Properties

Label 483.2.i.f.277.5
Level $483$
Weight $2$
Character 483.277
Analytic conductor $3.857$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} + 8 x^{10} - 3 x^{9} + 42 x^{8} - 15 x^{7} + 101 x^{6} + 6 x^{5} + 150 x^{4} - 28 x^{3} + 40 x^{2} + 8 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 277.5
Root \(0.916322 - 1.58712i\) of defining polynomial
Character \(\chi\) \(=\) 483.277
Dual form 483.2.i.f.415.5

$q$-expansion

\(f(q)\) \(=\) \(q+(0.916322 + 1.58712i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-0.679293 + 1.17657i) q^{4} +(0.471745 + 0.817086i) q^{5} +1.83264 q^{6} +(-1.16166 + 2.37709i) q^{7} +1.17548 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(0.916322 + 1.58712i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-0.679293 + 1.17657i) q^{4} +(0.471745 + 0.817086i) q^{5} +1.83264 q^{6} +(-1.16166 + 2.37709i) q^{7} +1.17548 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-0.864540 + 1.49743i) q^{10} +(-1.04340 + 1.80722i) q^{11} +(0.679293 + 1.17657i) q^{12} +3.64405 q^{13} +(-4.83717 + 0.334494i) q^{14} +0.943490 q^{15} +(2.43571 + 4.21877i) q^{16} +(-0.149720 + 0.259323i) q^{17} +(0.916322 - 1.58712i) q^{18} +(0.289732 + 0.501830i) q^{19} -1.28181 q^{20} +(1.47779 + 2.19457i) q^{21} -3.82436 q^{22} +(0.500000 + 0.866025i) q^{23} +(0.587742 - 1.01800i) q^{24} +(2.05491 - 3.55921i) q^{25} +(3.33912 + 5.78353i) q^{26} -1.00000 q^{27} +(-2.00771 - 2.98151i) q^{28} -5.89363 q^{29} +(0.864540 + 1.49743i) q^{30} +(3.01194 - 5.21683i) q^{31} +(-3.28830 + 5.69551i) q^{32} +(1.04340 + 1.80722i) q^{33} -0.548767 q^{34} +(-2.49029 + 0.172206i) q^{35} +1.35859 q^{36} +(0.618718 + 1.07165i) q^{37} +(-0.530975 + 0.919676i) q^{38} +(1.82202 - 3.15584i) q^{39} +(0.554529 + 0.960472i) q^{40} +8.42024 q^{41} +(-2.12890 + 4.35636i) q^{42} -9.08583 q^{43} +(-1.41755 - 2.45527i) q^{44} +(0.471745 - 0.817086i) q^{45} +(-0.916322 + 1.58712i) q^{46} +(-2.53123 - 4.38422i) q^{47} +4.87142 q^{48} +(-4.30111 - 5.52273i) q^{49} +7.53185 q^{50} +(0.149720 + 0.259323i) q^{51} +(-2.47538 + 4.28748i) q^{52} +(-1.16288 + 2.01417i) q^{53} +(-0.916322 - 1.58712i) q^{54} -1.96887 q^{55} +(-1.36551 + 2.79423i) q^{56} +0.579464 q^{57} +(-5.40047 - 9.35388i) q^{58} +(-1.04007 + 1.80146i) q^{59} +(-0.640906 + 1.11008i) q^{60} +(-6.22701 - 10.7855i) q^{61} +11.0396 q^{62} +(2.63945 - 0.182520i) q^{63} -2.30974 q^{64} +(1.71906 + 2.97750i) q^{65} +(-1.91218 + 3.31200i) q^{66} +(2.06882 - 3.58330i) q^{67} +(-0.203407 - 0.352312i) q^{68} +1.00000 q^{69} +(-2.55522 - 3.79459i) q^{70} -11.6439 q^{71} +(-0.587742 - 1.01800i) q^{72} +(5.78499 - 10.0199i) q^{73} +(-1.13389 + 1.96395i) q^{74} +(-2.05491 - 3.55921i) q^{75} -0.787251 q^{76} +(-3.08386 - 4.57963i) q^{77} +6.67825 q^{78} +(-8.57920 - 14.8596i) q^{79} +(-2.29807 + 3.98037i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(7.71565 + 13.3639i) q^{82} +10.9740 q^{83} +(-3.58592 + 0.247969i) q^{84} -0.282519 q^{85} +(-8.32554 - 14.4203i) q^{86} +(-2.94682 + 5.10403i) q^{87} +(-1.22650 + 2.12436i) q^{88} +(-1.33781 - 2.31715i) q^{89} +1.72908 q^{90} +(-4.23314 + 8.66223i) q^{91} -1.35859 q^{92} +(-3.01194 - 5.21683i) q^{93} +(4.63885 - 8.03472i) q^{94} +(-0.273359 + 0.473472i) q^{95} +(3.28830 + 5.69551i) q^{96} +0.589843 q^{97} +(4.82401 - 11.8870i) q^{98} +2.08680 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + q^{2} + 6q^{3} - 3q^{4} - 3q^{5} + 2q^{6} - 2q^{7} - 6q^{8} - 6q^{9} + O(q^{10}) \) \( 12q + q^{2} + 6q^{3} - 3q^{4} - 3q^{5} + 2q^{6} - 2q^{7} - 6q^{8} - 6q^{9} + 3q^{10} + 14q^{11} + 3q^{12} - q^{14} - 6q^{15} + 7q^{16} - 15q^{17} + q^{18} + q^{19} + 34q^{20} - 4q^{21} - 12q^{22} + 6q^{23} - 3q^{24} - 9q^{25} + 15q^{26} - 12q^{27} - 2q^{28} - 12q^{29} - 3q^{30} + 11q^{31} - 3q^{32} - 14q^{33} + 30q^{34} - q^{35} + 6q^{36} + 5q^{37} - 14q^{38} + 17q^{40} + 36q^{41} - 17q^{42} - 74q^{43} + 10q^{44} - 3q^{45} - q^{46} - 3q^{47} + 14q^{48} - 6q^{49} - 60q^{50} + 15q^{51} + 7q^{52} + 15q^{53} - q^{54} - 4q^{55} - 21q^{56} + 2q^{57} - 4q^{58} + 2q^{59} + 17q^{60} + 12q^{61} + 72q^{62} - 2q^{63} - 46q^{64} + 17q^{65} - 6q^{66} + 10q^{67} + q^{68} + 12q^{69} - 56q^{70} - 42q^{71} + 3q^{72} + 8q^{73} + 16q^{74} + 9q^{75} + 36q^{76} - 40q^{77} + 30q^{78} + 17q^{79} - 3q^{80} - 6q^{81} + 48q^{82} + 24q^{83} - 25q^{84} - 26q^{85} - 22q^{86} - 6q^{87} + 2q^{88} - 18q^{89} - 6q^{90} + 22q^{91} - 6q^{92} - 11q^{93} - 3q^{94} + 16q^{95} + 3q^{96} - 4q^{97} - 62q^{98} - 28q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.916322 + 1.58712i 0.647938 + 1.12226i 0.983615 + 0.180284i \(0.0577016\pi\)
−0.335677 + 0.941977i \(0.608965\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) −0.679293 + 1.17657i −0.339646 + 0.588285i
\(5\) 0.471745 + 0.817086i 0.210971 + 0.365412i 0.952019 0.306040i \(-0.0990042\pi\)
−0.741048 + 0.671452i \(0.765671\pi\)
\(6\) 1.83264 0.748174
\(7\) −1.16166 + 2.37709i −0.439065 + 0.898455i
\(8\) 1.17548 0.415597
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −0.864540 + 1.49743i −0.273392 + 0.473528i
\(11\) −1.04340 + 1.80722i −0.314597 + 0.544898i −0.979352 0.202164i \(-0.935203\pi\)
0.664755 + 0.747062i \(0.268536\pi\)
\(12\) 0.679293 + 1.17657i 0.196095 + 0.339646i
\(13\) 3.64405 1.01068 0.505339 0.862921i \(-0.331368\pi\)
0.505339 + 0.862921i \(0.331368\pi\)
\(14\) −4.83717 + 0.334494i −1.29279 + 0.0893973i
\(15\) 0.943490 0.243608
\(16\) 2.43571 + 4.21877i 0.608927 + 1.05469i
\(17\) −0.149720 + 0.259323i −0.0363124 + 0.0628950i −0.883610 0.468223i \(-0.844894\pi\)
0.847298 + 0.531118i \(0.178228\pi\)
\(18\) 0.916322 1.58712i 0.215979 0.374087i
\(19\) 0.289732 + 0.501830i 0.0664690 + 0.115128i 0.897345 0.441330i \(-0.145493\pi\)
−0.830876 + 0.556458i \(0.812160\pi\)
\(20\) −1.28181 −0.286622
\(21\) 1.47779 + 2.19457i 0.322480 + 0.478894i
\(22\) −3.82436 −0.815357
\(23\) 0.500000 + 0.866025i 0.104257 + 0.180579i
