Properties

Label 483.2.i.f.415.1
Level $483$
Weight $2$
Character 483.415
Analytic conductor $3.857$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} + 8 x^{10} - 3 x^{9} + 42 x^{8} - 15 x^{7} + 101 x^{6} + 6 x^{5} + 150 x^{4} - 28 x^{3} + 40 x^{2} + 8 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 415.1
Root \(-1.02170 - 1.76964i\) of defining polynomial
Character \(\chi\) \(=\) 483.415
Dual form 483.2.i.f.277.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.02170 + 1.76964i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-1.08774 - 1.88403i) q^{4} +(-0.971745 + 1.68311i) q^{5} -2.04340 q^{6} +(-1.16166 - 2.37709i) q^{7} +0.358585 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-1.02170 + 1.76964i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-1.08774 - 1.88403i) q^{4} +(-0.971745 + 1.68311i) q^{5} -2.04340 q^{6} +(-1.16166 - 2.37709i) q^{7} +0.358585 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-1.98566 - 3.43927i) q^{10} +(2.83264 + 4.90628i) q^{11} +(1.08774 - 1.88403i) q^{12} -6.17812 q^{13} +(5.39345 + 0.372961i) q^{14} -1.94349 q^{15} +(1.80912 - 3.13348i) q^{16} +(-3.61732 - 6.26537i) q^{17} +(-1.02170 - 1.76964i) q^{18} +(-0.395110 + 0.684350i) q^{19} +4.22803 q^{20} +(1.47779 - 2.19457i) q^{21} -11.5765 q^{22} +(0.500000 - 0.866025i) q^{23} +(0.179293 + 0.310544i) q^{24} +(0.611424 + 1.05902i) q^{25} +(6.31219 - 10.9330i) q^{26} -1.00000 q^{27} +(-3.21491 + 4.77425i) q^{28} -5.34085 q^{29} +(1.98566 - 3.43927i) q^{30} +(-0.455658 - 0.789223i) q^{31} +(4.05534 + 7.02405i) q^{32} +(-2.83264 + 4.90628i) q^{33} +14.7832 q^{34} +(5.12974 + 0.354726i) q^{35} +2.17548 q^{36} +(0.486660 - 0.842920i) q^{37} +(-0.807367 - 1.39840i) q^{38} +(-3.08906 - 5.35041i) q^{39} +(-0.348454 + 0.603539i) q^{40} -1.51843 q^{41} +(2.37373 + 4.85734i) q^{42} -2.70342 q^{43} +(6.16237 - 10.6735i) q^{44} +(-0.971745 - 1.68311i) q^{45} +(1.02170 + 1.76964i) q^{46} +(0.764197 - 1.32363i) q^{47} +3.61824 q^{48} +(-4.30111 + 5.52273i) q^{49} -2.49877 q^{50} +(3.61732 - 6.26537i) q^{51} +(6.72020 + 11.6397i) q^{52} +(4.47902 + 7.75789i) q^{53} +(1.02170 - 1.76964i) q^{54} -11.0104 q^{55} +(-0.416553 - 0.852390i) q^{56} -0.790220 q^{57} +(5.45674 - 9.45136i) q^{58} +(5.44656 + 9.43371i) q^{59} +(2.11402 + 3.66158i) q^{60} +(3.15887 - 5.47133i) q^{61} +1.86218 q^{62} +(2.63945 + 0.182520i) q^{63} -9.33688 q^{64} +(6.00356 - 10.3985i) q^{65} +(-5.78823 - 10.0255i) q^{66} +(-3.65917 - 6.33786i) q^{67} +(-7.86941 + 13.6302i) q^{68} +1.00000 q^{69} +(-5.86879 + 8.71535i) q^{70} -8.75692 q^{71} +(-0.179293 + 0.310544i) q^{72} +(0.437625 + 0.757990i) q^{73} +(0.994442 + 1.72242i) q^{74} +(-0.611424 + 1.05902i) q^{75} +1.71911 q^{76} +(8.37211 - 12.4329i) q^{77} +12.6244 q^{78} +(-2.98327 + 5.16718i) q^{79} +(3.51600 + 6.08989i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(1.55138 - 2.68708i) q^{82} -0.273554 q^{83} +(-5.74208 - 0.397069i) q^{84} +14.0604 q^{85} +(2.76208 - 4.78407i) q^{86} +(-2.67042 - 4.62531i) q^{87} +(1.01575 + 1.75932i) q^{88} +(-8.81350 + 15.2654i) q^{89} +3.97133 q^{90} +(7.17686 + 14.6859i) q^{91} -2.17548 q^{92} +(0.455658 - 0.789223i) q^{93} +(1.56156 + 2.70470i) q^{94} +(-0.767892 - 1.33003i) q^{95} +(-4.05534 + 7.02405i) q^{96} +3.09620 q^{97} +(-5.37878 - 13.2540i) q^{98} -5.66529 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + q^{2} + 6q^{3} - 3q^{4} - 3q^{5} + 2q^{6} - 2q^{7} - 6q^{8} - 6q^{9} + O(q^{10}) \) \( 12q + q^{2} + 6q^{3} - 3q^{4} - 3q^{5} + 2q^{6} - 2q^{7} - 6q^{8} - 6q^{9} + 3q^{10} + 14q^{11} + 3q^{12} - q^{14} - 6q^{15} + 7q^{16} - 15q^{17} + q^{18} + q^{19} + 34q^{20} - 4q^{21} - 12q^{22} + 6q^{23} - 3q^{24} - 9q^{25} + 15q^{26} - 12q^{27} - 2q^{28} - 12q^{29} - 3q^{30} + 11q^{31} - 3q^{32} - 14q^{33} + 30q^{34} - q^{35} + 6q^{36} + 5q^{37} - 14q^{38} + 17q^{40} + 36q^{41} - 17q^{42} - 74q^{43} + 10q^{44} - 3q^{45} - q^{46} - 3q^{47} + 14q^{48} - 6q^{49} - 60q^{50} + 15q^{51} + 7q^{52} + 15q^{53} - q^{54} - 4q^{55} - 21q^{56} + 2q^{57} - 4q^{58} + 2q^{59} + 17q^{60} + 12q^{61} + 72q^{62} - 2q^{63} - 46q^{64} + 17q^{65} - 6q^{66} + 10q^{67} + q^{68} + 12q^{69} - 56q^{70} - 42q^{71} + 3q^{72} + 8q^{73} + 16q^{74} + 9q^{75} + 36q^{76} - 40q^{77} + 30q^{78} + 17q^{79} - 3q^{80} - 6q^{81} + 48q^{82} + 24q^{83} - 25q^{84} - 26q^{85} - 22q^{86} - 6q^{87} + 2q^{88} - 18q^{89} - 6q^{90} + 22q^{91} - 6q^{92} - 11q^{93} - 3q^{94} + 16q^{95} + 3q^{96} - 4q^{97} - 62q^{98} - 28q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.02170 + 1.76964i −0.722451 + 1.25132i 0.237563 + 0.971372i \(0.423651\pi\)
−0.960015 + 0.279950i \(0.909682\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −1.08774 1.88403i −0.543871 0.942013i
\(5\) −0.971745 + 1.68311i −0.434577 + 0.752710i −0.997261 0.0739621i \(-0.976436\pi\)
0.562684 + 0.826672i \(0.309769\pi\)
\(6\) −2.04340 −0.834215
\(7\) −1.16166 2.37709i −0.439065 0.898455i
\(8\) 0.358585 0.126779
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −1.98566 3.43927i −0.627922 1.08759i
\(11\) 2.83264 + 4.90628i 0.854074 + 1.47930i 0.877501 + 0.479575i \(0.159209\pi\)
−0.0234266 + 0.999726i \(0.507458\pi\)
\(12\) 1.08774 1.88403i 0.314004 0.543871i
\(13\) −6.17812 −1.71350 −0.856751 0.515730i \(-0.827521\pi\)
−0.856751 + 0.515730i \(0.827521\pi\)
\(14\) 5.39345 + 0.372961i 1.44146 + 0.0996781i
\(15\) −1.94349 −0.501807
\(16\) 1.80912 3.13348i 0.452279 0.783371i
\(17\) −3.61732 6.26537i −0.877328 1.51958i −0.854262 0.519842i \(-0.825991\pi\)
−0.0230655 0.999734i \(-0.507343\pi\)
\(18\) −1.02170 1.76964i −0.240817 0.417107i
\(19\) −0.395110 + 0.684350i −0.0906444 + 0.157001i −0.907782 0.419441i \(-0.862226\pi\)
0.817138 + 0.576442i \(0.195559\pi\)
\(20\) 4.22803 0.945417
\(21\) 1.47779 2.19457i 0.322480 0.478894i
\(22\) −11.5765 −2.46811
\(23\) 0.500000 0.866025i 0.104257 0.180579i
