Properties

Label 483.2.i.f.277.2
Level $483$
Weight $2$
Character 483.277
Analytic conductor $3.857$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} + 8 x^{10} - 3 x^{9} + 42 x^{8} - 15 x^{7} + 101 x^{6} + 6 x^{5} + 150 x^{4} - 28 x^{3} + 40 x^{2} + 8 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 277.2
Root \(-0.682743 + 1.18255i\) of defining polynomial
Character \(\chi\) \(=\) 483.277
Dual form 483.2.i.f.415.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.682743 - 1.18255i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.0677246 - 0.117302i) q^{4} +(0.663106 + 1.14853i) q^{5} -1.36549 q^{6} +(2.35341 - 1.20891i) q^{7} -2.91593 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.682743 - 1.18255i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.0677246 - 0.117302i) q^{4} +(0.663106 + 1.14853i) q^{5} -1.36549 q^{6} +(2.35341 - 1.20891i) q^{7} -2.91593 q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.905461 - 1.56830i) q^{10} +(0.710043 - 1.22983i) q^{11} +(-0.0677246 - 0.117302i) q^{12} +3.16661 q^{13} +(-3.03637 - 1.95764i) q^{14} +1.32621 q^{15} +(1.85538 + 3.21361i) q^{16} +(-0.579802 + 1.00425i) q^{17} +(-0.682743 + 1.18255i) q^{18} +(-4.28943 - 7.42951i) q^{19} +0.179634 q^{20} +(0.129755 - 2.64257i) q^{21} -1.93911 q^{22} +(0.500000 + 0.866025i) q^{23} +(-1.45796 + 2.52527i) q^{24} +(1.62058 - 2.80693i) q^{25} +(-2.16198 - 3.74466i) q^{26} -1.00000 q^{27} +(0.0175752 - 0.357934i) q^{28} +7.45480 q^{29} +(-0.905461 - 1.56830i) q^{30} +(-0.933210 + 1.61637i) q^{31} +(-0.382434 + 0.662395i) q^{32} +(-0.710043 - 1.22983i) q^{33} +1.58342 q^{34} +(2.94903 + 1.90133i) q^{35} -0.135449 q^{36} +(3.89919 + 6.75360i) q^{37} +(-5.85715 + 10.1449i) q^{38} +(1.58330 - 2.74236i) q^{39} +(-1.93357 - 3.34903i) q^{40} -11.2258 q^{41} +(-3.21355 + 1.65075i) q^{42} -11.8479 q^{43} +(-0.0961748 - 0.166580i) q^{44} +(0.663106 - 1.14853i) q^{45} +(0.682743 - 1.18255i) q^{46} +(-0.868249 - 1.50385i) q^{47} +3.71076 q^{48} +(4.07706 - 5.69013i) q^{49} -4.42576 q^{50} +(0.579802 + 1.00425i) q^{51} +(0.214457 - 0.371451i) q^{52} +(2.07449 - 3.59312i) q^{53} +(0.682743 + 1.18255i) q^{54} +1.88333 q^{55} +(-6.86236 + 3.52510i) q^{56} -8.57886 q^{57} +(-5.08971 - 8.81564i) q^{58} +(-6.34357 + 10.9874i) q^{59} +(0.0898171 - 0.155568i) q^{60} +(6.90738 + 11.9639i) q^{61} +2.54857 q^{62} +(-2.22365 - 1.43366i) q^{63} +8.46593 q^{64} +(2.09980 + 3.63695i) q^{65} +(-0.969554 + 1.67932i) q^{66} +(4.04647 - 7.00870i) q^{67} +(0.0785337 + 0.136024i) q^{68} +1.00000 q^{69} +(0.234977 - 4.78548i) q^{70} -5.18979 q^{71} +(1.45796 + 2.52527i) q^{72} +(5.68430 - 9.84549i) q^{73} +(5.32429 - 9.22194i) q^{74} +(-1.62058 - 2.80693i) q^{75} -1.16200 q^{76} +(0.184264 - 