\(24\) 0.587742 1.01800i 0.119972 0.207798i
\(25\) 2.05491 3.55921i 0.410983 0.711843i
\(26\) 3.33912 + 5.78353i 0.654856 + 1.13424i
\(27\) −1.00000 −0.192450
\(28\) −2.00771 2.98151i −0.379421 0.563452i
\(29\) −5.89363 −1.09442 −0.547210 0.836995i \(-0.684310\pi\)
−0.547210 + 0.836995i \(0.684310\pi\)
\(30\) 0.864540 + 1.49743i 0.157843 + 0.273392i
\(31\) 3.01194 5.21683i 0.540960 0.936970i −0.457889 0.889009i \(-0.651394\pi\)
0.998849 0.0479608i \(-0.0152723\pi\)
\(32\) −3.28830 + 5.69551i −0.581295 + 1.00683i
\(33\) 1.04340 + 1.80722i 0.181633 + 0.314597i
\(34\) −0.548767 −0.0941128
\(35\) −2.49029 + 0.172206i −0.420936 + 0.0291081i
\(36\) 1.35859 0.226431
\(37\) 0.618718 + 1.07165i 0.101717 + 0.176178i 0.912392 0.409318i \(-0.134233\pi\)
−0.810675 + 0.585496i \(0.800900\pi\)
\(38\) −0.530975 + 0.919676i −0.0861356 + 0.149191i
\(39\) 1.82202 3.15584i 0.291757 0.505339i
\(40\) 0.554529 + 0.960472i 0.0876787 + 0.151864i
\(41\) 8.42024 1.31502 0.657510 0.753446i \(-0.271610\pi\)
0.657510 + 0.753446i \(0.271610\pi\)
\(42\) −2.12890 + 4.35636i −0.328497 + 0.672201i
\(43\) −9.08583 −1.38558 −0.692788 0.721142i \(-0.743618\pi\)
−0.692788 + 0.721142i \(0.743618\pi\)
\(44\) −1.41755 2.45527i −0.213703 0.370145i
\(45\) 0.471745 0.817086i 0.0703236 0.121804i
\(46\) −0.916322 + 1.58712i −0.135104 + 0.234008i
\(47\) −2.53123 4.38422i −0.369218 0.639505i 0.620225 0.784424i \(-0.287041\pi\)
−0.989444 + 0.144919i \(0.953708\pi\)
\(48\) 4.87142 0.703128
\(49\) −4.30111 5.52273i −0.614444 0.788961i
\(50\) 7.53185 1.06516
\(51\) 0.149720 + 0.259323i 0.0209650 + 0.0363124i
\(52\) −2.47538 + 4.28748i −0.343273 + 0.594566i
\(53\) −1.16288 + 2.01417i −0.159734 + 0.276668i −0.934773 0.355246i \(-0.884397\pi\)
0.775039 + 0.631914i \(0.217730\pi\)
\(54\) −0.916322 1.58712i −0.124696 0.215979i
\(55\) −1.96887 −0.265483
\(56\) −1.36551 + 2.79423i −0.182474 + 0.373395i
\(57\) 0.579464 0.0767518
\(58\) −5.40047 9.35388i −0.709116 1.22822i
\(59\) −1.04007 + 1.80146i −0.135406 + 0.234530i −0.925753 0.378130i \(-0.876567\pi\)
0.790346 + 0.612660i \(0.209901\pi\)
\(60\) −0.640906 + 1.11008i −0.0827406 + 0.143311i
\(61\) −6.22701 10.7855i −0.797287 1.38094i −0.921376 0.388671i \(-0.872934\pi\)
0.124089 0.992271i \(-0.460399\pi\)
\(62\) 11.0396 1.40203
\(63\) 2.63945 0.182520i 0.332539 0.0229954i
\(64\) −2.30974 −0.288718
\(65\) 1.71906 + 2.97750i 0.213223 + 0.369314i
\(66\) −1.91218 + 3.31200i −0.235373 + 0.407679i
\(67\) 2.06882 3.58330i 0.252746 0.437769i −0.711535 0.702651i \(-0.752000\pi\)
0.964281 + 0.264882i \(0.0853329\pi\)
\(68\) −0.203407 0.352312i −0.0246668 0.0427241i
\(69\) 1.00000 0.120386
\(70\) −2.55522 3.79459i −0.305407 0.453540i
\(71\) −11.6439 −1.38188 −0.690938 0.722914i \(-0.742802\pi\)
−0.690938 + 0.722914i \(0.742802\pi\)
\(72\) −0.587742 1.01800i −0.0692661 0.119972i
\(73\) 5.78499 10.0199i 0.677082 1.17274i −0.298774 0.954324i \(-0.596578\pi\)
0.975856 0.218416i \(-0.0700891\pi\)
\(74\) −1.13389 + 1.96395i −0.131812 + 0.228305i
\(75\) −2.05491 3.55921i −0.237281 0.410983i
\(76\) −0.787251 −0.0903039
\(77\) −3.08386 4.57963i −0.351438 0.521897i
\(78\) 6.67825 0.756163
\(79\) −8.57920 14.8596i −0.965235 1.67184i −0.708981 0.705227i \(-0.750845\pi\)
−0.256254 0.966609i \(-0.582488\pi\)
\(80\) −2.29807 + 3.98037i −0.256932 + 0.445018i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 7.71565 + 13.3639i 0.852051 + 1.47580i
\(83\) 10.9740 1.20455 0.602274 0.798289i \(-0.294261\pi\)
0.602274 + 0.798289i \(0.294261\pi\)
\(84\) −3.58592 + 0.247969i −0.391256 + 0.0270556i
\(85\) −0.282519 −0.0306434
\(86\) −8.32554 14.4203i −0.897766 1.55498i
\(87\) −2.94682 + 5.10403i −0.315932 + 0.547210i
\(88\) −1.22650 + 2.12436i −0.130745 + 0.226458i
\(89\) −1.33781 2.31715i −0.141807 0.245617i 0.786370 0.617756i \(-0.211958\pi\)
−0.928177 + 0.372139i \(0.878625\pi\)
\(90\) 1.72908 0.182261
\(91\) −4.23314 + 8.66223i −0.443753 + 0.908048i
\(92\) −1.35859 −0.141642
\(93\) −3.01194 5.21683i −0.312323 0.540960i
\(94\) 4.63885 8.03472i 0.478461 0.828718i
\(95\) −0.273359 + 0.473472i −0.0280460 + 0.0485772i
\(96\) 3.28830 + 5.69551i 0.335611 + 0.581295i
\(97\) 0.589843 0.0598895 0.0299447 0.999552i \(-0.490467\pi\)
0.0299447 + 0.999552i \(0.490467\pi\)
\(98\) 4.82401 11.8870i 0.487299 1.20076i
\(99\) 2.08680 0.209731
\(100\) 2.79178 + 4.83550i 0.279178 + 0.483550i
\(101\) −3.11417 + 5.39390i −0.309872 + 0.536713i −0.978334 0.207033i \(-0.933619\pi\)
0.668462 + 0.743746i \(0.266953\pi\)
\(102\) −0.274384 + 0.475246i −0.0271680 + 0.0470564i
\(103\) 9.32274 + 16.1475i 0.918597 + 1.59106i 0.801548 + 0.597931i \(0.204010\pi\)
0.117049 + 0.993126i \(0.462656\pi\)
\(104\) 4.28352 0.420034
\(105\) −1.09601 + 2.24276i −0.106960 + 0.218871i
\(106\) −4.26230 −0.413992
\(107\) 0.324442 + 0.561949i 0.0313650 + 0.0543257i 0.881282 0.472591i \(-0.156681\pi\)
−0.849917 + 0.526917i \(0.823348\pi\)
\(108\) 0.679293 1.17657i 0.0653650 0.113215i
\(109\) 6.82667 11.8241i 0.653876 1.13255i −0.328298 0.944574i \(-0.606475\pi\)
0.982174 0.187973i \(-0.0601916\pi\)
\(110\) −1.80412 3.12483i −0.172016 0.297941i
\(111\) 1.23744 0.117452
\(112\) −12.8579 + 0.889131i −1.21495 + 0.0840150i
\(113\) 0.547279 0.0514836 0.0257418 0.999669i \(-0.491805\pi\)
0.0257418 + 0.999669i \(0.491805\pi\)
\(114\) 0.530975 + 0.919676i 0.0497304 + 0.0861356i
\(115\) −0.471745 + 0.817086i −0.0439904 + 0.0761937i
\(116\) 4.00350 6.93427i 0.371716 0.643831i
\(117\) −1.82202 3.15584i −0.168446 0.291757i
\(118\) −3.81217 −0.350939
\(119\) −0.442510 0.657142i −0.0405648 0.0602401i
\(120\) 1.10906 0.101243
\(121\) 3.32263 + 5.75497i 0.302057 + 0.523179i
\(122\) 11.4119 19.7660i 1.03319 1.78953i
\(123\) 4.21012 7.29214i 0.379614 0.657510i
\(124\) 4.09197 + 7.08751i 0.367470 + 0.636477i
\(125\) 8.59503 0.768763
\(126\) 2.70827 + 4.02186i 0.241271 + 0.358296i
\(127\) −1.01278 −0.0898693 −0.0449347 0.998990i \(-0.514308\pi\)