\(24\) 0.179293 + 0.310544i 0.0365980 + 0.0633896i
\(25\) 0.611424 + 1.05902i 0.122285 + 0.211804i
\(26\) 6.31219 10.9330i 1.23792 2.14414i
\(27\) −1.00000 −0.192450
\(28\) −3.21491 + 4.77425i −0.607561 + 0.902249i
\(29\) −5.34085 −0.991770 −0.495885 0.868388i \(-0.665156\pi\)
−0.495885 + 0.868388i \(0.665156\pi\)
\(30\) 1.98566 3.43927i 0.362531 0.627922i
\(31\) −0.455658 0.789223i −0.0818386 0.141749i 0.822201 0.569197i \(-0.192746\pi\)
−0.904040 + 0.427449i \(0.859413\pi\)
\(32\) 4.05534 + 7.02405i 0.716889 + 1.24169i
\(33\) −2.83264 + 4.90628i −0.493100 + 0.854074i
\(34\) 14.7832 2.53531
\(35\) 5.12974 + 0.354726i 0.867084 + 0.0599596i
\(36\) 2.17548 0.362581
\(37\) 0.486660 0.842920i 0.0800064 0.138575i −0.823246 0.567685i \(-0.807839\pi\)
0.903252 + 0.429110i \(0.141173\pi\)
\(38\) −0.807367 1.39840i −0.130972 0.226851i
\(39\) −3.08906 5.35041i −0.494645 0.856751i
\(40\) −0.348454 + 0.603539i −0.0550953 + 0.0954279i
\(41\) −1.51843 −0.237140 −0.118570 0.992946i \(-0.537831\pi\)
−0.118570 + 0.992946i \(0.537831\pi\)
\(42\) 2.37373 + 4.85734i 0.366275 + 0.749505i
\(43\) −2.70342 −0.412268 −0.206134 0.978524i \(-0.566088\pi\)
−0.206134 + 0.978524i \(0.566088\pi\)
\(44\) 6.16237 10.6735i 0.929013 1.60910i
\(45\) −0.971745 1.68311i −0.144859 0.250903i
\(46\) 1.02170 + 1.76964i 0.150641 + 0.260919i
\(47\) 0.764197 1.32363i 0.111470 0.193071i −0.804893 0.593419i \(-0.797778\pi\)
0.916363 + 0.400348i \(0.131111\pi\)
\(48\) 3.61824 0.522247
\(49\) −4.30111 + 5.52273i −0.614444 + 0.788961i
\(50\) −2.49877 −0.353379
\(51\) 3.61732 6.26537i 0.506525 0.877328i
\(52\) 6.72020 + 11.6397i 0.931924 + 1.61414i
\(53\) 4.47902 + 7.75789i 0.615240 + 1.06563i 0.990342 + 0.138644i \(0.0442744\pi\)
−0.375102 + 0.926984i \(0.622392\pi\)
\(54\) 1.02170 1.76964i 0.139036 0.240817i
\(55\) −11.0104 −1.48465
\(56\) −0.416553 0.852390i −0.0556643 0.113905i
\(57\) −0.790220 −0.104667
\(58\) 5.45674 9.45136i 0.716506 1.24102i
\(59\) 5.44656 + 9.43371i 0.709081 + 1.22817i 0.965198 + 0.261519i \(0.0842235\pi\)
−0.256117 + 0.966646i \(0.582443\pi\)
\(60\) 2.11402 + 3.66158i 0.272918 + 0.472708i
\(61\) 3.15887 5.47133i 0.404452 0.700532i −0.589805 0.807546i \(-0.700795\pi\)
0.994258 + 0.107014i \(0.0341288\pi\)
\(62\) 1.86218 0.236497
\(63\) 2.63945 + 0.182520i 0.332539 + 0.0229954i
\(64\) −9.33688 −1.16711
\(65\) 6.00356 10.3985i 0.744649 1.28977i
\(66\) −5.78823 10.0255i −0.712481 1.23405i
\(67\) −3.65917 6.33786i −0.447038 0.774293i 0.551153 0.834404i \(-0.314188\pi\)
−0.998192 + 0.0601108i \(0.980855\pi\)
\(68\) −7.86941 + 13.6302i −0.954307 + 1.65291i
\(69\) 1.00000 0.120386
\(70\) −5.86879 + 8.71535i −0.701455 + 1.04168i
\(71\) −8.75692 −1.03926 −0.519628 0.854393i \(-0.673929\pi\)
−0.519628 + 0.854393i \(0.673929\pi\)
\(72\) −0.179293 + 0.310544i −0.0211299 + 0.0365980i
\(73\) 0.437625 + 0.757990i 0.0512202 + 0.0887160i 0.890499 0.454986i \(-0.150356\pi\)
−0.839279 + 0.543702i \(0.817022\pi\)
\(74\) 0.994442 + 1.72242i 0.115601 + 0.200228i
\(75\) −0.611424 + 1.05902i −0.0706012 + 0.122285i
\(76\) 1.71911 0.197196
\(77\) 8.37211 12.4329i 0.954091 1.41686i
\(78\) 12.6244 1.42943
\(79\) −2.98327 + 5.16718i −0.335644 + 0.581353i −0.983608 0.180318i \(-0.942287\pi\)
0.647964 + 0.761671i \(0.275621\pi\)
\(80\) 3.51600 + 6.08989i 0.393101 + 0.680871i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 1.55138 2.68708i 0.171322 0.296738i
\(83\) −0.273554 −0.0300265 −0.0150132 0.999887i \(-0.504779\pi\)
−0.0150132 + 0.999887i \(0.504779\pi\)
\(84\) −5.74208 0.397069i −0.626512 0.0433238i
\(85\) 14.0604 1.52507
\(86\) 2.76208 4.78407i 0.297843 0.515879i
\(87\) −2.67042 4.62531i −0.286299 0.495885i
\(88\) 1.01575 + 1.75932i 0.108279 + 0.187544i
\(89\) −8.81350 + 15.2654i −0.934229 + 1.61813i −0.158227 + 0.987403i \(0.550578\pi\)
−0.776002 + 0.630730i \(0.782755\pi\)
\(90\) 3.97133 0.418615
\(91\) 7.17686 + 14.6859i 0.752339 + 1.53950i
\(92\) −2.17548 −0.226810
\(93\) 0.455658 0.789223i 0.0472495 0.0818386i
\(94\) 1.56156 + 2.70470i 0.161063 + 0.278969i
\(95\) −0.767892 1.33003i −0.0787840 0.136458i
\(96\) −4.05534 + 7.02405i −0.413896 + 0.716889i
\(97\) 3.09620 0.314372 0.157186 0.987569i \(-0.449758\pi\)
0.157186 + 0.987569i \(0.449758\pi\)
\(98\) −5.37878 13.2540i −0.543338 1.33885i
\(99\) −5.66529 −0.569383
\(100\) 1.33014 2.30388i 0.133014 0.230388i
\(101\) −6.71382 11.6287i −0.668050 1.15710i −0.978449 0.206491i \(-0.933796\pi\)
0.310398 0.950607i \(-0.399538\pi\)
\(102\) 7.39162 + 12.8027i 0.731880 + 1.26765i
\(103\) −3.16827 + 5.48760i −0.312178 + 0.540709i −0.978834 0.204657i \(-0.934392\pi\)
0.666655 + 0.745366i \(0.267725\pi\)
\(104\) −2.21538 −0.217236
\(105\) 2.25767 + 4.61985i 0.220326 + 0.450851i
\(106\) −18.3049 −1.77792
\(107\) −7.98043 + 13.8225i −0.771497 + 1.33627i 0.165245 + 0.986253i \(0.447159\pi\)
−0.936742 + 0.350020i \(0.886175\pi\)
\(108\) 1.08774 + 1.88403i 0.104668 + 0.181290i
\(109\) 0.0235357 + 0.0407651i 0.00225431 + 0.00390459i 0.867150 0.498046i \(-0.165949\pi\)
−0.864896 + 0.501951i \(0.832616\pi\)
\(110\) 11.2494 19.4845i 1.07258 1.85777i
\(111\) 0.973320 0.0923835
\(112\) −9.55015 0.660400i −0.902404 0.0624020i
\(113\) −6.27141 −0.589965 −0.294982 0.955503i \(-0.595314\pi\)
−0.294982 + 0.955503i \(0.595314\pi\)
\(114\) 0.807367 1.39840i 0.0756169 0.130972i
\(115\) 0.971745 + 1.68311i 0.0906157 + 0.156951i
\(116\) 5.80947 + 10.0623i 0.539395 + 0.934260i
\(117\) 3.08906 5.35041i 0.285584 0.494645i
\(118\) −22.2590 −2.04911
\(119\) −10.6913 + 15.8769i −0.980067 + 1.45543i
\(120\) −0.696907 −0.0636186
\(121\) −10.5477 + 18.2692i −0.958886 + 1.66084i
\(122\) 6.45484 + 11.1801i 0.584394 + 1.01220i
\(123\) −0.759217 1.31500i −0.0684563 0.118570i
\(124\) −0.991277 + 1.71694i −0.0890193 + 0.154186i
\(125\) −12.0940 −1.08172
\(126\) −3.01972 + 4.48438i −0.269018 + 0.399501i
\(127\) −12.4325 −1.10320 −0.551601 0.834108i \(-0.685983\pi\)
