Properties

Label 483.2.i.f.277.4
Level $483$
Weight $2$
Character 483.277
Analytic conductor $3.857$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} + 8 x^{10} - 3 x^{9} + 42 x^{8} - 15 x^{7} + 101 x^{6} + 6 x^{5} + 150 x^{4} - 28 x^{3} + 40 x^{2} + 8 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 277.4
Root \(0.296764 - 0.514011i\) of defining polynomial
Character \(\chi\) \(=\) 483.277
Dual form 483.2.i.f.415.4

$q$-expansion

\(f(q)\) \(=\) \(q+(0.296764 + 0.514011i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.823862 - 1.42697i) q^{4} +(1.57560 + 2.72902i) q^{5} +0.593528 q^{6} +(-1.69175 - 2.03420i) q^{7} +2.16503 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(0.296764 + 0.514011i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.823862 - 1.42697i) q^{4} +(1.57560 + 2.72902i) q^{5} +0.593528 q^{6} +(-1.69175 - 2.03420i) q^{7} +2.16503 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-0.935165 + 1.61975i) q^{10} +(3.27267 - 5.66843i) q^{11} +(-0.823862 - 1.42697i) q^{12} -0.692965 q^{13} +(0.543550 - 1.47326i) q^{14} +3.15120 q^{15} +(-1.00522 - 1.74109i) q^{16} +(-3.42208 + 5.92722i) q^{17} +(0.296764 - 0.514011i) q^{18} +(1.45831 + 2.52587i) q^{19} +5.19231 q^{20} +(-2.60755 + 0.447998i) q^{21} +3.88485 q^{22} +(0.500000 + 0.866025i) q^{23} +(1.08251 - 1.87497i) q^{24} +(-2.46504 + 4.26958i) q^{25} +(-0.205647 - 0.356192i) q^{26} -1.00000 q^{27} +(-4.29652 + 0.738178i) q^{28} +2.94619 q^{29} +(0.935165 + 1.61975i) q^{30} +(0.269666 - 0.467076i) q^{31} +(2.76166 - 4.78333i) q^{32} +(-3.27267 - 5.66843i) q^{33} -4.06221 q^{34} +(2.88586 - 7.82192i) q^{35} -1.64772 q^{36} +(1.44806 + 2.50812i) q^{37} +(-0.865550 + 1.49918i) q^{38} +(-0.346483 + 0.600126i) q^{39} +(3.41122 + 5.90841i) q^{40} +9.26871 q^{41} +(-1.00410 - 1.20736i) q^{42} -4.27043 q^{43} +(-5.39246 - 9.34001i) q^{44} +(1.57560 - 2.72902i) q^{45} +(-0.296764 + 0.514011i) q^{46} +(-5.23372 - 9.06507i) q^{47} -2.01044 q^{48} +(-1.27596 + 6.88273i) q^{49} -2.92615 q^{50} +(3.42208 + 5.92722i) q^{51} +(-0.570908 + 0.988841i) q^{52} +(-6.28744 + 10.8902i) q^{53} +(-0.296764 - 0.514011i) q^{54} +20.6257 q^{55} +(-3.66269 - 4.40410i) q^{56} +2.91662 q^{57} +(0.874324 + 1.51437i) q^{58} +(-3.35163 + 5.80519i) q^{59} +(2.59616 - 4.49668i) q^{60} +(-2.65091 - 4.59152i) q^{61} +0.320109 q^{62} +(-0.915795 + 2.48220i) q^{63} -0.742642 q^{64} +(-1.09184 - 1.89112i) q^{65} +(1.94242 - 3.36437i) q^{66} +(1.36814 - 2.36969i) q^{67} +(5.63865 + 9.76643i) q^{68} +1.00000 q^{69} +(4.87697 - 0.837905i) q^{70} -0.587217 q^{71} +(-1.08251 - 1.87497i) q^{72} +(-5.26330 + 9.11630i) q^{73} +(-0.859467 + 1.48864i) q^{74} +(2.46504 + 4.26958i) q^{75} +4.80579 q^{76} +(-17.0673 + 2.93230i) q^{77} -0.411295 q^{78} +(6.69351 + 11.5935i) q^{79} +(3.16766 - 5.48654i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(2.75062 + 4.76422i) q^{82} -9.77501 q^{83} +(-1.50898 + 4.08998i) q^{84} -21.5674 q^{85} +(-1.26731 - 2.19505i) q^{86} +(1.47310 - 2.55148i) q^{87} +(7.08542 - 12.2723i) q^{88} +(-1.46470 - 2.53693i) q^{89} +1.87033 q^{90} +(1.17232 + 1.40963i) q^{91} +1.64772 q^{92} +(-0.269666 - 0.467076i) q^{93} +(3.10636 - 5.38037i) q^{94} +(-4.59544 + 7.95953i) q^{95} +(-2.76166 - 4.78333i) q^{96} -8.14170 q^{97} +(-3.91645 + 1.38669i) q^{98} -6.54534 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + q^{2} + 6q^{3} - 3q^{4} - 3q^{5} + 2q^{6} - 2q^{7} - 6q^{8} - 6q^{9} + O(q^{10}) \) \( 12q + q^{2} + 6q^{3} - 3q^{4} - 3q^{5} + 2q^{6} - 2q^{7} - 6q^{8} - 6q^{9} + 3q^{10} + 14q^{11} + 3q^{12} - q^{14} - 6q^{15} + 7q^{16} - 15q^{17} + q^{18} + q^{19} + 34q^{20} - 4q^{21} - 12q^{22} + 6q^{23} - 3q^{24} - 9q^{25} + 15q^{26} - 12q^{27} - 2q^{28} - 12q^{29} - 3q^{30} + 11q^{31} - 3q^{32} - 14q^{33} + 30q^{34} - q^{35} + 6q^{36} + 5q^{37} - 14q^{38} + 17q^{40} + 36q^{41} - 17q^{42} - 74q^{43} + 10q^{44} - 3q^{45} - q^{46} - 3q^{47} + 14q^{48} - 6q^{49} - 60q^{50} + 15q^{51} + 7q^{52} + 15q^{53} - q^{54} - 4q^{55} - 21q^{56} + 2q^{57} - 4q^{58} + 2q^{59} + 17q^{60} + 12q^{61} + 72q^{62} - 2q^{63} - 46q^{64} + 17q^{65} - 6q^{66} + 10q^{67} + q^{68} + 12q^{69} - 56q^{70} - 42q^{71} + 3q^{72} + 8q^{73} + 16q^{74} + 9q^{75} + 36q^{76} - 40q^{77} + 30q^{78} + 17q^{79} - 3q^{80} - 6q^{81} + 48q^{82} + 24q^{83} - 25q^{84} - 26q^{85} - 22q^{86} - 6q^{87} + 2q^{88} - 18q^{89} - 6q^{90} + 22q^{91} - 6q^{92} - 11q^{93} - 3q^{94} + 16q^{95} + 3q^{96} - 4q^{97} - 62q^{98} - 28q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.296764 + 0.514011i 0.209844 + 0.363460i 0.951665 0.307137i \(-0.0993711\pi\)
−0.741821 + 0.670598i \(0.766038\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0.823862 1.42697i 0.411931 0.713485i
\(5\) 1.57560 + 2.72902i 0.704631 + 1.22046i 0.966825 + 0.255441i \(0.0822206\pi\)
−0.262194 + 0.965015i \(0.584446\pi\)
\(6\) 0.593528 0.242307
\(7\) −1.69175 2.03420i −0.639422 0.768856i
\(8\) 2.16503 0.765453
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −0.935165 + 1.61975i −0.295725 + 0.512211i
\(11\) 3.27267 5.66843i 0.986747 1.70910i 0.352847 0.935681i \(-0.385214\pi\)
0.633900 0.773415i \(-0.281453\pi\)
\(12\) −0.823862 1.42697i −0.237828 0.411931i
\(13\) −0.692965 −0.192194 −0.0960970 0.995372i \(-0.530636\pi\)
−0.0960970 + 0.995372i \(0.530636\pi\)
\(14\) 0.543550 1.47326i 0.145270 0.393744i
\(15\) 3.15120 0.813637
\(16\) −1.00522 1.74109i −0.251305 0.435273i
\(17\) −3.42208 + 5.92722i −0.829977 + 1.43756i 0.0680776 + 0.997680i \(0.478313\pi\)
−0.898055 + 0.439883i \(0.855020\pi\)
\(18\) 0.296764 0.514011i 0.0699480 0.121153i
\(19\) 1.45831 + 2.52587i 0.334560 + 0.579475i 0.983400 0.181450i \(-0.0580791\pi\)
−0.648840 + 0.760925i \(0.724746\pi\)
\(20\) 5.19231 1.16104
\(21\) −2.60755 + 0.447998i −0.569013 + 0.0977613i
\(22\) 3.88485 0.828252
\(23\) 0.500000 + 0.866025i 0.104257 + 0.180579i