−0.0449347 + 0.998990i \(0.514308\pi\)
\(128\) 4.46013 + 7.72518i 0.394224 + 0.682816i
\(129\) −4.54291 + 7.86856i −0.399981 + 0.692788i
\(130\) −3.15043 + 5.45670i −0.276311 + 0.478584i
\(131\) 7.51553 + 13.0173i 0.656635 + 1.13733i 0.981481 + 0.191558i \(0.0613541\pi\)
−0.324846 + 0.945767i \(0.605313\pi\)
\(132\) −2.83510 −0.246764
\(133\) −1.52946 + 0.105764i −0.132621 + 0.00917087i
\(134\) 7.58281 0.655055
\(135\) −0.471745 0.817086i −0.0406013 0.0703236i
\(136\) −0.175994 + 0.304830i −0.0150913 + 0.0261389i
\(137\) −4.63934 + 8.03557i −0.396365 + 0.686525i −0.993274 0.115784i \(-0.963062\pi\)
0.596909 + 0.802309i \(0.296395\pi\)
\(138\) 0.916322 + 1.58712i 0.0780025 + 0.135104i
\(139\) 6.58750 0.558744 0.279372 0.960183i \(-0.409874\pi\)
0.279372 + 0.960183i \(0.409874\pi\)
\(140\) 1.48903 3.04698i 0.125846 0.257517i
\(141\) −5.06246 −0.426336
\(142\) −10.6696 18.4802i −0.895370 1.55083i
\(143\) −3.80220 + 6.58561i −0.317956 + 0.550716i
\(144\) 2.43571 4.21877i 0.202976 0.351564i
\(145\) −2.78029 4.81560i −0.230890 0.399914i
\(146\) 21.2037 1.75483
\(147\) −6.93337 + 0.963504i −0.571855 + 0.0794685i
\(148\) −1.68116 −0.138191
\(149\) 2.94451 + 5.10005i 0.241224 + 0.417812i 0.961063 0.276329i \(-0.0891178\pi\)
−0.719839 + 0.694141i \(0.755784\pi\)
\(150\) 3.76593 6.52278i 0.307487 0.532582i
\(151\) −6.57693 + 11.3916i −0.535223 + 0.927033i 0.463930 + 0.885872i \(0.346439\pi\)
−0.999153 + 0.0411608i \(0.986894\pi\)
\(152\) 0.340575 + 0.589894i 0.0276243 + 0.0478467i
\(153\) 0.299440 0.0242083
\(154\) 4.44260 9.09085i 0.357995 0.732562i
\(155\) 5.68346 0.456507
\(156\) 2.47538 + 4.28748i 0.198189 + 0.343273i
\(157\) 4.21279 7.29677i 0.336217 0.582345i −0.647501 0.762065i \(-0.724186\pi\)
0.983718 + 0.179720i \(0.0575190\pi\)
\(158\) 15.7226 27.2324i 1.25082 2.16649i
\(159\) 1.16288 + 2.01417i 0.0922227 + 0.159734i
\(160\) −6.20496 −0.490545
\(161\) −2.63945 + 0.182520i −0.208018 + 0.0143846i
\(162\) −1.83264 −0.143986
\(163\) −2.07868 3.60038i −0.162815 0.282004i 0.773062 0.634330i \(-0.218724\pi\)
−0.935877 + 0.352326i \(0.885391\pi\)
\(164\) −5.71981 + 9.90699i −0.446642 + 0.773606i
\(165\) −0.984437 + 1.70510i −0.0766383 + 0.132741i
\(166\) 10.0557 + 17.4170i 0.780473 + 1.35182i
\(167\) −3.04445 −0.235587 −0.117793 0.993038i \(-0.537582\pi\)
−0.117793 + 0.993038i \(0.537582\pi\)
\(168\) 1.73712 + 2.57968i 0.134022 + 0.199027i
\(169\) 0.279097 0.0214690
\(170\) −0.258878 0.448390i −0.0198550 0.0343899i
\(171\) 0.289732 0.501830i 0.0221563 0.0383759i
\(172\) 6.17194 10.6901i 0.470606 0.815113i
\(173\) −8.02715 13.9034i −0.610293 1.05706i −0.991191 0.132441i \(-0.957719\pi\)
0.380898 0.924617i \(-0.375615\pi\)
\(174\) −10.8009 −0.818816
\(175\) 6.07347 + 9.01930i 0.459111 + 0.681795i
\(176\) −10.1657 −0.766267
\(177\) 1.04007 + 1.80146i 0.0781768 + 0.135406i
\(178\) 2.45172 4.24651i 0.183764 0.318289i
\(179\) 2.67255 4.62898i 0.199755 0.345987i −0.748694 0.662916i \(-0.769319\pi\)
0.948449 + 0.316930i \(0.102652\pi\)
\(180\) 0.640906 + 1.11008i 0.0477703 + 0.0827406i
\(181\) −11.6201 −0.863716 −0.431858 0.901942i \(-0.642142\pi\)
−0.431858 + 0.901942i \(0.642142\pi\)
\(182\) −17.6269 + 1.21891i −1.30659 + 0.0903519i
\(183\) −12.4540 −0.920628
\(184\) 0.587742 + 1.01800i 0.0433289 + 0.0750479i
\(185\) −0.583754 + 1.01109i −0.0429184 + 0.0743369i
\(186\) 5.51981 9.56059i 0.404732 0.701017i
\(187\) −0.312436 0.541155i −0.0228476 0.0395732i
\(188\) 6.87779 0.501614
\(189\) 1.16166 2.37709i 0.0844981 0.172908i
\(190\) −1.00194 −0.0726883
\(191\) 8.53757 + 14.7875i 0.617757 + 1.06999i 0.989894 + 0.141809i \(0.0452918\pi\)
−0.372137 + 0.928178i \(0.621375\pi\)
\(192\) −1.15487 + 2.00030i −0.0833457 + 0.144359i
\(193\) 2.32526 4.02747i 0.167376 0.289903i −0.770121 0.637898i \(-0.779804\pi\)
0.937496 + 0.347995i \(0.113137\pi\)
\(194\) 0.540486 + 0.936149i 0.0388046 + 0.0672116i
\(195\) 3.43812 0.246209
\(196\) 9.41958 1.30900i 0.672827 0.0935002i
\(197\) 0.254912 0.0181618 0.00908088 0.999959i \(-0.497109\pi\)
0.00908088 + 0.999959i \(0.497109\pi\)
\(198\) 1.91218 + 3.31200i 0.135893 + 0.235373i
\(199\) −2.73799 + 4.74233i −0.194091 + 0.336175i −0.946602 0.322404i \(-0.895509\pi\)
0.752511 + 0.658579i \(0.228842\pi\)
\(200\) 2.41552 4.18380i 0.170803 0.295840i
\(201\) −2.06882 3.58330i −0.145923 0.252746i
\(202\) −11.4143 −0.803110
\(203\) 6.84638 14.0097i 0.480522 0.983287i
\(204\) −0.406815 −0.0284827
\(205\) 3.97220 + 6.88006i 0.277431 + 0.480524i
\(206\) −17.0853 + 29.5926i −1.19039 + 2.06181i
\(207\) 0.500000 0.866025i 0.0347524 0.0601929i
\(208\) 8.87584 + 15.3734i 0.615429 + 1.06595i
\(209\) −1.20923 −0.0836438
\(210\) −4.56382 + 0.315592i −0.314933 + 0.0217779i
\(211\) −3.18599 −0.219332 −0.109666 0.993968i \(-0.534978\pi\)
−0.109666 + 0.993968i \(0.534978\pi\)
\(212\) −1.57988 2.73643i −0.108506 0.187939i
\(213\) −5.82195 + 10.0839i −0.398913 + 0.690938i
\(214\) −0.594586 + 1.02985i −0.0406451 + 0.0703993i
\(215\) −4.28619 7.42390i −0.292316 0.506306i
\(216\) −1.17548 −0.0799816
\(217\) 8.90203 + 13.2198i 0.604309 + 0.897419i
\(218\) 25.0217 1.69468
\(219\) −5.78499 10.0199i −0.390914 0.677082i
\(220\) 1.33744 2.31652i 0.0901703 0.156180i
\(221\) −0.545587 + 0.944985i −0.0367002 + 0.0635665i
\(222\) 1.13389 + 1.96395i 0.0761017 + 0.131812i
\(223\) −22.7674 −1.52462 −0.762309 0.647213i \(-0.775934\pi\)
−0.762309 + 0.647213i \(0.775934\pi\)
\(224\) −9.71885 14.4328i −0.649368 0.964333i
\(225\) −4.10983 −0.273988
\(226\) 0.501484 + 0.868595i 0.0333582 + 0.0577781i
\(227\) −5.22604 + 9.05176i −0.346864 + 0.600787i −0.985691 0.168564i \(-0.946087\pi\)
0.638826 + 0.769351i \(0.279420\pi\)
\(228\) −0.393625 + 0.681779i −0.0260685 + 0.0451519i
\(229\) 5.38392 + 9.32522i 0.355779 + 0.616228i 0.987251 0.159171i \(-0.0508822\pi\)
−0.631472 + 0.775399i \(0.717549\pi\)
\(230\) −1.72908 −0.114012
\(231\) −5.50800 + 0.380883i −0.362400 + 0.0250602i