−0.551601 + 0.834108i \(0.685983\pi\)
\(128\) 1.42882 2.47479i 0.126291 0.218743i
\(129\) −1.35171 2.34123i −0.119011 0.206134i
\(130\) 12.2677 + 21.2482i 1.07595 + 1.86359i
\(131\) 1.65549 2.86739i 0.144641 0.250525i −0.784598 0.620005i \(-0.787131\pi\)
0.929239 + 0.369480i \(0.120464\pi\)
\(132\) 12.3247 1.07273
\(133\) 2.08574 + 0.144231i 0.180857 + 0.0125064i
\(134\) 14.9543 1.29185
\(135\) 0.971745 1.68311i 0.0836345 0.144859i
\(136\) −1.29712 2.24667i −0.111227 0.192651i
\(137\) 6.52210 + 11.2966i 0.557220 + 0.965134i 0.997727 + 0.0673847i \(0.0214655\pi\)
−0.440507 + 0.897749i \(0.645201\pi\)
\(138\) −1.02170 + 1.76964i −0.0869729 + 0.150641i
\(139\) −11.3674 −0.964169 −0.482084 0.876125i \(-0.660120\pi\)
−0.482084 + 0.876125i \(0.660120\pi\)
\(140\) −4.91152 10.0504i −0.415099 0.849415i
\(141\) 1.52839 0.128714
\(142\) 8.94694 15.4966i 0.750811 1.30044i
\(143\) −17.5004 30.3116i −1.46346 2.53478i
\(144\) 1.80912 + 3.13348i 0.150760 + 0.261124i
\(145\) 5.18994 8.98924i 0.431001 0.746516i
\(146\) −1.78849 −0.148016
\(147\) −6.93337 0.963504i −0.571855 0.0794685i
\(148\) −2.11744 −0.174053
\(149\) −8.10300 + 14.0348i −0.663824 + 1.14978i 0.315779 + 0.948833i \(0.397734\pi\)
−0.979603 + 0.200944i \(0.935599\pi\)
\(150\) −1.24938 2.16400i −0.102012 0.176690i
\(151\) 6.46687 + 11.2009i 0.526266 + 0.911520i 0.999532 + 0.0305999i \(0.00974177\pi\)
−0.473266 + 0.880920i \(0.656925\pi\)
\(152\) −0.141681 + 0.245398i −0.0114918 + 0.0199044i
\(153\) 7.23463 0.584885
\(154\) 13.4479 + 27.5183i 1.08366 + 2.21748i
\(155\) 1.77113 0.142261
\(156\) −6.72020 + 11.6397i −0.538047 + 0.931924i
\(157\) 4.86721 + 8.43026i 0.388446 + 0.672808i 0.992241 0.124332i \(-0.0396787\pi\)
−0.603795 + 0.797140i \(0.706345\pi\)
\(158\) −6.09602 10.5586i −0.484973 0.839999i
\(159\) −4.47902 + 7.75789i −0.355209 + 0.615240i
\(160\) −15.7630 −1.24618
\(161\) −2.63945 0.182520i −0.208018 0.0143846i
\(162\) 2.04340 0.160545
\(163\) 12.0461 20.8645i 0.943525 1.63423i 0.184848 0.982767i \(-0.440821\pi\)
0.758677 0.651467i \(-0.225846\pi\)
\(164\) 1.65167 + 2.86077i 0.128973 + 0.223389i
\(165\) −5.50521 9.53531i −0.428580 0.742323i
\(166\) 0.279490 0.484091i 0.0216927 0.0375728i
\(167\) −12.2582 −0.948566 −0.474283 0.880373i \(-0.657293\pi\)
−0.474283 + 0.880373i \(0.657293\pi\)
\(168\) 0.529914 0.786941i 0.0408838 0.0607138i
\(169\) 25.1692 1.93609
\(170\) −14.3655 + 24.8818i −1.10179 + 1.90835i
\(171\) −0.395110 0.684350i −0.0302148 0.0523336i
\(172\) 2.94062 + 5.09331i 0.224220 + 0.388361i
\(173\) 2.94398 5.09912i 0.223826 0.387679i −0.732140 0.681154i \(-0.761478\pi\)
0.955967 + 0.293475i \(0.0948118\pi\)
\(174\) 10.9135 0.827349
\(175\) 1.80711 2.68363i 0.136605 0.202863i
\(176\) 20.4984 1.54512
\(177\) −5.44656 + 9.43371i −0.409388 + 0.709081i
\(178\) −18.0095 31.1934i −1.34987 2.33804i
\(179\) 8.48661 + 14.6992i 0.634319 + 1.09867i 0.986659 + 0.162801i \(0.0520528\pi\)
−0.352340 + 0.935872i \(0.614614\pi\)
\(180\) −2.11402 + 3.66158i −0.157569 + 0.272918i
\(181\) 19.1241 1.42149 0.710743 0.703452i \(-0.248359\pi\)
0.710743 + 0.703452i \(0.248359\pi\)
\(182\) −33.3214 2.30420i −2.46994 0.170799i
\(183\) 6.31775 0.467021
\(184\) 0.179293 0.310544i 0.0132176 0.0228936i
\(185\) 0.945819 + 1.63821i 0.0695380 + 0.120443i
\(186\) 0.931092 + 1.61270i 0.0682709 + 0.118249i
\(187\) 20.4931 35.4952i 1.49861 2.59566i
\(188\) −3.32500 −0.242500
\(189\) 1.16166 + 2.37709i 0.0844981 + 0.172908i
\(190\) 3.13822 0.227670
\(191\) 10.3435 17.9155i 0.748432 1.29632i −0.200142 0.979767i \(-0.564140\pi\)
0.948574 0.316555i \(-0.102526\pi\)
\(192\) −4.66844 8.08598i −0.336916 0.583555i
\(193\) −1.11450 1.93038i −0.0802237 0.138952i 0.823122 0.567864i \(-0.192230\pi\)
−0.903346 + 0.428913i \(0.858897\pi\)
\(194\) −3.16339 + 5.47916i −0.227118 + 0.393380i
\(195\) 12.0071 0.859847
\(196\) 15.0834 + 2.09609i 1.07739 + 0.149721i
\(197\) 19.3710 1.38013 0.690064 0.723748i \(-0.257582\pi\)
0.690064 + 0.723748i \(0.257582\pi\)
\(198\) 5.78823 10.0255i 0.411351 0.712481i
\(199\) −12.3420 21.3770i −0.874902 1.51538i −0.856867 0.515538i \(-0.827592\pi\)
−0.0180354 0.999837i \(-0.505741\pi\)
\(200\) 0.219248 + 0.379748i 0.0155032 + 0.0268523i
\(201\) 3.65917 6.33786i 0.258098 0.447038i
\(202\) 27.4381 1.93054
\(203\) 6.20423 + 12.6957i 0.435452 + 0.891061i
\(204\) −15.7388 −1.10194
\(205\) 1.47553 2.55569i 0.103056 0.178497i
\(206\) −6.47403 11.2134i −0.451067 0.781272i
\(207\) 0.500000 + 0.866025i 0.0347524 + 0.0601929i
\(208\) −11.1769 + 19.3590i −0.774982 + 1.34231i
\(209\) −4.47682 −0.309668
\(210\) −10.4821 0.724846i −0.723334 0.0500192i
\(211\) 9.90378 0.681804 0.340902 0.940099i \(-0.389267\pi\)
0.340902 + 0.940099i \(0.389267\pi\)
\(212\) 9.74403 16.8772i 0.669223 1.15913i
\(213\) −4.37846 7.58371i −0.300007 0.519628i
\(214\) −16.3072 28.2449i −1.11474 1.93078i
\(215\) 2.62703 4.55016i 0.179162 0.310318i
\(216\) −0.358585 −0.0243987
\(217\) −1.34673 + 1.99995i −0.0914223 + 0.135765i
\(218\) −0.0961859 −0.00651453
\(219\) −0.437625 + 0.757990i −0.0295720 + 0.0512202i
\(220\) 11.9765 + 20.7439i 0.807456 + 1.39856i
\(221\) 22.3482 + 38.7082i 1.50330 + 2.60380i
\(222\) −0.994442 + 1.72242i −0.0667425 + 0.115601i
\(223\) 2.21461 0.148301 0.0741507 0.997247i \(-0.476375\pi\)
0.0741507 + 0.997247i \(0.476375\pi\)
\(224\) 11.9859 17.7994i 0.800840 1.18927i
\(225\) −1.22285 −0.0815232
\(226\) 6.40750 11.0981i 0.426221 0.738236i
\(227\) 2.79017 + 4.83271i 0.185190 + 0.320758i 0.943640 0.330972i \(-0.107377\pi\)
−0.758451 + 0.651730i \(0.774043\pi\)
\(228\) 0.859555 + 1.48879i 0.0569254 + 0.0985978i
\(229\) −3.48930 + 6.04364i −0.230579 + 0.399375i −0.957979 0.286839i \(-0.907395\pi\)
0.727400 + 0.686214i \(0.240729\pi\)
\(230\) −3.97133 −0.261862
\(231\) 14.9532 + 1.03403i 0.983851 + 0.0680341i
\(232\) −1.91515 −0.125736
