 + 21.0837i 0.494890 + 0.857175i
\(606\) 1.57257 + 2.72377i 0.0638812 + 0.110646i
\(607\) −9.32609 + 16.1533i −0.378534 + 0.655641i −0.990849 0.134973i \(-0.956905\pi\)
0.612315 + 0.790614i \(0.290238\pi\)
\(608\) −22.7539 −0.922791
\(609\) −0.813177 16.5610i −0.0329516 0.671085i
\(610\) −1.61256 −0.0652905
\(611\) −0.218244 + 0.378010i −0.00882922 + 0.0152927i
\(612\) 0.755854 + 1.30918i 0.0305536 + 0.0529203i
\(613\) −8.03007 13.9085i −0.324331 0.561758i 0.657045 0.753851i \(-0.271806\pi\)
−0.981377 + 0.192093i \(0.938473\pi\)
\(614\) 2.31386 4.00773i 0.0933799 0.161739i
\(615\) −19.0937 −0.769931
\(616\) 0.107694 + 2.19328i 0.00433913 + 0.0883698i
\(617\) 11.5349 0.464376 0.232188 0.972671i \(-0.425412\pi\)
0.232188 + 0.972671i \(0.425412\pi\)
\(618\) −1.36269 + 2.36024i −0.0548153 + 0.0949428i
\(619\) 10.1264 + 17.5395i 0.407015 + 0.704971i 0.994554 0.104225i \(-0.0332364\pi\)
−0.587539 + 0.809196i \(0.699903\pi\)
\(620\) 3.33336 + 5.77355i 0.133871 + 0.231871i
\(621\) −0.500000 + 0.866025i −0.0200643 + 0.0347524i
\(622\) −4.44287 −0.178143
\(623\) −6.81454 + 4.39354i −0.273019 + 0.176023i
\(624\) 0.403618 0.0161577
\(625\) 13.4436 23.2850i 0.537743 0.931398i
\(626\) 2.43178 + 4.21196i 0.0971933 + 0.168344i
\(627\) −2.53041 4.38280i −0.101055 0.175032i
\(628\) −4.27865 + 7.41084i −0.170737 + 0.295725i
\(629\) 3.26887 0.130338
\(630\) 1.58738 + 0.815412i 0.0632426 + 0.0324868i
\(631\) 9.38947 0.373789 0.186894 0.982380i \(-0.440158\pi\)
0.186894 + 0.982380i \(0.440158\pi\)
\(632\) 0.274760 0.475898i 0.0109294 0.0189302i
\(633\) −13.1959 22.8559i −0.524488 0.908440i
\(634\) −4.69745 8.13623i −0.186560 0.323131i
\(635\) 4.11036 7.11936i 0.163115 0.282523i
\(636\) −13.0615 −0.517923
\(637\) −0.469813 0.655692i −0.0186147 0.0259795i
\(638\) −1.32829 −0.0525876
\(639\) 0.768684 1.33140i 0.0304087 0.0526693i
\(640\) 9.68625 + 16.7771i 0.382883 + 0.663172i
\(641\) −1.01696 1.76142i −0.0401674 0.0695719i 0.845243 0.534382i \(-0.179456\pi\)
−0.885410 + 0.464811i \(0.846122\pi\)
\(642\) −2.57333 + 4.45714i −0.101561 + 0.175909i
\(643\) −11.7666 −0.464029 −0.232015 0.972712i \(-0.574532\pi\)
−0.232015 + 0.972712i \(0.574532\pi\)
\(644\) 4.50895 + 2.31619i 0.177678 + 0.0912705i
\(645\) −3.49706 −0.137697
\(646\) 0.791978 1.37175i 0.0311599 0.0539706i
\(647\) 6.07993 + 10.5307i 0.239027 + 0.414006i 0.960435 0.278503i \(-0.0898383\pi\)
−0.721409 + 0.692510i \(0.756505\pi\)
\(648\) 0.567725 + 0.983328i 0.0223023 + 0.0386288i
\(649\) 2.26179 3.91754i 0.0887830 0.153777i
\(650\) −0.0137412 −0.000538975
\(651\) 3.32623 2.14452i 0.130365 0.0840502i
\(652\) −1.50538 −0.0589554
\(653\) 16.9183 29.3034i 0.662065 1.14673i −0.318007 0.948088i \(-0.603014\pi\)
0.980072 0.198642i \(-0.0636530\pi\)
\(654\) −1.41688 2.45411i −0.0554043 0.0959631i
\(655\) 5.06208 + 8.76777i 0.197792 + 0.342585i
\(656\) −14.3748 + 24.8980i −0.561243 + 0.972102i
\(657\) 9.90095 0.386273
\(658\) 0.142513 + 2.90238i 0.00555572 + 0.113147i
\(659\) 15.7293 0.612727 0.306363 0.951915i \(-0.400888\pi\)
0.306363 + 0.951915i \(0.400888\pi\)
\(660\) −1.62891 + 2.82136i −0.0634053 + 0.109821i
