Properties

Label 483.2.i.f.415.2
Level $483$
Weight $2$
Character 483.415
Analytic conductor $3.857$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} + 8 x^{10} - 3 x^{9} + 42 x^{8} - 15 x^{7} + 101 x^{6} + 6 x^{5} + 150 x^{4} - 28 x^{3} + 40 x^{2} + 8 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 415.2
Root \(-0.682743 - 1.18255i\) of defining polynomial
Character \(\chi\) \(=\) 483.415
Dual form 483.2.i.f.277.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.682743 + 1.18255i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.0677246 + 0.117302i) q^{4} +(0.663106 - 1.14853i) q^{5} -1.36549 q^{6} +(2.35341 + 1.20891i) q^{7} -2.91593 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.682743 + 1.18255i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.0677246 + 0.117302i) q^{4} +(0.663106 - 1.14853i) q^{5} -1.36549 q^{6} +(2.35341 + 1.20891i) q^{7} -2.91593 q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.905461 + 1.56830i) q^{10} +(0.710043 + 1.22983i) q^{11} +(-0.0677246 + 0.117302i) q^{12} +3.16661 q^{13} +(-3.03637 + 1.95764i) q^{14} +1.32621 q^{15} +(1.85538 - 3.21361i) q^{16} +(-0.579802 - 1.00425i) q^{17} +(-0.682743 - 1.18255i) q^{18} +(-4.28943 + 7.42951i) q^{19} +0.179634 q^{20} +(0.129755 + 2.64257i) q^{21} -1.93911 q^{22} +(0.500000 - 0.866025i) q^{23} +(-1.45796 - 2.52527i) q^{24} +(1.62058 + 2.80693i) q^{25} +(-2.16198 + 3.74466i) q^{26} -1.00000 q^{27} +(0.0175752 + 0.357934i) q^{28} +7.45480 q^{29} +(-0.905461 + 1.56830i) q^{30} +(-0.933210 - 1.61637i) q^{31} +(-0.382434 - 0.662395i) q^{32} +(-0.710043 + 1.22983i) q^{33} +1.58342 q^{34} +(2.94903 - 1.90133i) q^{35} -0.135449 q^{36} +(3.89919 - 6.75360i) q^{37} +(-5.85715 - 10.1449i) q^{38} +(1.58330 + 2.74236i) q^{39} +(-1.93357 + 3.34903i) q^{40} -11.2258 q^{41} +(-3.21355 - 1.65075i) q^{42} -11.8479 q^{43} +(-0.0961748 + 0.166580i) q^{44} +(0.663106 + 1.14853i) q^{45} +(0.682743 + 1.18255i) q^{46} +(-0.868249 + 1.50385i) q^{47} +3.71076 q^{48} +(4.07706 + 5.69013i) q^{49} -4.42576 q^{50} +(0.579802 - 1.00425i) q^{51} +(0.214457 + 0.371451i) q^{52} +(2.07449 + 3.59312i) q^{53} +(0.682743 - 1.18255i) q^{54} +1.88333 q^{55} +(-6.86236 - 3.52510i) q^{56} -8.57886 q^{57} +(-5.08971 + 8.81564i) q^{58} +(-6.34357 - 10.9874i) q^{59} +(0.0898171 + 0.155568i) q^{60} +(6.90738 - 11.9639i) q^{61} +2.54857 q^{62} +(-2.22365 + 1.43366i) q^{63} +8.46593 q^{64} +(2.09980 - 3.63695i) q^{65} +(-0.969554 - 1.67932i) q^{66} +(4.04647 + 7.00870i) q^{67} +(0.0785337 - 0.136024i) q^{68} +1.00000 q^{69} +(0.234977 + 4.78548i) q^{70} -5.18979 q^{71} +(1.45796 - 2.52527i) q^{72} +(5.68430 + 9.84549i) q^{73} +(5.32429 + 9.22194i) q^{74} +(-1.62058 + 2.80693i) q^{75} -1.16200 q^{76} +(0.184264 + 3.75267i) q^{77} -4.32396 q^{78} +(5.86823 - 10.1641i) q^{79} +(-2.46062 - 4.26192i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(7.66430 - 13.2750i) q^{82} +5.70566 q^{83} +(-0.301192 + 0.194187i) q^{84} -1.53788 q^{85} +(8.08906 - 14.0107i) q^{86} +(3.72740 + 6.45604i) q^{87} +(-2.07043 - 3.58609i) q^{88} +(3.17756 - 5.50369i) q^{89} -1.81092 q^{90} +(7.45232 + 3.82815i) q^{91} +0.135449 q^{92} +(0.933210 - 1.61637i) q^{93} +(-1.18558 - 2.05349i) q^{94} +(5.68869 + 9.85310i) q^{95} +(0.382434 - 0.662395i) q^{96} +0.408396 q^{97} +(-9.51242 + 0.936415i) q^{98} -1.42009 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + q^{2} + 6q^{3} - 3q^{4} - 3q^{5} + 2q^{6} - 2q^{7} - 6q^{8} - 6q^{9} + O(q^{10}) \) \( 12q + q^{2} + 6q^{3} - 3q^{4} - 3q^{5} + 2q^{6} - 2q^{7} - 6q^{8} - 6q^{9} + 3q^{10} + 14q^{11} + 3q^{12} - q^{14} - 6q^{15} + 7q^{16} - 15q^{17} + q^{18} + q^{19} + 34q^{20} - 4q^{21} - 12q^{22} + 6q^{23} - 3q^{24} - 9q^{25} + 15q^{26} - 12q^{27} - 2q^{28} - 12q^{29} - 3q^{30} + 11q^{31} - 3q^{32} - 14q^{33} + 30q^{34} - q^{35} + 6q^{36} + 5q^{37} - 14q^{38} + 17q^{40} + 36q^{41} - 17q^{42} - 74q^{43} + 10q^{44} - 3q^{45} - q^{46} - 3q^{47} + 14q^{48} - 6q^{49} - 60q^{50} + 15q^{51} + 7q^{52} + 15q^{53} - q^{54} - 4q^{55} - 21q^{56} + 2q^{57} - 4q^{58} + 2q^{59} + 17q^{60} + 12q^{61} + 72q^{62} - 2q^{63} - 46q^{64} + 17q^{65} - 6q^{66} + 10q^{67} + q^{68} + 12q^{69} - 56q^{70} - 42q^{71} + 3q^{72} + 8q^{73} + 16q^{74} + 9q^{75} + 36q^{76} - 40q^{77} + 30q^{78} + 17q^{79} - 3q^{80} - 6q^{81} + 48q^{82} + 24q^{83} - 25q^{84} - 26q^{85} - 22q^{86} - 6q^{87} + 2q^{88} - 18q^{89} - 6q^{90} + 22q^{91} - 6q^{92} - 11q^{93} - 3q^{94} + 16q^{95} + 3q^{96} - 4q^{97} - 62q^{98} - 28q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.682743 + 1.18255i −0.482772 + 0.836186i −0.999804 0.0197802i \(-0.993703\pi\)
0.517032 + 0.855966i \(0.327037\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0.0677246 + 0.117302i 0.0338623 + 0.0586512i
\(5\) 0.663106 1.14853i 0.296550 0.513639i −0.678794 0.734328i \(-0.737497\pi\)
0.975344 + 0.220689i \(0.0708306\pi\)
\(6\) −1.36549 −0.557457
\(7\) 2.35341 + 1.20891i 0.889505 + 0.456926i
\(8\) −2.91593 −1.03094
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0.905461 + 1.56830i 0.286332 + 0.495941i
\(11\) 0.710043 + 1.22983i 0.214086 + 0.370808i 0.952989 0.303003i \(-0.0979894\pi\)
−0.738903 + 0.673811i \(0.764656\pi\)
\(12\) −0.0677246 + 0.117302i −0.0195504 + 0.0338623i
\(13\) 3.16661 0.878259 0.439129 0.898424i \(-0.355287\pi\)
0.439129 + 0.898424i \(0.355287\pi\)
\(14\) −3.03637 + 1.95764i −0.811503 + 0.523200i
\(15\) 1.32621 0.342426
\(16\) 1.85538 3.21361i 0.463844 0.803402i
\(17\) −0.579802 1.00425i −0.140623 0.243565i 0.787109 0.616814i \(-0.211577\pi\)
−0.927731 + 0.373249i \(0.878244\pi\)
\(18\) −0.682743 1.18255i −0.160924 0.278729i
\(19\) −4.28943 + 7.42951i −0.984063 + 1.70445i −0.338033 + 0.941134i \(0.609762\pi\)
−0.646030 + 0.763312i \(0.723572\pi\)
\(20\) 0.179634 0.0401674
\(21\) 0.129755 + 2.64257i 0.0283149 + 0.576656i
\(22\) −1.93911 −0.413419
\(23\) 0.500000 0.866025i 0.104257 0.180579i
\(24\) −1.45796 2.52527i −0.297605 0.515468i