\(232\) −6.92787 −0.454837
\(233\) −5.87538 10.1765i −0.384909 0.666682i 0.606848 0.794818i \(-0.292434\pi\)
−0.991757 + 0.128136i \(0.959100\pi\)
\(234\) 3.33912 5.78353i 0.218285 0.378081i
\(235\) 2.38819 4.13647i 0.155788 0.269833i
\(236\) −1.41303 2.44744i −0.0919804 0.159315i
\(237\) −17.1584 −1.11456
\(238\) 0.637479 1.30447i 0.0413216 0.0845561i
\(239\) −12.5491 −0.811734 −0.405867 0.913932i \(-0.633030\pi\)
−0.405867 + 0.913932i \(0.633030\pi\)
\(240\) 2.29807 + 3.98037i 0.148339 + 0.256932i
\(241\) 5.31523 9.20624i 0.342384 0.593026i −0.642491 0.766293i \(-0.722099\pi\)
0.984875 + 0.173267i \(0.0554324\pi\)
\(242\) −6.08920 + 10.5468i −0.391429 + 0.677974i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 16.9199 1.08318
\(245\) 2.48352 6.11969i 0.158666 0.390973i
\(246\) 15.4313 0.983864
\(247\) 1.05580 + 1.82869i 0.0671788 + 0.116357i
\(248\) 3.54049 6.13230i 0.224821 0.389402i
\(249\) 5.48698 9.50373i 0.347723 0.602274i
\(250\) 7.87581 + 13.6413i 0.498110 + 0.862752i
\(251\) −17.4415 −1.10090 −0.550450 0.834868i \(-0.685544\pi\)
−0.550450 + 0.834868i \(0.685544\pi\)
\(252\) −1.57821 + 3.22948i −0.0994179 + 0.203438i
\(253\) −2.08680 −0.131196
\(254\) −0.928029 1.60739i −0.0582297 0.100857i
\(255\) −0.141259 + 0.244668i −0.00884600 + 0.0153217i
\(256\) −10.4836 + 18.1581i −0.655224 + 1.13488i
\(257\) −9.36304 16.2173i −0.584050 1.01160i −0.994993 0.0999435i \(-0.968134\pi\)
0.410943 0.911661i \(-0.365200\pi\)
\(258\) −16.6511 −1.03665
\(259\) −3.26615 + 0.225857i −0.202948 + 0.0140341i
\(260\) −4.67098 −0.289682
\(261\) 2.94682 + 5.10403i 0.182403 + 0.315932i
\(262\) −13.7733 + 23.8560i −0.850917 + 1.47383i
\(263\) −14.9543 + 25.9016i −0.922121 + 1.59716i −0.125993 + 0.992031i \(0.540212\pi\)
−0.796128 + 0.605129i \(0.793122\pi\)
\(264\) 1.22650 + 2.12436i 0.0754859 + 0.130745i
\(265\) −2.19434 −0.134797
\(266\) −1.56934 2.33052i −0.0962225 0.142894i
\(267\) −2.67561 −0.163745
\(268\) 2.81067 + 4.86821i 0.171689 + 0.297374i
\(269\) −11.3230 + 19.6121i −0.690378 + 1.19577i 0.281336 + 0.959609i \(0.409222\pi\)
−0.971714 + 0.236161i \(0.924111\pi\)
\(270\) 0.864540 1.49743i 0.0526143 0.0911306i
\(271\) 6.36818 + 11.0300i 0.386839 + 0.670026i 0.992023 0.126061i \(-0.0402334\pi\)
−0.605183 + 0.796086i \(0.706900\pi\)
\(272\) −1.45870 −0.0884465
\(273\) 5.38514 + 7.99712i 0.325924 + 0.484008i
\(274\) −17.0045 −1.02728
\(275\) 4.28820 + 7.42737i 0.258588 + 0.447887i
\(276\) −0.679293 + 1.17657i −0.0408886 + 0.0708212i
\(277\) 14.5063 25.1257i 0.871601 1.50966i 0.0112606 0.999937i \(-0.496416\pi\)
0.860340 0.509720i \(-0.170251\pi\)
\(278\) 6.03627 + 10.4551i 0.362031 + 0.627057i
\(279\) −6.02387 −0.360640
\(280\) −2.92730 + 0.202425i −0.174940 + 0.0120972i
\(281\) −12.4466 −0.742504 −0.371252 0.928532i \(-0.621071\pi\)
−0.371252 + 0.928532i \(0.621071\pi\)
\(282\) −4.63885 8.03472i −0.276239 0.478461i
\(283\) −4.68198 + 8.10943i −0.278315 + 0.482056i −0.970966 0.239217i \(-0.923109\pi\)
0.692651 + 0.721273i \(0.256443\pi\)
\(284\) 7.90962 13.6999i 0.469349 0.812937i
\(285\) 0.273359 + 0.473472i 0.0161924 + 0.0280460i
\(286\) −13.9362 −0.824063
\(287\) −9.78143 + 20.0157i −0.577379 + 1.18149i
\(288\) 6.57660 0.387530
\(289\) 8.45517 + 14.6448i 0.497363 + 0.861458i
\(290\) 5.09528 8.82529i 0.299205 0.518239i
\(291\) 0.294921 0.510819i 0.0172886 0.0299447i
\(292\) 7.85941 + 13.6129i 0.459937 + 0.796634i
\(293\) 5.69521 0.332717 0.166359 0.986065i \(-0.446799\pi\)
0.166359 + 0.986065i \(0.446799\pi\)
\(294\) −7.88240 10.1212i −0.459711 0.590280i
\(295\) −1.96260 −0.114267
\(296\) 0.727293 + 1.25971i 0.0422731 + 0.0732191i
\(297\) 1.04340 1.80722i 0.0605442 0.104866i
\(298\) −5.39625 + 9.34657i −0.312596 + 0.541433i
\(299\) 1.82202 + 3.15584i 0.105370 + 0.182507i
\(300\) 5.58355 0.322367
\(301\) 10.5546 21.5978i 0.608358 1.24488i
\(302\) −24.1063 −1.38716
\(303\) 3.11417 + 5.39390i 0.178904 + 0.309872i
\(304\) −1.41140 + 2.44462i −0.0809496 + 0.140209i
\(305\) 5.87512 10.1760i 0.336409 0.582677i
\(306\) 0.274384 + 0.475246i 0.0156855 + 0.0271680i
\(307\) 17.0596 0.973642 0.486821 0.873502i \(-0.338156\pi\)
0.486821 + 0.873502i \(0.338156\pi\)
\(308\) 7.48309 0.517462i 0.426389 0.0294851i
\(309\) 18.6455 1.06070
\(310\) 5.20788 + 9.02032i 0.295788 + 0.512320i
\(311\) 8.26214 14.3104i 0.468503 0.811471i −0.530849 0.847466i \(-0.678127\pi\)
0.999352 + 0.0359958i \(0.0114603\pi\)
\(312\) 2.14176 3.70964i 0.121253 0.210017i
\(313\) 0.746938 + 1.29374i 0.0422195 + 0.0731262i 0.886363 0.462991i \(-0.153224\pi\)
−0.844143 + 0.536117i \(0.819890\pi\)
\(314\) 15.4411 0.871391
\(315\) 1.39428 + 2.07055i 0.0785588 + 0.116662i
\(316\) 23.3112 1.31135
\(317\) 9.11172 + 15.7820i 0.511765 + 0.886403i 0.999907 + 0.0136387i \(0.00434146\pi\)
−0.488142 + 0.872764i \(0.662325\pi\)
\(318\) −2.13115 + 3.69126i −0.119509 + 0.206996i
\(319\) 6.14942 10.6511i 0.344301 0.596347i
\(320\) −1.08961 1.88726i −0.0609111 0.105501i
\(321\) 0.648883 0.0362171
\(322\) −2.70827 4.02186i −0.150926 0.224130i
\(323\) −0.173515 −0.00965461
\(324\) −0.679293 1.17657i −0.0377385 0.0653650i
\(325\) 7.48821 12.9700i 0.415371 0.719444i
\(326\) 3.80948 6.59822i 0.210988 0.365442i
\(327\) −6.82667 11.8241i −0.377516 0.653876i
\(328\) 9.89786 0.546518
\(329\) 13.3621 0.924001i 0.736677 0.0509418i
\(330\) −3.60825 −0.198627
\(331\) 11.4774 + 19.8795i 0.630857 + 1.09268i 0.987377 + 0.158388i \(0.0506298\pi\)
−0.356520 + 0.934288i \(0.616037\pi\)
\(332\) −7.45453 + 12.9116i −0.409121 + 0.708618i
\(333\) 0.618718 1.07165i 0.0339055 0.0587261i
\(334\) −2.78970 4.83189i −0.152645 0.264390i
\(335\) 3.90381 0.213288
\(336\) −5.65892 + 11.5798i −0.308719 + 0.631729i
\(337\) 22.2266 1.21076 0.605381 0.795936i \(-0.293021\pi\)
0.605381 + 0.795936i \(0.293021\pi\)
\(338\) 0.255743 + 0.442960i 0.0139106 + 0.0240938i
\(339\) 0.273639 0.473957i 0.0148620 0.0257418i
\(340\) 0.191913 0.332403i 0.0104079 0.0180271i