\(233\) −12.2021 + 21.1347i −0.799388 + 1.38458i 0.120628 + 0.992698i \(0.461509\pi\)
−0.920015 + 0.391882i \(0.871824\pi\)
\(234\) 6.31219 + 10.9330i 0.412640 + 0.714714i
\(235\) 1.48521 + 2.57246i 0.0968843 + 0.167809i
\(236\) 11.8489 20.5229i 0.771298 1.33593i
\(237\) −5.96655 −0.387569
\(238\) −17.1731 35.1411i −1.11316 2.27786i
\(239\) 0.424159 0.0274365 0.0137183 0.999906i \(-0.495633\pi\)
0.0137183 + 0.999906i \(0.495633\pi\)
\(240\) −3.51600 + 6.08989i −0.226957 + 0.393101i
\(241\) 8.15623 + 14.1270i 0.525389 + 0.910000i 0.999563 + 0.0295691i \(0.00941352\pi\)
−0.474174 + 0.880431i \(0.657253\pi\)
\(242\) −21.5533 37.3314i −1.38550 2.39975i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) −13.7442 −0.879880
\(245\) −5.11578 12.6059i −0.326835 0.805363i
\(246\) 3.10277 0.197825
\(247\) 2.44104 4.22800i 0.155319 0.269021i
\(248\) −0.163392 0.283004i −0.0103754 0.0179708i
\(249\) −0.136777 0.236905i −0.00866790 0.0150132i
\(250\) 12.3565 21.4021i 0.781493 1.35358i
\(251\) −15.9242 −1.00513 −0.502564 0.864540i \(-0.667610\pi\)
−0.502564 + 0.864540i \(0.667610\pi\)
\(252\) −2.52717 5.17132i −0.159197 0.325763i
\(253\) 5.66529 0.356174
\(254\) 12.7022 22.0009i 0.797010 1.38046i
\(255\) 7.03021 + 12.1767i 0.440249 + 0.762534i
\(256\) −6.41723 11.1150i −0.401077 0.694686i
\(257\) 15.0785 26.1167i 0.940569 1.62911i 0.176181 0.984358i \(-0.443626\pi\)
0.764389 0.644756i \(-0.223041\pi\)
\(258\) 5.52417 0.343920
\(259\) −2.56903 0.177650i −0.159632 0.0110387i
\(260\) −26.1213 −1.61997
\(261\) 2.67042 4.62531i 0.165295 0.286299i
\(262\) 3.38283 + 5.85923i 0.208992 + 0.361984i
\(263\) −7.58281 13.1338i −0.467576 0.809866i 0.531737 0.846909i \(-0.321539\pi\)
−0.999314 + 0.0370435i \(0.988206\pi\)
\(264\) −1.01575 + 1.75932i −0.0625148 + 0.108279i
\(265\) −17.4098 −1.06948
\(266\) −2.38624 + 3.54365i −0.146310 + 0.217275i
\(267\) −17.6270 −1.07876
\(268\) −7.96046 + 13.7879i −0.486263 + 0.842231i
\(269\) −0.235417 0.407754i −0.0143536 0.0248612i 0.858759 0.512379i \(-0.171236\pi\)
−0.873113 + 0.487518i \(0.837902\pi\)
\(270\) 1.98566 + 3.43927i 0.120844 + 0.209307i
\(271\) 3.64368 6.31104i 0.221338 0.383368i −0.733877 0.679283i \(-0.762291\pi\)
0.955214 + 0.295914i \(0.0956243\pi\)
\(272\) −26.1766 −1.58719
\(273\) −9.12997 + 13.5583i −0.552571 + 0.820586i
\(274\) −26.6545 −1.61026
\(275\) −3.46389 + 5.99964i −0.208881 + 0.361792i
\(276\) −1.08774 1.88403i −0.0654744 0.113405i
\(277\) −1.48011 2.56362i −0.0889310 0.154033i 0.818129 0.575035i \(-0.195012\pi\)
−0.907060 + 0.421002i \(0.861678\pi\)
\(278\) 11.6141 20.1161i 0.696565 1.20649i
\(279\) 0.911316 0.0545591
\(280\) 1.83945 + 0.127199i 0.109928 + 0.00760162i
\(281\) 7.16141 0.427214 0.213607 0.976920i \(-0.431479\pi\)
0.213607 + 0.976920i \(0.431479\pi\)
\(282\) −1.56156 + 2.70470i −0.0929895 + 0.161063i
\(283\) 10.0053 + 17.3297i 0.594753 + 1.03014i 0.993582 + 0.113117i \(0.0360835\pi\)
−0.398828 + 0.917026i \(0.630583\pi\)
\(284\) 9.52527 + 16.4983i 0.565221 + 0.978991i
\(285\) 0.767892 1.33003i 0.0454860 0.0787840i
\(286\) 71.5207 4.22911
\(287\) 1.76390 + 3.60945i 0.104120 + 0.213059i
\(288\) −8.11067 −0.477926
\(289\) −17.6699 + 30.6052i −1.03941 + 1.80031i
\(290\) 10.6051 + 18.3686i 0.622754 + 1.07864i
\(291\) 1.54810 + 2.68139i 0.0907514 + 0.157186i
\(292\) 0.952047 1.64899i 0.0557144 0.0965001i
\(293\) 6.27910 0.366829 0.183414 0.983036i \(-0.441285\pi\)
0.183414 + 0.983036i \(0.441285\pi\)
\(294\) 8.78888 11.2851i 0.512578 0.658163i
\(295\) −21.1707 −1.23260
\(296\) 0.174509 0.302259i 0.0101431 0.0175684i
\(297\) −2.83264 4.90628i −0.164367 0.284691i
\(298\) −16.5577 28.6787i −0.959161 1.66132i
\(299\) −3.08906 + 5.35041i −0.178645 + 0.309422i
\(300\) 2.66029 0.153592
\(301\) 3.14045 + 6.42627i 0.181012 + 0.370404i
\(302\) −26.4288 −1.52081
\(303\) 6.71382 11.6287i 0.385699 0.668050i
\(304\) 1.42960 + 2.47614i 0.0819932 + 0.142016i
\(305\) 6.13924 + 10.6335i 0.351532 + 0.608871i
\(306\) −7.39162 + 12.8027i −0.422551 + 0.731880i
\(307\) 25.1923 1.43780 0.718900 0.695114i \(-0.244646\pi\)
0.718900 + 0.695114i \(0.244646\pi\)
\(308\) −32.5305 2.24951i −1.85360 0.128178i
\(309\) −6.33653 −0.360473
\(310\) −1.80957 + 3.13426i −0.102776 + 0.178014i
\(311\) −5.96103 10.3248i −0.338019 0.585466i 0.646041 0.763303i \(-0.276423\pi\)
−0.984060 + 0.177837i \(0.943090\pi\)
\(312\) −1.10769 1.91858i −0.0627107 0.108618i
\(313\) −5.02115 + 8.69689i −0.283812 + 0.491578i −0.972320 0.233651i \(-0.924933\pi\)
0.688508 + 0.725229i \(0.258266\pi\)
\(314\) −19.8913 −1.12253
\(315\) −2.87207 + 4.26512i −0.161823 + 0.240312i
\(316\) 12.9801 0.730189
\(317\) 4.43105 7.67480i 0.248872 0.431060i −0.714341 0.699798i \(-0.753273\pi\)
0.963213 + 0.268738i \(0.0866067\pi\)
\(318\) −9.15243 15.8525i −0.513243 0.888962i
\(319\) −15.1287 26.2037i −0.847046 1.46713i
\(320\) 9.07307 15.7150i 0.507200 0.878496i
\(321\) −15.9609 −0.890849
\(322\) 3.01972 4.48438i 0.168282 0.249905i
\(323\) 5.71695 0.318099
\(324\) −1.08774 + 1.88403i −0.0604301 + 0.104668i
\(325\) −3.77745 6.54274i −0.209535 0.362926i
\(326\) 24.6151 + 42.6345i 1.36330 + 2.36131i
\(327\) −0.0235357 + 0.0407651i −0.00130153 + 0.00225431i
\(328\) −0.544489 −0.0300644
\(329\) −4.03412 0.278962i −0.222408 0.0153797i
\(330\) 22.4987 1.23851
\(331\) 11.4496 19.8313i 0.629327 1.09003i −0.358360 0.933584i \(-0.616664\pi\)
0.987687 0.156443i \(-0.0500028\pi\)
\(332\) 0.297556 + 0.515383i 0.0163305 + 0.0282853i
\(333\) 0.486660 + 0.842920i 0.0266688 + 0.0461917i
\(334\) 12.5242 21.6925i 0.685292 1.18696i
\(335\) 14.2231 0.777091
\(336\) −4.20315 8.60087i −0.229301 0.469216i
\(337\) 12.2517 0.667392 0.333696 0.942681i \(-0.391704\pi\)
0.333696 + 0.942681i \(0.391704\pi\)
\(338\) −25.7153 + 44.5403i −1.39873 + 2.42267i
\(339\) −3.13570 5.43120i −0.170308 0.294982i
\(340\) −15.2941 26.4902i −0.829440 1.43663i