\(25\) 1.62058 + 2.80693i 0.324116 + 0.561386i
\(26\) −2.16198 + 3.74466i −0.423999 + 0.734388i
\(27\) −1.00000 −0.192450
\(28\) 0.0175752 + 0.357934i 0.00332141 + 0.0676431i
\(29\) 7.45480 1.38432 0.692161 0.721743i \(-0.256659\pi\)
0.692161 + 0.721743i \(0.256659\pi\)
\(30\) −0.905461 + 1.56830i −0.165314 + 0.286332i
\(31\) −0.933210 1.61637i −0.167609 0.290308i 0.769969 0.638081i \(-0.220271\pi\)
−0.937579 + 0.347773i \(0.886938\pi\)
\(32\) −0.382434 0.662395i −0.0676054 0.117096i
\(33\) −0.710043 + 1.22983i −0.123603 + 0.214086i
\(34\) 1.58342 0.271555
\(35\) 2.94903 1.90133i 0.498478 0.321383i
\(36\) −0.135449 −0.0225749
\(37\) 3.89919 6.75360i 0.641023 1.11028i −0.344182 0.938903i \(-0.611844\pi\)
0.985205 0.171382i \(-0.0548231\pi\)
\(38\) −5.85715 10.1449i −0.950156 1.64572i
\(39\) 1.58330 + 2.74236i 0.253532 + 0.439129i
\(40\) −1.93357 + 3.34903i −0.305724 + 0.529529i
\(41\) −11.2258 −1.75317 −0.876584 0.481248i \(-0.840183\pi\)
−0.876584 + 0.481248i \(0.840183\pi\)
\(42\) −3.21355 1.65075i −0.495861 0.254717i
\(43\) −11.8479 −1.80679 −0.903393 0.428814i \(-0.858932\pi\)
−0.903393 + 0.428814i \(0.858932\pi\)
\(44\) −0.0961748 + 0.166580i −0.0144989 + 0.0251128i
\(45\) 0.663106 + 1.14853i 0.0988499 + 0.171213i
\(46\) 0.682743 + 1.18255i 0.100665 + 0.174357i
\(47\) −0.868249 + 1.50385i −0.126647 + 0.219359i −0.922376 0.386294i \(-0.873755\pi\)
0.795728 + 0.605654i \(0.207088\pi\)
\(48\) 3.71076 0.535601
\(49\) 4.07706 + 5.69013i 0.582437 + 0.812876i
\(50\) −4.42576 −0.625897
\(51\) 0.579802 1.00425i 0.0811885 0.140623i
\(52\) 0.214457 + 0.371451i 0.0297399 + 0.0515110i
\(53\) 2.07449 + 3.59312i 0.284953 + 0.493553i 0.972598 0.232494i \(-0.0746886\pi\)
−0.687645 + 0.726047i \(0.741355\pi\)
\(54\) 0.682743 1.18255i 0.0929095 0.160924i
\(55\) 1.88333 0.253949
\(56\) −6.86236 3.52510i −0.917022 0.471061i
\(57\) −8.57886 −1.13630
\(58\) −5.08971 + 8.81564i −0.668312 + 1.15755i
\(59\) −6.34357 10.9874i −0.825862 1.43044i −0.901259 0.433281i \(-0.857356\pi\)
0.0753966 0.997154i \(-0.475978\pi\)
\(60\) 0.0898171 + 0.155568i 0.0115953 + 0.0200837i
\(61\) 6.90738 11.9639i 0.884399 1.53182i 0.0379985 0.999278i \(-0.487902\pi\)
0.846401 0.532547i \(-0.178765\pi\)
\(62\) 2.54857 0.323669
\(63\) −2.22365 + 1.43366i −0.280154 + 0.180624i
\(64\) 8.46593 1.05824
\(65\) 2.09980 3.63695i 0.260448 0.451108i
\(66\) −0.969554 1.67932i −0.119344 0.206710i
\(67\) 4.04647 + 7.00870i 0.494355 + 0.856249i 0.999979 0.00650550i \(-0.00207078\pi\)
−0.505623 + 0.862754i \(0.668737\pi\)
\(68\) 0.0785337 0.136024i 0.00952361 0.0164954i
\(69\) 1.00000 0.120386
\(70\) 0.234977 + 4.78548i 0.0280851 + 0.571975i
\(71\) −5.18979 −0.615915 −0.307957 0.951400i \(-0.599645\pi\)
−0.307957 + 0.951400i \(0.599645\pi\)
\(72\) 1.45796 2.52527i 0.171823 0.297605i
\(73\) 5.68430 + 9.84549i 0.665297 + 1.15233i 0.979205 + 0.202874i \(0.0650282\pi\)
−0.313908 + 0.949453i \(0.601638\pi\)
\(74\) 5.32429 + 9.22194i 0.618936 + 1.07203i
\(75\) −1.62058 + 2.80693i −0.187129 + 0.324116i
\(76\) −1.16200 −0.133291
\(77\) 0.184264 + 3.75267i 0.0209988 + 0.427657i
\(78\) −4.32396 −0.489592
\(79\) 5.86823 10.1641i 0.660228 1.14355i −0.320328 0.947307i \(-0.603793\pi\)
0.980556 0.196242i \(-0.0628737\pi\)
\(80\) −2.46062 4.26192i −0.275106 0.476497i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 7.66430 13.2750i 0.846381 1.46597i
\(83\) 5.70566 0.626277 0.313139 0.949707i \(-0.398620\pi\)
0.313139 + 0.949707i \(0.398620\pi\)
\(84\) −0.301192 + 0.194187i −0.0328627 + 0.0211876i
\(85\) −1.53788 −0.166806
\(86\) 8.08906 14.0107i 0.872266 1.51081i
\(87\) 3.72740 + 6.45604i 0.399619 + 0.692161i
\(88\) −2.07043 3.58609i −0.220709 0.382279i
\(89\) 3.17756 5.50369i 0.336820 0.583390i −0.647012 0.762479i \(-0.723982\pi\)
0.983833 + 0.179089i \(0.0573151\pi\)
\(90\) −1.81092 −0.190888
\(91\) 7.45232 + 3.82815i 0.781215 + 0.401299i
\(92\) 0.135449 0.0141216
\(93\) 0.933210 1.61637i 0.0967694 0.167609i
\(94\) −1.18558 2.05349i −0.122283 0.211801i
\(95\) 5.68869 + 9.85310i 0.583647 + 1.01091i
\(96\) 0.382434 0.662395i 0.0390320 0.0676054i
\(97\) 0.408396 0.0414663 0.0207331 0.999785i \(-0.493400\pi\)
0.0207331 + 0.999785i \(0.493400\pi\)
\(98\) −9.51242 + 0.936415i −0.960899 + 0.0945922i
\(99\) −1.42009 −0.142724
\(100\) −0.219507 + 0.380196i −0.0219507 + 0.0380196i
\(101\) 0.361914 + 0.626853i 0.0360117 + 0.0623742i 0.883470 0.468489i \(-0.155201\pi\)
−0.847458 + 0.530863i \(0.821868\pi\)
\(102\) 0.791711 + 1.37128i 0.0783911 + 0.135777i
\(103\) 7.13695 12.3616i 0.703225 1.21802i −0.264103 0.964494i \(-0.585076\pi\)
0.967328 0.253527i \(-0.0815907\pi\)
\(104\) −9.23359 −0.905428
\(105\) 3.12112 + 1.60327i 0.304590 + 0.156463i
\(106\) −5.66537 −0.550270
\(107\) −6.99797 + 12.1208i −0.676520 + 1.17177i 0.299503 + 0.954095i \(0.403179\pi\)
−0.976022 + 0.217671i \(0.930154\pi\)
\(108\) −0.0677246 0.117302i −0.00651680 0.0112874i
\(109\) −1.45473 2.51966i −0.139338 0.241340i 0.787908 0.615792i \(-0.211164\pi\)
−0.927246 + 0.374453i \(0.877831\pi\)
\(110\) −1.28583 + 2.22713i −0.122599 + 0.212348i
\(111\) 7.79838 0.740190
\(112\) 8.25143 5.31994i 0.779687 0.502687i
\(113\) 18.6624 1.75561 0.877804 0.479020i \(-0.159008\pi\)
0.877804 + 0.479020i \(0.159008\pi\)
\(114\) 5.85715 10.1449i 0.548573 0.950156i
\(115\) −0.663106 1.14853i −0.0618349 0.107101i
\(116\) 0.504873 + 0.874466i 0.0468763 + 0.0811921i
\(117\) −1.58330 + 2.74236i −0.146376 + 0.253532i
\(118\) 17.3241 1.59481
\(119\) −0.150465 3.06433i −0.0137931 0.280907i
\(120\) −3.86713 −0.353019
\(121\) 4.49168 7.77981i 0.408334 0.707256i
\(122\) 9.43193 + 16.3366i 0.853926 + 1.47904i
\(123\) −5.61288 9.72179i −0.506096 0.876584i
\(124\) 0.126403 0.218936i 0.0113513 0.0196610i
\(125\) 10.9295 0.977566
\(126\) −0.177179 3.60839i −0.0157844 0.321461i
\(127\) 1.06631 0.0946196 0.0473098 0.998880i \(-0.484935\pi\)
0.0473098 + 0.998880i \(0.484935\pi\)