\(341\) 6.28531 + 10.8865i 0.340369 + 0.589536i
\(342\) 1.06195 0.0574237
\(343\) 18.1244 3.80860i 0.978627 0.205645i
\(344\) −10.6802 −0.575840
\(345\) 0.471745 + 0.817086i 0.0253979 + 0.0439904i
\(346\) 14.7109 25.4800i 0.790863 1.36982i
\(347\) 2.70421 4.68383i 0.145170 0.251441i −0.784267 0.620424i \(-0.786961\pi\)
0.929436 + 0.368983i \(0.120294\pi\)
\(348\) −4.00350 6.93427i −0.214610 0.371716i
\(349\) 10.3938 0.556369 0.278184 0.960528i \(-0.410267\pi\)
0.278184 + 0.960528i \(0.410267\pi\)
\(350\) −8.74943 + 17.9039i −0.467677 + 0.957003i
\(351\) −3.64405 −0.194505
\(352\) −6.86203 11.8854i −0.365747 0.633493i
\(353\) 6.53453 11.3181i 0.347798 0.602404i −0.638060 0.769987i \(-0.720263\pi\)
0.985858 + 0.167583i \(0.0535962\pi\)
\(354\) −1.90609 + 3.30144i −0.101307 + 0.175469i
\(355\) −5.49295 9.51407i −0.291535 0.504954i
\(356\) 3.63505 0.192657
\(357\) −0.790356 + 0.0546538i −0.0418301 + 0.00289258i
\(358\) 9.79565 0.517716
\(359\) 9.61160 + 16.6478i 0.507281 + 0.878636i 0.999964 + 0.00842778i \(0.00268268\pi\)
−0.492684 + 0.870209i \(0.663984\pi\)
\(360\) 0.554529 0.960472i 0.0292262 0.0506213i
\(361\) 9.33211 16.1637i 0.491164 0.850721i
\(362\) −10.6478 18.4425i −0.559634 0.969315i
\(363\) 6.64526 0.348786
\(364\) −7.31618 10.8648i −0.383472 0.569469i
\(365\) 10.9162 0.571378
\(366\) −11.4119 19.7660i −0.596510 1.03319i
\(367\) 0.887548 1.53728i 0.0463296 0.0802452i −0.841931 0.539586i \(-0.818581\pi\)
0.888260 + 0.459340i \(0.151914\pi\)
\(368\) −2.43571 + 4.21877i −0.126970 + 0.219919i
\(369\) −4.21012 7.29214i −0.219170 0.379614i
\(370\) −2.13963 −0.111234
\(371\) −3.43700 5.10406i −0.178440 0.264989i
\(372\) 8.18395 0.424318
\(373\) 3.72011 + 6.44341i 0.192620 + 0.333627i 0.946118 0.323823i \(-0.104968\pi\)
−0.753498 + 0.657450i \(0.771635\pi\)
\(374\) 0.572584 0.991744i 0.0296076 0.0512819i
\(375\) 4.29751 7.44351i 0.221923 0.384381i
\(376\) −2.97542 5.15359i −0.153446 0.265776i
\(377\) −21.4767 −1.10611
\(378\) 4.83717 0.334494i 0.248797 0.0172045i
\(379\) −4.31050 −0.221415 −0.110708 0.993853i \(-0.535312\pi\)
−0.110708 + 0.993853i \(0.535312\pi\)
\(380\) −0.371382 0.643252i −0.0190515 0.0329981i
\(381\) −0.506388 + 0.877090i −0.0259430 + 0.0449347i
\(382\) −15.6463 + 27.1002i −0.800536 + 1.38657i
\(383\) −17.3457 30.0437i −0.886326 1.53516i −0.844186 0.536050i \(-0.819916\pi\)
−0.0421400 0.999112i \(-0.513418\pi\)
\(384\) 8.92027 0.455211
\(385\) 2.28716 4.68019i 0.116564 0.238525i
\(386\) 8.52275 0.433796
\(387\) 4.54291 + 7.86856i 0.230929 + 0.399981i
\(388\) −0.400676 + 0.693991i −0.0203412 + 0.0352321i
\(389\) −16.5719 + 28.7034i −0.840230 + 1.45532i 0.0494696 + 0.998776i \(0.484247\pi\)
−0.889700 + 0.456546i \(0.849086\pi\)
\(390\) 3.15043 + 5.45670i 0.159528 + 0.276311i
\(391\) −0.299440 −0.0151433
\(392\) −5.05588 6.49188i −0.255361 0.327889i
\(393\) 15.0311 0.758217
\(394\) 0.233582 + 0.404576i 0.0117677 + 0.0203822i
\(395\) 8.09439 14.0199i 0.407273 0.705417i
\(396\) −1.41755 + 2.45527i −0.0712345 + 0.123382i
\(397\) 14.2282 + 24.6439i 0.714092 + 1.23684i 0.963309 + 0.268396i \(0.0864935\pi\)
−0.249217 + 0.968448i \(0.580173\pi\)
\(398\) −10.0355 −0.503035
\(399\) −0.673138 + 1.37744i −0.0336991 + 0.0689581i
\(400\) 20.0207 1.00103
\(401\) 18.9406 + 32.8060i 0.945846 + 1.63825i 0.754048 + 0.656819i \(0.228099\pi\)
0.191798 + 0.981434i \(0.438568\pi\)
\(402\) 3.79141 6.56691i 0.189098 0.327528i
\(403\) 10.9756 19.0104i 0.546736 0.946974i
\(404\) −4.23087 7.32808i −0.210494 0.364586i
\(405\) −0.943490 −0.0468824
\(406\) 28.5085 1.97139i 1.41485 0.0978382i
\(407\) −2.58228 −0.127999
\(408\) 0.175994 + 0.304830i 0.00871298 + 0.0150913i
\(409\) −0.478573 + 0.828913i −0.0236639 + 0.0409871i −0.877615 0.479366i \(-0.840866\pi\)
0.853951 + 0.520354i \(0.174200\pi\)
\(410\) −7.27964 + 12.6087i −0.359516 + 0.622699i
\(411\) 4.63934 + 8.03557i 0.228842 + 0.396365i
\(412\) −25.3315 −1.24799
\(413\) −3.07402 4.56503i −0.151263 0.224630i
\(414\) 1.83264 0.0900696
\(415\) 5.17691 + 8.96667i 0.254124 + 0.440157i
\(416\) −11.9827 + 20.7547i −0.587502 + 1.01758i
\(417\) 3.29375 5.70494i 0.161296 0.279372i
\(418\) −1.10804 1.91918i −0.0541960 0.0938702i
\(419\) −40.7600 −1.99126 −0.995628 0.0934066i \(-0.970224\pi\)
−0.995628 + 0.0934066i \(0.970224\pi\)
\(420\) −1.89425 2.81302i −0.0924299 0.137261i
\(421\) −26.0184 −1.26806 −0.634031 0.773308i \(-0.718601\pi\)
−0.634031 + 0.773308i \(0.718601\pi\)
\(422\) −2.91939 5.05653i −0.142114 0.246148i
\(423\) −2.53123 + 4.38422i −0.123073 + 0.213168i
\(424\) −1.36695 + 2.36763i −0.0663850 + 0.114982i
\(425\) 0.615323 + 1.06577i 0.0298476 + 0.0516975i
\(426\) −21.3391 −1.03388
\(427\) 32.8718 2.27311i 1.59078 0.110003i
\(428\) −0.881564 −0.0426120
\(429\) 3.80220 + 6.58561i 0.183572 + 0.317956i
\(430\) 7.85506 13.6054i 0.378805 0.656109i
\(431\) 15.7221 27.2314i 0.757305 1.31169i −0.186914 0.982376i \(-0.559849\pi\)
0.944220 0.329315i \(-0.106818\pi\)
\(432\) −2.43571 4.21877i −0.117188 0.202976i
\(433\) 3.61281 0.173621 0.0868103 0.996225i \(-0.472333\pi\)
0.0868103 + 0.996225i \(0.472333\pi\)
\(434\) −12.8243 + 26.2422i −0.615584 + 1.25966i
\(435\) −5.56058 −0.266609
\(436\) 9.27461 + 16.0641i 0.444173 + 0.769331i
\(437\) −0.289732 + 0.501830i −0.0138598 + 0.0240058i
\(438\) 10.6018 18.3629i 0.506575 0.877414i
\(439\) −9.02553 15.6327i −0.430765 0.746107i 0.566174 0.824286i \(-0.308423\pi\)
−0.996939 + 0.0781784i \(0.975090\pi\)
\(440\) −2.31438 −0.110334
\(441\) −2.63227 + 6.48623i −0.125346 + 0.308868i
\(442\) −1.99973 −0.0951177
\(443\) 17.6650 + 30.5967i 0.839291 + 1.45369i 0.890488 + 0.455006i \(0.150363\pi\)
−0.0511975 + 0.998689i \(0.516304\pi\)
\(444\) −0.840581 + 1.45593i −0.0398922 + 0.0690953i
\(445\) 1.26221 2.18620i 0.0598343 0.103636i
\(446\) −20.8623 36.1345i −0.987857 1.71102i
\(447\) 5.88903 0.278541
\(448\) 2.68313 5.49047i 0.126766 0.259400i