\(24\) 1.08251 1.87497i 0.220967 0.382726i
\(25\) −2.46504 + 4.26958i −0.493009 + 0.853916i
\(26\) −0.205647 0.356192i −0.0403308 0.0698549i
\(27\) −1.00000 −0.192450
\(28\) −4.29652 + 0.738178i −0.811965 + 0.139502i
\(29\) 2.94619 0.547094 0.273547 0.961859i \(-0.411803\pi\)
0.273547 + 0.961859i \(0.411803\pi\)
\(30\) 0.935165 + 1.61975i 0.170737 + 0.295725i
\(31\) 0.269666 0.467076i 0.0484335 0.0838893i −0.840792 0.541358i \(-0.817910\pi\)
0.889226 + 0.457469i \(0.151244\pi\)
\(32\) 2.76166 4.78333i 0.488196 0.845581i
\(33\) −3.27267 5.66843i −0.569699 0.986747i
\(34\) −4.06221 −0.696663
\(35\) 2.88586 7.82192i 0.487799 1.32215i
\(36\) −1.64772 −0.274621
\(37\) 1.44806 + 2.50812i 0.238060 + 0.412332i 0.960158 0.279459i \(-0.0901551\pi\)
−0.722097 + 0.691791i \(0.756822\pi\)
\(38\) −0.865550 + 1.49918i −0.140411 + 0.243198i
\(39\) −0.346483 + 0.600126i −0.0554816 + 0.0960970i
\(40\) 3.41122 + 5.90841i 0.539362 + 0.934202i
\(41\) 9.26871 1.44753 0.723765 0.690047i \(-0.242410\pi\)
0.723765 + 0.690047i \(0.242410\pi\)
\(42\) −1.00410 1.20736i −0.154936 0.186299i
\(43\) −4.27043 −0.651235 −0.325617 0.945502i \(-0.605572\pi\)
−0.325617 + 0.945502i \(0.605572\pi\)
\(44\) −5.39246 9.34001i −0.812943 1.40806i
\(45\) 1.57560 2.72902i 0.234877 0.406819i
\(46\) −0.296764 + 0.514011i −0.0437555 + 0.0757867i
\(47\) −5.23372 9.06507i −0.763416 1.32228i −0.941080 0.338184i \(-0.890187\pi\)
0.177664 0.984091i \(-0.443146\pi\)
\(48\) −2.01044 −0.290182
\(49\) −1.27596 + 6.88273i −0.182279 + 0.983247i
\(50\) −2.92615 −0.413820
\(51\) 3.42208 + 5.92722i 0.479188 + 0.829977i
\(52\) −0.570908 + 0.988841i −0.0791707 + 0.137128i
\(53\) −6.28744 + 10.8902i −0.863647 + 1.49588i 0.00473784 + 0.999989i \(0.498492\pi\)
−0.868385 + 0.495891i \(0.834841\pi\)
\(54\) −0.296764 0.514011i −0.0403845 0.0699480i
\(55\) 20.6257 2.78117
\(56\) −3.66269 4.40410i −0.489447 0.588523i
\(57\) 2.91662 0.386316
\(58\) 0.874324 + 1.51437i 0.114804 + 0.198847i
\(59\) −3.35163 + 5.80519i −0.436345 + 0.755772i −0.997404 0.0720038i \(-0.977061\pi\)
0.561059 + 0.827776i \(0.310394\pi\)
\(60\) 2.59616 4.49668i 0.335162 0.580518i
\(61\) −2.65091 4.59152i −0.339415 0.587884i 0.644908 0.764260i \(-0.276896\pi\)
−0.984323 + 0.176377i \(0.943562\pi\)
\(62\) 0.320109 0.0406539
\(63\) −0.915795 + 2.48220i −0.115379 + 0.312728i
\(64\) −0.742642 −0.0928303
\(65\) −1.09184 1.89112i −0.135426 0.234564i
\(66\) 1.94242 3.36437i 0.239096 0.414126i
\(67\) 1.36814 2.36969i 0.167145 0.289504i −0.770270 0.637718i \(-0.779878\pi\)
0.937415 + 0.348214i \(0.113212\pi\)
\(68\) 5.63865 + 9.76643i 0.683787 + 1.18435i
\(69\) 1.00000 0.120386
\(70\) 4.87697 0.837905i 0.582909 0.100149i
\(71\) −0.587217 −0.0696899 −0.0348449 0.999393i \(-0.511094\pi\)
−0.0348449 + 0.999393i \(0.511094\pi\)
\(72\) −1.08251 1.87497i −0.127575 0.220967i
\(73\) −5.26330 + 9.11630i −0.616023 + 1.06698i 0.374181 + 0.927356i \(0.377924\pi\)
−0.990204 + 0.139627i \(0.955410\pi\)
\(74\) −0.859467 + 1.48864i −0.0999110 + 0.173051i
\(75\) 2.46504 + 4.26958i 0.284639 + 0.493009i
\(76\) 4.80579 0.551262
\(77\) −17.0673 + 2.93230i −1.94500 + 0.334167i
\(78\) −0.411295 −0.0465699
\(79\) 6.69351 + 11.5935i 0.753078 + 1.30437i 0.946324 + 0.323219i \(0.104765\pi\)
−0.193246 + 0.981150i \(0.561902\pi\)
\(80\) 3.16766 5.48654i 0.354155 0.613414i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 2.75062 + 4.76422i 0.303755 + 0.526120i
\(83\) −9.77501 −1.07295 −0.536473 0.843917i \(-0.680244\pi\)
−0.536473 + 0.843917i \(0.680244\pi\)
\(84\) −1.50898 + 4.08998i −0.164643 + 0.446254i
\(85\) −21.5674 −2.33931
\(86\) −1.26731 2.19505i −0.136658 0.236698i
\(87\) 1.47310 2.55148i 0.157932 0.273547i
\(88\) 7.08542 12.2723i 0.755308 1.30823i
\(89\) −1.46470 2.53693i −0.155258 0.268914i 0.777895 0.628394i \(-0.216287\pi\)
−0.933153 + 0.359480i \(0.882954\pi\)
\(90\) 1.87033 0.197150
\(91\) 1.17232 + 1.40963i 0.122893 + 0.147770i
\(92\) 1.64772 0.171787
\(93\) −0.269666 0.467076i −0.0279631 0.0484335i
\(94\) 3.10636 5.38037i 0.320397 0.554943i
\(95\) −4.59544 + 7.95953i −0.471482 + 0.816631i
\(96\) −2.76166 4.78333i −0.281860 0.488196i
\(97\) −8.14170 −0.826664 −0.413332 0.910580i \(-0.635635\pi\)
−0.413332 + 0.910580i \(0.635635\pi\)
\(98\) −3.91645 + 1.38669i −0.395622 + 0.140077i
\(99\) −6.54534 −0.657831
\(100\) 4.06171 + 7.03509i 0.406171 + 0.703509i
\(101\) 0.0666245 0.115397i 0.00662939 0.0114824i −0.862692 0.505730i \(-0.831223\pi\)
0.869321 + 0.494248i \(0.164556\pi\)
\(102\) −2.03110 + 3.51798i −0.201109 + 0.348332i
\(103\) 5.50533 + 9.53551i 0.542456 + 0.939562i 0.998762 + 0.0497387i \(0.0158389\pi\)
−0.456306 + 0.889823i \(0.650828\pi\)
\(104\) −1.50029 −0.147115
\(105\) −5.33105 6.41019i −0.520258 0.625570i
\(106\) −7.46355 −0.724924
\(107\) 4.28755 + 7.42625i 0.414493 + 0.717923i 0.995375 0.0960649i \(-0.0306256\pi\)
−0.580882 + 0.813988i \(0.697292\pi\)
\(108\) −0.823862 + 1.42697i −0.0792762 + 0.137310i
\(109\) −5.64113 + 9.77072i −0.540322 + 0.935865i 0.458563 + 0.888662i \(0.348364\pi\)
−0.998885 + 0.0472034i \(0.984969\pi\)
\(110\) 6.12097 + 10.6018i 0.583612 + 1.01084i
\(111\) 2.89613 0.274888
\(112\) −1.84115 + 4.99032i −0.173973 + 0.471541i
\(113\) 3.14165 0.295541 0.147771 0.989022i \(-0.452790\pi\)
0.147771 + 0.989022i \(0.452790\pi\)
\(114\) 0.865550 + 1.49918i 0.0810662 + 0.140411i
\(115\) −1.57560 + 2.72902i −0.146926 + 0.254483i
\(116\) 2.42726 4.20413i 0.225365 0.390344i
\(117\) 0.346483 + 0.600126i 0.0320323 + 0.0554816i
\(118\) −3.97858 −0.366258
\(119\) 17.8465 3.06618i 1.63598 0.281076i
\(120\) 6.82244 0.622801
\(121\) −15.9207 27.5755i −1.44734 2.50687i
\(122\) 1.57339 2.72520i 0.142448 0.246728i
\(123\) 4.63435 8.02694i 0.417866 0.723765i
\(124\) −0.444336 0.769612i −0.0399025 0.0691132i
\(125\) 0.220311 0.0197052
\(126\) −1.54765 + 0.265900i −0.137876 + 0.0236882i
\(127\) −12.9337 −1.14768 −0.573841 0.818967i \(-0.694547\pi\)