\(128\) −5.01518 + 8.68655i −0.443284 + 0.767790i
\(129\) −5.92394 10.2606i −0.521574 0.903393i
\(130\) 2.86724 + 4.96620i 0.251474 + 0.435565i
\(131\) 8.00721 13.8689i 0.699593 1.21173i −0.269014 0.963136i \(-0.586698\pi\)
0.968608 0.248595i \(-0.0799688\pi\)
\(132\) −0.192350 −0.0167419
\(133\) −19.0764 + 12.2991i −1.65413 + 1.06647i
\(134\) −11.0508 −0.954644
\(135\) −0.663106 + 1.14853i −0.0570710 + 0.0988499i
\(136\) 1.69066 + 2.92831i 0.144973 + 0.251100i
\(137\) −0.463790 0.803307i −0.0396242 0.0686312i 0.845533 0.533923i \(-0.179283\pi\)
−0.885157 + 0.465292i \(0.845949\pi\)
\(138\) −0.682743 + 1.18255i −0.0581189 + 0.100665i
\(139\) −4.22569 −0.358418 −0.179209 0.983811i \(-0.557354\pi\)
−0.179209 + 0.983811i \(0.557354\pi\)
\(140\) 0.422753 + 0.217162i 0.0357291 + 0.0183535i
\(141\) −1.73650 −0.146239
\(142\) 3.54329 6.13716i 0.297346 0.515019i
\(143\) 2.24843 + 3.89439i 0.188023 + 0.325665i
\(144\) 1.85538 + 3.21361i 0.154615 + 0.267801i
\(145\) 4.94332 8.56208i 0.410520 0.711042i
\(146\) −15.5237 −1.28475
\(147\) −2.88927 + 6.37590i −0.238303 + 0.525876i
\(148\) 1.05628 0.0868261
\(149\) 8.22319 14.2430i 0.673670 1.16683i −0.303186 0.952931i \(-0.598050\pi\)
0.976856 0.213899i \(-0.0686164\pi\)
\(150\) −2.21288 3.83282i −0.180681 0.312949i
\(151\) 4.09419 + 7.09135i 0.333180 + 0.577086i 0.983134 0.182889i \(-0.0585448\pi\)
−0.649953 + 0.759974i \(0.725211\pi\)
\(152\) 12.5077 21.6639i 1.01450 1.75717i
\(153\) 1.15960 0.0937484
\(154\) −4.56351 2.34421i −0.367738 0.188902i
\(155\) −2.47527 −0.198818
\(156\) −0.214457 + 0.371451i −0.0171703 + 0.0297399i
\(157\) −11.2576 19.4987i −0.898452 1.55616i −0.829473 0.558546i \(-0.811359\pi\)
−0.0689787 0.997618i \(-0.521974\pi\)
\(158\) 8.01299 + 13.8789i 0.637479 + 1.10415i
\(159\) −2.07449 + 3.59312i −0.164518 + 0.284953i
\(160\) −1.01438 −0.0801935
\(161\) 2.22365 1.43366i 0.175248 0.112988i
\(162\) 1.36549 0.107283
\(163\) 0.730753 1.26570i 0.0572370 0.0991373i −0.835987 0.548749i \(-0.815104\pi\)
0.893224 + 0.449612i \(0.148438\pi\)
\(164\) −0.760260 1.31681i −0.0593663 0.102825i
\(165\) 0.941667 + 1.63102i 0.0733087 + 0.126974i
\(166\) −3.89550 + 6.74720i −0.302349 + 0.523684i
\(167\) 2.76301 0.213808 0.106904 0.994269i \(-0.465906\pi\)
0.106904 + 0.994269i \(0.465906\pi\)
\(168\) −0.378357 7.70553i −0.0291908 0.594494i
\(169\) −2.97260 −0.228661
\(170\) 1.04998 1.81861i 0.0805295 0.139481i
\(171\) −4.28943 7.42951i −0.328021 0.568149i
\(172\) −0.802394 1.38979i −0.0611819 0.105970i
\(173\) −9.43306 + 16.3385i −0.717182 + 1.24220i 0.244930 + 0.969541i \(0.421235\pi\)
−0.962112 + 0.272655i \(0.912098\pi\)
\(174\) −10.1794 −0.771700
\(175\) 0.420558 + 8.56500i 0.0317912 + 0.647453i
\(176\) 5.26959 0.397210
\(177\) 6.34357 10.9874i 0.476812 0.825862i
\(178\) 4.33891 + 7.51521i 0.325215 + 0.563289i
\(179\) 10.3591 + 17.9425i 0.774276 + 1.34109i 0.935200 + 0.354119i \(0.115219\pi\)
−0.160924 + 0.986967i \(0.551447\pi\)
\(180\) −0.0898171 + 0.155568i −0.00669457 + 0.0115953i
\(181\) 0.686865 0.0510543 0.0255271 0.999674i \(-0.491874\pi\)
0.0255271 + 0.999674i \(0.491874\pi\)
\(182\) −9.61498 + 6.19906i −0.712710 + 0.459505i
\(183\) 13.8148 1.02122
\(184\) −1.45796 + 2.52527i −0.107482 + 0.186165i
\(185\) −5.17115 8.95670i −0.380191 0.658509i
\(186\) 1.27428 + 2.20713i 0.0934351 + 0.161834i
\(187\) 0.823369 1.42612i 0.0602107 0.104288i
\(188\) −0.235207 −0.0171542
\(189\) −2.35341 1.20891i −0.171185 0.0879354i
\(190\) −15.5356 −1.12707
\(191\) −0.546501 + 0.946568i −0.0395434 + 0.0684912i −0.885120 0.465363i \(-0.845924\pi\)
0.845576 + 0.533855i \(0.179257\pi\)
\(192\) 4.23296 + 7.33171i 0.305488 + 0.529120i
\(193\) −3.70697 6.42066i −0.266833 0.462169i 0.701209 0.712956i \(-0.252644\pi\)
−0.968042 + 0.250787i \(0.919311\pi\)
\(194\) −0.278829 + 0.482946i −0.0200188 + 0.0346735i
\(195\) 4.19959 0.300739
\(196\) −0.391349 + 0.863611i −0.0279535 + 0.0616865i
\(197\) 3.16080 0.225198 0.112599 0.993641i \(-0.464082\pi\)
0.112599 + 0.993641i \(0.464082\pi\)
\(198\) 0.969554 1.67932i 0.0689032 0.119344i
\(199\) 0.904642 + 1.56689i 0.0641283 + 0.111074i 0.896307 0.443434i \(-0.146240\pi\)
−0.832179 + 0.554508i \(0.812907\pi\)
\(200\) −4.72550 8.18480i −0.334143 0.578753i
\(201\) −4.04647 + 7.00870i −0.285416 + 0.494355i
\(202\) −0.988375 −0.0695419
\(203\) 17.5442 + 9.01220i 1.23136 + 0.632532i
\(204\) 0.157067 0.0109969
\(205\) −7.44386 + 12.8931i −0.519902 + 0.900496i
\(206\) 9.74541 + 16.8795i 0.678995 + 1.17605i
\(207\) 0.500000 + 0.866025i 0.0347524 + 0.0601929i
\(208\) 5.87525 10.1762i 0.407375 0.705595i
\(209\) −12.1827 −0.842696
\(210\) −4.02686 + 2.59624i −0.277880 + 0.179157i
\(211\) −22.5516 −1.55252 −0.776260 0.630413i \(-0.782885\pi\)
−0.776260 + 0.630413i \(0.782885\pi\)
\(212\) −0.280988 + 0.486686i −0.0192983 + 0.0334257i
\(213\) −2.59489 4.49449i −0.177799 0.307957i
\(214\) −9.55563 16.5508i −0.653210 1.13139i
\(215\) −7.85640 + 13.6077i −0.535802 + 0.928036i
\(216\) 2.91593 0.198404
\(217\) −0.242178 4.93214i −0.0164401 0.334816i
\(218\) 3.97282 0.269073
\(219\) −5.68430 + 9.84549i −0.384109 + 0.665297i
\(220\) 0.127548 + 0.220920i 0.00859929 + 0.0148944i
\(221\) −1.83600 3.18005i −0.123503 0.213914i
\(222\) −5.32429 + 9.22194i −0.357343 + 0.618936i
\(223\) −14.4484 −0.967535 −0.483767 0.875197i \(-0.660732\pi\)
−0.483767 + 0.875197i \(0.660732\pi\)
\(224\) −0.0992456 2.02121i −0.00663113 0.135048i
\(225\) −3.24116 −0.216078
\(226\) −12.7416 + 22.0691i −0.847558 + 1.46801i
\(227\) 1.63940 + 2.83953i 0.108811 + 0.188466i 0.915289 0.402798i \(-0.131962\pi\)
−0.806478 + 0.591264i \(0.798629\pi\)
\(228\) −0.581000 1.00632i −0.0384777 0.0666453i
\(229\) 0.131966 0.228573i 0.00872059 0.0151045i −0.861632 0.507533i \(-0.830557\pi\)
0.870353 + 0.492429i \(0.163891\pi\)
\(230\) 1.81092 0.119409
\(231\) −3.15778 + 2.03591i −0.207767 + 0.133953i
\(232\) −21.7376 −1.42715