\(449\) 5.95593 0.281078 0.140539 0.990075i \(-0.455116\pi\)
0.140539 + 0.990075i \(0.455116\pi\)
\(450\) −3.76593 6.52278i −0.177527 0.307487i
\(451\) −8.78568 + 15.2172i −0.413701 + 0.716552i
\(452\) −0.371762 + 0.643911i −0.0174862 + 0.0302870i
\(453\) 6.57693 + 11.3916i 0.309011 + 0.535223i
\(454\) −19.1549 −0.898986
\(455\) −9.07475 + 0.627526i −0.425431 + 0.0294189i
\(456\) 0.681151 0.0318978
\(457\) −15.9837 27.6846i −0.747685 1.29503i −0.948930 0.315488i \(-0.897832\pi\)
0.201244 0.979541i \(-0.435502\pi\)
\(458\) −9.86681 + 17.0898i −0.461046 + 0.798554i
\(459\) 0.149720 0.259323i 0.00698833 0.0121041i
\(460\) −0.640906 1.11008i −0.0298824 0.0517578i
\(461\) 7.10536 0.330930 0.165465 0.986216i \(-0.447088\pi\)
0.165465 + 0.986216i \(0.447088\pi\)
\(462\) −5.65161 8.39283i −0.262937 0.390470i
\(463\) −42.0816 −1.95570 −0.977848 0.209314i \(-0.932877\pi\)
−0.977848 + 0.209314i \(0.932877\pi\)
\(464\) −14.3552 24.8639i −0.666422 1.15428i
\(465\) 2.84173 4.92202i 0.131782 0.228253i
\(466\) 10.7675 18.6498i 0.498794 0.863936i
\(467\) −13.2253 22.9069i −0.611995 1.06001i −0.990904 0.134573i \(-0.957034\pi\)
0.378908 0.925434i \(-0.376300\pi\)
\(468\) 4.95075 0.228849
\(469\) 6.11456 + 9.08032i 0.282344 + 0.419290i
\(470\) 8.75341 0.403765
\(471\) −4.21279 7.29677i −0.194115 0.336217i
\(472\) −1.22259 + 2.11759i −0.0562743 + 0.0974700i
\(473\) 9.48015 16.4201i 0.435898 0.754997i
\(474\) −15.7226 27.2324i −0.722164 1.25082i
\(475\) 2.38150 0.109271
\(476\) 1.07377 0.0742518i 0.0492160 0.00340333i
\(477\) 2.32577 0.106490
\(478\) −11.4990 19.9169i −0.525953 0.910977i
\(479\) 12.6414 21.8956i 0.577601 1.00043i −0.418153 0.908377i \(-0.637322\pi\)
0.995754 0.0920572i \(-0.0293443\pi\)
\(480\) −3.10248 + 5.37365i −0.141608 + 0.245272i
\(481\) 2.25464 + 3.90515i 0.102803 + 0.178059i
\(482\) 19.4818 0.887373
\(483\) −1.16166 + 2.37709i −0.0528572 + 0.108161i
\(484\) −9.02816 −0.410371
\(485\) 0.278255 + 0.481952i 0.0126349 + 0.0218843i
\(486\) −0.916322 + 1.58712i −0.0415652 + 0.0719931i
\(487\) −9.98826 + 17.3002i −0.452611 + 0.783945i −0.998547 0.0538814i \(-0.982841\pi\)
0.545936 + 0.837827i \(0.316174\pi\)
\(488\) −7.31976 12.6782i −0.331350 0.573915i
\(489\) −4.15736 −0.188002
\(490\) 11.9884 1.66598i 0.541579 0.0752611i
\(491\) −41.0091 −1.85072 −0.925358 0.379095i \(-0.876235\pi\)
−0.925358 + 0.379095i \(0.876235\pi\)
\(492\) 5.71981 + 9.90699i 0.257869 + 0.446642i
\(493\) 0.882395 1.52835i 0.0397411 0.0688335i
\(494\) −1.93490 + 3.35135i −0.0870553 + 0.150784i
\(495\) 0.984437 + 1.70510i 0.0442472 + 0.0766383i
\(496\) 29.3448 1.31762
\(497\) 13.5262 27.6786i 0.606734 1.24155i
\(498\) 20.1114 0.901212
\(499\) −7.02344 12.1650i −0.314412 0.544578i 0.664900 0.746932i \(-0.268474\pi\)
−0.979312 + 0.202354i \(0.935141\pi\)
\(500\) −5.83854 + 10.1126i −0.261107 + 0.452251i
\(501\) −1.52222 + 2.63657i −0.0680080 + 0.117793i
\(502\) −15.9821 27.6817i −0.713314 1.23550i
\(503\) 12.8463 0.572787 0.286393 0.958112i \(-0.407544\pi\)
0.286393 + 0.958112i \(0.407544\pi\)
\(504\) 3.10263 0.214549i 0.138202 0.00955679i
\(505\) −5.87638 −0.261495
\(506\) −1.91218 3.31200i −0.0850068 0.147236i
\(507\) 0.139549 0.241705i 0.00619757 0.0107345i
\(508\) 0.687971 1.19160i 0.0305238 0.0528687i
\(509\) 13.3906 + 23.1932i 0.593528 + 1.02802i 0.993753 + 0.111604i \(0.0355989\pi\)
−0.400224 + 0.916417i \(0.631068\pi\)
\(510\) −0.517756 −0.0229266
\(511\) 17.0980 + 25.3911i 0.756372 + 1.12324i
\(512\) −20.5848 −0.909730
\(513\) −0.289732 0.501830i −0.0127920 0.0221563i
\(514\) 17.1591 29.7205i 0.756856 1.31091i
\(515\) −8.79591 + 15.2350i −0.387594 + 0.671333i
\(516\) −6.17194 10.6901i −0.271704 0.470606i
\(517\) 10.5644 0.464620
\(518\) −3.35130 4.97680i −0.147248 0.218668i
\(519\) −16.0543 −0.704705
\(520\) 2.02073 + 3.50001i 0.0886149 + 0.153485i
\(521\) 13.4152 23.2359i 0.587732 1.01798i −0.406797 0.913519i \(-0.633354\pi\)
0.994529 0.104463i \(-0.0333123\pi\)
\(522\) −5.40047 + 9.35388i −0.236372 + 0.409408i
\(523\) 8.04730 + 13.9383i 0.351884 + 0.609481i 0.986580 0.163282i \(-0.0522079\pi\)
−0.634696 + 0.772762i \(0.718875\pi\)
\(524\) −20.4210 −0.892095
\(525\) 10.8477 0.750125i 0.473431 0.0327382i
\(526\) −54.8118 −2.38991
\(527\) 0.901895 + 1.56213i 0.0392871 + 0.0680473i
\(528\) −5.08284 + 8.80373i −0.221202 + 0.383133i
\(529\) −0.500000 + 0.866025i −0.0217391 + 0.0376533i
\(530\) −2.01072 3.48267i −0.0873401 0.151277i
\(531\) 2.08015 0.0902708
\(532\) 0.914516 1.87137i 0.0396493 0.0811340i
\(533\) 30.6838 1.32906
\(534\) −2.45172 4.24651i −0.106096 0.183764i
\(535\) −0.306107 + 0.530193i −0.0132342 + 0.0229223i
\(536\) 2.43186 4.21211i 0.105040 0.181935i
\(537\) −2.67255 4.62898i −0.115329 0.199755i
\(538\) −41.5022 −1.78929
\(539\) 14.4686 2.01064i 0.623205 0.0866044i
\(540\) 1.28181 0.0551604
\(541\) 0.338479 + 0.586263i 0.0145524 + 0.0252054i 0.873210 0.487344i \(-0.162034\pi\)
−0.858658 + 0.512550i \(0.828701\pi\)
\(542\) −11.6706 + 20.2141i −0.501296 + 0.868270i
\(543\) −5.81006 + 10.0633i −0.249333 + 0.431858i
\(544\) −0.984649 1.70546i −0.0422165 0.0731211i
\(545\) 12.8818 0.551795
\(546\) −7.75783 + 15.8748i −0.332005 + 0.679378i
\(547\) −8.38777 −0.358635 −0.179318 0.983791i \(-0.557389\pi\)
−0.179318 + 0.983791i \(0.557389\pi\)
\(548\) −6.30293 10.9170i −0.269248 0.466351i
\(549\) −6.22701 + 10.7855i −0.265762 + 0.460314i
\(550\) −7.85874 + 13.6117i −0.335098 + 0.580406i
\(551\) −1.70757 2.95760i −0.0727450 0.125998i
\(552\) 1.17548 0.0500320
\(553\) 45.2887 3.13175i 1.92587 0.133176i
\(554\) 53.1699 2.25897
\(555\) 0.583754 + 1.01109i 0.0247790 + 0.0429184i
\(556\) −4.47484 + 7.75065i −0.189775 + 0.328701i
\(557\) 1.24944 2.16409i 0.0529404 0.0916955i −0.838341 0.545147i \(-0.816474\pi\)
0.891281 + 0.453451i \(0.149807\pi\)
\(558\) −5.51981 9.56059i −0.233672 0.404732i
\(559\) −33.1092 −1.40037
\(560\) −6.79212 10.0865i −0.287019 0.426234i