\(341\) 2.58143 4.47117i 0.139792 0.242128i
\(342\) 1.61473 0.0873149
\(343\) 18.1244 + 3.80860i 0.978627 + 0.205645i
\(344\) −0.969407 −0.0522669
\(345\) −0.971745 + 1.68311i −0.0523170 + 0.0906157i
\(346\) 6.01572 + 10.4195i 0.323407 + 0.560158i
\(347\) 3.22916 + 5.59307i 0.173351 + 0.300252i 0.939589 0.342304i \(-0.111207\pi\)
−0.766239 + 0.642556i \(0.777874\pi\)
\(348\) −5.80947 + 10.0623i −0.311420 + 0.539395i
\(349\) 20.5047 1.09759 0.548795 0.835957i \(-0.315087\pi\)
0.548795 + 0.835957i \(0.315087\pi\)
\(350\) 2.90271 + 5.93980i 0.155156 + 0.317495i
\(351\) 6.17812 0.329764
\(352\) −22.9747 + 39.7933i −1.22455 + 2.12099i
\(353\) −7.25563 12.5671i −0.386178 0.668881i 0.605754 0.795652i \(-0.292872\pi\)
−0.991932 + 0.126772i \(0.959538\pi\)
\(354\) −11.1295 19.2769i −0.591526 1.02455i
\(355\) 8.50949 14.7389i 0.451637 0.782258i
\(356\) 38.3473 2.03240
\(357\) −19.0954 1.32046i −1.01064 0.0698864i
\(358\) −34.6831 −1.83306
\(359\) −2.33890 + 4.05109i −0.123442 + 0.213808i −0.921123 0.389272i \(-0.872727\pi\)
0.797681 + 0.603080i \(0.206060\pi\)
\(360\) −0.348454 0.603539i −0.0183651 0.0318093i
\(361\) 9.18778 + 15.9137i 0.483567 + 0.837563i
\(362\) −19.5391 + 33.8428i −1.02695 + 1.77874i
\(363\) −21.0955 −1.10723
\(364\) 19.8621 29.4959i 1.04106 1.54601i
\(365\) −1.70104 −0.0890366
\(366\) −6.45484 + 11.1801i −0.337400 + 0.584394i
\(367\) 14.0330 + 24.3058i 0.732515 + 1.26875i 0.955805 + 0.294002i \(0.0949872\pi\)
−0.223289 + 0.974752i \(0.571679\pi\)
\(368\) −1.80912 3.13348i −0.0943068 0.163344i
\(369\) 0.759217 1.31500i 0.0395233 0.0684563i
\(370\) −3.86537 −0.200951
\(371\) 13.2381 19.6590i 0.687288 1.02065i
\(372\) −1.98255 −0.102791
\(373\) −7.31514 + 12.6702i −0.378763 + 0.656037i −0.990883 0.134728i \(-0.956984\pi\)
0.612119 + 0.790765i \(0.290317\pi\)
\(374\) 41.8757 + 72.5308i 2.16534 + 3.75048i
\(375\) −6.04702 10.4737i −0.312267 0.540862i
\(376\) 0.274030 0.474634i 0.0141320 0.0244774i
\(377\) 32.9964 1.69940
\(378\) −5.39345 0.372961i −0.277409 0.0191831i
\(379\) −2.44369 −0.125524 −0.0627620 0.998029i \(-0.519991\pi\)
−0.0627620 + 0.998029i \(0.519991\pi\)
\(380\) −1.67054 + 2.89345i −0.0856967 + 0.148431i
\(381\) −6.21623 10.7668i −0.318467 0.551601i
\(382\) 21.1360 + 36.6086i 1.08141 + 1.87306i
\(383\) −15.3896 + 26.6555i −0.786371 + 1.36203i 0.141806 + 0.989894i \(0.454709\pi\)
−0.928177 + 0.372140i \(0.878624\pi\)
\(384\) 2.85764 0.145828
\(385\) 12.7903 + 26.1728i 0.651856 + 1.33389i
\(386\) 4.55475 0.231831
\(387\) 1.35171 2.34123i 0.0687113 0.119011i
\(388\) −3.36787 5.83333i −0.170978 0.296142i
\(389\) −6.09275 10.5530i −0.308915 0.535056i 0.669210 0.743073i \(-0.266632\pi\)
−0.978125 + 0.208017i \(0.933299\pi\)
\(390\) −12.2677 + 21.2482i −0.621197 + 1.07595i
\(391\) −7.23463 −0.365871
\(392\) −1.54231 + 1.98037i −0.0778986 + 0.100024i
\(393\) 3.31098 0.167017
\(394\) −19.7914 + 34.2797i −0.997075 + 1.72698i
\(395\) −5.79796 10.0424i −0.291727 0.505286i
\(396\) 6.16237 + 10.6735i 0.309671 + 0.536366i
\(397\) −10.6522 + 18.4501i −0.534618 + 0.925986i 0.464563 + 0.885540i \(0.346211\pi\)
−0.999182 + 0.0404462i \(0.987122\pi\)
\(398\) 50.4394 2.52830
\(399\) 0.917964 + 1.87842i 0.0459557 + 0.0940387i
\(400\) 4.42455 0.221228
\(401\) −3.70140 + 6.41101i −0.184839 + 0.320151i −0.943522 0.331309i \(-0.892510\pi\)
0.758683 + 0.651460i \(0.225843\pi\)
\(402\) 7.47714 + 12.9508i 0.372926 + 0.645927i
\(403\) 2.81511 + 4.87591i 0.140231 + 0.242886i
\(404\) −14.6058 + 25.2980i −0.726667 + 1.25862i
\(405\) 1.94349 0.0965728
\(406\) −28.8056 1.99193i −1.42960 0.0988578i
\(407\) 5.51414 0.273326
\(408\) 1.29712 2.24667i 0.0642168 0.111227i
\(409\) −13.2337 22.9214i −0.654364 1.13339i −0.982053 0.188606i \(-0.939603\pi\)
0.327689 0.944786i \(-0.393730\pi\)
\(410\) 3.01510 + 5.22231i 0.148905 + 0.257911i
\(411\) −6.52210 + 11.2966i −0.321711 + 0.557220i
\(412\) 13.7850 0.679140
\(413\) 16.0977 23.9057i 0.792118 1.17632i
\(414\) −2.04340 −0.100428
\(415\) 0.265825 0.460422i 0.0130488 0.0226012i
\(416\) −25.0544 43.3954i −1.22839 2.12764i
\(417\) −5.68369 9.84444i −0.278331 0.482084i
\(418\) 4.57397 7.92235i 0.223720 0.387495i
\(419\) −30.7294 −1.50123 −0.750614 0.660741i \(-0.770242\pi\)
−0.750614 + 0.660741i \(0.770242\pi\)
\(420\) 6.24815 9.27871i 0.304878 0.452755i
\(421\) 2.65571 0.129432 0.0647158 0.997904i \(-0.479386\pi\)
0.0647158 + 0.997904i \(0.479386\pi\)
\(422\) −10.1187 + 17.5261i −0.492570 + 0.853157i
\(423\) 0.764197 + 1.32363i 0.0371565 + 0.0643570i
\(424\) 1.60611 + 2.78187i 0.0779996 + 0.135099i
\(425\) 4.42343 7.66160i 0.214568 0.371642i
\(426\) 17.8939 0.866962
\(427\) −16.6754 1.15311i −0.806978 0.0558031i
\(428\) 34.7226 1.67838
\(429\) 17.5004 30.3116i 0.844928 1.46346i
\(430\) 5.36808 + 9.29779i 0.258872 + 0.448379i
\(431\) −10.6270 18.4066i −0.511887 0.886613i −0.999905 0.0137802i \(-0.995613\pi\)
0.488019 0.872833i \(-0.337720\pi\)
\(432\) −1.80912 + 3.13348i −0.0870412 + 0.150760i
\(433\) −16.8730 −0.810864 −0.405432 0.914125i \(-0.632879\pi\)
−0.405432 + 0.914125i \(0.632879\pi\)
\(434\) −2.16322 4.42658i −0.103838 0.212482i
\(435\) 10.3799 0.497677
\(436\) 0.0512016 0.0886838i 0.00245211 0.00424719i
\(437\) 0.395110 + 0.684350i 0.0189007 + 0.0327369i
\(438\) −0.894244 1.54888i −0.0427286 0.0740082i
\(439\) 5.54524 9.60464i 0.264660 0.458405i −0.702814 0.711373i \(-0.748074\pi\)
0.967474 + 0.252969i \(0.0814069\pi\)
\(440\) −3.94818 −0.188222
\(441\) −2.63227 6.48623i −0.125346 0.308868i
\(442\) −91.3327 −4.34425
\(443\) 6.38709 11.0628i 0.303460 0.525608i −0.673457 0.739226i \(-0.735191\pi\)
0.976917 + 0.213618i \(0.0685248\pi\)
\(444\) −1.05872 1.83376i −0.0502447 0.0870264i
\(445\) −17.1290 29.6682i −0.811990 1.40641i
\(446\) −2.26267 + 3.91906i −0.107140 + 0.185573i
\(447\) −16.2060 −0.766518
\(448\) 10.8463 + 22.1946i 0.512438 + 1.04860i