3.75267i) q^{77} -4.32396 q^{78} +(5.86823 + 10.1641i) q^{79} +(-2.46062 + 4.26192i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(7.66430 + 13.2750i) q^{82} +5.70566 q^{83} +(-0.301192 - 0.194187i) q^{84} -1.53788 q^{85} +(8.08906 + 14.0107i) q^{86} +(3.72740 - 6.45604i) q^{87} +(-2.07043 + 3.58609i) q^{88} +(3.17756 + 5.50369i) q^{89} -1.81092 q^{90} +(7.45232 - 3.82815i) q^{91} +0.135449 q^{92} +(0.933210 + 1.61637i) q^{93} +(-1.18558 + 2.05349i) q^{94} +(5.68869 - 9.85310i) q^{95} +(0.382434 + 0.662395i) q^{96} +0.408396 q^{97} +(-9.51242 - 0.936415i) q^{98} -1.42009 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + q^{2} + 6q^{3} - 3q^{4} - 3q^{5} + 2q^{6} - 2q^{7} - 6q^{8} - 6q^{9} + O(q^{10}) \) \( 12q + q^{2} + 6q^{3} - 3q^{4} - 3q^{5} + 2q^{6} - 2q^{7} - 6q^{8} - 6q^{9} + 3q^{10} + 14q^{11} + 3q^{12} - q^{14} - 6q^{15} + 7q^{16} - 15q^{17} + q^{18} + q^{19} + 34q^{20} - 4q^{21} - 12q^{22} + 6q^{23} - 3q^{24} - 9q^{25} + 15q^{26} - 12q^{27} - 2q^{28} - 12q^{29} - 3q^{30} + 11q^{31} - 3q^{32} - 14q^{33} + 30q^{34} - q^{35} + 6q^{36} + 5q^{37} - 14q^{38} + 17q^{40} + 36q^{41} - 17q^{42} - 74q^{43} + 10q^{44} - 3q^{45} - q^{46} - 3q^{47} + 14q^{48} - 6q^{49} - 60q^{50} + 15q^{51} + 7q^{52} + 15q^{53} - q^{54} - 4q^{55} - 21q^{56} + 2q^{57} - 4q^{58} + 2q^{59} + 17q^{60} + 12q^{61} + 72q^{62} - 2q^{63} - 46q^{64} + 17q^{65} - 6q^{66} + 10q^{67} + q^{68} + 12q^{69} - 56q^{70} - 42q^{71} + 3q^{72} + 8q^{73} + 16q^{74} + 9q^{75} + 36q^{76} - 40q^{77} + 30q^{78} + 17q^{79} - 3q^{80} - 6q^{81} + 48q^{82} + 24q^{83} - 25q^{84} - 26q^{85} - 22q^{86} - 6q^{87} + 2q^{88} - 18q^{89} - 6q^{90} + 22q^{91} - 6q^{92} - 11q^{93} - 3q^{94} + 16q^{95} + 3q^{96} - 4q^{97} - 62q^{98} - 28q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.682743 1.18255i −0.482772 0.836186i 0.517032 0.855966i \(-0.327037\pi\)
−0.999804 + 0.0197802i \(0.993703\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0.0677246 0.117302i 0.0338623 0.0586512i
\(5\) 0.663106 + 1.14853i 0.296550 + 0.513639i 0.975344 0.220689i \(-0.0708306\pi\)
−0.678794 + 0.734328i \(0.737497\pi\)
\(6\) −1.36549 −0.557457
\(7\) 2.35341 1.20891i 0.889505 0.456926i
\(8\) −2.91593 −1.03094
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0.905461 1.56830i 0.286332 0.495941i
\(11\) 0.710043 1.22983i 0.214086 0.370808i −0.738903 0.673811i \(-0.764656\pi\)
0.952989 + 0.303003i \(0.0979894\pi\)
\(12\) −0.0677246 0.117302i −0.0195504 0.0338623i
\(13\) 3.16661 0.878259 0.439129 0.898424i \(-0.355287\pi\)
0.439129 + 0.898424i \(0.355287\pi\)
\(14\) −3.03637 1.95764i −0.811503 0.523200i
\(15\) 1.32621 0.342426
\(16\) 1.85538 + 3.21361i 0.463844 + 0.803402i
\(17\) −0.579802 + 1.00425i −0.140623 + 0.243565i −0.927731 0.373249i \(-0.878244\pi\)