\(561\) −0.624872 −0.0263821
\(562\) −11.4051 19.7543i −0.481097 0.833284i
\(563\) 20.2290 35.0377i 0.852551 1.47666i −0.0263482 0.999653i \(-0.508388\pi\)
0.878899 0.477008i \(-0.158279\pi\)
\(564\) 3.43889 5.95634i 0.144804 0.250807i
\(565\) 0.258176 + 0.447174i 0.0108615 + 0.0188127i
\(566\) −17.1608 −0.721323
\(567\) −1.47779 2.19457i −0.0620614 0.0921632i
\(568\) −13.6872 −0.574303
\(569\) 6.24012 + 10.8082i 0.261599 + 0.453104i 0.966667 0.256037i \(-0.0824167\pi\)
−0.705068 + 0.709140i \(0.749083\pi\)
\(570\) −0.500970 + 0.867705i −0.0209833 + 0.0363442i
\(571\) 15.4964 26.8405i 0.648502 1.12324i −0.334978 0.942226i \(-0.608729\pi\)
0.983481 0.181013i \(-0.0579377\pi\)
\(572\) −5.16562 8.94711i −0.215985 0.374098i
\(573\) 17.0751 0.713324
\(574\) −40.7301 + 2.81652i −1.70004 + 0.117559i
\(575\) 4.10983 0.171392
\(576\) 1.15487 + 2.00030i 0.0481197 + 0.0833457i
\(577\) −5.26512 + 9.11945i −0.219190 + 0.379648i −0.954560 0.298017i \(-0.903675\pi\)
0.735371 + 0.677665i \(0.237008\pi\)
\(578\) −15.4953 + 26.8387i −0.644520 + 1.11634i
\(579\) −2.32526 4.02747i −0.0966345 0.167376i
\(580\) 7.55452 0.313684
\(581\) −12.7480 + 26.0861i −0.528875 + 1.08223i
\(582\) 1.08097 0.0448077
\(583\) −2.42671 4.20318i −0.100504 0.174078i
\(584\) 6.80017 11.7782i 0.281393 0.487387i
\(585\) 1.71906 2.97750i 0.0710744 0.123105i
\(586\) 5.21864 + 9.03895i 0.215580 + 0.373396i
\(587\) 7.06244 0.291498 0.145749 0.989322i \(-0.453441\pi\)
0.145749 + 0.989322i \(0.453441\pi\)
\(588\) 3.57616 8.81210i 0.147478 0.363405i
\(589\) 3.49062 0.143828
\(590\) −1.79837 3.11487i −0.0740378 0.128237i
\(591\) 0.127456 0.220761i 0.00524285 0.00908088i
\(592\) −3.01403 + 5.22046i −0.123876 + 0.214559i
\(593\) −19.9462 34.5479i −0.819094 1.41871i −0.906351 0.422526i \(-0.861144\pi\)
0.0872571 0.996186i \(-0.472190\pi\)
\(594\) 3.82436 0.156916
\(595\) 0.328190 0.671572i 0.0134545 0.0275318i
\(596\) −8.00075 −0.327723
\(597\) 2.73799 + 4.74233i 0.112058 + 0.194091i
\(598\) −3.33912 + 5.78353i −0.136547 + 0.236506i
\(599\) −5.93228 + 10.2750i −0.242386 + 0.419826i −0.961394 0.275177i \(-0.911264\pi\)
0.719007 + 0.695003i \(0.244597\pi\)
\(600\) −2.41552 4.18380i −0.0986132 0.170803i
\(601\) 15.0105 0.612290 0.306145 0.951985i \(-0.400961\pi\)
0.306145 + 0.951985i \(0.400961\pi\)
\(602\) 43.9497 3.03916i 1.79126 0.123867i
\(603\) −4.13763 −0.168498
\(604\) −8.93532 15.4764i −0.363573 0.629727i
\(605\) −3.13487 + 5.42975i −0.127451 + 0.220751i
\(606\) −5.70717 + 9.88511i −0.231838 + 0.401555i
\(607\) 2.09995 + 3.63722i 0.0852343 + 0.147630i 0.905491 0.424365i \(-0.139503\pi\)
−0.820257 + 0.571996i \(0.806169\pi\)
\(608\) −3.81090 −0.154553
\(609\) −8.70955 12.9340i −0.352929 0.524111i
\(610\) 21.5340 0.871887
\(611\) −9.22393 15.9763i −0.373160 0.646333i
\(612\) −0.203407 + 0.352312i −0.00822226 + 0.0142414i
\(613\) −15.4932 + 26.8351i −0.625766 + 1.08386i 0.362626 + 0.931935i \(0.381880\pi\)
−0.988392 + 0.151924i \(0.951453\pi\)
\(614\) 15.6321 + 27.0755i 0.630859 + 1.09268i
\(615\) 7.94441 0.320349
\(616\) −3.62502 5.38328i −0.146056 0.216899i
\(617\) 1.93041 0.0777153 0.0388577 0.999245i \(-0.487628\pi\)
0.0388577 + 0.999245i \(0.487628\pi\)
\(618\) 17.0853 + 29.5926i 0.687270 + 1.19039i
\(619\) −16.6422 + 28.8251i −0.668907 + 1.15858i 0.309304 + 0.950963i \(0.399904\pi\)
−0.978210 + 0.207617i \(0.933429\pi\)
\(620\) −3.86073 + 6.68699i −0.155051 + 0.268556i
\(621\) −0.500000 0.866025i −0.0200643 0.0347524i
\(622\) 30.2831 1.21424
\(623\) 7.06214 0.488353i 0.282939 0.0195654i
\(624\) 17.7517 0.710636
\(625\) −6.21991 10.7732i −0.248796 0.430928i
\(626\) −1.36887 + 2.37096i −0.0547112 + 0.0947625i
\(627\) −0.604613 + 1.04722i −0.0241459 + 0.0418219i
\(628\) 5.72343 + 9.91328i 0.228390 + 0.395583i
\(629\) −0.370538 −0.0147743
\(630\) −2.00860 + 4.11018i −0.0800245 + 0.163753i
\(631\) 4.49815 0.179068 0.0895342 0.995984i \(-0.471462\pi\)
0.0895342 + 0.995984i \(0.471462\pi\)
\(632\) −10.0847 17.4672i −0.401149 0.694810i
\(633\) −1.59299 + 2.75914i −0.0633158 + 0.109666i
\(634\) −16.6985 + 28.9227i −0.663184 + 1.14867i
\(635\) −0.477772 0.827525i −0.0189598 0.0328393i
\(636\) −3.15975 −0.125292
\(637\) −15.6734 20.1251i −0.621004 0.797385i
\(638\) 22.5394 0.892343
\(639\) 5.82195 + 10.0839i 0.230313 + 0.398913i
\(640\) −4.20809 + 7.28863i −0.166339 + 0.288108i
\(641\) 13.4105 23.2276i 0.529681 0.917435i −0.469720 0.882816i \(-0.655645\pi\)
0.999401 0.0346188i \(-0.0110217\pi\)
\(642\) 0.594586 + 1.02985i 0.0234664 + 0.0406451i
\(643\) −21.1912 −0.835701 −0.417850 0.908516i \(-0.637216\pi\)
−0.417850 + 0.908516i \(0.637216\pi\)
\(644\) 1.57821 3.22948i 0.0621902 0.127259i
\(645\) −8.57238 −0.337537
\(646\) −0.158995 0.275388i −0.00625559 0.0108350i
\(647\) −1.64119 + 2.84262i −0.0645218 + 0.111755i −0.896482 0.443081i \(-0.853886\pi\)
0.831960 + 0.554836i \(0.187219\pi\)
\(648\) −0.587742 + 1.01800i −0.0230887 + 0.0399908i
\(649\) −2.17043 3.75929i −0.0851967 0.147565i
\(650\) 27.4464 1.07654
\(651\) 15.8997 1.09948i 0.623159 0.0430919i
\(652\) 5.64813 0.221198
\(653\) −16.3956 28.3981i −0.641610 1.11130i −0.985073 0.172135i \(-0.944933\pi\)
0.343463 0.939166i \(-0.388400\pi\)
\(654\) 12.5109 21.6694i 0.489213 0.847342i
\(655\) −7.09082 + 12.2817i −0.277061 + 0.479884i
\(656\) 20.5092 + 35.5230i 0.800751 + 1.38694i
\(657\) −11.5700 −0.451388
\(658\) 13.7105 + 20.3605i 0.534491 + 0.793737i
\(659\) 11.1625 0.434828 0.217414 0.976079i \(-0.430238\pi\)
0.217414 + 0.976079i \(0.430238\pi\)
\(660\) −1.33744 2.31652i −0.0520599 0.0901703i
\(661\) −4.19731 + 7.26995i −0.163256 + 0.282768i −0.936035 0.351908i \(-0.885533\pi\)
0.772778 + 0.634676i \(0.218866\pi\)
\(662\) −21.0341 + 36.4321i −0.817512 + 1.41597i
\(663\) 0.545587 + 0.944985i 0.0211888 + 0.0367002i
\(664\) 12.8997 0.500606
\(665\) −0.807935 1.19981i −0.0313304 0.0465266i
\(666\) 2.26778 0.0878747