\(233\) −8.92547 + 15.4594i −0.584727 + 1.01278i 0.410183 + 0.912003i \(0.365465\pi\)
−0.994909 + 0.100773i \(0.967868\pi\)
\(234\) −2.16198 3.74466i −0.141333 0.244796i
\(235\) 1.15148 + 1.99442i 0.0751143 + 0.130102i
\(236\) 0.859231 1.48823i 0.0559312 0.0968756i
\(237\) 11.7365 0.762366
\(238\) 3.72644 + 1.91422i 0.241549 + 0.124080i
\(239\) 1.68846 0.109217 0.0546086 0.998508i \(-0.482609\pi\)
0.0546086 + 0.998508i \(0.482609\pi\)
\(240\) 2.46062 4.26192i 0.158832 0.275106i
\(241\) −9.52098 16.4908i −0.613300 1.06227i −0.990680 0.136208i \(-0.956508\pi\)
0.377380 0.926058i \(-0.376825\pi\)
\(242\) 6.13332 + 10.6232i 0.394265 + 0.682887i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 1.87120 0.119791
\(245\) 9.23882 0.909481i 0.590247 0.0581046i
\(246\) 15.3286 0.977316
\(247\) −13.5829 + 23.5263i −0.864262 + 1.49695i
\(248\) 2.72117 + 4.71321i 0.172795 + 0.299289i
\(249\) 2.85283 + 4.94125i 0.180791 + 0.313139i
\(250\) −7.46205 + 12.9247i −0.471942 + 0.817427i
\(251\) −20.3390 −1.28379 −0.641895 0.766793i \(-0.721851\pi\)
−0.641895 + 0.766793i \(0.721851\pi\)
\(252\) −0.318767 0.163746i −0.0200805 0.0103150i
\(253\) 1.42009 0.0892801
\(254\) −0.728015 + 1.26096i −0.0456797 + 0.0791196i
\(255\) −0.768940 1.33184i −0.0481529 0.0834032i
\(256\) 1.61777 + 2.80205i 0.101110 + 0.175128i
\(257\) 4.81478 8.33944i 0.300337 0.520200i −0.675875 0.737016i \(-0.736234\pi\)
0.976212 + 0.216817i \(0.0695674\pi\)
\(258\) 16.1781 1.00721
\(259\) 17.3409 11.1802i 1.07751 0.694703i
\(260\) 0.568831 0.0352774
\(261\) −3.72740 + 6.45604i −0.230720 + 0.399619i
\(262\) 10.9337 + 18.9378i 0.675488 + 1.16998i
\(263\) 2.42754 + 4.20462i 0.149688 + 0.259268i 0.931112 0.364733i \(-0.118840\pi\)
−0.781424 + 0.624000i \(0.785506\pi\)
\(264\) 2.07043 3.58609i 0.127426 0.220709i
\(265\) 5.50243 0.338011
\(266\) −1.51999 30.9559i −0.0931968 1.89803i
\(267\) 6.35511 0.388927
\(268\) −0.548092 + 0.949323i −0.0334800 + 0.0579891i
\(269\) −6.36928 11.0319i −0.388342 0.672628i 0.603885 0.797072i \(-0.293619\pi\)
−0.992227 + 0.124444i \(0.960285\pi\)
\(270\) −0.905461 1.56830i −0.0551046 0.0954440i
\(271\) 11.0010 19.0543i 0.668265 1.15747i −0.310124 0.950696i \(-0.600371\pi\)
0.978389 0.206773i \(-0.0662960\pi\)
\(272\) −4.30301 −0.260908
\(273\) 0.410884 + 8.36797i 0.0248678 + 0.506453i
\(274\) 1.26660 0.0765179
\(275\) −2.30137 + 3.98608i −0.138778 + 0.240370i
\(276\) 0.0677246 + 0.117302i 0.00407654 + 0.00706078i
\(277\) −0.0827222 0.143279i −0.00497030 0.00860881i 0.863530 0.504298i \(-0.168249\pi\)
−0.868500 + 0.495689i \(0.834915\pi\)
\(278\) 2.88506 4.99707i 0.173034 0.299704i
\(279\) 1.86642 0.111740
\(280\) −8.59916 + 5.54413i −0.513898 + 0.331325i
\(281\) −20.9797 −1.25155 −0.625773 0.780006i \(-0.715216\pi\)
−0.625773 + 0.780006i \(0.715216\pi\)
\(282\) 1.18558 2.05349i 0.0706003 0.122283i
\(283\) 0.407411 + 0.705657i 0.0242181 + 0.0419470i 0.877880 0.478880i \(-0.158957\pi\)
−0.853662 + 0.520827i \(0.825624\pi\)
\(284\) −0.351476 0.608775i −0.0208563 0.0361242i
\(285\) −5.68869 + 9.85310i −0.336969 + 0.583647i
\(286\) −6.14039 −0.363089
\(287\) −26.4188 13.5710i −1.55945 0.801068i
\(288\) 0.764868 0.0450703
\(289\) 7.82766 13.5579i 0.460451 0.797524i
\(290\) 6.75003 + 11.6914i 0.396375 + 0.686542i
\(291\) 0.204198 + 0.353681i 0.0119703 + 0.0207331i
\(292\) −0.769933 + 1.33356i −0.0450569 + 0.0780409i
\(293\) −12.6589 −0.739543 −0.369771 0.929123i \(-0.620564\pi\)
−0.369771 + 0.929123i \(0.620564\pi\)
\(294\) −5.56717 7.76979i −0.324684 0.453143i
\(295\) −16.8258 −0.979637
\(296\) −11.3698 + 19.6930i −0.660853 + 1.14463i
\(297\) −0.710043 1.22983i −0.0412009 0.0713620i
\(298\) 11.2286 + 19.4486i 0.650458 + 1.12663i
\(299\) 1.58330 2.74236i 0.0915648 0.158595i
\(300\) −0.439013 −0.0253464
\(301\) −27.8829 14.3231i −1.60714 0.825567i
\(302\) −11.1811 −0.643401
\(303\) −0.361914 + 0.626853i −0.0207914 + 0.0360117i
\(304\) 15.9170 + 27.5691i 0.912904 + 1.58120i
\(305\) −9.16064 15.8667i −0.524537 0.908525i
\(306\) −0.791711 + 1.37128i −0.0452591 + 0.0783911i
\(307\) −3.03467 −0.173198 −0.0865989 0.996243i \(-0.527600\pi\)
−0.0865989 + 0.996243i \(0.527600\pi\)
\(308\) −0.427719 + 0.275763i −0.0243715 + 0.0157131i
\(309\) 14.2739 0.812014
\(310\) 1.68997 2.92712i 0.0959839 0.166249i
\(311\) −13.7383 23.7955i −0.779029 1.34932i −0.932502 0.361164i \(-0.882379\pi\)
0.153474 0.988153i \(-0.450954\pi\)
\(312\) −4.61679 7.99652i −0.261375 0.452714i
\(313\) −0.671013 + 1.16223i −0.0379279 + 0.0656930i −0.884366 0.466794i \(-0.845409\pi\)
0.846438 + 0.532487i \(0.178742\pi\)
\(314\) 30.7441 1.73499
\(315\) 0.172083 + 3.50460i 0.00969577 + 0.197462i
\(316\) 1.58970 0.0894274
\(317\) −0.254308 + 0.440475i −0.0142834 + 0.0247395i −0.873079 0.487579i \(-0.837880\pi\)
0.858795 + 0.512319i \(0.171213\pi\)
\(318\) −2.83269 4.90636i −0.158849 0.275135i
\(319\) 5.29323 + 9.16814i 0.296364 + 0.513317i
\(320\) 5.61380 9.72339i 0.313821 0.543554i
\(321\) −13.9959 −0.781178
\(322\) 0.177179 + 3.60839i 0.00987380 + 0.201088i
\(323\) 9.94808 0.553526
\(324\) 0.0677246 0.117302i 0.00376248 0.00651680i
\(325\) 5.13175 + 8.88845i 0.284658 + 0.493042i
\(326\) 0.997832 + 1.72830i 0.0552648 + 0.0957215i
\(327\) 1.45473 2.51966i 0.0804466 0.139338i
\(328\) 32.7335 1.80740
\(329\) −3.86137 + 2.48954i −0.212884 + 0.137253i
\(330\) −2.57167 −0.141566
\(331\) −3.09517 + 5.36099i −0.170126 + 0.294666i −0.938464 0.345378i \(-0.887751\pi\)
0.768338 + 0.640044i \(0.221084\pi\)
\(332\) 0.386413 + 0.669288i 0.0212072 + 0.0367319i
\(333\) 3.89919 + 6.75360i 0.213674 + 0.370095i
\(334\) −1.88642 + 3.26738i −0.103220 + 0.178783i
\(335\) 10.7330 0.586404
\(336\) 8.73292 + 4.48598i 0.476420 + 0.244730i
\(337\) −5.07603 −0.276509 −0.138254 0.990397i \(-0.544149\pi\)
−0.138254 + 0.990397i \(0.544149\pi\)
\(338\) 2.02952 3.51523i 0.110391 0.191203i
\(339\) 9.33118 + 16.1621i 0.506800 + 0.877804i
\(340\) −0.104152 0.180397i −0.00564845 0.00978340i