0.787109 + 0.616814i \(0.211577\pi\)
\(18\) −0.682743 + 1.18255i −0.160924 + 0.278729i
\(19\) −4.28943 7.42951i −0.984063 1.70445i −0.646030 0.763312i \(-0.723572\pi\)
−0.338033 0.941134i \(-0.609762\pi\)
\(20\) 0.179634 0.0401674
\(21\) 0.129755 2.64257i 0.0283149 0.576656i
\(22\) −1.93911 −0.413419
\(23\) 0.500000 + 0.866025i 0.104257 + 0.180579i
\(24\) −1.45796 + 2.52527i −0.297605 + 0.515468i
\(25\) 1.62058 2.80693i 0.324116 0.561386i
\(26\) −2.16198 3.74466i −0.423999 0.734388i
\(27\) −1.00000 −0.192450
\(28\) 0.0175752 0.357934i 0.00332141 0.0676431i
\(29\) 7.45480 1.38432 0.692161 0.721743i \(-0.256659\pi\)
0.692161 + 0.721743i \(0.256659\pi\)
\(30\) −0.905461 1.56830i −0.165314 0.286332i
\(31\) −0.933210 + 1.61637i −0.167609 + 0.290308i −0.937579 0.347773i \(-0.886938\pi\)
0.769969 + 0.638081i \(0.220271\pi\)
\(32\) −0.382434 + 0.662395i −0.0676054 + 0.117096i
\(33\) −0.710043 1.22983i −0.123603 0.214086i
\(34\) 1.58342 0.271555
\(35\) 2.94903 + 1.90133i 0.498478 + 0.321383i
\(36\) −0.135449 −0.0225749
\(37\) 3.89919 + 6.75360i 0.641023 + 1.11028i 0.985205 + 0.171382i \(0.0548231\pi\)
−0.344182 + 0.938903i \(0.611844\pi\)
\(38\) −5.85715 + 10.1449i −0.950156 + 1.64572i
\(39\) 1.58330 2.74236i 0.253532 0.439129i
\(40\) −1.93357 3.34903i −0.305724 0.529529i
\(41\) −11.2258 −1.75317 −0.876584 0.481248i \(-0.840183\pi\)
−0.876584 + 0.481248i \(0.840183\pi\)
\(42\) −3.21355 + 1.65075i −0.495861 + 0.254717i
\(43\) −11.8479 −1.80679 −0.903393 0.428814i \(-0.858932\pi\)
−0.903393 + 0.428814i \(0.858932\pi\)
\(44\) −0.0961748 0.166580i −0.0144989 0.0251128i
\(45\) 0.663106 1.14853i 0.0988499 0.171213i
\(46\) 0.682743 1.18255i 0.100665 0.174357i
\(47\) −0.868249 1.50385i −0.126647 0.219359i 0.795728 0.605654i \(-0.207088\pi\)
−0.922376 + 0.386294i \(0.873755\pi\)
\(48\) 3.71076 0.535601
\(49\) 4.07706 5.69013i 0.582437 0.812876i
\(50\) −4.42576 −0.625897
\(51\) 0.579802 + 1.00425i 0.0811885 + 0.140623i
\(52\) 0.214457 0.371451i 0.0297399 0.0515110i
\(53\) 2.07449 3.59312i 0.284953 0.493553i −0.687645 0.726047i \(-0.741355\pi\)
0.972598 + 0.232494i \(0.0746886\pi\)
\(54\) 0.682743 + 1.18255i 0.0929095 + 0.160924i
\(55\) 1.88333 0.253949
\(56\) −6.86236 + 3.52510i −0.917022 + 0.471061i
\(57\) −8.57886 −1.13630
\(58\) −5.08971 8.81564i −0.668312 1.15755i
\(59\) −6.34357 + 10.9874i −0.825862 + 1.43044i 0.0753966 + 0.997154i \(0.475978\pi\)
−0.901259 + 0.433281i \(0.857356\pi\)
\(60\) 0.0898171 0.155568i 0.0115953 0.0200837i
\(61\) 6.90738 + 11.9639i 0.884399 + 1.53182i 0.846401 + 0.532547i \(0.178765\pi\)
0.0379985 + 0.999278i \(0.487902\pi\)
\(62\) 2.54857 0.323669
\(63\) −2.22365 1.43366i −0.280154 0.180624i
\(64\) 8.46593 1.05824
\(65\) 2.09980 + 3.63695i 0.260448 + 0.451108i