\(449\) 38.7094 1.82681 0.913405 0.407052i \(-0.133443\pi\)
0.913405 + 0.407052i \(0.133443\pi\)
\(450\) 1.24938 2.16400i 0.0588965 0.102012i
\(451\) −4.30119 7.44987i −0.202535 0.350801i
\(452\) 6.82168 + 11.8155i 0.320865 + 0.555754i
\(453\) −6.46687 + 11.2009i −0.303840 + 0.526266i
\(454\) −11.4029 −0.535162
\(455\) −31.6921 2.19154i −1.48575 0.102741i
\(456\) −0.283361 −0.0132696
\(457\) 18.1453 31.4287i 0.848803 1.47017i −0.0334733 0.999440i \(-0.510657\pi\)
0.882277 0.470731i \(-0.156010\pi\)
\(458\) −7.13003 12.3496i −0.333164 0.577057i
\(459\) 3.61732 + 6.26537i 0.168842 + 0.292443i
\(460\) 2.11402 3.66158i 0.0985665 0.170722i
\(461\) −3.70588 −0.172600 −0.0862999 0.996269i \(-0.527504\pi\)
−0.0862999 + 0.996269i \(0.527504\pi\)
\(462\) −17.1076 + 25.4053i −0.795917 + 1.18196i
\(463\) −29.9926 −1.39387 −0.696937 0.717132i \(-0.745454\pi\)
−0.696937 + 0.717132i \(0.745454\pi\)
\(464\) −9.66222 + 16.7355i −0.448557 + 0.776924i
\(465\) 0.885566 + 1.53385i 0.0410672 + 0.0711304i
\(466\) −24.9338 43.1866i −1.15504 2.00058i
\(467\) −14.0422 + 24.3219i −0.649797 + 1.12548i 0.333374 + 0.942795i \(0.391813\pi\)
−0.983171 + 0.182687i \(0.941521\pi\)
\(468\) −13.4404 −0.621283
\(469\) −10.8150 + 16.0606i −0.499389 + 0.741609i
\(470\) −6.06975 −0.279977
\(471\) −4.86721 + 8.43026i −0.224269 + 0.388446i
\(472\) 1.95306 + 3.38279i 0.0898967 + 0.155706i
\(473\) −7.65782 13.2637i −0.352107 0.609867i
\(474\) 6.09602 10.5586i 0.280000 0.484973i
\(475\) −0.966319 −0.0443377
\(476\) 41.5418 + 2.87265i 1.90407 + 0.131668i
\(477\) −8.95803 −0.410160
\(478\) −0.433363 + 0.750607i −0.0198216 + 0.0343319i
\(479\) 6.40920 + 11.1011i 0.292844 + 0.507221i 0.974481 0.224470i \(-0.0720650\pi\)
−0.681637 + 0.731690i \(0.738732\pi\)
\(480\) −7.88151 13.6512i −0.359740 0.623088i
\(481\) −3.00664 + 5.20766i −0.137091 + 0.237449i
\(482\) −33.3329 −1.51827
\(483\) −1.16166 2.37709i −0.0528572 0.108161i
\(484\) 45.8929 2.08604
\(485\) −3.00872 + 5.21126i −0.136619 + 0.236631i
\(486\) 1.02170 + 1.76964i 0.0463453 + 0.0802723i
\(487\) −4.66872 8.08646i −0.211560 0.366433i 0.740643 0.671899i \(-0.234521\pi\)
−0.952203 + 0.305466i \(0.901188\pi\)
\(488\) 1.13273 1.96194i 0.0512761 0.0888128i
\(489\) 24.0922 1.08949
\(490\) 27.5347 + 3.82639i 1.24389 + 0.172859i
\(491\) −1.98455 −0.0895616 −0.0447808 0.998997i \(-0.514259\pi\)
−0.0447808 + 0.998997i \(0.514259\pi\)
\(492\) −1.65167 + 2.86077i −0.0744628 + 0.128973i
\(493\) 19.3195 + 33.4624i 0.870108 + 1.50707i
\(494\) 4.98801 + 8.63949i 0.224421 + 0.388709i
\(495\) 5.50521 9.53531i 0.247441 0.428580i
\(496\) −3.29736 −0.148056
\(497\) 10.1725 + 20.8160i 0.456301 + 0.933724i
\(498\) 0.558981 0.0250485
\(499\) 20.4371 35.3981i 0.914890 1.58464i 0.107829 0.994169i \(-0.465610\pi\)
0.807062 0.590467i \(-0.201057\pi\)
\(500\) 13.1552 + 22.7855i 0.588318 + 1.01900i
\(501\) −6.12909 10.6159i −0.273827 0.474283i
\(502\) 16.2698 28.1801i 0.726156 1.25774i
\(503\) −2.08575 −0.0929989 −0.0464994 0.998918i \(-0.514807\pi\)
−0.0464994 + 0.998918i \(0.514807\pi\)
\(504\) 0.946468 + 0.0654490i 0.0421590 + 0.00291533i
\(505\) 26.0965 1.16128
\(506\) −5.78823 + 10.0255i −0.257318 + 0.445688i
\(507\) 12.5846 + 21.7971i 0.558901 + 0.968045i
\(508\) 13.5233 + 23.4231i 0.600000 + 1.03923i
\(509\) 8.70994 15.0861i 0.386062 0.668678i −0.605854 0.795576i \(-0.707169\pi\)
0.991916 + 0.126897i \(0.0405019\pi\)
\(510\) −28.7311 −1.27223
\(511\) 1.29344 1.92080i 0.0572183 0.0849711i
\(512\) 31.9412 1.41162
\(513\) 0.395110 0.684350i 0.0174445 0.0302148i
\(514\) 30.8114 + 53.3668i 1.35903 + 2.35391i
\(515\) −6.15749 10.6651i −0.271331 0.469960i
\(516\) −2.94062 + 5.09331i −0.129454 + 0.224220i
\(517\) 8.65879 0.380813
\(518\) 2.93915 4.36474i 0.129139 0.191776i
\(519\) 5.88796 0.258453
\(520\) 2.15279 3.72874i 0.0944060 0.163516i
\(521\) 6.62437 + 11.4737i 0.290219 + 0.502674i 0.973861 0.227143i \(-0.0729385\pi\)
−0.683642 + 0.729817i \(0.739605\pi\)
\(522\) 5.45674 + 9.45136i 0.238835 + 0.413675i
\(523\) −3.24619 + 5.62257i −0.141946 + 0.245858i −0.928229 0.372008i \(-0.878669\pi\)
0.786283 + 0.617866i \(0.212003\pi\)
\(524\) −7.20298 −0.314664
\(525\) 3.22764 + 0.223194i 0.140866 + 0.00974099i
\(526\) 30.9894 1.35120
\(527\) −3.29652 + 5.70973i −0.143599 + 0.248720i
\(528\) 10.2492 + 17.7521i 0.446038 + 0.772561i
\(529\) −0.500000 0.866025i −0.0217391 0.0376533i
\(530\) 17.7876 30.8091i 0.772646 1.33826i
\(531\) −10.8931 −0.472721
\(532\) −1.99702 4.08648i −0.0865817 0.177171i
\(533\) 9.38107 0.406339
\(534\) 18.0095 31.1934i 0.779348 1.34987i
\(535\) −15.5099 26.8639i −0.670551 1.16143i
\(536\) −1.31212 2.27267i −0.0566751 0.0981642i
\(537\) −8.48661 + 14.6992i −0.366224 + 0.634319i
\(538\) 0.962101 0.0414791
\(539\) −39.2796 5.45853i −1.69189 0.235115i
\(540\) −4.22803 −0.181946
\(541\) −8.51918 + 14.7556i −0.366268 + 0.634395i −0.988979 0.148057i \(-0.952698\pi\)
0.622711 + 0.782452i \(0.286031\pi\)
\(542\) 7.44550 + 12.8960i 0.319811 + 0.553930i
\(543\) 9.56206 + 16.5620i 0.410347 + 0.710743i
\(544\) 29.3389 50.8164i 1.25789 2.17874i
\(545\) −0.0914829 −0.00391870
\(546\) −14.6652 30.0093i −0.627612 1.28428i
\(547\) −29.4820 −1.26056 −0.630280 0.776368i \(-0.717060\pi\)
−0.630280 + 0.776368i \(0.717060\pi\)
\(548\) 14.1887 24.5756i 0.606112 1.04982i
\(549\) 3.15887 + 5.47133i 0.134817 + 0.233511i
\(550\) −7.07812 12.2597i −0.301812 0.522754i
\(551\) 2.11022 3.65501i 0.0898984 0.155709i
\(552\) 0.358585 0.0152624
\(553\) 15.7484 + 1.08901i 0.669690 + 0.0463096i
\(554\) 6.04890 0.256993
\(555\) −0.945819 + 1.63821i −0.0401478 + 0.0695380i
\(556\) 12.3648 + 21.4164i 0.524383 + 0.908259i
\(557\) 5.11579 + 8.86081i 0.216763 + 0.375445i 0.953817 0.300390i \(-0.0971167\pi\)
−0.737053 + 0.675835i \(0.763783\pi\)
\(558\) −0.931092 + 1.61270i −0.0394162 + 0.0682709i
\(559\) 16.7020 0.706421
\(560\) 10.3918 15.4322i 0.439135 0.652130i