\(661\) −15.5879 26.9990i −0.606297 1.05014i −0.991845 0.127450i \(-0.959321\pi\)
0.385548 0.922688i \(-0.374013\pi\)
\(662\) −3.76342 6.51844i −0.146270 0.253346i
\(663\) −0.0454608 + 0.0787404i −0.00176555 + 0.00305802i
\(664\) 2.09159 0.0811694
\(665\) 2.08975 + 42.5594i 0.0810371 + 1.65038i
\(666\) 1.20127 0.0465484
\(667\) −3.13350 + 5.42738i −0.121330 + 0.210149i
\(668\) 5.29518 + 9.17151i 0.204876 + 0.354856i
\(669\) −4.78685 8.29107i −0.185070 0.320551i
\(670\) 2.82348 4.89041i 0.109081 0.188933i
\(671\) −1.74756 −0.0674639
\(672\) 7.30805 4.71172i 0.281914 0.181758i
\(673\) 9.23484 0.355977 0.177988 0.984033i \(-0.443041\pi\)
0.177988 + 0.984033i \(0.443041\pi\)
\(674\) −2.78897 + 4.83064i −0.107427 + 0.186069i
\(675\) 0.205629 + 0.356160i 0.00791467 + 0.0137086i
\(676\) −12.4408 21.5481i −0.478492 0.828772i
\(677\) −22.7702 + 39.4391i −0.875128 + 1.51577i −0.0185021 + 0.999829i \(0.505890\pi\)
−0.856626 + 0.515938i \(0.827444\pi\)
\(678\) 1.06783 0.0410096
\(679\) 34.9131 + 17.9344i 1.33984 + 0.688259i
\(680\) −2.08404 −0.0799193
\(681\) −11.4297 + 19.7968i −0.437986 + 0.758614i
\(682\) −0.158522 0.274567i −0.00607010 0.0105137i
\(683\) −6.11461 10.5908i −0.233969 0.405247i 0.725003 0.688745i \(-0.241838\pi\)
−0.958973 + 0.283499i \(0.908505\pi\)
\(684\) −6.63237 + 11.4876i −0.253595 + 0.439240i
\(685\) −39.8140 −1.52121
\(686\) −4.99412 1.97396i −0.190676 0.0753662i
\(687\) 2.08062 0.0793808
\(688\) −2.63280 + 4.56014i −0.100374 + 0.173854i
\(689\) −0.392792 0.680336i −0.0149642 0.0259187i
\(690\) −0.337250 0.584135i −0.0128389 0.0222376i
\(691\) 11.2393 19.4670i 0.427562 0.740558i −0.569094 0.822272i \(-0.692706\pi\)
0.996656 + 0.0817139i \(0.0260394\pi\)
\(692\) 19.0657 0.724769
\(693\) 1.72027 + 0.883680i 0.0653478 + 0.0335682i
\(694\) 6.29688 0.239026
\(695\) −6.30154 + 10.9146i −0.239031 + 0.414014i
\(696\) 3.55793 + 6.16252i 0.134863 + 0.233590i
\(697\) −3.23817 5.60867i −0.122654 0.212444i
\(698\) 4.84153 8.38577i 0.183255 0.317406i
\(699\) −5.01702 −0.189761
\(700\) 1.75211 1.12963i 0.0662233 0.0426962i
\(701\) −27.0133 −1.02028 −0.510139 0.860092i \(-0.670406\pi\)
−0.510139 + 0.860092i \(0.670406\pi\)
\(702\) −0.0167063 + 0.0289362i −0.000630540 + 0.00109213i
\(703\) 14.3417 + 24.8405i 0.540906 + 0.936876i
\(704\) 2.21203 + 3.83134i 0.0833688 + 0.144399i
\(705\) −4.40569 + 7.63089i −0.165928 + 0.287396i
\(706\) 7.98611 0.300561
\(707\) −1.40744 28.6637i −0.0529324 1.07801i
\(708\) −11.8566 −0.445599
\(709\) −13.3487 + 23.1207i −0.501322 + 0.868316i 0.498676 + 0.866788i \(0.333820\pi\)
−0.999999 + 0.00152776i \(0.999514\pi\)
\(710\) 0.518478 + 0.898030i 0.0194581 + 0.0337025i
\(711\) −0.241983 0.419128i −0.00907509 0.0157185i
\(712\) 1.73983 3.01348i 0.0652030 0.112935i
\(713\) −1.49584 −0.0560196
\(714\) 0.0296857 + 0.604573i 0.00111096 + 0.0226256i
\(715\) −0.195942 −0.00732781
\(716\) −16.7563 + 29.0228i −0.626214 + 1.08463i
\(717\) 10.2820 + 17.8090i 0.383989 + 0.665089i
\(718\) 1.90515 + 3.29981i 0.0710995 + 0.123148i
\(719\) −17.3681 + 30.0824i −0.647720 + 1.12188i 0.335946 + 0.941881i \(0.390944\pi\)