−0.573841 + 0.818967i \(0.694547\pi\)
\(128\) −5.74370 9.94838i −0.507676 0.879321i
\(129\) −2.13522 + 3.69830i −0.187995 + 0.325617i
\(130\) 0.648037 1.12243i 0.0568366 0.0984438i
\(131\) −3.07333 5.32317i −0.268518 0.465088i 0.699961 0.714181i \(-0.253201\pi\)
−0.968479 + 0.249094i \(0.919867\pi\)
\(132\) −10.7849 −0.938706
\(133\) 2.67103 7.23965i 0.231608 0.627757i
\(134\) 1.62406 0.140298
\(135\) −1.57560 2.72902i −0.135606 0.234877i
\(136\) −7.40891 + 12.8326i −0.635309 + 1.10039i
\(137\) 9.80611 16.9847i 0.837792 1.45110i −0.0539443 0.998544i \(-0.517179\pi\)
0.891737 0.452555i \(-0.149487\pi\)
\(138\) 0.296764 + 0.514011i 0.0252622 + 0.0437555i
\(139\) −11.8453 −1.00470 −0.502352 0.864663i \(-0.667532\pi\)
−0.502352 + 0.864663i \(0.667532\pi\)
\(140\) −8.78410 10.5622i −0.742392 0.892670i
\(141\) −10.4674 −0.881517
\(142\) −0.174265 0.301836i −0.0146240 0.0253295i
\(143\) −2.26785 + 3.92803i −0.189647 + 0.328478i
\(144\) −1.00522 + 1.74109i −0.0837684 + 0.145091i
\(145\) 4.64203 + 8.04023i 0.385499 + 0.667704i
\(146\) −6.24784 −0.517075
\(147\) 5.32264 + 4.54637i 0.439004 + 0.374979i
\(148\) 4.77202 0.392258
\(149\) 2.58687 + 4.48059i 0.211925 + 0.367064i 0.952317 0.305111i \(-0.0986935\pi\)
−0.740392 + 0.672175i \(0.765360\pi\)
\(150\) −1.46307 + 2.53412i −0.119459 + 0.206910i
\(151\) 2.52507 4.37355i 0.205487 0.355914i −0.744801 0.667287i \(-0.767455\pi\)
0.950288 + 0.311373i \(0.100789\pi\)
\(152\) 3.15729 + 5.46858i 0.256090 + 0.443560i
\(153\) 6.84417 0.553318
\(154\) −6.57219 7.90256i −0.529602 0.636806i
\(155\) 1.69955 0.136511
\(156\) 0.570908 + 0.988841i 0.0457092 + 0.0791707i
\(157\) 4.82407 8.35553i 0.385003 0.666844i −0.606767 0.794880i \(-0.707534\pi\)
0.991770 + 0.128036i \(0.0408672\pi\)
\(158\) −3.97279 + 6.88107i −0.316058 + 0.547428i
\(159\) 6.28744 + 10.8902i 0.498627 + 0.863647i
\(160\) 17.4051 1.37599
\(161\) 0.915795 2.48220i 0.0721748 0.195625i
\(162\) −0.593528 −0.0466320
\(163\) −11.9663 20.7262i −0.937271 1.62340i −0.770534 0.637399i \(-0.780010\pi\)
−0.166737 0.986001i \(-0.553323\pi\)
\(164\) 7.63614 13.2262i 0.596282 1.03279i
\(165\) 10.3129 17.8624i 0.802854 1.39058i
\(166\) −2.90087 5.02446i −0.225151 0.389974i
\(167\) 12.0368 0.931435 0.465718 0.884933i \(-0.345796\pi\)
0.465718 + 0.884933i \(0.345796\pi\)
\(168\) −5.64541 + 0.969929i −0.435553 + 0.0748317i
\(169\) −12.5198 −0.963061
\(170\) −6.40043 11.0859i −0.490890 0.850247i
\(171\) 1.45831 2.52587i 0.111520 0.193158i
\(172\) −3.51825 + 6.09378i −0.268264 + 0.464647i
\(173\) 8.30191 + 14.3793i 0.631182 + 1.09324i 0.987310 + 0.158803i \(0.0507634\pi\)
−0.356128 + 0.934437i \(0.615903\pi\)
\(174\) 1.74865 0.132565
\(175\) 12.8554 2.20867i 0.971779 0.166960i
\(176\) −13.1590 −0.991899
\(177\) 3.35163 + 5.80519i 0.251924 + 0.436345i
\(178\) 0.869340 1.50574i 0.0651598 0.112860i
\(179\) −1.62269 + 2.81058i −0.121285 + 0.210073i −0.920275 0.391273i \(-0.872035\pi\)
0.798989 + 0.601345i \(0.205368\pi\)
\(180\) −2.59616 4.49668i −0.193506 0.335162i
\(181\) 14.3797 1.06883 0.534417 0.845221i \(-0.320531\pi\)
0.534417 + 0.845221i \(0.320531\pi\)
\(182\) −0.376662 + 1.02092i −0.0279200 + 0.0756753i
\(183\) −5.30183 −0.391923
\(184\) 1.08251 + 1.87497i 0.0798040 + 0.138225i
\(185\) −4.56314 + 7.90360i −0.335489 + 0.581084i
\(186\) 0.160055 0.277223i 0.0117358 0.0203270i
\(187\) 22.3987 + 38.7957i 1.63796 + 2.83702i
\(188\) −17.2474 −1.25790
\(189\) 1.69175 + 2.03420i 0.123057 + 0.147966i
\(190\) −5.45505 −0.395751
\(191\) 4.94456 + 8.56423i 0.357776 + 0.619686i 0.987589 0.157061i \(-0.0502019\pi\)
−0.629813 + 0.776747i \(0.716869\pi\)
\(192\) −0.371321 + 0.643147i −0.0267978 + 0.0464151i
\(193\) 1.79525 3.10947i 0.129225 0.223825i −0.794151 0.607720i \(-0.792084\pi\)
0.923377 + 0.383895i \(0.125418\pi\)
\(194\) −2.41616 4.18492i −0.173471 0.300460i
\(195\) −2.18368 −0.156376
\(196\) 8.77024 + 7.49117i 0.626446 + 0.535084i
\(197\) 8.21279 0.585137 0.292569 0.956245i \(-0.405490\pi\)
0.292569 + 0.956245i \(0.405490\pi\)
\(198\) −1.94242 3.36437i −0.138042 0.239096i
\(199\) −1.12253 + 1.94429i −0.0795743 + 0.137827i −0.903066 0.429501i \(-0.858689\pi\)
0.823492 + 0.567328i \(0.192023\pi\)
\(200\) −5.33689 + 9.24376i −0.377375 + 0.653633i
\(201\) −1.36814 2.36969i −0.0965013 0.167145i
\(202\) 0.0790871 0.00556455
\(203\) −4.98422 5.99315i −0.349824 0.420637i
\(204\) 11.2773 0.789569
\(205\) 14.6038 + 25.2945i 1.01997 + 1.76665i
\(206\) −3.26757 + 5.65960i −0.227662 + 0.394323i
\(207\) 0.500000 0.866025i 0.0347524 0.0601929i
\(208\) 0.696583 + 1.20652i 0.0482994 + 0.0836570i
\(209\) 19.0903 1.32050
\(210\) 1.71284 4.64253i 0.118197 0.320365i
\(211\) −23.0784 −1.58878 −0.794392 0.607406i \(-0.792210\pi\)
−0.794392 + 0.607406i \(0.792210\pi\)
\(212\) 10.3600 + 17.9440i 0.711526 + 1.23240i
\(213\) −0.293609 + 0.508545i −0.0201177 + 0.0348449i
\(214\) −2.54478 + 4.40769i −0.173958 + 0.301304i
\(215\) −6.72850 11.6541i −0.458880 0.794804i
\(216\) −2.16503 −0.147311
\(217\) −1.40634 + 0.241620i −0.0954683 + 0.0164023i
\(218\) −6.69634 −0.453533
\(219\) 5.26330 + 9.11630i 0.355661 + 0.616023i
\(220\) 16.9927 29.4323i 1.14565 1.98432i
\(221\) 2.37139 4.10736i 0.159517 0.276291i
\(222\) 0.859467 + 1.48864i 0.0576837 + 0.0999110i
\(223\) 4.28573 0.286993 0.143497 0.989651i \(-0.454165\pi\)
0.143497 + 0.989651i \(0.454165\pi\)
\(224\) −14.4023 + 2.47443i −0.962293 + 0.165330i
\(225\) 4.93009 0.328672
\(226\) 0.932328 + 1.61484i 0.0620175 + 0.107418i
\(227\) −5.46669 + 9.46858i −0.362837 + 0.628452i −0.988427 0.151701i \(-0.951525\pi\)
0.625590 + 0.780152i \(0.284858\pi\)
\(228\) 2.40290 4.16194i 0.159136 0.275631i
\(229\) −2.78875 4.83026i −0.184286 0.319193i 0.759050 0.651033i \(-0.225664\pi\)
−0.943336 + 0.331840i \(0.892331\pi\)
\(230\) −1.87033 −0.123326
\(231\) −5.99419 + 16.2468i −0.394389 + 1.06896i