\(66\) −0.969554 + 1.67932i −0.119344 + 0.206710i
\(67\) 4.04647 7.00870i 0.494355 0.856249i −0.505623 0.862754i \(-0.668737\pi\)
0.999979 + 0.00650550i \(0.00207078\pi\)
\(68\) 0.0785337 + 0.136024i 0.00952361 + 0.0164954i
\(69\) 1.00000 0.120386
\(70\) 0.234977 4.78548i 0.0280851 0.571975i
\(71\) −5.18979 −0.615915 −0.307957 0.951400i \(-0.599645\pi\)
−0.307957 + 0.951400i \(0.599645\pi\)
\(72\) 1.45796 + 2.52527i 0.171823 + 0.297605i
\(73\) 5.68430 9.84549i 0.665297 1.15233i −0.313908 0.949453i \(-0.601638\pi\)
0.979205 0.202874i \(-0.0650282\pi\)
\(74\) 5.32429 9.22194i 0.618936 1.07203i
\(75\) −1.62058 2.80693i −0.187129 0.324116i
\(76\) −1.16200 −0.133291
\(77\) 0.184264 3.75267i 0.0209988 0.427657i
\(78\) −4.32396 −0.489592
\(79\) 5.86823 + 10.1641i 0.660228 + 1.14355i 0.980556 + 0.196242i \(0.0628737\pi\)
−0.320328 + 0.947307i \(0.603793\pi\)
\(80\) −2.46062 + 4.26192i −0.275106 + 0.476497i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 7.66430 + 13.2750i 0.846381 + 1.46597i
\(83\) 5.70566 0.626277 0.313139 0.949707i \(-0.398620\pi\)
0.313139 + 0.949707i \(0.398620\pi\)
\(84\) −0.301192 0.194187i −0.0328627 0.0211876i
\(85\) −1.53788 −0.166806
\(86\) 8.08906 + 14.0107i 0.872266 + 1.51081i
\(87\) 3.72740 6.45604i 0.399619 0.692161i
\(88\) −2.07043 + 3.58609i −0.220709 + 0.382279i
\(89\) 3.17756 + 5.50369i 0.336820 + 0.583390i 0.983833 0.179089i \(-0.0573151\pi\)
−0.647012 + 0.762479i \(0.723982\pi\)
\(90\) −1.81092 −0.190888
\(91\) 7.45232 3.82815i 0.781215 0.401299i
\(92\) 0.135449 0.0141216
\(93\) 0.933210 + 1.61637i 0.0967694 + 0.167609i
\(94\) −1.18558 + 2.05349i −0.122283 + 0.211801i
\(95\) 5.68869 9.85310i 0.583647 1.01091i
\(96\) 0.382434 + 0.662395i 0.0390320 + 0.0676054i
\(97\) 0.408396 0.0414663 0.0207331 0.999785i \(-0.493400\pi\)
0.0207331 + 0.999785i \(0.493400\pi\)
\(98\) −9.51242 0.936415i −0.960899 0.0945922i
\(99\) −1.42009 −0.142724
\(100\) −0.219507 0.380196i −0.0219507 0.0380196i
\(101\) 0.361914 0.626853i 0.0360117 0.0623742i −0.847458 0.530863i \(-0.821868\pi\)
0.883470 + 0.468489i \(0.155201\pi\)
\(102\) 0.791711 1.37128i 0.0783911 0.135777i
\(103\) 7.13695 + 12.3616i 0.703225 + 1.21802i 0.967328 + 0.253527i \(0.0815907\pi\)
−0.264103 + 0.964494i \(0.585076\pi\)
\(104\) −9.23359 −0.905428
\(105\) 3.12112 1.60327i 0.304590 0.156463i
\(106\) −5.66537 −0.550270
\(107\) −6.99797 12.1208i −0.676520 1.17177i −0.976022 0.217671i \(-0.930154\pi\)
0.299503 0.954095i \(-0.403179\pi\)
\(108\) −0.0677246 + 0.117302i −0.00651680 + 0.0112874i
\(109\) −1.45473 + 2.51966i −0.139338 + 0.241340i −0.927246 0.374453i \(-0.877831\pi\)
0.787908 + 0.615792i \(0.211164\pi\)
\(110\) −1.28583 2.22713i −0.122599 0.212348i
\(111\) 7.79838 0.740190