\(561\) 40.9863 1.73044
\(562\) −7.31681 + 12.6731i −0.308641 + 0.534582i
\(563\) −11.6300 20.1437i −0.490144 0.848955i 0.509791 0.860298i \(-0.329723\pi\)
−0.999936 + 0.0113434i \(0.996389\pi\)
\(564\) −1.66250 2.87953i −0.0700038 0.121250i
\(565\) 6.09421 10.5555i 0.256385 0.444072i
\(566\) −40.8897 −1.71872
\(567\) −1.47779 + 2.19457i −0.0620614 + 0.0921632i
\(568\) −3.14010 −0.131756
\(569\) −9.82012 + 17.0089i −0.411681 + 0.713052i −0.995074 0.0991379i \(-0.968392\pi\)
0.583393 + 0.812190i \(0.301725\pi\)
\(570\) 1.56911 + 2.71778i 0.0657228 + 0.113835i
\(571\) 20.7881 + 36.0060i 0.869953 + 1.50680i 0.862043 + 0.506835i \(0.169185\pi\)
0.00791006 + 0.999969i \(0.497482\pi\)
\(572\) −38.0719 + 65.9424i −1.59187 + 2.75719i
\(573\) 20.6871 0.864215
\(574\) −8.18960 0.566317i −0.341827 0.0236376i
\(575\) 1.22285 0.0509963
\(576\) 4.66844 8.08598i 0.194518 0.336916i
\(577\) 0.708839 + 1.22774i 0.0295093 + 0.0511117i 0.880403 0.474226i \(-0.157272\pi\)
−0.850894 + 0.525338i \(0.823939\pi\)
\(578\) −36.1068 62.5387i −1.50184 2.60127i
\(579\) 1.11450 1.93038i 0.0463172 0.0802237i
\(580\) −22.5813 −0.937636
\(581\) 0.317776 + 0.650263i 0.0131836 + 0.0269774i
\(582\) −6.32678 −0.262254
\(583\) −25.3749 + 43.9507i −1.05092 + 1.82025i
\(584\) 0.156926 + 0.271804i 0.00649365 + 0.0112473i
\(585\) 6.00356 + 10.3985i 0.248216 + 0.429924i
\(586\) −6.41536 + 11.1117i −0.265016 + 0.459021i
\(587\) 28.5127 1.17685 0.588423 0.808553i \(-0.299749\pi\)
0.588423 + 0.808553i \(0.299749\pi\)
\(588\) 5.72646 + 14.1107i 0.236155 + 0.581915i
\(589\) 0.720140 0.0296728
\(590\) 21.6301 37.4644i 0.890496 1.54238i
\(591\) 9.68551 + 16.7758i 0.398409 + 0.690064i
\(592\) −1.76085 3.04988i −0.0723705 0.125349i
\(593\) 4.12693 7.14806i 0.169473 0.293536i −0.768762 0.639535i \(-0.779127\pi\)
0.938235 + 0.346000i \(0.112460\pi\)
\(594\) 11.5765 0.474988
\(595\) −16.3334 33.4229i −0.669604 1.37020i
\(596\) 35.2559 1.44414
\(597\) 12.3420 21.3770i 0.505125 0.874902i
\(598\) −6.31219 10.9330i −0.258124 0.447085i
\(599\) −12.6215 21.8611i −0.515700 0.893219i −0.999834 0.0182252i \(-0.994198\pi\)
0.484133 0.874994i \(-0.339135\pi\)
\(600\) −0.219248 + 0.379748i −0.00895075 + 0.0155032i
\(601\) 19.9481 0.813702 0.406851 0.913495i \(-0.366627\pi\)
0.406851 + 0.913495i \(0.366627\pi\)
\(602\) −14.5808 1.00827i −0.594267 0.0410940i
\(603\) 7.31833 0.298026
\(604\) 14.0686 24.3675i 0.572442 0.991499i
\(605\) −20.4994 35.5061i −0.833421 1.44353i
\(606\) 13.7190 + 23.7621i 0.557297 + 0.965268i
\(607\) −14.0308 + 24.3021i −0.569493 + 0.986392i 0.427123 + 0.904194i \(0.359527\pi\)
−0.996616 + 0.0821979i \(0.973806\pi\)
\(608\) −6.40921 −0.259928
\(609\) −7.89266 + 11.7209i −0.319827 + 0.474953i
\(610\) −25.0898 −1.01586
\(611\) −4.72130 + 8.17753i −0.191003 + 0.330827i
\(612\) −7.86941 13.6302i −0.318102 0.550969i
\(613\) 17.4932 + 30.2992i 0.706545 + 1.22377i 0.966131 + 0.258053i \(0.0830808\pi\)
−0.259585 + 0.965720i \(0.583586\pi\)
\(614\) −25.7390 + 44.5812i −1.03874 + 1.79915i
\(615\) 2.95106 0.118998
\(616\) 3.00212 4.45825i 0.120959 0.179628i
\(617\) −30.9952 −1.24782 −0.623911 0.781496i \(-0.714457\pi\)
−0.623911 + 0.781496i \(0.714457\pi\)
\(618\) 6.47403 11.2134i 0.260424 0.451067i
\(619\) −15.6072 27.0324i −0.627305 1.08652i −0.988090 0.153875i \(-0.950825\pi\)
0.360785 0.932649i \(-0.382509\pi\)
\(620\) −1.92654 3.33686i −0.0773716 0.134011i
\(621\) −0.500000 + 0.866025i −0.0200643 + 0.0347524i
\(622\) 24.3615 0.976809
\(623\) 46.5256 + 3.21728i 1.86401 + 0.128898i
\(624\) −22.3539 −0.894872
\(625\) 8.69520 15.0605i 0.347808 0.602421i
\(626\) −10.2602 17.7712i −0.410081 0.710281i
\(627\) −2.23841 3.87704i −0.0893935 0.154834i
\(628\) 10.5885 18.3399i 0.422529 0.731842i
\(629\) −7.04161 −0.280767
\(630\) −4.61332 9.44020i −0.183799 0.376107i
\(631\) 19.1609 0.762782 0.381391 0.924414i \(-0.375445\pi\)
0.381391 + 0.924414i \(0.375445\pi\)
\(632\) −1.06976 + 1.85288i −0.0425527 + 0.0737035i
\(633\) 4.95189 + 8.57693i 0.196820 + 0.340902i
\(634\) 9.05441 + 15.6827i 0.359596 + 0.622839i
\(635\) 12.0812 20.9252i 0.479427 0.830392i
\(636\) 19.4881 0.772752
\(637\) 26.5727 34.1201i 1.05285 1.35189i
\(638\) 61.8281 2.44780
\(639\) 4.37846 7.58371i 0.173209 0.300007i
\(640\) 2.77690 + 4.80973i 0.109767 + 0.190121i
\(641\) −8.07996 13.9949i −0.319139 0.552765i 0.661169 0.750237i \(-0.270060\pi\)
−0.980309 + 0.197471i \(0.936727\pi\)
\(642\) 16.3072 28.2449i 0.643594 1.11474i
\(643\) −44.7116 −1.76325 −0.881627 0.471947i \(-0.843551\pi\)
−0.881627 + 0.471947i \(0.843551\pi\)
\(644\) 2.52717 + 5.17132i 0.0995843 + 0.203779i
\(645\) 5.25407 0.206879
\(646\) −5.84100 + 10.1169i −0.229811 + 0.398045i
\(647\) −3.97538 6.88557i −0.156288 0.270700i 0.777239 0.629205i \(-0.216620\pi\)
−0.933527 + 0.358506i \(0.883286\pi\)
\(648\) −0.179293 0.310544i −0.00704328 0.0121993i
\(649\) −30.8563 + 53.4447i −1.21122 + 2.09789i
\(650\) 15.4377 0.605516
\(651\) −2.40537 0.166333i −0.0942739 0.00651912i
\(652\) −52.4123 −2.05262
\(653\) 21.3512 36.9814i 0.835537 1.44719i −0.0580551 0.998313i \(-0.518490\pi\)
0.893592 0.448880i \(-0.148177\pi\)
\(654\) −0.0480929 0.0832994i −0.00188058 0.00325726i
\(655\) 3.21742 + 5.57274i 0.125715 + 0.217745i
\(656\) −2.74703 + 4.75799i −0.107253 + 0.185768i
\(657\) −0.875251 −0.0341468
\(658\) 4.61532 6.85390i 0.179924 0.267193i
\(659\) −31.2099 −1.21577 −0.607883 0.794027i \(-0.707981\pi\)
−0.607883 + 0.794027i \(0.707981\pi\)
\(660\) −11.9765 + 20.7439i −0.466185 + 0.807456i
\(661\) −2.94999 5.10953i −0.114741 0.198738i 0.802935 0.596067i \(-0.203271\pi\)
−0.917676 + 0.397329i \(0.869937\pi\)
\(662\) 23.3961 + 40.5233i 0.909316 + 1.57498i
\(663\) −22.3482 + 38.7082i −0.867932 + 1.50330i
\(664\) −0.0980926 −0.00380673
\(665\) −2.26957 + 3.37038i −0.0880100 + 0.130698i
\(666\) −1.98888 −0.0770677