−0.983666 + 0.180002i \(0.942389\pi\)
\(720\) 8.14783 0.303652
\(721\) 20.9006 13.4753i 0.778380 0.501845i
\(722\) 8.38953 0.312226
\(723\) 13.3130 23.0587i 0.495114 0.857563i
\(724\) −19.0239 32.9503i −0.707017 1.22459i
\(725\) 1.28868 + 2.23206i 0.0478603 + 0.0828965i
\(726\) −1.51730 + 2.62804i −0.0563122 + 0.0975356i
\(727\) 6.54111 0.242596 0.121298 0.992616i \(-0.461294\pi\)
0.121298 + 0.992616i \(0.461294\pi\)
\(728\) 0.307923 + 0.158176i 0.0114124 + 0.00586239i
\(729\) 1.00000 0.0370370
\(730\) −3.33910 + 5.78349i −0.123586 + 0.214056i
\(731\) −0.593081 1.02725i −0.0219359 0.0379941i
\(732\) 2.29024 + 3.96681i 0.0846497 + 0.146618i
\(733\) −25.9000 + 44.8600i −0.956637 + 1.65694i −0.226060 + 0.974113i \(0.572584\pi\)
−0.730577 + 0.682830i \(0.760749\pi\)
\(734\) −8.69402 −0.320902
\(735\) −9.48411 13.2364i −0.349827 0.488234i
\(736\) −3.28651 −0.121142
\(737\) 3.05987 5.29984i 0.112712 0.195222i
\(738\) −1.18999 2.06112i −0.0438042 0.0758710i
\(739\) 20.2376 + 35.0525i 0.744451 + 1.28943i 0.950451 + 0.310875i \(0.100622\pi\)
−0.206000 + 0.978552i \(0.566045\pi\)
\(740\) 9.23223 15.9907i 0.339383 0.587829i
\(741\) −0.797808 −0.0293082
\(742\) −4.65207 2.38970i −0.170783 0.0877287i
\(743\) −41.4092 −1.51916 −0.759579 0.650415i \(-0.774595\pi\)
−0.759579 + 0.650415i \(0.774595\pi\)
\(744\) −0.849224 + 1.47090i −0.0311341 + 0.0539258i
\(745\) 17.7073 + 30.6699i 0.648744 + 1.12366i
\(746\) −2.23980 3.87945i −0.0820050 0.142037i
\(747\) 0.921040 1.59529i 0.0336991 0.0583686i
\(748\) −1.10501 −0.0404033
\(749\) 39.4693 25.4470i 1.44218 0.929815i
\(750\) 3.09511 0.113017
\(751\) −12.7550 + 22.0924i −0.465438 + 0.806162i −0.999221 0.0394594i \(-0.987436\pi\)
0.533783 + 0.845621i \(0.320770\pi\)
\(752\) 6.63373 + 11.4900i 0.241907 + 0.418996i
\(753\) −0.592173 1.02567i −0.0215800 0.0373776i
\(754\) −0.104699 + 0.181343i −0.00381290 + 0.00660413i
\(755\) 33.4522 1.21745
\(756\) −0.248601 5.06296i −0.00904154 0.184138i
\(757\) 45.9268 1.66924 0.834619 0.550827i \(-0.185688\pi\)
0.834619 + 0.550827i \(0.185688\pi\)
\(758\) 4.06904 7.04778i 0.147794 0.255987i
\(759\) −0.365486 0.633040i −0.0132663 0.0229779i
\(760\) −9.14339 15.8368i −0.331666 0.574462i
\(761\) −4.09191 + 7.08739i −0.148331 + 0.256918i −0.930611 0.366010i \(-0.880724\pi\)
0.782279 + 0.622928i \(0.214057\pi\)
\(762\) 1.02469 0.0371208
\(763\) 1.26810 + 25.8259i 0.0459084 + 0.934960i
\(764\) −27.0334 −0.978035
\(765\) −0.917716 + 1.58953i −0.0331801 + 0.0574696i
\(766\) 3.02483 + 5.23916i 0.109292 + 0.189299i
\(767\) −0.356558 0.617576i −0.0128746 0.0222994i
\(768\) 4.84492 8.39166i 0.174826 0.302808i
\(769\) 15.3794 0.554596 0.277298 0.960784i \(-0.410561\pi\)
0.277298 + 0.960784i \(0.410561\pi\)
\(770\) −1.09635 + 0.706850i −0.0395098 + 0.0254731i
\(771\) 9.21806 0.331980
\(772\) −12.1899 + 21.1135i −0.438724 + 0.759893i
\(773\) 0.100858 + 0.174691i 0.00362760 + 0.00628319i 0.867834 0.496855i \(-0.165512\pi\)
−0.864206 + 0.503138i \(0.832179\pi\)
\(774\) −0.217951 0.377501i −0.00783407 0.0135690i
\(775\) −0.307588 + 0.532758i −0.0110489 + 0.0191372i
\(776\) −16.8446 −0.604684
\(777\) −9.75003