\(112\) 8.25143 + 5.31994i 0.779687 + 0.502687i
\(113\) 18.6624 1.75561 0.877804 0.479020i \(-0.159008\pi\)
0.877804 + 0.479020i \(0.159008\pi\)
\(114\) 5.85715 + 10.1449i 0.548573 + 0.950156i
\(115\) −0.663106 + 1.14853i −0.0618349 + 0.107101i
\(116\) 0.504873 0.874466i 0.0468763 0.0811921i
\(117\) −1.58330 2.74236i −0.146376 0.253532i
\(118\) 17.3241 1.59481
\(119\) −0.150465 + 3.06433i −0.0137931 + 0.280907i
\(120\) −3.86713 −0.353019
\(121\) 4.49168 + 7.77981i 0.408334 + 0.707256i
\(122\) 9.43193 16.3366i 0.853926 1.47904i
\(123\) −5.61288 + 9.72179i −0.506096 + 0.876584i
\(124\) 0.126403 + 0.218936i 0.0113513 + 0.0196610i
\(125\) 10.9295 0.977566
\(126\) −0.177179 + 3.60839i −0.0157844 + 0.321461i
\(127\) 1.06631 0.0946196 0.0473098 0.998880i \(-0.484935\pi\)
0.0473098 + 0.998880i \(0.484935\pi\)
\(128\) −5.01518 8.68655i −0.443284 0.767790i
\(129\) −5.92394 + 10.2606i −0.521574 + 0.903393i
\(130\) 2.86724 4.96620i 0.251474 0.435565i
\(131\) 8.00721 + 13.8689i 0.699593 + 1.21173i 0.968608 + 0.248595i \(0.0799688\pi\)
−0.269014 + 0.963136i \(0.586698\pi\)
\(132\) −0.192350 −0.0167419
\(133\) −19.0764 12.2991i −1.65413 1.06647i
\(134\) −11.0508 −0.954644
\(135\) −0.663106 1.14853i −0.0570710 0.0988499i
\(136\) 1.69066 2.92831i 0.144973 0.251100i
\(137\) −0.463790 + 0.803307i −0.0396242 + 0.0686312i −0.885157 0.465292i \(-0.845949\pi\)
0.845533 + 0.533923i \(0.179283\pi\)
\(138\) −0.682743 1.18255i −0.0581189 0.100665i
\(139\) −4.22569 −0.358418 −0.179209 0.983811i \(-0.557354\pi\)
−0.179209 + 0.983811i \(0.557354\pi\)
\(140\) 0.422753 0.217162i 0.0357291 0.0183535i
\(141\) −1.73650 −0.146239
\(142\) 3.54329 + 6.13716i 0.297346 + 0.515019i
\(143\) 2.24843 3.89439i 0.188023 0.325665i
\(144\) 1.85538 3.21361i 0.154615 0.267801i
\(145\) 4.94332 + 8.56208i 0.410520 + 0.711042i
\(146\) −15.5237 −1.28475
\(147\) −2.88927 6.37590i −0.238303 0.525876i
\(148\) 1.05628 0.0868261
\(149\) 8.22319 + 14.2430i 0.673670 + 1.16683i 0.976856 + 0.213899i \(0.0686164\pi\)
−0.303186 + 0.952931i \(0.598050\pi\)
\(150\) −2.21288 + 3.83282i −0.180681 + 0.312949i
\(151\) 4.09419 7.09135i 0.333180 0.577086i −0.649953 0.759974i \(-0.725211\pi\)
0.983134 + 0.182889i \(0.0585448\pi\)
\(152\) 12.5077 + 21.6639i 1.01450 + 1.75717i
\(153\) 1.15960 0.0937484
\(154\) −4.56351 + 2.34421i −0.367738 + 0.188902i
\(155\) −2.47527 −0.198818
\(156\) −0.214457 0.371451i −0.0171703 0.0297399i
\(157\) −11.2576 + 19.4987i −0.898452 + 1.55616i −0.0689787 + 0.997618i \(0.521974\pi\)
−0.829473 + 0.558546i \(0.811359\pi\)
\(158\) 8.01299 13.8789i 0.637479 1.10415i
\(159\) −2.07449 3.59312i −0.164518 0.284953i
\(160\) −1.01438 −0.0801935
\(161\) 2.22365 + 1.43366i 0.175248 + 0.112988i
\(162\) 1.36549 0.107283