\(667\) −2.94682 5.10403i −0.114101 0.197629i
\(668\) 2.06807 3.58201i 0.0800161 0.138592i
\(669\) −11.3837 + 19.7172i −0.440119 + 0.762309i
\(670\) 3.57715 + 6.19581i 0.138197 + 0.239365i
\(671\) 25.9891 1.00330
\(672\) −17.3586 + 1.20036i −0.669623 + 0.0463050i
\(673\) 30.3183 1.16869 0.584343 0.811507i \(-0.301352\pi\)
0.584343 + 0.811507i \(0.301352\pi\)
\(674\) 20.3668 + 35.2763i 0.784498 + 1.35879i
\(675\) −2.05491 + 3.55921i −0.0790937 + 0.136994i
\(676\) −0.189589 + 0.328377i −0.00729187 + 0.0126299i
\(677\) 5.15063 + 8.92116i 0.197955 + 0.342868i 0.947865 0.318672i \(-0.103237\pi\)
−0.749910 + 0.661540i \(0.769903\pi\)
\(678\) 1.00297 0.0385187
\(679\) −0.685195 + 1.40211i −0.0262954 + 0.0538080i
\(680\) −0.332096 −0.0127353
\(681\) 5.22604 + 9.05176i 0.200262 + 0.346864i
\(682\) −11.5187 + 19.9510i −0.441075 + 0.763965i
\(683\) 24.0871 41.7200i 0.921666 1.59637i 0.124829 0.992178i \(-0.460162\pi\)
0.796837 0.604194i \(-0.206505\pi\)
\(684\) 0.393625 + 0.681779i 0.0150506 + 0.0260685i
\(685\) −8.75433 −0.334486
\(686\) 22.6525 + 25.2757i 0.864876 + 0.965029i
\(687\) 10.7678 0.410819
\(688\) −22.1304 38.3310i −0.843714 1.46136i
\(689\) −4.23760 + 7.33975i −0.161440 + 0.279622i
\(690\) −0.864540 + 1.49743i −0.0329125 + 0.0570061i
\(691\) 18.3597 + 31.8000i 0.698437 + 1.20973i 0.969008 + 0.247029i \(0.0794543\pi\)
−0.270571 + 0.962700i \(0.587212\pi\)
\(692\) 21.8111 0.829135
\(693\) −2.42415 + 4.96051i −0.0920857 + 0.188434i
\(694\) 9.91171 0.376243
\(695\) 3.10762 + 5.38255i 0.117879 + 0.204172i
\(696\) −3.46394 + 5.99971i −0.131300 + 0.227419i
\(697\) −1.26068 + 2.18356i −0.0477516 + 0.0827082i
\(698\) 9.52410 + 16.4962i 0.360492 + 0.624391i
\(699\) −11.7508 −0.444455
\(700\) −14.7375 + 1.01911i −0.557025 + 0.0385187i
\(701\) 35.3581 1.33546 0.667728 0.744406i \(-0.267267\pi\)
0.667728 + 0.744406i \(0.267267\pi\)
\(702\) −3.33912 5.78353i −0.126027 0.218285i
\(703\) −0.358524 + 0.620983i −0.0135220 + 0.0234208i
\(704\) 2.40999 4.17422i 0.0908299 0.157322i
\(705\) −2.38819 4.13647i −0.0899445 0.155788i
\(706\) 23.9509 0.901405
\(707\) −9.20419 13.6685i −0.346159 0.514058i
\(708\) −2.82606 −0.106210
\(709\) 5.49808 + 9.52295i 0.206485 + 0.357642i 0.950605 0.310404i \(-0.100464\pi\)
−0.744120 + 0.668046i \(0.767131\pi\)
\(710\) 10.0666 17.4359i 0.377794 0.654358i
\(711\) −8.57920 + 14.8596i −0.321745 + 0.557279i
\(712\) −1.57257 2.72377i −0.0589346 0.102078i
\(713\) 6.02387 0.225596
\(714\) −0.810963 1.20431i −0.0303495 0.0450701i
\(715\) −7.17468 −0.268318
\(716\) 3.63088 + 6.28887i 0.135692 + 0.235026i
\(717\) −6.27455 + 10.8678i −0.234327 + 0.405867i
\(718\) −17.6146 + 30.5095i −0.657373 + 1.13860i
\(719\) 18.2877 + 31.6752i 0.682016 + 1.18129i 0.974365 + 0.224975i \(0.0722300\pi\)
−0.292348 + 0.956312i \(0.594437\pi\)
\(720\) 4.59613 0.171288
\(721\) −49.2138 + 3.40317i −1.83282 + 0.126741i
\(722\) 34.2049 1.27297
\(723\) −5.31523 9.20624i −0.197675 0.342384i
\(724\) 7.89346 13.6719i 0.293358 0.508111i
\(725\) −12.1109 + 20.9767i −0.449788 + 0.779055i
\(726\) 6.08920 + 10.5468i 0.225991 + 0.391429i
\(727\) −12.9513 −0.480337 −0.240169 0.970731i \(-0.577203\pi\)
−0.240169 + 0.970731i \(0.577203\pi\)
\(728\) −4.97599 + 10.1823i −0.184422 + 0.377382i
\(729\) 1.00000 0.0370370
\(730\) 10.0027 + 17.3252i 0.370217 + 0.641235i
\(731\) 1.36033 2.35616i 0.0503136 0.0871457i
\(732\) 8.45993 14.6530i 0.312688 0.541592i
\(733\) −3.13178 5.42440i −0.115675 0.200355i 0.802374 0.596821i \(-0.203570\pi\)
−0.918049 + 0.396466i \(0.870236\pi\)
\(734\) 3.25312 0.120075
\(735\) −4.05805 5.21063i −0.149683 0.192197i
\(736\) −6.57660 −0.242417
\(737\) 4.31721 + 7.47763i 0.159026 + 0.275442i
\(738\) 7.71565 13.3639i 0.284017 0.491932i
\(739\) −16.2107 + 28.0778i −0.596322 + 1.03286i 0.397037 + 0.917803i \(0.370039\pi\)
−0.993359 + 0.115057i \(0.963295\pi\)
\(740\) −0.793079 1.37365i −0.0291542 0.0504965i
\(741\) 2.11159 0.0775714
\(742\) 4.95134 10.1319i 0.181769 0.371953i
\(743\) −4.32354 −0.158615 −0.0793076 0.996850i \(-0.525271\pi\)
−0.0793076 + 0.996850i \(0.525271\pi\)
\(744\) −3.54049 6.13230i −0.129801 0.224821i
\(745\) −2.77812 + 4.81184i −0.101782 + 0.176292i
\(746\) −6.81763 + 11.8085i −0.249611 + 0.432339i
\(747\) −5.48698 9.50373i −0.200758 0.347723i
\(748\) 0.848942 0.0310404
\(749\) −1.71269 + 0.118434i −0.0625805 + 0.00432749i
\(750\) 15.7516 0.575168
\(751\) 6.02158 + 10.4297i 0.219730 + 0.380584i 0.954726 0.297488i \(-0.0961489\pi\)
−0.734995 + 0.678072i \(0.762816\pi\)
\(752\) 12.3307 21.3574i 0.449654 0.778823i
\(753\) −8.72076 + 15.1048i −0.317802 + 0.550450i
\(754\) −19.6796 34.0860i −0.716687 1.24134i
\(755\) −12.4105 −0.451665
\(756\) 2.00771 + 2.98151i 0.0730195 + 0.108436i
\(757\) 17.8806 0.649880 0.324940 0.945735i \(-0.394656\pi\)
0.324940 + 0.945735i \(0.394656\pi\)
\(758\) −3.94980 6.84126i −0.143463 0.248486i
\(759\) −1.04340 + 1.80722i −0.0378730 + 0.0655980i
\(760\) −0.321329 + 0.556559i −0.0116558 + 0.0201885i
\(761\) −13.1480 22.7730i −0.476615 0.825522i 0.523026 0.852317i \(-0.324803\pi\)
−0.999641 + 0.0267950i \(0.991470\pi\)
\(762\) −1.85606 −0.0672379
\(763\) 20.1768 + 29.9632i 0.730448 + 1.08474i
\(764\) −23.1980 −0.839276
\(765\) 0.141259 + 0.244668i 0.00510724 + 0.00884600i
\(766\) 31.7886 55.0594i 1.14857 1.98938i
\(767\) −3.79008 + 6.56462i −0.136852 + 0.237035i
\(768\) 10.4836 + 18.1581i 0.378294 + 0.655224i
\(769\) −32.2632 −1.16344 −0.581720 0.813389i \(-0.697620\pi\)
−0.581720 + 0.813389i \(0.697620\pi\)
\(770\) 9.52378 0.658577i 0.343213 0.0237335i
\(771\) −18.7261 −0.674403
\(772\) 3.15906 + 5.47166i 0.113697 + 0.196929i
\(773\) 5.28783 9.15878i 0.190190 0.329419i −0.755123 0.655583i \(-0.772423\pi\)
0.945313 + 0.326164i \(0.105756\pi\)
\(774\) −8.32554 + 14.4203i −0.299255 + 0.518326i
\(775\) −12.3785 21.4403i −0.444650 0.770157i
\(776\) 0.693351 0.0248899
\(777\) −1.43748 + 2.94149i −0.0515692 + 0.105526i
\(778\)