\(341\) 1.32524 2.29538i 0.0717657 0.124302i
\(342\) 11.7143 0.633437
\(343\) 2.71612 + 18.3200i 0.146657 + 0.989187i
\(344\) 34.5476 1.86268
\(345\) 0.663106 1.14853i 0.0357004 0.0618349i
\(346\) −12.8807 22.3100i −0.692471 1.19939i
\(347\) 12.7476 + 22.0795i 0.684326 + 1.18529i 0.973648 + 0.228055i \(0.0732367\pi\)
−0.289322 + 0.957232i \(0.593430\pi\)
\(348\) −0.504873 + 0.874466i −0.0270640 + 0.0468763i
\(349\) −11.0135 −0.589541 −0.294771 0.955568i \(-0.595243\pi\)
−0.294771 + 0.955568i \(0.595243\pi\)
\(350\) −10.4156 5.35036i −0.556739 0.285989i
\(351\) −3.16661 −0.169021
\(352\) 0.543089 0.940658i 0.0289467 0.0501372i
\(353\) 3.32390 + 5.75717i 0.176914 + 0.306423i 0.940822 0.338902i \(-0.110055\pi\)
−0.763908 + 0.645325i \(0.776722\pi\)
\(354\) 8.66205 + 15.0031i 0.460383 + 0.797406i
\(355\) −3.44138 + 5.96064i −0.182649 + 0.316358i
\(356\) 0.860795 0.0456221
\(357\) 2.57856 1.66247i 0.136472 0.0879873i
\(358\) −28.2904 −1.49520
\(359\) 3.92736 6.80239i 0.207278 0.359017i −0.743578 0.668649i \(-0.766873\pi\)
0.950856 + 0.309633i \(0.100206\pi\)
\(360\) −1.93357 3.34903i −0.101908 0.176510i
\(361\) −27.2984 47.2822i −1.43676 2.48854i
\(362\) −0.468952 + 0.812249i −0.0246476 + 0.0426909i
\(363\) 8.98335 0.471504
\(364\) 0.0556539 + 1.13344i 0.00291706 + 0.0594082i
\(365\) 15.0772 0.789174
\(366\) −9.43193 + 16.3366i −0.493015 + 0.853926i
\(367\) −0.936185 1.62152i −0.0488684 0.0846426i 0.840556 0.541724i \(-0.182228\pi\)
−0.889425 + 0.457081i \(0.848895\pi\)
\(368\) −1.85538 3.21361i −0.0967182 0.167521i
\(369\) 5.61288 9.72179i 0.292195 0.506096i
\(370\) 14.1223 0.734182
\(371\) 0.538352 + 10.9640i 0.0279499 + 0.569221i
\(372\) 0.252805 0.0131073
\(373\) 11.6887 20.2455i 0.605220 1.04827i −0.386796 0.922165i \(-0.626418\pi\)
0.992017 0.126107i \(-0.0402484\pi\)
\(374\) 1.12430 + 1.94734i 0.0581361 + 0.100695i
\(375\) 5.46476 + 9.46524i 0.282199 + 0.488783i
\(376\) 2.53175 4.38512i 0.130565 0.226145i
\(377\) 23.6064 1.21579
\(378\) 3.03637 1.95764i 0.156174 0.100690i
\(379\) 20.9257 1.07488 0.537441 0.843301i \(-0.319391\pi\)
0.537441 + 0.843301i \(0.319391\pi\)
\(380\) −0.770528 + 1.33459i −0.0395273 + 0.0684633i
\(381\) 0.533154 + 0.923450i 0.0273143 + 0.0473098i
\(382\) −0.746239 1.29252i −0.0381809 0.0661313i
\(383\) 13.4095 23.2259i 0.685191 1.18679i −0.288185 0.957575i \(-0.593052\pi\)
0.973377 0.229211i \(-0.0736147\pi\)
\(384\) −10.0304 −0.511860
\(385\) 4.43225 + 2.27679i 0.225889 + 0.116036i
\(386\) 10.1236 0.515279
\(387\) 5.92394 10.2606i 0.301131 0.521574i
\(388\) 0.0276584 + 0.0479058i 0.00140414 + 0.00243205i
\(389\) 12.8169 + 22.1995i 0.649842 + 1.12556i 0.983160 + 0.182744i \(0.0584981\pi\)
−0.333319 + 0.942814i \(0.608169\pi\)
\(390\) −2.86724 + 4.96620i −0.145188 + 0.251474i
\(391\) −1.15960 −0.0586437
\(392\) −11.8884 16.5920i −0.600455 0.838022i
\(393\) 16.0144 0.807821
\(394\) −2.15802 + 3.73779i −0.108719 + 0.188307i
\(395\) −7.78252 13.4797i −0.391581 0.678238i
\(396\) −0.0961748 0.166580i −0.00483296 0.00837094i
\(397\) −5.09522 + 8.82518i −0.255722 + 0.442923i −0.965091 0.261914i \(-0.915646\pi\)
0.709369 + 0.704837i \(0.248980\pi\)
\(398\) −2.47055 −0.123837
\(399\) −20.1896 10.3711i −1.01074 0.519204i
\(400\) 12.0272 0.601358
\(401\) −11.8908 + 20.5954i −0.593796 + 1.02849i 0.399919 + 0.916550i \(0.369038\pi\)
−0.993716 + 0.111935i \(0.964295\pi\)
\(402\) −5.52540 9.57028i −0.275582 0.477322i
\(403\) −2.95511 5.11840i −0.147205 0.254966i
\(404\) −0.0490209 + 0.0849067i −0.00243888 + 0.00422427i
\(405\) −1.32621 −0.0659000
\(406\) −22.6355 + 14.5938i −1.12338 + 0.724277i
\(407\) 11.0744 0.548937
\(408\) −1.69066 + 2.92831i −0.0837001 + 0.144973i
\(409\) 7.21835 + 12.5026i 0.356925 + 0.618211i 0.987445 0.157961i \(-0.0504920\pi\)
−0.630521 + 0.776172i \(0.717159\pi\)
\(410\) −10.1645 17.6054i −0.501988 0.869469i
\(411\) 0.463790 0.803307i 0.0228771 0.0396242i
\(412\) 1.93339 0.0952513
\(413\) −1.64622 33.5266i −0.0810053 1.64974i
\(414\) −1.36549 −0.0671100
\(415\) 3.78345 6.55314i 0.185722 0.321681i
\(416\) −1.21102 2.09754i −0.0593750 0.102841i
\(417\) −2.11284 3.65955i −0.103466 0.179209i
\(418\) 8.31766 14.4066i 0.406830 0.704651i
\(419\) 18.5772 0.907558 0.453779 0.891114i \(-0.350076\pi\)
0.453779 + 0.891114i \(0.350076\pi\)
\(420\) 0.0233085 + 0.474696i 0.00113734 + 0.0231628i
\(421\) −7.98595 −0.389211 −0.194606 0.980882i \(-0.562343\pi\)
−0.194606 + 0.980882i \(0.562343\pi\)
\(422\) 15.3970 26.6683i 0.749513 1.29819i
\(423\) −0.868249 1.50385i −0.0422157 0.0731197i
\(424\) −6.04906 10.4773i −0.293768 0.508822i
\(425\) 1.87923 3.25493i 0.0911562 0.157887i
\(426\) 7.08658 0.343346
\(427\) 30.7192 19.8056i 1.48661 0.958460i
\(428\) −1.89574 −0.0916340
\(429\) −2.24843 + 3.89439i −0.108555 + 0.188023i
\(430\) −10.7278 18.5811i −0.517341 0.896060i
\(431\) 9.01713 + 15.6181i 0.434340 + 0.752299i 0.997242 0.0742252i \(-0.0236484\pi\)
−0.562902 + 0.826524i \(0.690315\pi\)
\(432\) −1.85538 + 3.21361i −0.0892669 + 0.154615i
\(433\) −13.6502 −0.655989 −0.327995 0.944680i \(-0.606373\pi\)
−0.327995 + 0.944680i \(0.606373\pi\)
\(434\) 5.99783 + 3.08100i 0.287905 + 0.147893i
\(435\) 9.88664 0.474028
\(436\) 0.197042 0.341286i 0.00943658 0.0163446i
\(437\) 4.28943 + 7.42951i 0.205191 + 0.355402i
\(438\) −7.76183 13.4439i −0.370874 0.642373i
\(439\) −5.43271 + 9.40973i −0.259289 + 0.449102i −0.966052 0.258349i \(-0.916822\pi\)
0.706762 + 0.707451i \(0.250155\pi\)
\(440\) −5.49166 −0.261805
\(441\) −6.96633 + 0.685774i −0.331730 + 0.0326559i
\(442\) 5.01408 0.238495
\(443\) −7.55614 + 13.0876i −0.359003 + 0.621812i −0.987795 0.155762i \(-0.950217\pi\)
0.628791 + 0.777574i \(0.283550\pi\)
\(444\) 0.528142 + 0.914770i 0.0250645 + 0.0434130i
\(445\) −4.21411 7.29906i −0.199768 0.346008i
\(446\) 9.86452 17.0859i 0.467099 0.809039i
\(447\) 16.4464 0.777887
\(448\) 19.9238 + 10.2346i 0.941310 + 0.483538i