\(232\) 6.37859 0.418775
\(233\) 11.1353 + 19.2869i 0.729497 + 1.26353i 0.957096 + 0.289772i \(0.0935793\pi\)
−0.227598 + 0.973755i \(0.573087\pi\)
\(234\) −0.205647 + 0.356192i −0.0134436 + 0.0232850i
\(235\) 16.4925 28.5659i 1.07585 1.86343i
\(236\) 5.52256 + 9.56536i 0.359488 + 0.622652i
\(237\) 13.3870 0.869580
\(238\) 6.87225 + 8.26335i 0.445462 + 0.535634i
\(239\) 13.3901 0.866134 0.433067 0.901362i \(-0.357431\pi\)
0.433067 + 0.901362i \(0.357431\pi\)
\(240\) −3.16766 5.48654i −0.204471 0.354155i
\(241\) 1.64322 2.84615i 0.105849 0.183336i −0.808236 0.588859i \(-0.799577\pi\)
0.914085 + 0.405523i \(0.132911\pi\)
\(242\) 9.44941 16.3669i 0.607431 1.05210i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) −8.73595 −0.559262
\(245\) −20.7935 + 7.36233i −1.32845 + 0.470362i
\(246\) 5.50124 0.350746
\(247\) −1.01056 1.75034i −0.0643004 0.111372i
\(248\) 0.583835 1.01123i 0.0370736 0.0642133i
\(249\) −4.88750 + 8.46540i −0.309733 + 0.536473i
\(250\) 0.0653804 + 0.113242i 0.00413502 + 0.00716207i
\(251\) 10.2769 0.648672 0.324336 0.945942i \(-0.394859\pi\)
0.324336 + 0.945942i \(0.394859\pi\)
\(252\) 2.78754 + 3.35180i 0.175598 + 0.211144i
\(253\) 6.54534 0.411502
\(254\) −3.83827 6.64807i −0.240834 0.417137i
\(255\) −10.7837 + 18.6779i −0.675301 + 1.16966i
\(256\) 2.66641 4.61835i 0.166650 0.288647i
\(257\) −11.7035 20.2711i −0.730046 1.26448i −0.956863 0.290539i \(-0.906165\pi\)
0.226817 0.973937i \(-0.427168\pi\)
\(258\) −2.53462 −0.157799
\(259\) 2.65226 7.18877i 0.164803 0.446688i
\(260\) −3.59809 −0.223144
\(261\) −1.47310 2.55148i −0.0911824 0.157932i
\(262\) 1.82411 3.15945i 0.112694 0.195192i
\(263\) 13.6828 23.6993i 0.843719 1.46136i −0.0430104 0.999075i \(-0.513695\pi\)
0.886729 0.462289i \(-0.152972\pi\)
\(264\) −7.08542 12.2723i −0.436078 0.755308i
\(265\) −39.6260 −2.43421
\(266\) 4.51392 0.775530i 0.276766 0.0475508i
\(267\) −2.92939 −0.179276
\(268\) −2.25432 3.90460i −0.137705 0.238511i
\(269\) 13.1885 22.8432i 0.804119 1.39277i −0.112765 0.993622i \(-0.535971\pi\)
0.916884 0.399153i \(-0.130696\pi\)
\(270\) 0.935165 1.61975i 0.0569123 0.0985750i
\(271\) −2.15218 3.72768i −0.130736 0.226441i 0.793225 0.608929i \(-0.208401\pi\)
−0.923960 + 0.382488i \(0.875067\pi\)
\(272\) 13.7598 0.834311
\(273\) 1.80694 0.310447i 0.109361 0.0187891i
\(274\) 11.6404 0.703223
\(275\) 16.1345 + 27.9459i 0.972950 + 1.68520i
\(276\) 0.823862 1.42697i 0.0495907 0.0858935i
\(277\) 7.32466 12.6867i 0.440096 0.762269i −0.557600 0.830110i \(-0.688278\pi\)
0.997696 + 0.0678408i \(0.0216110\pi\)
\(278\) −3.51526 6.08861i −0.210831 0.365171i
\(279\) −0.539333 −0.0322890
\(280\) 6.24796 16.9347i 0.373387 1.01204i
\(281\) 17.0380 1.01640 0.508202 0.861238i \(-0.330310\pi\)
0.508202 + 0.861238i \(0.330310\pi\)
\(282\) −3.10636 5.38037i −0.184981 0.320397i
\(283\) 8.95641 15.5130i 0.532403 0.922150i −0.466881 0.884320i \(-0.654622\pi\)
0.999284 0.0378294i \(-0.0120443\pi\)
\(284\) −0.483786 + 0.837942i −0.0287074 + 0.0497227i
\(285\) 4.59544 + 7.95953i 0.272210 + 0.471482i
\(286\) −2.69206 −0.159185
\(287\) −15.6803 18.8544i −0.925582 1.11294i
\(288\) −5.52331 −0.325464
\(289\) −14.9213 25.8445i −0.877725 1.52026i
\(290\) −2.75517 + 4.77210i −0.161789 + 0.280228i
\(291\) −4.07085 + 7.05092i −0.238637 + 0.413332i
\(292\) 8.67247 + 15.0212i 0.507518 + 0.879047i
\(293\) −18.7699 −1.09655 −0.548273 0.836299i \(-0.684715\pi\)
−0.548273 + 0.836299i \(0.684715\pi\)
\(294\) −0.757316 + 4.08509i −0.0441676 + 0.238248i
\(295\) −21.1233 −1.22985
\(296\) 3.13510 + 5.43015i 0.182224 + 0.315621i
\(297\) −3.27267 + 5.66843i −0.189900 + 0.328916i
\(298\) −1.53538 + 2.65936i −0.0889422 + 0.154052i
\(299\) −0.346483 0.600126i −0.0200376 0.0347062i
\(300\) 8.12342 0.469006
\(301\) 7.22451 + 8.68692i 0.416414 + 0.500706i
\(302\) 2.99740 0.172481
\(303\) −0.0666245 0.115397i −0.00382748 0.00662939i
\(304\) 2.93185 5.07812i 0.168153 0.291250i
\(305\) 8.35357 14.4688i 0.478324 0.828482i
\(306\) 2.03110 + 3.51798i 0.116111 + 0.201109i
\(307\) −1.42373 −0.0812566 −0.0406283 0.999174i \(-0.512936\pi\)
−0.0406283 + 0.999174i \(0.512936\pi\)
\(308\) −9.87677 + 26.7703i −0.562781 + 1.52538i
\(309\) 11.0107 0.626374
\(310\) 0.504365 + 0.873586i 0.0286460 + 0.0496164i
\(311\) 2.21236 3.83191i 0.125451 0.217288i −0.796458 0.604694i \(-0.793295\pi\)
0.921909 + 0.387406i \(0.126629\pi\)
\(312\) −0.750145 + 1.29929i −0.0424686 + 0.0735577i
\(313\) −10.8433 18.7811i −0.612898 1.06157i −0.990749 0.135704i \(-0.956670\pi\)
0.377852 0.925866i \(-0.376663\pi\)
\(314\) 5.72644 0.323162
\(315\) −8.21691 + 1.41173i −0.462970 + 0.0795422i
\(316\) 22.0581 1.24086
\(317\) 5.81349 + 10.0693i 0.326518 + 0.565546i 0.981818 0.189822i \(-0.0607912\pi\)
−0.655300 + 0.755369i \(0.727458\pi\)
\(318\) −3.73178 + 6.46363i −0.209268 + 0.362462i
\(319\) 9.64191 16.7003i 0.539844 0.935036i
\(320\) −1.17011 2.02669i −0.0654111 0.113295i
\(321\) 8.57510 0.478615
\(322\) 1.54765 0.265900i 0.0862473 0.0148180i
\(323\) −19.9619 −1.11071
\(324\) 0.823862 + 1.42697i 0.0457701 + 0.0792762i
\(325\) 1.70819 2.95867i 0.0947533 0.164118i
\(326\) 7.10232 12.3016i 0.393361 0.681322i
\(327\) 5.64113 + 9.77072i 0.311955 + 0.540322i
\(328\) 20.0670 1.10802
\(329\) −9.58603 + 25.9823i −0.528495 + 1.43245i
\(330\) 12.2419 0.673897
\(331\) −3.94742 6.83713i −0.216970 0.375803i 0.736910 0.675991i \(-0.236284\pi\)
−0.953880 + 0.300188i \(0.902951\pi\)
\(332\) −8.05326 + 13.9486i −0.441980 + 0.765531i
\(333\) 1.44806 2.50812i 0.0793534 0.137444i
\(334\) 3.57209 + 6.18704i 0.195456 + 0.338540i
\(335\) 8.62259 0.471102
\(336\) 3.40117 + 4.08965i 0.185549 + 0.223108i
\(337\) 12.1596 0.662378 0.331189 0.943565i \(-0.392550\pi\)
0.331189 + 0.943565i \(0.392550\pi\)
\(338\) −3.71543 6.43531i −0.202093 0.350035i
\(339\) 1.57082 2.72074i 0.0853154 0.147771i
\(340\) −17.7685 + 30.7760i −0.963634 + 1.66906i