\(163\) 0.730753 + 1.26570i 0.0572370 + 0.0991373i 0.893224 0.449612i \(-0.148438\pi\)
−0.835987 + 0.548749i \(0.815104\pi\)
\(164\) −0.760260 + 1.31681i −0.0593663 + 0.102825i
\(165\) 0.941667 1.63102i 0.0733087 0.126974i
\(166\) −3.89550 6.74720i −0.302349 0.523684i
\(167\) 2.76301 0.213808 0.106904 0.994269i \(-0.465906\pi\)
0.106904 + 0.994269i \(0.465906\pi\)
\(168\) −0.378357 + 7.70553i −0.0291908 + 0.594494i
\(169\) −2.97260 −0.228661
\(170\) 1.04998 + 1.81861i 0.0805295 + 0.139481i
\(171\) −4.28943 + 7.42951i −0.328021 + 0.568149i
\(172\) −0.802394 + 1.38979i −0.0611819 + 0.105970i
\(173\) −9.43306 16.3385i −0.717182 1.24220i −0.962112 0.272655i \(-0.912098\pi\)
0.244930 0.969541i \(-0.421235\pi\)
\(174\) −10.1794 −0.771700
\(175\) 0.420558 8.56500i 0.0317912 0.647453i
\(176\) 5.26959 0.397210
\(177\) 6.34357 + 10.9874i 0.476812 + 0.825862i
\(178\) 4.33891 7.51521i 0.325215 0.563289i
\(179\) 10.3591 17.9425i 0.774276 1.34109i −0.160924 0.986967i \(-0.551447\pi\)
0.935200 0.354119i \(-0.115219\pi\)
\(180\) −0.0898171 0.155568i −0.00669457 0.0115953i
\(181\) 0.686865 0.0510543 0.0255271 0.999674i \(-0.491874\pi\)
0.0255271 + 0.999674i \(0.491874\pi\)
\(182\) −9.61498 6.19906i −0.712710 0.459505i
\(183\) 13.8148 1.02122
\(184\) −1.45796 2.52527i −0.107482 0.186165i
\(185\) −5.17115 + 8.95670i −0.380191 + 0.658509i
\(186\) 1.27428 2.20713i 0.0934351 0.161834i
\(187\) 0.823369 + 1.42612i 0.0602107 + 0.104288i
\(188\) −0.235207 −0.0171542
\(189\) −2.35341 + 1.20891i −0.171185 + 0.0879354i
\(190\) −15.5356 −1.12707
\(191\) −0.546501 0.946568i −0.0395434 0.0684912i 0.845576 0.533855i \(-0.179257\pi\)
−0.885120 + 0.465363i \(0.845924\pi\)
\(192\) 4.23296 7.33171i 0.305488 0.529120i
\(193\) −3.70697 + 6.42066i −0.266833 + 0.462169i −0.968042 0.250787i \(-0.919311\pi\)
0.701209 + 0.712956i \(0.252644\pi\)
\(194\) −0.278829 0.482946i −0.0200188 0.0346735i
\(195\) 4.19959 0.300739
\(196\) −0.391349 0.863611i −0.0279535 0.0616865i
\(197\) 3.16080 0.225198 0.112599 0.993641i \(-0.464082\pi\)
0.112599 + 0.993641i \(0.464082\pi\)
\(198\) 0.969554 + 1.67932i 0.0689032 + 0.119344i
\(199\) 0.904642 1.56689i 0.0641283 0.111074i −0.832179 0.554508i \(-0.812907\pi\)
0.896307 + 0.443434i \(0.146240\pi\)
\(200\) −4.72550 + 8.18480i −0.334143 + 0.578753i
\(201\) −4.04647 7.00870i −0.285416 0.494355i
\(202\) −0.988375 −0.0695419
\(203\) 17.5442 9.01220i 1.23136 0.632532i
\(204\) 0.157067 0.0109969
\(205\) −7.44386 12.8931i −0.519902 0.900496i
\(206\) 9.74541 16.8795i 0.678995 1.17605i
\(207\) 0.500000 0.866025i 0.0347524 0.0601929i
\(208\) 5.87525 + 10.1762i 0.407375 + 0.705595i
\(209\) −12.1827 −0.842696
\(210\) −4.02686 2.59624i −0.277880 0.179157i
\(211\) −22.5516 −1.55252 −0.776260 0.630413i \(-0.782885\pi\)