\(667\) −2.67042 + 4.62531i −0.103399 + 0.179093i
\(668\) 13.3337 + 23.0947i 0.515898 + 0.893561i
\(669\) 1.10731 + 1.91791i 0.0428109 + 0.0741507i
\(670\) −14.5317 + 25.1697i −0.561410 + 0.972391i
\(671\) 35.7919 1.38173
\(672\) 21.4077 + 1.48036i 0.825820 + 0.0571061i
\(673\) −6.61159 −0.254858 −0.127429 0.991848i \(-0.540673\pi\)
−0.127429 + 0.991848i \(0.540673\pi\)
\(674\) −12.5175 + 21.6810i −0.482158 + 0.835122i
\(675\) −0.611424 1.05902i −0.0235337 0.0407616i
\(676\) −27.3776 47.4193i −1.05298 1.82382i
\(677\) −1.85836 + 3.21878i −0.0714227 + 0.123708i −0.899525 0.436869i \(-0.856087\pi\)
0.828102 + 0.560577i \(0.189421\pi\)
\(678\) 12.8150 0.492157
\(679\) −3.59673 7.35995i −0.138030 0.282449i
\(680\) 5.04187 0.193347
\(681\) −2.79017 + 4.83271i −0.106919 + 0.185190i
\(682\) 5.27490 + 9.13640i 0.201986 + 0.349851i
\(683\) −14.7835 25.6057i −0.565674 0.979775i −0.996987 0.0775731i \(-0.975283\pi\)
0.431313 0.902202i \(-0.358050\pi\)
\(684\) −0.859555 + 1.48879i −0.0328659 + 0.0569254i
\(685\) −25.3513 −0.968622
\(686\) −25.2576 + 28.1824i −0.964338 + 1.07601i
\(687\) −6.97859 −0.266250
\(688\) −4.89080 + 8.47112i −0.186460 + 0.322958i
\(689\) −27.6719 47.9291i −1.05422 1.82596i
\(690\) −1.98566 3.43927i −0.0755929 0.130931i
\(691\) −0.301946 + 0.522985i −0.0114866 + 0.0198953i −0.871712 0.490019i \(-0.836990\pi\)
0.860225 + 0.509915i \(0.170323\pi\)
\(692\) −12.8092 −0.486931
\(693\) 6.58112 + 13.4669i 0.249996 + 0.511565i
\(694\) −13.1969 −0.500949
\(695\) 11.0462 19.1326i 0.419006 0.725740i
\(696\) −0.957575 1.65857i −0.0362968 0.0628679i
\(697\) 5.49266 + 9.51356i 0.208049 + 0.360352i
\(698\) −20.9496 + 36.2858i −0.792955 + 1.37344i
\(699\) −24.4042 −0.923053
\(700\) −7.02169 0.485556i −0.265395 0.0183523i
\(701\) 8.15835 0.308136 0.154068 0.988060i \(-0.450762\pi\)
0.154068 + 0.988060i \(0.450762\pi\)
\(702\) −6.31219 + 10.9330i −0.238238 + 0.412640i
\(703\) 0.384568 + 0.666092i 0.0145043 + 0.0251221i
\(704\) −26.4481 45.8094i −0.996799 1.72651i
\(705\) −1.48521 + 2.57246i −0.0559362 + 0.0968843i
\(706\) 29.6523 1.11598
\(707\) −19.8433 + 29.4679i −0.746282 + 1.10825i
\(708\) 23.6978 0.890618
\(709\) 12.1135 20.9812i 0.454932 0.787965i −0.543753 0.839246i \(-0.682997\pi\)
0.998684 + 0.0512807i \(0.0163303\pi\)
\(710\) 17.3883 + 30.1174i 0.652571 + 1.13029i
\(711\) −2.98327 5.16718i −0.111881 0.193784i
\(712\) −3.16039 + 5.47396i −0.118441 + 0.205145i
\(713\) −0.911316 −0.0341290
\(714\) 21.8465 32.4429i 0.817586 1.21414i
\(715\) 68.0238 2.54394
\(716\) 18.4625 31.9780i 0.689976 1.19507i
\(717\) 0.212079 + 0.367332i 0.00792025 + 0.0137183i
\(718\) −4.77931 8.27800i −0.178362 0.308932i
\(719\) −1.29252 + 2.23871i −0.0482029 + 0.0834899i −0.889120 0.457674i \(-0.848683\pi\)
0.840917 + 0.541164i \(0.182016\pi\)
\(720\) −7.03200 −0.262067
\(721\) 16.7249 + 1.15654i 0.622870 + 0.0430719i
\(722\) −37.5486 −1.39741
\(723\) −8.15623 + 14.1270i −0.303333 + 0.525389i
\(724\) −20.8021 36.0303i −0.773105 1.33906i
\(725\) −3.26552 5.65605i −0.121278 0.210060i
\(726\) 21.5533 37.3314i 0.799917 1.38550i
\(727\) −1.39574 −0.0517650 −0.0258825 0.999665i \(-0.508240\pi\)
−0.0258825 + 0.999665i \(0.508240\pi\)
\(728\) 2.57352 + 5.26617i 0.0953809 + 0.195177i
\(729\) 1.00000 0.0370370
\(730\) 1.73795 3.01022i 0.0643246 0.111413i
\(731\) 9.77912 + 16.9379i 0.361694 + 0.626472i
\(732\) −6.87208 11.9028i −0.253999 0.439940i
\(733\) −10.2450 + 17.7449i −0.378408 + 0.655421i −0.990831 0.135109i \(-0.956862\pi\)
0.612423 + 0.790530i \(0.290195\pi\)
\(734\) −57.3500 −2.11683
\(735\) 8.35915 10.7334i 0.308332 0.395906i
\(736\) 8.11067 0.298963
\(737\) 20.7302 35.9058i 0.763608 1.32261i
\(738\) 1.55138 + 2.68708i 0.0571073 + 0.0989127i
\(739\) 23.7408 + 41.1203i 0.873320 + 1.51263i 0.858542 + 0.512743i \(0.171371\pi\)
0.0147776 + 0.999891i \(0.495296\pi\)
\(740\) 2.05761 3.56389i 0.0756394 0.131011i
\(741\) 4.88207 0.179347
\(742\) 21.2640 + 43.5123i 0.780625 + 1.59739i
\(743\) −41.4450 −1.52047 −0.760235 0.649648i \(-0.774916\pi\)
−0.760235 + 0.649648i \(0.774916\pi\)
\(744\) 0.163392 0.283004i 0.00599025 0.0103754i
\(745\) −15.7481 27.2765i −0.576966 0.999334i
\(746\) −14.9478 25.8903i −0.547276 0.947910i
\(747\) 0.136777 0.236905i 0.00500441 0.00866790i
\(748\) −89.1650 −3.26020
\(749\) 42.1279 + 2.91318i 1.53932 + 0.106445i
\(750\) 24.7130 0.902390
\(751\) −5.79428 + 10.0360i −0.211436 + 0.366218i −0.952164 0.305587i \(-0.901147\pi\)
0.740728 + 0.671805i \(0.234481\pi\)
\(752\) −2.76504 4.78920i −0.100831 0.174644i
\(753\) −7.96212 13.7908i −0.290156 0.502564i
\(754\) −33.7124 + 58.3916i −1.22773 + 2.12650i
\(755\) −25.1366 −0.914814
\(756\) 3.21491 4.77425i 0.116925 0.173638i
\(757\) −11.3101 −0.411073 −0.205536 0.978649i \(-0.565894\pi\)
−0.205536 + 0.978649i \(0.565894\pi\)
\(758\) 2.49672 4.32445i 0.0906850 0.157071i
\(759\) 2.83264 + 4.90628i 0.102818 + 0.178087i
\(760\) −0.275355 0.476929i −0.00998817 0.0173000i
\(761\) 10.9129 18.9016i 0.395591 0.685184i −0.597585 0.801805i \(-0.703873\pi\)
0.993176 + 0.116621i \(0.0372063\pi\)
\(762\) 25.4045 0.920308
\(763\) 0.0695618 0.103302i 0.00251831 0.00373977i
\(764\) −45.0044 −1.62820
\(765\) −7.03021 + 12.1767i −0.254178 + 0.440249i
\(766\) −31.4471 54.4679i −1.13623 1.96801i
\(767\) −33.6495 58.2826i −1.21501 2.10446i
\(768\) 6.41723 11.1150i 0.231562 0.401077i
\(769\) −24.1550 −0.871052 −0.435526 0.900176i \(-0.643438\pi\)
−0.435526 + 0.900176i \(0.643438\pi\)
\(770\) −59.3842 4.10646i −2.14006 0.147987i
\(771\) 30.1569 1.08608
\(772\) −2.42459 + 4.19951i −0.0872627 + 0.151144i
\(773\) −7.36948 12.7643i −0.265062 0.459101i 0.702518 0.711666i \(-0.252059\pi\)
−0.967580 + 0.252565i \(0.918726\pi\)
\(774\) 2.76208 + 4.78407i 0.0992810 + 0.171960i
\(775\) 0.557201 0.965100i 0.0200152 0.0346674i
\(776\) 1.11025 0.0398558
\(777\) −1.13066 2.31367i −0.0405624 0.0830024i