\(341\) −1.76506 3.05717i −0.0955833 0.165555i
\(342\) 1.73110 0.0936071
\(343\) 16.1595 9.04831i 0.872529 0.488563i
\(344\) −9.24561 −0.498490
\(345\) 1.57560 + 2.72902i 0.0848276 + 0.146926i
\(346\) −4.92742 + 8.53454i −0.264900 + 0.458820i
\(347\) −7.00958 + 12.1409i −0.376294 + 0.651760i −0.990520 0.137370i \(-0.956135\pi\)
0.614226 + 0.789130i \(0.289468\pi\)
\(348\) −2.42726 4.20413i −0.130115 0.225365i
\(349\) 2.94132 0.157445 0.0787226 0.996897i \(-0.474916\pi\)
0.0787226 + 0.996897i \(0.474916\pi\)
\(350\) 4.95031 + 5.95237i 0.264605 + 0.318168i
\(351\) 0.692965 0.0369878
\(352\) −18.0760 31.3085i −0.963453 1.66875i
\(353\) 5.03670 8.72382i 0.268076 0.464322i −0.700289 0.713860i \(-0.746945\pi\)
0.968365 + 0.249538i \(0.0802787\pi\)
\(354\) −1.98929 + 3.44555i −0.105729 + 0.183129i
\(355\) −0.925221 1.60253i −0.0491056 0.0850534i
\(356\) −4.82683 −0.255822
\(357\) 6.26786 16.9886i 0.331730 0.899132i
\(358\) −1.92622 −0.101804
\(359\) 16.2478 + 28.1420i 0.857526 + 1.48528i 0.874282 + 0.485418i \(0.161333\pi\)
−0.0167563 + 0.999860i \(0.505334\pi\)
\(360\) 3.41122 5.90841i 0.179787 0.311401i
\(361\) 5.24665 9.08747i 0.276140 0.478288i
\(362\) 4.26738 + 7.39132i 0.224289 + 0.388479i
\(363\) −31.8415 −1.67124
\(364\) 2.97734 0.511532i 0.156055 0.0268115i
\(365\) −33.1715 −1.73627
\(366\) −1.57339 2.72520i −0.0822426 0.142448i
\(367\) −12.1371 + 21.0221i −0.633552 + 1.09734i 0.353269 + 0.935522i \(0.385070\pi\)
−0.986820 + 0.161821i \(0.948263\pi\)
\(368\) 1.00522 1.74109i 0.0524008 0.0907608i
\(369\) −4.63435 8.02694i −0.241255 0.417866i
\(370\) −5.41671 −0.281601
\(371\) 32.7896 5.63353i 1.70235 0.292478i
\(372\) −0.888672 −0.0460755
\(373\) 11.0313 + 19.1069i 0.571181 + 0.989315i 0.996445 + 0.0842458i \(0.0268481\pi\)
−0.425264 + 0.905070i \(0.639819\pi\)
\(374\) −13.2943 + 23.0264i −0.687430 + 1.19066i
\(375\) 0.110155 0.190795i 0.00568840 0.00985261i
\(376\) −11.3311 19.6261i −0.584359 1.01214i
\(377\) −2.04161 −0.105148
\(378\) −0.543550 + 1.47326i −0.0279572 + 0.0757761i
\(379\) 0.844591 0.0433837 0.0216919 0.999765i \(-0.493095\pi\)
0.0216919 + 0.999765i \(0.493095\pi\)
\(380\) 7.57202 + 13.1151i 0.388436 + 0.672791i
\(381\) −6.46686 + 11.2009i −0.331307 + 0.573841i
\(382\) −2.93474 + 5.08311i −0.150154 + 0.260075i
\(383\) −16.5176 28.6093i −0.844009 1.46187i −0.886479 0.462769i \(-0.846856\pi\)
0.0424697 0.999098i \(-0.486477\pi\)
\(384\) −11.4874 −0.586214
\(385\) −34.8936 41.9568i −1.77834 2.13832i
\(386\) 2.13107 0.108469
\(387\) 2.13522 + 3.69830i 0.108539 + 0.187995i
\(388\) −6.70763 + 11.6180i −0.340529 + 0.589813i
\(389\) −0.386406 + 0.669275i −0.0195916 + 0.0339336i −0.875655 0.482937i \(-0.839570\pi\)
0.856063 + 0.516871i \(0.172903\pi\)
\(390\) −0.648037 1.12243i −0.0328146 0.0568366i
\(391\) −6.84417 −0.346125
\(392\) −2.76248 + 14.9013i −0.139526 + 0.752629i
\(393\) −6.14667 −0.310058
\(394\) 2.43726 + 4.22146i 0.122788 + 0.212674i
\(395\) −21.0926 + 36.5335i −1.06128 + 1.83820i
\(396\) −5.39246 + 9.34001i −0.270981 + 0.469353i
\(397\) 10.5690 + 18.3061i 0.530444 + 0.918756i 0.999369 + 0.0355178i \(0.0113080\pi\)
−0.468925 + 0.883238i \(0.655359\pi\)
\(398\) −1.33251 −0.0667928
\(399\) −4.93420 5.93300i −0.247019 0.297022i
\(400\) 9.91165 0.495583
\(401\) −14.1572 24.5209i −0.706975 1.22452i −0.965974 0.258639i \(-0.916726\pi\)
0.258999 0.965878i \(-0.416607\pi\)
\(402\) 0.812031 1.40648i 0.0405004 0.0701488i
\(403\) −0.186870 + 0.323668i −0.00930863 + 0.0161230i
\(404\) −0.109779 0.190142i −0.00546170 0.00945994i
\(405\) −3.15120 −0.156585
\(406\) 1.60140 4.34050i 0.0794763 0.215415i
\(407\) 18.9561 0.939621
\(408\) 7.40891 + 12.8326i 0.366796 + 0.635309i
\(409\) 11.1572 19.3248i 0.551688 0.955551i −0.446465 0.894801i \(-0.647317\pi\)
0.998153 0.0607502i \(-0.0193493\pi\)
\(410\) −8.66777 + 15.0130i −0.428071 + 0.741440i
\(411\) −9.80611 16.9847i −0.483700 0.837792i
\(412\) 18.1425 0.893818
\(413\) 17.4791 3.00305i 0.860088 0.147770i
\(414\) 0.593528 0.0291703
\(415\) −15.4015 26.6762i −0.756031 1.30948i
\(416\) −1.91373 + 3.31468i −0.0938284 + 0.162516i
\(417\) −5.92265 + 10.2583i −0.290033 + 0.502352i
\(418\) 5.66532 + 9.81262i 0.277100 + 0.479951i
\(419\) −5.99719 −0.292982 −0.146491 0.989212i \(-0.546798\pi\)
−0.146491 + 0.989212i \(0.546798\pi\)
\(420\) −13.5392 + 2.32615i −0.660645 + 0.113504i
\(421\) 12.4472 0.606638 0.303319 0.952889i \(-0.401905\pi\)
0.303319 + 0.952889i \(0.401905\pi\)
\(422\) −6.84885 11.8626i −0.333397 0.577460i
\(423\) −5.23372 + 9.06507i −0.254472 + 0.440759i
\(424\) −13.6125 + 23.5775i −0.661081 + 1.14503i
\(425\) −16.8712 29.2217i −0.818372 1.41746i
\(426\) −0.348530 −0.0168863
\(427\) −4.85539 + 13.1602i −0.234969 + 0.636867i
\(428\) 14.1294 0.682970
\(429\) 2.26785 + 3.92803i 0.109493 + 0.189647i
\(430\) 3.99356 6.91704i 0.192586 0.333570i
\(431\) −2.69497 + 4.66783i −0.129812 + 0.224842i −0.923604 0.383349i \(-0.874771\pi\)
0.793791 + 0.608190i \(0.208104\pi\)
\(432\) 1.00522 + 1.74109i 0.0483637 + 0.0837684i
\(433\) −32.6738 −1.57020 −0.785102 0.619366i \(-0.787390\pi\)
−0.785102 + 0.619366i \(0.787390\pi\)
\(434\) −0.541546 0.651167i −0.0259950 0.0312570i
\(435\) 9.28405 0.445136
\(436\) 9.29502 + 16.0994i 0.445151 + 0.771024i
\(437\) −1.45831 + 2.52587i −0.0697605 + 0.120829i
\(438\) −3.12392 + 5.41079i −0.149267 + 0.258537i
\(439\) −0.0144158 0.0249690i −0.000688030 0.00119170i 0.865681 0.500596i \(-0.166886\pi\)
−0.866369 + 0.499404i \(0.833552\pi\)
\(440\) 44.6552 2.12885
\(441\) 6.59859 2.33635i 0.314219 0.111255i
\(442\) 2.81497 0.133894
\(443\) −8.46637 14.6642i −0.402249 0.696716i 0.591748 0.806123i \(-0.298438\pi\)
−0.993997 + 0.109407i \(0.965105\pi\)
\(444\) 2.38601 4.13269i 0.113235 0.196129i
\(445\) 4.61556 7.99438i 0.218799 0.378970i
\(446\) 1.27185 + 2.20291i 0.0602239 + 0.104311i
\(447\) 5.17374 0.244709