\(449\) 6.14432 0.289968 0.144984 0.989434i \(-0.453687\pi\)
0.144984 + 0.989434i \(0.453687\pi\)
\(450\) 2.21288 3.83282i 0.104316 0.180681i
\(451\) −7.97077 13.8058i −0.375329 0.650089i
\(452\) 1.26390 + 2.18914i 0.0594489 + 0.102969i
\(453\) −4.09419 + 7.09135i −0.192362 + 0.333180i
\(454\) −4.47717 −0.210124
\(455\) 9.33843 6.02076i 0.437792 0.282258i
\(456\) 25.0153 1.17145
\(457\) −14.7924 + 25.6212i −0.691960 + 1.19851i 0.279235 + 0.960223i \(0.409919\pi\)
−0.971195 + 0.238287i \(0.923414\pi\)
\(458\) 0.180198 + 0.312112i 0.00842011 + 0.0145841i
\(459\) 0.579802 + 1.00425i 0.0270628 + 0.0468742i
\(460\) 0.0898171 0.155568i 0.00418774 0.00725339i
\(461\) −34.7997 −1.62078 −0.810391 0.585890i \(-0.800745\pi\)
−0.810391 + 0.585890i \(0.800745\pi\)
\(462\) −0.251609 5.12422i −0.0117059 0.238400i
\(463\) 15.8969 0.738793 0.369397 0.929272i \(-0.379564\pi\)
0.369397 + 0.929272i \(0.379564\pi\)
\(464\) 13.8315 23.9568i 0.642110 1.11217i
\(465\) −1.23763 2.14364i −0.0573939 0.0994091i
\(466\) −12.1876 21.1095i −0.564579 0.977880i
\(467\) −3.64308 + 6.31000i −0.168582 + 0.291992i −0.937921 0.346848i \(-0.887252\pi\)
0.769340 + 0.638840i \(0.220585\pi\)
\(468\) −0.428914 −0.0198266
\(469\) 1.05010 + 21.3862i 0.0484892 + 0.987521i
\(470\) −3.14466 −0.145052
\(471\) 11.2576 19.4987i 0.518721 0.898452i
\(472\) 18.4974 + 32.0384i 0.851410 + 1.47469i
\(473\) −8.41251 14.5709i −0.386808 0.669971i
\(474\) −8.01299 + 13.8789i −0.368049 + 0.637479i
\(475\) −27.8055 −1.27580
\(476\) 0.349263 0.225180i 0.0160085 0.0103211i
\(477\) −4.14898 −0.189969
\(478\) −1.15278 + 1.99668i −0.0527270 + 0.0913259i
\(479\) 9.30781 + 16.1216i 0.425285 + 0.736614i 0.996447 0.0842227i \(-0.0268407\pi\)
−0.571162 + 0.820837i \(0.693507\pi\)
\(480\) −0.507188 0.878475i −0.0231499 0.0400967i
\(481\) 12.3472 21.3860i 0.562984 0.975117i
\(482\) 26.0015 1.18434
\(483\) 2.35341 + 1.20891i 0.107084 + 0.0550074i
\(484\) 1.21679 0.0553086
\(485\) 0.270809 0.469056i 0.0122968 0.0212987i
\(486\) 0.682743 + 1.18255i 0.0309698 + 0.0536413i
\(487\) −4.81446 8.33888i −0.218164 0.377871i 0.736083 0.676892i \(-0.236673\pi\)
−0.954247 + 0.299021i \(0.903340\pi\)
\(488\) −20.1414 + 34.8859i −0.911758 + 1.57921i
\(489\) 1.46151 0.0660915
\(490\) −5.23224 + 11.5463i −0.236368 + 0.521607i
\(491\) −4.61117 −0.208099 −0.104050 0.994572i \(-0.533180\pi\)
−0.104050 + 0.994572i \(0.533180\pi\)
\(492\) 0.760260 1.31681i 0.0342752 0.0593663i
\(493\) −4.32231 7.48645i −0.194667 0.337173i
\(494\) −18.5473 32.1249i −0.834483 1.44537i
\(495\) −0.941667 + 1.63102i −0.0423248 + 0.0733087i
\(496\) −6.92583 −0.310979
\(497\) −12.2137 6.27400i −0.547859 0.281427i
\(498\) −7.79099 −0.349123
\(499\) −6.42833 + 11.1342i −0.287771 + 0.498435i −0.973277 0.229632i \(-0.926248\pi\)
0.685506 + 0.728067i \(0.259581\pi\)
\(500\) 0.740198 + 1.28206i 0.0331026 + 0.0573355i
\(501\) 1.38150 + 2.39283i 0.0617210 + 0.106904i
\(502\) 13.8863 24.0518i 0.619777 1.07349i
\(503\) 15.4383 0.688360 0.344180 0.938904i \(-0.388157\pi\)
0.344180 + 0.938904i \(0.388157\pi\)
\(504\) 6.48401 4.18043i 0.288821 0.186211i
\(505\) 0.959948 0.0427171
\(506\) −0.969554 + 1.67932i −0.0431019 + 0.0746547i
\(507\) −1.48630 2.57434i −0.0660088 0.114331i
\(508\) 0.0722153 + 0.125081i 0.00320404 + 0.00554956i
\(509\) −5.70161 + 9.87549i −0.252720 + 0.437723i −0.964274 0.264908i \(-0.914658\pi\)
0.711554 + 0.702631i \(0.247992\pi\)
\(510\) 2.09995 0.0929874
\(511\) 1.47513 + 30.0423i 0.0652561 + 1.32899i
\(512\) −24.4788 −1.08182
\(513\) 4.28943 7.42951i 0.189383 0.328021i
\(514\) 6.57451 + 11.3874i 0.289989 + 0.502276i
\(515\) −9.46511 16.3940i −0.417083 0.722408i
\(516\) 0.802394 1.38979i 0.0353234 0.0611819i
\(517\) −2.46598 −0.108454
\(518\) 1.38171 + 28.1396i 0.0607088 + 1.23638i
\(519\) −18.8661 −0.828131
\(520\) −6.12284 + 10.6051i −0.268505 + 0.465063i
\(521\) −7.48785 12.9693i −0.328049 0.568197i 0.654076 0.756429i \(-0.273058\pi\)
−0.982125 + 0.188232i \(0.939724\pi\)
\(522\) −5.08971 8.81564i −0.222771 0.385850i
\(523\) 5.70754 9.88575i 0.249573 0.432274i −0.713834 0.700315i \(-0.753043\pi\)
0.963407 + 0.268041i \(0.0863763\pi\)
\(524\) 2.16914 0.0947593
\(525\) −7.20722 + 4.64671i −0.314549 + 0.202799i
\(526\) −6.62953 −0.289061
\(527\) −1.08215 + 1.87435i −0.0471394 + 0.0816478i
\(528\) 2.63480 + 4.56360i 0.114665 + 0.198605i
\(529\) −0.500000 0.866025i −0.0217391 0.0376533i
\(530\) −3.75674 + 6.50687i −0.163182 + 0.282640i
\(531\) 12.6871 0.550575
\(532\) −2.73466 1.40476i −0.118563 0.0609039i
\(533\) −35.5476 −1.53974
\(534\) −4.33891 + 7.51521i −0.187763 + 0.325215i
\(535\) 9.28079 + 16.0748i 0.401244 + 0.694974i
\(536\) −11.7992 20.4368i −0.509648 0.882737i
\(537\) −10.3591 + 17.9425i −0.447029 + 0.774276i
\(538\) 17.3943 0.749923
\(539\) −4.10301 + 9.05433i −0.176729 + 0.389998i
\(540\) −0.179634 −0.00773023
\(541\) −9.06483 + 15.7007i −0.389727 + 0.675027i −0.992413 0.122951i \(-0.960764\pi\)
0.602685 + 0.797979i \(0.294097\pi\)
\(542\) 15.0217 + 26.0184i 0.645239 + 1.11759i
\(543\) 0.343433 + 0.594843i 0.0147381 + 0.0255271i
\(544\) −0.443472 + 0.768115i −0.0190137 + 0.0329327i
\(545\) −3.85855 −0.165282
\(546\) −10.1760 5.22729i −0.435494 0.223707i
\(547\) −13.0632 −0.558543 −0.279271 0.960212i \(-0.590093\pi\)
−0.279271 + 0.960212i \(0.590093\pi\)
\(548\) 0.0628199 0.108807i 0.00268353 0.00464802i
\(549\) 6.90738 + 11.9639i 0.294800 + 0.510608i
\(550\) −3.14248 5.44294i −0.133996 0.232088i
\(551\) −31.9768 + 55.3855i −1.36226 + 2.35950i
\(552\) −2.91593 −0.124110
\(553\) 26.0978 16.8260i 1.10979 0.715516i
\(554\) 0.225912 0.00959808
\(555\) 5.17115 8.95670i 0.219503 0.380191i
\(556\) −0.286183 0.495684i −0.0121369 0.0210217i
\(557\) 13.4457 + 23.2886i 0.569711 + 0.986768i 0.996594 + 0.0824615i \(0.0262781\pi\)
−0.426883 + 0.904307i \(0.640389\pi\)
\(558\) −1.27428 + 2.20713i −0.0539448 + 0.0934351i
\(559\) −37.5176 −1.58683