−0.776260 + 0.630413i \(0.782885\pi\)
\(212\) −0.280988 0.486686i −0.0192983 0.0334257i
\(213\) −2.59489 + 4.49449i −0.177799 + 0.307957i
\(214\) −9.55563 + 16.5508i −0.653210 + 1.13139i
\(215\) −7.85640 13.6077i −0.535802 0.928036i
\(216\) 2.91593 0.198404
\(217\) −0.242178 + 4.93214i −0.0164401 + 0.334816i
\(218\) 3.97282 0.269073
\(219\) −5.68430 9.84549i −0.384109 0.665297i
\(220\) 0.127548 0.220920i 0.00859929 0.0148944i
\(221\) −1.83600 + 3.18005i −0.123503 + 0.213914i
\(222\) −5.32429 9.22194i −0.357343 0.618936i
\(223\) −14.4484 −0.967535 −0.483767 0.875197i \(-0.660732\pi\)
−0.483767 + 0.875197i \(0.660732\pi\)
\(224\) −0.0992456 + 2.02121i −0.00663113 + 0.135048i
\(225\) −3.24116 −0.216078
\(226\) −12.7416 22.0691i −0.847558 1.46801i
\(227\) 1.63940 2.83953i 0.108811 0.188466i −0.806478 0.591264i \(-0.798629\pi\)
0.915289 + 0.402798i \(0.131962\pi\)
\(228\) −0.581000 + 1.00632i −0.0384777 + 0.0666453i
\(229\) 0.131966 + 0.228573i 0.00872059 + 0.0151045i 0.870353 0.492429i \(-0.163891\pi\)
−0.861632 + 0.507533i \(0.830557\pi\)
\(230\) 1.81092 0.119409
\(231\) −3.15778 2.03591i −0.207767 0.133953i
\(232\) −21.7376 −1.42715
\(233\) −8.92547 15.4594i −0.584727 1.01278i −0.994909 0.100773i \(-0.967868\pi\)
0.410183 0.912003i \(-0.365465\pi\)
\(234\) −2.16198 + 3.74466i −0.141333 + 0.244796i
\(235\) 1.15148 1.99442i 0.0751143 0.130102i
\(236\) 0.859231 + 1.48823i 0.0559312 + 0.0968756i
\(237\) 11.7365 0.762366
\(238\) 3.72644 1.91422i 0.241549 0.124080i
\(239\) 1.68846 0.109217 0.0546086 0.998508i \(-0.482609\pi\)
0.0546086 + 0.998508i \(0.482609\pi\)
\(240\) 2.46062 + 4.26192i 0.158832 + 0.275106i
\(241\) −9.52098 + 16.4908i −0.613300 + 1.06227i 0.377380 + 0.926058i \(0.376825\pi\)
−0.990680 + 0.136208i \(0.956508\pi\)
\(242\) 6.13332 10.6232i 0.394265 0.682887i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 1.87120 0.119791
\(245\) 9.23882 + 0.909481i 0.590247 + 0.0581046i
\(246\) 15.3286 0.977316
\(247\) −13.5829 23.5263i −0.864262 1.49695i
\(248\) 2.72117 4.71321i 0.172795 0.299289i
\(249\) 2.85283 4.94125i 0.180791 0.313139i
\(250\) −7.46205 12.9247i −0.471942 0.817427i
\(251\) −20.3390 −1.28379 −0.641895 0.766793i \(-0.721851\pi\)
−0.641895 + 0.766793i \(0.721851\pi\)
\(252\) −0.318767 + 0.163746i −0.0200805 + 0.0103150i
\(253\) 1.42009 0.0892801
\(254\) −0.728015 1.26096i −0.0456797 0.0791196i
\(255\) −0.768940 + 1.33184i −0.0481529 + 0.0834032i
\(256\) 1.61777 2.80205i 0.101110 0.175128i
\(257\) 4.81478 + 8.33944i 0.300337 + 0.520200i 0.976212 0.216817i \(-0.0695674\pi\)
−0.675875 + 0.737016i \(0.736234\pi\)
\(258\) 16.1781 1.00721
\(259\) 17.3409 + 11.1802i 1.07751 + 0.694703i
\(260\) 0.568831 0.0352774
\(261\) −3.72740 6.45604i −0.230720 0.399619i
\(262\) 10.9337 18.9378i 0.675488 1.16998i