\(448\) 1.25637 + 1.51068i 0.0593577 + 0.0713731i
\(449\) 20.8257 0.982825 0.491412 0.870927i \(-0.336481\pi\)
0.491412 + 0.870927i \(0.336481\pi\)
\(450\) 1.46307 + 2.53412i 0.0689699 + 0.119459i
\(451\) 30.3334 52.5390i 1.42835 2.47397i
\(452\) 2.58828 4.48304i 0.121743 0.210864i
\(453\) −2.52507 4.37355i −0.118638 0.205487i
\(454\) −6.48927 −0.304556
\(455\) −1.99980 + 5.42032i −0.0937520 + 0.254108i
\(456\) 6.31457 0.295707
\(457\) 7.17566 + 12.4286i 0.335663 + 0.581386i 0.983612 0.180298i \(-0.0577063\pi\)
−0.647949 + 0.761684i \(0.724373\pi\)
\(458\) 1.65520 2.86690i 0.0773426 0.133961i
\(459\) 3.42208 5.92722i 0.159729 0.276659i
\(460\) 2.59616 + 4.49668i 0.121046 + 0.209659i
\(461\) −3.54822 −0.165257 −0.0826286 0.996580i \(-0.526332\pi\)
−0.0826286 + 0.996580i \(0.526332\pi\)
\(462\) −10.1299 + 1.74040i −0.471286 + 0.0809710i
\(463\) 12.2267 0.568223 0.284111 0.958791i \(-0.408301\pi\)
0.284111 + 0.958791i \(0.408301\pi\)
\(464\) −2.96157 5.12960i −0.137488 0.238136i
\(465\) 0.849774 1.47185i 0.0394073 0.0682555i
\(466\) −6.60911 + 11.4473i −0.306161 + 0.530287i
\(467\) 14.2930 + 24.7562i 0.661401 + 1.14558i 0.980248 + 0.197774i \(0.0633713\pi\)
−0.318846 + 0.947806i \(0.603295\pi\)
\(468\) 1.14182 0.0527804
\(469\) −7.13499 + 1.22585i −0.329463 + 0.0566045i
\(470\) 19.5776 0.903045
\(471\) −4.82407 8.35553i −0.222281 0.385003i
\(472\) −7.25637 + 12.5684i −0.334002 + 0.578508i
\(473\) −13.9757 + 24.2066i −0.642604 + 1.11302i
\(474\) 3.97279 + 6.88107i 0.182476 + 0.316058i
\(475\) −14.3792 −0.659763
\(476\) 10.3277 27.9925i 0.473369 1.28304i
\(477\) 12.5749 0.575765
\(478\) 3.97370 + 6.88266i 0.181753 + 0.314805i
\(479\) −15.1346 + 26.2138i −0.691516 + 1.19774i 0.279825 + 0.960051i \(0.409724\pi\)
−0.971341 + 0.237690i \(0.923610\pi\)
\(480\) 8.70254 15.0732i 0.397215 0.687996i
\(481\) −1.00346 1.73804i −0.0457537 0.0792478i
\(482\) 1.95060 0.0888474
\(483\) −1.69175 2.03420i −0.0769773 0.0925594i
\(484\) −52.4660 −2.38482
\(485\) −12.8281 22.2189i −0.582493 1.00891i
\(486\) −0.296764 + 0.514011i −0.0134615 + 0.0233160i
\(487\) −14.4684 + 25.0601i −0.655627 + 1.13558i 0.326109 + 0.945332i \(0.394262\pi\)
−0.981736 + 0.190247i \(0.939071\pi\)
\(488\) −5.73930 9.94077i −0.259806 0.449997i
\(489\) −23.9325 −1.08227
\(490\) −9.95509 8.50322i −0.449725 0.384136i
\(491\) −11.9185 −0.537876 −0.268938 0.963158i \(-0.586673\pi\)
−0.268938 + 0.963158i \(0.586673\pi\)
\(492\) −7.63614 13.2262i −0.344264 0.596282i
\(493\) −10.0821 + 17.4627i −0.454076 + 0.786482i
\(494\) 0.599796 1.03888i 0.0269861 0.0467413i
\(495\) −10.3129 17.8624i −0.463528 0.802854i
\(496\) −1.08430 −0.0486864
\(497\) 0.993426 + 1.19452i 0.0445612 + 0.0535815i
\(498\) −5.80174 −0.259982
\(499\) −5.18689 8.98396i −0.232197 0.402177i 0.726257 0.687423i \(-0.241258\pi\)
−0.958454 + 0.285246i \(0.907925\pi\)
\(500\) 0.181506 0.314377i 0.00811719 0.0140594i
\(501\) 6.01840 10.4242i 0.268882 0.465718i
\(502\) 3.04982 + 5.28243i 0.136120 + 0.235767i
\(503\) 22.4429 1.00068 0.500340 0.865829i \(-0.333209\pi\)
0.500340 + 0.865829i \(0.333209\pi\)
\(504\) −1.98272 + 5.37403i −0.0883175 + 0.239378i
\(505\) 0.419895 0.0186851
\(506\) 1.94242 + 3.36437i 0.0863512 + 0.149565i
\(507\) −6.25990 + 10.8425i −0.278012 + 0.481531i
\(508\) −10.6556 + 18.4560i −0.472766 + 0.818855i
\(509\) 2.98190 + 5.16481i 0.132171 + 0.228926i 0.924513 0.381150i \(-0.124472\pi\)
−0.792342 + 0.610077i \(0.791139\pi\)
\(510\) −12.8009 −0.566831
\(511\) 27.4486 4.71590i 1.21425 0.208619i
\(512\) −19.8096 −0.875470
\(513\) −1.45831 2.52587i −0.0643861 0.111520i
\(514\) 6.94637 12.0315i 0.306391 0.530686i
\(515\) −17.3484 + 30.0483i −0.764462 + 1.32409i
\(516\) 3.51825 + 6.09378i 0.154882 + 0.268264i
\(517\) −68.5129 −3.01319
\(518\) 4.48220 0.770080i 0.196937 0.0338354i
\(519\) 16.6038 0.728827
\(520\) −2.36386 4.09432i −0.103662 0.179548i
\(521\) −0.510936 + 0.884968i −0.0223845 + 0.0387711i −0.877001 0.480489i \(-0.840459\pi\)
0.854616 + 0.519260i \(0.173792\pi\)
\(522\) 0.874324 1.51437i 0.0382681 0.0662824i
\(523\) −2.49185 4.31600i −0.108961 0.188726i 0.806389 0.591386i \(-0.201419\pi\)
−0.915350 + 0.402660i \(0.868086\pi\)
\(524\) −10.1280 −0.442444
\(525\) 4.51495 12.2375i 0.197049 0.534087i
\(526\) 16.2423 0.708197
\(527\) 1.84564 + 3.19675i 0.0803975 + 0.139253i
\(528\) −6.57951 + 11.3961i −0.286337 + 0.495949i
\(529\) −0.500000 + 0.866025i −0.0217391 + 0.0376533i
\(530\) −11.7596 20.3682i −0.510804 0.884738i
\(531\) 6.70326 0.290897
\(532\) −8.13020 9.77595i −0.352489 0.423841i
\(533\) −6.42289 −0.278206
\(534\) −0.869340 1.50574i −0.0376200 0.0651598i
\(535\) −13.5109 + 23.4016i −0.584129 + 1.01174i
\(536\) 2.96207 5.13045i 0.127942 0.221602i
\(537\) 1.62269 + 2.81058i 0.0700242 + 0.121285i
\(538\) 15.6555 0.674958
\(539\) 34.8385 + 29.7576i 1.50060 + 1.28175i
\(540\) −5.19231 −0.223442
\(541\) −7.66700 13.2796i −0.329630 0.570936i 0.652808 0.757523i \(-0.273591\pi\)
−0.982438 + 0.186587i \(0.940257\pi\)
\(542\) 1.27738 2.21249i 0.0548681 0.0950344i
\(543\) 7.18985 12.4532i 0.308546 0.534417i
\(544\) 18.9012 + 32.7379i 0.810384 + 1.40363i
\(545\) −35.5527 −1.52291
\(546\) 0.695808 + 0.836656i 0.0297778 + 0.0358056i
\(547\) −6.89796 −0.294935 −0.147468 0.989067i \(-0.547112\pi\)
−0.147468 + 0.989067i \(0.547112\pi\)
\(548\) −16.1578 27.9861i −0.690225 1.19551i
\(549\) −2.65091 + 4.59152i −0.113138 + 0.195961i
\(550\) −9.57631 + 16.5867i −0.408335 + 0.707258i
\(551\) 4.29647 + 7.44170i 0.183036 + 0.317027i
\(552\) 2.16503 0.0921497
\(553\) 12.2598 33.2292i 0.521338 1.41305i
\(554\) 8.69479 0.369406
\(555\) 4.56314 + 7.90360i 0.193695 + 0.335489i
\(556\) −9.75889 + 16.9029i −0.413869 + 0.716842i
\(557\) −14.7445 + 25.5382i −0.624743 + 1.08209i 0.363847 + 0.931459i \(0.381463\pi\)
−0.988590 + 0.150628i \(0.951870\pi\)
\(558\) −0.160055 0.277223i −0.00677566 0.0117358i