\(560\) −0.638557 13.0047i −0.0269840 0.549550i
\(561\) 1.64674 0.0695253
\(562\) 14.3238 24.8095i 0.604211 1.04652i
\(563\) −4.88702 8.46457i −0.205963 0.356739i 0.744476 0.667649i \(-0.232699\pi\)
−0.950439 + 0.310910i \(0.899366\pi\)
\(564\) −0.117604 0.203695i −0.00495200 0.00857712i
\(565\) 12.3751 21.4343i 0.520625 0.901749i
\(566\) −1.11263 −0.0467673
\(567\) −0.129755 2.64257i −0.00544921 0.110977i
\(568\) 15.1330 0.634968
\(569\) 21.9945 38.0956i 0.922057 1.59705i 0.125830 0.992052i \(-0.459841\pi\)
0.796227 0.604998i \(-0.206826\pi\)
\(570\) −7.76782 13.4543i −0.325358 0.563537i
\(571\) −3.09960 5.36867i −0.129714 0.224672i 0.793852 0.608112i \(-0.208073\pi\)
−0.923566 + 0.383440i \(0.874739\pi\)
\(572\) −0.304548 + 0.527492i −0.0127338 + 0.0220556i
\(573\) −1.09300 −0.0456608
\(574\) 34.0855 21.9759i 1.42270 0.917258i
\(575\) 3.24116 0.135166
\(576\) −4.23296 + 7.33171i −0.176373 + 0.305488i
\(577\) −7.28016 12.6096i −0.303077 0.524945i 0.673754 0.738956i \(-0.264681\pi\)
−0.976831 + 0.214010i \(0.931347\pi\)
\(578\) 10.6886 + 18.5131i 0.444585 + 0.770044i
\(579\) 3.70697 6.42066i 0.154056 0.266833i
\(580\) 1.33914 0.0556046
\(581\) 13.4277 + 6.89764i 0.557077 + 0.286162i
\(582\) −0.557658 −0.0231157
\(583\) −2.94596 + 5.10255i −0.122009 + 0.211326i
\(584\) −16.5750 28.7087i −0.685878 1.18797i
\(585\) 2.09980 + 3.63695i 0.0868158 + 0.150369i
\(586\) 8.64280 14.9698i 0.357031 0.618395i
\(587\) −16.3784 −0.676009 −0.338004 0.941145i \(-0.609752\pi\)
−0.338004 + 0.941145i \(0.609752\pi\)
\(588\) −0.943583 + 0.0928876i −0.0389127 + 0.00383062i
\(589\) 16.0118 0.659753
\(590\) 11.4877 19.8973i 0.472941 0.819158i
\(591\) 1.58040 + 2.73734i 0.0650091 + 0.112599i
\(592\) −14.4689 25.0609i −0.594670 1.03000i
\(593\) −13.6157 + 23.5830i −0.559129 + 0.968440i 0.438440 + 0.898760i \(0.355531\pi\)
−0.997569 + 0.0696795i \(0.977802\pi\)
\(594\) 1.93911 0.0795625
\(595\) −3.61926 1.85916i −0.148375 0.0762182i
\(596\) 2.22765 0.0912481
\(597\) −0.904642 + 1.56689i −0.0370245 + 0.0641283i
\(598\) 2.16198 + 3.74466i 0.0884099 + 0.153130i
\(599\) −20.2644 35.0990i −0.827981 1.43411i −0.899620 0.436675i \(-0.856156\pi\)
0.0716385 0.997431i \(-0.477177\pi\)
\(600\) 4.72550 8.18480i 0.192918 0.334143i
\(601\) 8.69739 0.354774 0.177387 0.984141i \(-0.443236\pi\)
0.177387 + 0.984141i \(0.443236\pi\)
\(602\) 35.9745 23.1938i 1.46621 0.945311i
\(603\) −8.09295 −0.329570
\(604\) −0.554555 + 0.960517i −0.0225645 + 0.0390829i
\(605\) −5.95691 10.3177i −0.242183 0.419473i
\(606\) −0.494188 0.855958i −0.0200750 0.0347709i
\(607\) −10.0215 + 17.3578i −0.406761 + 0.704530i −0.994525 0.104502i \(-0.966675\pi\)
0.587764 + 0.809033i \(0.300008\pi\)
\(608\) 6.56169 0.266112
\(609\) 0.967299 + 19.6998i 0.0391969 + 0.798277i
\(610\) 25.0175 1.01293
\(611\) −2.74940 + 4.76210i −0.111229 + 0.192654i
\(612\) 0.0785337 + 0.136024i 0.00317454 + 0.00549846i
\(613\) 10.0301 + 17.3726i 0.405111 + 0.701672i 0.994334 0.106298i \(-0.0338997\pi\)
−0.589224 + 0.807970i \(0.700566\pi\)
\(614\) 2.07190 3.58863i 0.0836150 0.144825i
\(615\) −14.8877 −0.600331
\(616\) −0.537299 10.9425i −0.0216484 0.440887i
\(617\) 35.9585 1.44764 0.723818 0.689991i \(-0.242385\pi\)
0.723818 + 0.689991i \(0.242385\pi\)
\(618\) −9.74541 + 16.8795i −0.392018 + 0.678995i
\(619\) 7.40997 + 12.8344i 0.297832 + 0.515860i 0.975640 0.219379i \(-0.0704033\pi\)
−0.677808 + 0.735239i \(0.737070\pi\)
\(620\) −0.167636 0.290355i −0.00673244 0.0116609i
\(621\) −0.500000 + 0.866025i −0.0200643 + 0.0347524i
\(622\) 37.5190 1.50437
\(623\) 14.1316 9.11104i 0.566169 0.365026i
\(624\) 11.7505 0.470397
\(625\) −0.855482 + 1.48174i −0.0342193 + 0.0592695i
\(626\) −0.916258 1.58701i −0.0366211 0.0634295i
\(627\) −6.09136 10.5505i −0.243266 0.421348i
\(628\) 1.52483 2.64108i 0.0608473 0.105391i
\(629\) −9.04303 −0.360569
\(630\) −4.26184 2.18925i −0.169796 0.0872217i
\(631\) −25.6933 −1.02284 −0.511418 0.859332i \(-0.670880\pi\)
−0.511418 + 0.859332i \(0.670880\pi\)
\(632\) −17.1113 + 29.6377i −0.680652 + 1.17892i
\(633\) −11.2758 19.5303i −0.448174 0.776260i
\(634\) −0.347254 0.601462i −0.0137912 0.0238871i
\(635\) 0.707075 1.22469i 0.0280594 0.0486004i
\(636\) −0.561976 −0.0222838
\(637\) 12.9105 + 18.0184i 0.511531 + 0.713915i
\(638\) −14.4557 −0.572305
\(639\) 2.59489 4.49449i 0.102652 0.177799i
\(640\) 6.65119 + 11.5202i 0.262911 + 0.455376i
\(641\) −9.87984 17.1124i −0.390230 0.675899i 0.602249 0.798308i \(-0.294271\pi\)
−0.992480 + 0.122409i \(0.960938\pi\)
\(642\) 9.55563 16.5508i 0.377131 0.653210i
\(643\) −6.27845 −0.247598 −0.123799 0.992307i \(-0.539508\pi\)
−0.123799 + 0.992307i \(0.539508\pi\)
\(644\) 0.318767 + 0.163746i 0.0125612 + 0.00645251i
\(645\) −15.7128 −0.618691
\(646\) −6.79198 + 11.7641i −0.267227 + 0.462850i
\(647\) 23.4542 + 40.6238i 0.922078 + 1.59709i 0.796195 + 0.605041i \(0.206843\pi\)
0.125883 + 0.992045i \(0.459823\pi\)
\(648\) 1.45796 + 2.52527i 0.0572742 + 0.0992018i
\(649\) 9.00841 15.6030i 0.353611 0.612472i
\(650\) −14.0147 −0.549700
\(651\) 4.15027 2.67580i 0.162662 0.104873i
\(652\) 0.197960 0.00775270
\(653\) −14.6588 + 25.3898i −0.573643 + 0.993579i 0.422544 + 0.906342i \(0.361137\pi\)
−0.996188 + 0.0872370i \(0.972196\pi\)
\(654\) 1.98641 + 3.44056i 0.0776747 + 0.134537i
\(655\) −10.6193 18.3931i −0.414929 0.718677i
\(656\) −20.8280 + 36.0752i −0.813197 + 1.40850i
\(657\) −11.3686 −0.443531
\(658\) −0.307671 6.26596i −0.0119943 0.244272i
\(659\) −8.04283 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(660\) −0.127548 + 0.220920i −0.00496480 + 0.00859929i
\(661\) −6.43869 11.1521i −0.250436 0.433768i 0.713210 0.700951i \(-0.247241\pi\)
−0.963646 + 0.267182i \(0.913907\pi\)
\(662\) −4.22641 7.32035i −0.164264 0.284513i
\(663\) 1.83600 3.18005i 0.0713045 0.123503i
\(664\) −16.6373 −0.645651
\(665\) 1.47627 + 30.0655i 0.0572475 + 1.16589i
\(666\) −10.6486 −0.412624
\(667\) 3.72740 6.45604i 0.144325 0.249979i