\(559\) 2.95926 0.125163
\(560\) −16.5196 + 2.83821i −0.698081 + 0.119936i
\(561\) 44.7974 1.89135
\(562\) 5.05628 + 8.75773i 0.213286 + 0.369423i
\(563\) 3.61211 6.25636i 0.152232 0.263674i −0.779815 0.626010i \(-0.784687\pi\)
0.932048 + 0.362335i \(0.118020\pi\)
\(564\) −8.62372 + 14.9367i −0.363124 + 0.628950i
\(565\) 4.94998 + 8.57362i 0.208247 + 0.360695i
\(566\) 10.6318 0.446887
\(567\) 2.60755 0.447998i 0.109507 0.0188142i
\(568\) −1.27134 −0.0533443
\(569\) 1.80688 + 3.12960i 0.0757482 + 0.131200i 0.901411 0.432964i \(-0.142532\pi\)
−0.825663 + 0.564163i \(0.809199\pi\)
\(570\) −2.72752 + 4.72421i −0.114243 + 0.197875i
\(571\) 1.26695 2.19442i 0.0530203 0.0918338i −0.838297 0.545214i \(-0.816449\pi\)
0.891317 + 0.453380i \(0.149782\pi\)
\(572\) 3.73679 + 6.47230i 0.156243 + 0.270621i
\(573\) 9.88912 0.413124
\(574\) 5.03801 13.6552i 0.210283 0.569957i
\(575\) −4.93009 −0.205599
\(576\) 0.371321 + 0.643147i 0.0154717 + 0.0267978i
\(577\) 1.05343 1.82459i 0.0438548 0.0759588i −0.843265 0.537498i \(-0.819369\pi\)
0.887120 + 0.461540i \(0.152703\pi\)
\(578\) 8.85623 15.3394i 0.368371 0.638037i
\(579\) −1.79525 3.10947i −0.0746082 0.129225i
\(580\) 15.2976 0.635196
\(581\) 16.5369 + 19.8843i 0.686065 + 0.824941i
\(582\) −4.83233 −0.200306
\(583\) 41.1535 + 71.2799i 1.70440 + 2.95211i
\(584\) −11.3952 + 19.7371i −0.471536 + 0.816725i
\(585\) −1.09184 + 1.89112i −0.0451419 + 0.0781881i
\(586\) −5.57022 9.64791i −0.230104 0.398551i
\(587\) 3.01620 0.124492 0.0622460 0.998061i \(-0.480174\pi\)
0.0622460 + 0.998061i \(0.480174\pi\)
\(588\) 10.8727 3.84967i 0.448381 0.158758i
\(589\) 1.57303 0.0648156
\(590\) −6.26865 10.8576i −0.258076 0.447001i
\(591\) 4.10640 7.11249i 0.168915 0.292569i
\(592\) 2.91125 5.04243i 0.119652 0.207243i
\(593\) −5.22680 9.05308i −0.214639 0.371765i 0.738522 0.674229i \(-0.235524\pi\)
−0.953161 + 0.302464i \(0.902191\pi\)
\(594\) −3.88485 −0.159397
\(595\) 36.4866 + 43.8724i 1.49581 + 1.79859i
\(596\) 8.52489 0.349193
\(597\) 1.12253 + 1.94429i 0.0459423 + 0.0795743i
\(598\) 0.205647 0.356192i 0.00840954 0.0145658i
\(599\) 0.885052 1.53296i 0.0361623 0.0626349i −0.847378 0.530990i \(-0.821820\pi\)
0.883540 + 0.468356i \(0.155153\pi\)
\(600\) 5.33689 + 9.24376i 0.217878 + 0.377375i
\(601\) −37.1024 −1.51344 −0.756720 0.653739i \(-0.773199\pi\)
−0.756720 + 0.653739i \(0.773199\pi\)
\(602\) −2.32120 + 6.29144i −0.0946049 + 0.256420i
\(603\) −2.73628 −0.111430
\(604\) −4.16062 7.20640i −0.169293 0.293224i
\(605\) 50.1695 86.8961i 2.03968 3.53283i
\(606\) 0.0395435 0.0684914i 0.00160635 0.00278227i
\(607\) 4.95018 + 8.57397i 0.200922 + 0.348007i 0.948826 0.315800i \(-0.102273\pi\)
−0.747904 + 0.663807i \(0.768940\pi\)
\(608\) 16.1094 0.653323
\(609\) −7.68233 + 1.31989i −0.311304 + 0.0534846i
\(610\) 9.91617 0.401494
\(611\) 3.62679 + 6.28178i 0.146724 + 0.254133i
\(612\) 5.63865 9.76643i 0.227929 0.394785i
\(613\) 16.6981 28.9220i 0.674430 1.16815i −0.302205 0.953243i \(-0.597723\pi\)
0.976635 0.214905i \(-0.0689441\pi\)
\(614\) −0.422512 0.731813i −0.0170512 0.0295336i
\(615\) 29.2076 1.17776
\(616\) −36.9511 + 6.34852i −1.48880 + 0.255789i
\(617\) −19.5997 −0.789054 −0.394527 0.918884i \(-0.629092\pi\)
−0.394527 + 0.918884i \(0.629092\pi\)
\(618\) 3.26757 + 5.65960i 0.131441 + 0.227662i
\(619\) 10.2341 17.7259i 0.411342 0.712466i −0.583694 0.811973i \(-0.698393\pi\)
0.995037 + 0.0995075i \(0.0317267\pi\)
\(620\) 1.40019 2.42521i 0.0562331 0.0973986i
\(621\) −0.500000 0.866025i −0.0200643 0.0347524i
\(622\) 2.62619 0.105301
\(623\) −2.68273 + 7.27134i −0.107481 + 0.291320i
\(624\) 1.39317 0.0557713
\(625\) 12.6723 + 21.9491i 0.506894 + 0.877965i
\(626\) 6.43579 11.1471i 0.257226 0.445528i
\(627\) 9.54515 16.5327i 0.381197 0.660252i
\(628\) −7.94873 13.7676i −0.317189 0.549387i
\(629\) −19.8216 −0.790338
\(630\) −3.16413 3.80463i −0.126062 0.151580i
\(631\) −16.9942 −0.676529 −0.338265 0.941051i \(-0.609840\pi\)
−0.338265 + 0.941051i \(0.609840\pi\)
\(632\) 14.4916 + 25.1002i 0.576446 + 0.998434i
\(633\) −11.5392 + 19.9865i −0.458642 + 0.794392i
\(634\) −3.45047 + 5.97640i −0.137036 + 0.237353i
\(635\) −20.3784 35.2964i −0.808692 1.40070i
\(636\) 20.7199 0.821599
\(637\) 0.884193 4.76949i 0.0350330 0.188974i
\(638\) 11.4455 0.453132
\(639\) 0.293609 + 0.508545i 0.0116150 + 0.0201177i
\(640\) 18.0996 31.3494i 0.715448 1.23919i
\(641\) −5.48164 + 9.49448i −0.216512 + 0.375009i −0.953739 0.300635i \(-0.902801\pi\)
0.737227 + 0.675645i \(0.236135\pi\)
\(642\) 2.54478 + 4.40769i 0.100435 + 0.173958i
\(643\) 11.7658 0.463996 0.231998 0.972716i \(-0.425474\pi\)
0.231998 + 0.972716i \(0.425474\pi\)
\(644\) −2.78754 3.35180i −0.109844 0.132080i
\(645\) −13.4570 −0.529869
\(646\) −5.92397 10.2606i −0.233075 0.403699i
\(647\) −0.884701 + 1.53235i −0.0347812 + 0.0602428i −0.882892 0.469576i \(-0.844407\pi\)
0.848111 + 0.529819i \(0.177740\pi\)
\(648\) −1.08251 + 1.87497i −0.0425252 + 0.0736557i
\(649\) 21.9376 + 37.9970i 0.861124 + 1.49151i
\(650\) 2.02772 0.0795337
\(651\) −0.493918 + 1.33873i −0.0193582 + 0.0524691i
\(652\) −39.4342 −1.54436
\(653\) −5.28392 9.15202i −0.206776 0.358146i 0.743921 0.668267i \(-0.232964\pi\)
−0.950697 + 0.310121i \(0.899630\pi\)
\(654\) −3.34817 + 5.79920i −0.130924 + 0.226767i
\(655\) 9.68470 16.7744i 0.378413 0.655430i
\(656\) −9.31710 16.1377i −0.363772 0.630071i
\(657\) 10.5266 0.410682
\(658\) −16.2000 + 2.78329i −0.631540 + 0.108504i
\(659\) −10.3840 −0.404504 −0.202252 0.979334i \(-0.564826\pi\)
−0.202252 + 0.979334i \(0.564826\pi\)
\(660\) −16.9927 29.4323i −0.661441 1.14565i
\(661\) 16.6734 28.8792i 0.648521 1.12327i −0.334955 0.942234i \(-0.608721\pi\)
0.983476 0.181037i \(-0.0579455\pi\)
\(662\) 2.34291 4.05803i 0.0910596 0.157720i
\(663\) −2.37139 4.10736i −0.0920970 0.159517i
\(664\) −21.1632 −0.821290
\(665\) 23.9656 4.11750i 0.929348 0.159670i
\(666\) 1.71893 0.0666073
\(667\) 1.47310 + 2.55148i 0.0570385 + 0.0987936i
\(668\) 9.91666 17.1762i 0.383687 0.664566i
\(669\) 2.14286 3.71155i 0.0828479 0.143497i
\(670\) 2.55888 + 4.43210i 0.0988580 + 0.171227i
\(671\) −34.7023 −1.33967
\(672\) −5.05822 + 13.7100i −0.195125 + 0.528873i
\(673\) 11.0030 0.424134 0.212067 0.977255i \(-0.431980\pi\)
0.212067 + 0.977255i \(0.431980\pi\)
\(674\) 3.60855 + 6.25018i 0.138996 + 0.240748i
\(675\) 2.46504 4.26958i 0.0948796 0.164336i
\(676\) −10.3146 + 17.8654i −0.396715 + 0.687130i
\(677\) −16.8484 29.1822i −0.647536 1.12156i −0.983710 0.179765i \(-0.942466\pi\)
0.336174 0.941800i \(-0.390867\pi\)
\(678\) 1.86466 0.0716117
\(679\) 13.7737 + 16.5619i 0.528587 + 0.635586i
\(680\) −46.6940 −1.79063
\(681\) 5.46669 + 9.46858i 0.209484 + 0.362837i
\(682\) 1.04761 1.81452i 0.0401152 0.0694815i
\(683\) 23.5809 40.8433i 0.902297 1.56282i 0.0777918 0.996970i \(-0.475213\pi\)
0.824505 0.565854i \(-0.191454\pi\)
\(684\) −2.40290 4.16194i −0.0918770 0.159136i
\(685\) 61.8021 2.36134
\(686\) 9.44648 + 5.62092i 0.360668 + 0.214608i
\(687\) −5.57751 −0.212795
\(688\) 4.29273 + 7.43522i 0.163659 + 0.283465i
\(689\) 4.35698 7.54651i 0.165988 0.287499i
\(690\) −0.935165 + 1.61975i −0.0356011 + 0.0616629i
\(691\) −11.9250 20.6548i −0.453650 0.785745i 0.544959 0.838462i \(-0.316545\pi\)
−0.998609 + 0.0527174i \(0.983212\pi\)
\(692\) 27.3585 1.04001
\(693\) 11.0731 + 13.3145i 0.420632 + 0.505778i
\(694\) −8.32077 −0.315852
\(695\) −18.6635 32.3261i −0.707946 1.22620i
\(696\) 3.18929 5.52402i 0.120890 0.209387i
\(697\) −31.7183 + 54.9377i −1.20142 + 2.08091i
\(698\) 0.872879 + 1.51187i 0.0330390 + 0.0572251i
\(699\) 22.2706 0.842351
\(700\) 7.43939 20.1640i 0.281183 0.762126i
\(701\) 6.20352 0.234304 0.117152 0.993114i \(-0.462624\pi\)
0.117152 + 0.993114i \(0.462624\pi\)
\(702\) 0.205647 + 0.356192i 0.00776166 + 0.0134436i
\(703\) −4.22346 + 7.31524i −0.159291 + 0.275900i
\(704\) −2.43042 + 4.20962i −0.0916000 + 0.158656i
\(705\) −16.4925 28.5659i −0.621144 1.07585i
\(706\) 5.97885 0.225017
\(707\) −0.347453 + 0.0596953i −0.0130673 + 0.00224507i
\(708\) 11.0451 0.415101
\(709\) −8.12457 14.0722i −0.305124 0.528491i 0.672165 0.740402i \(-0.265365\pi\)
−0.977289 + 0.211911i \(0.932031\pi\)
\(710\) 0.549145 0.951147i 0.0206090 0.0356959i
\(711\) 6.69351 11.5935i 0.251026 0.434790i
\(712\) −3.17111 5.49252i −0.118842 0.205841i
\(713\) 0.539333 0.0201982
\(714\) 10.5924 1.81986i 0.396411 0.0681067i
\(715\) −14.2929 −0.534524
\(716\) 2.67374 + 4.63106i 0.0999225 + 0.173071i
\(717\) 6.69505 11.5962i 0.250031 0.433067i
\(718\) −9.64353 + 16.7031i −0.359893 + 0.623353i
\(719\) −20.0251 34.6845i −0.746811 1.29351i −0.949344 0.314239i \(-0.898251\pi\)
0.202533 0.979275i \(-0.435083\pi\)
\(720\) −6.33531 −0.236103
\(721\) 10.0835 27.3307i 0.375529 1.01785i
\(722\) 6.22807 0.231785
\(723\) −1.64322 2.84615i −0.0611121 0.105849i
\(724\) 11.8469 20.5194i 0.440286 0.762598i
\(725\) −7.26249 + 12.5790i −0.269722 + 0.467172i
\(726\) −9.44941 16.3669i −0.350700 0.607431i
\(727\) 40.4544 1.50037 0.750185 0.661228i \(-0.229964\pi\)
0.750185 + 0.661228i \(0.229964\pi\)
\(728\) 2.53812 + 3.05189i 0.0940688 + 0.113111i
\(729\) 1.00000 0.0370370
\(730\) −9.84411 17.0505i −0.364347 0.631067i
\(731\) 14.6138 25.3118i 0.540510 0.936191i
\(732\) −4.36798 + 7.56556i −0.161445 + 0.279631i
\(733\) 26.5084 + 45.9139i 0.979110 + 1.69587i 0.665646 + 0.746268i \(0.268156\pi\)
0.313464 + 0.949600i \(0.398510\pi\)
\(734\) −14.4074 −0.531788
\(735\) −4.02080 + 21.6889i −0.148309 + 0.800006i
\(736\) 5.52331 0.203592
\(737\) −8.95496 15.5104i −0.329860 0.571334i
\(738\) 2.75062 4.76422i 0.101252 0.175373i
\(739\) −15.2758 + 26.4585i −0.561930 + 0.973292i 0.435398 + 0.900238i \(0.356608\pi\)
−0.997328 + 0.0730537i \(0.976726\pi\)
\(740\) 7.51880 + 13.0229i 0.276397 + 0.478733i
\(741\) −2.02112 −0.0742477
\(742\) 12.6265 + 15.1824i 0.463532 + 0.557363i
\(743\) −49.1733 −1.80399 −0.901997 0.431743i \(-0.857899\pi\)
−0.901997 + 0.431743i \(0.857899\pi\)
\(744\) −0.583835 1.01123i −0.0214044 0.0370736i
\(745\) −8.15175 + 14.1193i −0.298657 + 0.517289i
\(746\) −6.54742 + 11.3405i −0.239718 + 0.415204i
\(747\) 4.88750 + 8.46540i 0.178824 + 0.309733i
\(748\) 73.8138 2.69890
\(749\) 7.85303 21.2851i 0.286943 0.777741i
\(750\) 0.130761 0.00477471
\(751\) −20.7611 35.9592i −0.757582 1.31217i −0.944080 0.329715i \(-0.893047\pi\)
0.186498 0.982455i \(-0.440286\pi\)
\(752\) −10.5221 + 18.2248i −0.383701 + 0.664590i
\(753\) 5.13845 8.90005i 0.187255 0.324336i
\(754\) −0.605877 1.04941i −0.0220647 0.0382172i
\(755\) 15.9140 0.579170
\(756\) 4.29652 0.738178i 0.156263 0.0268473i
\(757\) −26.7837 −0.973470 −0.486735 0.873550i \(-0.661812\pi\)
−0.486735 + 0.873550i \(0.661812\pi\)
\(758\) 0.250644 + 0.434129i 0.00910381 + 0.0157683i
\(759\) 3.27267 5.66843i 0.118790 0.205751i
\(760\) −9.94925 + 17.2326i −0.360897 + 0.625093i
\(761\) 11.8342 + 20.4974i 0.428988 + 0.743029i 0.996784 0.0801405i \(-0.0255369\pi\)
−0.567795 + 0.823170i \(0.692204\pi\)
\(762\) −7.67653 −0.278091
\(763\) 29.4190 5.05443i 1.06504 0.182983i
\(764\) 16.2945 0.589516
\(765\) 10.7837 + 18.6779i 0.389885 + 0.675301i
\(766\) 9.80366 16.9804i 0.354221 0.613528i
\(767\) 2.32256 4.02280i 0.0838629 0.145255i
\(768\) −2.66641 4.61835i −0.0962157 0.166650i
\(769\) −16.2072 −0.584448 −0.292224 0.956350i \(-0.594395\pi\)
−0.292224 + 0.956350i \(0.594395\pi\)
\(770\) 11.2111 30.3870i 0.404020 1.09507i
\(771\) −23.4070 −0.842984
\(772\) −2.95808 5.12355i −0.106464 0.184401i
\(773\) −21.9449 + 38.0098i −0.789305 + 1.36712i 0.137089 + 0.990559i \(0.456225\pi\)
−0.926393 + 0.376557i \(0.877108\pi\)
\(774\) −1.26731 + 2.19505i −0.0455526 + 0.0788994i
\(775\) 1.32948 + 2.30273i 0.0477563 + 0.0827163i
\(776\) −17.6270 −0.632773
\(777\) −4.89953 5.89131i −0.175770 0.211350i
\(778\) −0.458686