\(668\) 0.187123 + 0.324107i 0.00724002 + 0.0125401i
\(669\) −7.22419 12.5127i −0.279303 0.483767i
\(670\) −7.32785 + 12.6922i −0.283100 + 0.490343i
\(671\) 19.6181 0.757350
\(672\) 1.70080 1.09656i 0.0656098 0.0423006i
\(673\) 42.5924 1.64182 0.820909 0.571059i \(-0.193467\pi\)
0.820909 + 0.571059i \(0.193467\pi\)
\(674\) 3.46562 6.00263i 0.133491 0.231213i
\(675\) −1.62058 2.80693i −0.0623762 0.108039i
\(676\) −0.201318 0.348693i −0.00774300 0.0134113i
\(677\) −5.81225 + 10.0671i −0.223383 + 0.386911i −0.955833 0.293910i \(-0.905043\pi\)
0.732450 + 0.680821i \(0.238377\pi\)
\(678\) −25.4832 −0.978676
\(679\) 0.961122 + 0.493715i 0.0368845 + 0.0189470i
\(680\) 4.48434 0.171967
\(681\) −1.63940 + 2.83953i −0.0628221 + 0.108811i
\(682\) 1.80959 + 3.13431i 0.0692930 + 0.120019i
\(683\) −4.42079 7.65703i −0.169157 0.292988i 0.768967 0.639289i \(-0.220771\pi\)
−0.938124 + 0.346301i \(0.887438\pi\)
\(684\) 0.581000 1.00632i 0.0222151 0.0384777i
\(685\) −1.23017 −0.0470022
\(686\) −23.5186 9.29592i −0.897946 0.354920i
\(687\) 0.263933 0.0100697
\(688\) −21.9823 + 38.0745i −0.838068 + 1.45158i
\(689\) 6.56910 + 11.3780i 0.250263 + 0.433468i
\(690\) 0.905461 + 1.56830i 0.0344703 + 0.0597043i
\(691\) −12.6339 + 21.8825i −0.480615 + 0.832450i −0.999753 0.0222409i \(-0.992920\pi\)
0.519138 + 0.854691i \(0.326253\pi\)
\(692\) −2.55540 −0.0971417
\(693\) −3.34204 1.71676i −0.126954 0.0652143i
\(694\) −34.8133 −1.32149
\(695\) −2.80208 + 4.85334i −0.106289 + 0.184098i
\(696\) −10.8688 18.8253i −0.411981 0.713573i
\(697\) 6.50871 + 11.2734i 0.246535 + 0.427011i
\(698\) 7.51941 13.0240i 0.284614 0.492966i
\(699\) −17.8509 −0.675184
\(700\) −0.976213 + 0.629393i −0.0368974 + 0.0237888i
\(701\) 17.9512 0.678009 0.339005 0.940785i \(-0.389910\pi\)
0.339005 + 0.940785i \(0.389910\pi\)
\(702\) 2.16198 3.74466i 0.0815986 0.141333i
\(703\) 33.4506 + 57.9382i 1.26161 + 2.18518i
\(704\) 6.01117 + 10.4117i 0.226555 + 0.392404i
\(705\) −1.15148 + 1.99442i −0.0433673 + 0.0751143i
\(706\) −9.07748 −0.341636
\(707\) 0.0939204 + 1.91276i 0.00353224 + 0.0719368i
\(708\) 1.71846 0.0645838
\(709\) 18.7313 32.4436i 0.703470 1.21845i −0.263770 0.964585i \(-0.584966\pi\)
0.967241 0.253861i \(-0.0817005\pi\)
\(710\) −4.69915 8.13917i −0.176356 0.305458i
\(711\) 5.86823 + 10.1641i 0.220076 + 0.381183i
\(712\) −9.26552 + 16.0484i −0.347240 + 0.601437i
\(713\) −1.86642 −0.0698980
\(714\) 0.205457 + 4.18430i 0.00768905 + 0.156593i
\(715\) 5.96378 0.223033
\(716\) −1.40313 + 2.43030i −0.0524376 + 0.0908245i
\(717\) 0.844229 + 1.46225i 0.0315283 + 0.0546086i
\(718\) 5.36276 + 9.28857i 0.200136 + 0.346646i
\(719\) −15.8091 + 27.3822i −0.589580 + 1.02118i 0.404707 + 0.914446i \(0.367373\pi\)
−0.994287 + 0.106736i \(0.965960\pi\)
\(720\) 4.92124 0.183404
\(721\) 31.7402 20.4639i 1.18207 0.762114i
\(722\) 74.5512 2.77451
\(723\) 9.52098 16.4908i 0.354089 0.613300i
\(724\) 0.0465177 + 0.0805710i 0.00172882 + 0.00299440i
\(725\) 12.0811 + 20.9251i 0.448681 + 0.777139i
\(726\) −6.13332 + 10.6232i −0.227629 + 0.394265i
\(727\) 0.00894509 0.000331755 0.000165878 1.00000i \(-0.499947\pi\)
0.000165878 1.00000i \(0.499947\pi\)
\(728\) −21.7304 11.1626i −0.805382 0.413714i
\(729\) 1.00000 0.0370370
\(730\) −10.2938 + 17.8294i −0.380991 + 0.659896i
\(731\) 6.86943 + 11.8982i 0.254075 + 0.440071i
\(732\) 0.935599 + 1.62050i 0.0345807 + 0.0598956i
\(733\) −12.8555 + 22.2663i −0.474828 + 0.822426i −0.999584 0.0288262i \(-0.990823\pi\)
0.524756 + 0.851252i \(0.324156\pi\)
\(734\) 2.55669 0.0943693
\(735\) 5.40704 + 7.54631i 0.199442 + 0.278350i
\(736\) −0.764868 −0.0281934
\(737\) −5.74634 + 9.95296i −0.211669 + 0.366622i
\(738\) 7.66430 + 13.2750i 0.282127 + 0.488658i
\(739\) 8.38289 + 14.5196i 0.308370 + 0.534112i 0.978006 0.208577i \(-0.0668833\pi\)
−0.669636 + 0.742689i \(0.733550\pi\)
\(740\) 0.700428 1.21318i 0.0257483 0.0445973i
\(741\) −27.1659 −0.997964
\(742\) −13.3329 6.84894i −0.489468 0.251433i
\(743\) 13.6484 0.500712 0.250356 0.968154i \(-0.419452\pi\)
0.250356 + 0.968154i \(0.419452\pi\)
\(744\) −2.72117 + 4.71321i −0.0997630 + 0.172795i
\(745\) −10.9057 18.8892i −0.399553 0.692047i
\(746\) 15.9608 + 27.6449i 0.584367 + 1.01215i
\(747\) −2.85283 + 4.94125i −0.104380 + 0.180791i
\(748\) 0.223049 0.00815549
\(749\) −31.1221 + 20.0654i −1.13718 + 0.733172i
\(750\) −14.9241 −0.544951
\(751\) 9.75722 16.9000i 0.356046 0.616690i −0.631250 0.775579i \(-0.717458\pi\)
0.987296 + 0.158889i \(0.0507913\pi\)
\(752\) 3.22186 + 5.58042i 0.117489 + 0.203497i
\(753\) −10.1695 17.6141i −0.370598 0.641895i
\(754\) −16.1171 + 27.9157i −0.586951 + 1.01663i
\(755\) 10.8595 0.395218
\(756\) −0.0175752 0.357934i −0.000639206 0.0130179i
\(757\) 11.1059 0.403652 0.201826 0.979421i \(-0.435312\pi\)
0.201826 + 0.979421i \(0.435312\pi\)
\(758\) −14.2869 + 24.7456i −0.518923 + 0.898801i
\(759\) 0.710043 + 1.22983i 0.0257729 + 0.0446400i
\(760\) −16.5878 28.7309i −0.601702 1.04218i
\(761\) −14.6605 + 25.3927i −0.531442 + 0.920485i 0.467884 + 0.883790i \(0.345016\pi\)
−0.999327 + 0.0366951i \(0.988317\pi\)
\(762\) −1.45603 −0.0527464
\(763\) −0.377517 7.68843i −0.0136670 0.278340i
\(764\) −0.148046 −0.00535613
\(765\) 0.768940 1.33184i 0.0278011 0.0481529i
\(766\) 18.3104 + 31.7146i 0.661582 + 1.14589i
\(767\) −20.0876 34.7927i −0.725321 1.25629i
\(768\) −1.61777 + 2.80205i −0.0583761 + 0.101110i
\(769\) −9.29965 −0.335354 −0.167677 0.985842i \(-0.553627\pi\)
−0.167677 + 0.985842i \(0.553627\pi\)
\(770\) −5.71849 + 3.68688i −0.206080 + 0.132866i
\(771\) 9.62955 0.346800
\(772\) 0.502106 0.869673i 0.0180712 0.0313002i
\(773\) −16.7718 29.0496i −0.603240 1.04484i −0.992327 0.123642i \(-0.960543\pi\)
0.389087 0.921201i \(-0.372791\pi\)
\(774\) 8.08906 + 14.0107i 0.290755 + 0.503603i
\(775\) 3.02469 5.23891i 0.108650 0.188187i
\(776\) −1.19085 −0.0427491
\(777\) 18.3528 + 9.42756i 0.658402 + 0.338212i