\(263\) 2.42754 4.20462i 0.149688 0.259268i −0.781424 0.624000i \(-0.785506\pi\)
0.931112 + 0.364733i \(0.118840\pi\)
\(264\) 2.07043 + 3.58609i 0.127426 + 0.220709i
\(265\) 5.50243 0.338011
\(266\) −1.51999 + 30.9559i −0.0931968 + 1.89803i
\(267\) 6.35511 0.388927
\(268\) −0.548092 0.949323i −0.0334800 0.0579891i
\(269\) −6.36928 + 11.0319i −0.388342 + 0.672628i −0.992227 0.124444i \(-0.960285\pi\)
0.603885 + 0.797072i \(0.293619\pi\)
\(270\) −0.905461 + 1.56830i −0.0551046 + 0.0954440i
\(271\) 11.0010 + 19.0543i 0.668265 + 1.15747i 0.978389 + 0.206773i \(0.0662960\pi\)
−0.310124 + 0.950696i \(0.600371\pi\)
\(272\) −4.30301 −0.260908
\(273\) 0.410884 8.36797i 0.0248678 0.506453i
\(274\) 1.26660 0.0765179
\(275\) −2.30137 3.98608i −0.138778 0.240370i
\(276\) 0.0677246 0.117302i 0.00407654 0.00706078i
\(277\) −0.0827222 + 0.143279i −0.00497030 + 0.00860881i −0.868500 0.495689i \(-0.834915\pi\)
0.863530 + 0.504298i \(0.168249\pi\)
\(278\) 2.88506 + 4.99707i 0.173034 + 0.299704i
\(279\) 1.86642 0.111740
\(280\) −8.59916 5.54413i −0.513898 0.331325i
\(281\) −20.9797 −1.25155 −0.625773 0.780006i \(-0.715216\pi\)
−0.625773 + 0.780006i \(0.715216\pi\)
\(282\) 1.18558 + 2.05349i 0.0706003 + 0.122283i
\(283\) 0.407411 0.705657i 0.0242181 0.0419470i −0.853662 0.520827i \(-0.825624\pi\)
0.877880 + 0.478880i \(0.158957\pi\)
\(284\) −0.351476 + 0.608775i −0.0208563 + 0.0361242i
\(285\) −5.68869 9.85310i −0.336969 0.583647i
\(286\) −6.14039 −0.363089
\(287\) −26.4188 + 13.5710i −1.55945 + 0.801068i
\(288\) 0.764868 0.0450703
\(289\) 7.82766 + 13.5579i 0.460451 + 0.797524i
\(290\) 6.75003 11.6914i 0.396375 0.686542i
\(291\) 0.204198 0.353681i 0.0119703 0.0207331i
\(292\) −0.769933 1.33356i −0.0450569 0.0780409i
\(293\) −12.6589 −0.739543 −0.369771 0.929123i \(-0.620564\pi\)
−0.369771 + 0.929123i \(0.620564\pi\)
\(294\) −5.56717 + 7.76979i −0.324684 + 0.453143i
\(295\) −16.8258 −0.979637
\(296\) −11.3698 19.6930i −0.660853 1.14463i
\(297\) −0.710043 + 1.22983i −0.0412009 + 0.0713620i
\(298\) 11.2286 19.4486i 0.650458 1.12663i
\(299\) 1.58330 + 2.74236i 0.0915648 + 0.158595i
\(300\) −0.439013 −0.0253464
\(301\) −27.8829 + 14.3231i −1.60714 + 0.825567i
\(302\) −11.1811 −0.643401
\(303\) −0.361914 0.626853i −0.0207914 0.0360117i
\(304\) 15.9170 27.5691i 0.912904 1.58120i
\(305\) −9.16064 + 15.8667i −0.524537 + 0.908525i
\(306\) −0.791711 1.37128i −0.0452591 0.0783911i
\(307\) −3.03467 −0.173198 −0.0865989 0.996243i \(-0.527600\pi\)
−0.0865989 + 0.996243i \(0.527600\pi\)
\(308\) −0.427719 0.275763i −0.0243715 0.0157131i
\(309\) 14.2739 0.812014
\(310\) 1.68997 + 2.92712i 0.0959839 + 0.166249i
\(311\) −13.7383 + 23.7955i −0.779029 + 1.34932i 0.153474 + 0.988153i \(0.450954\pi\)
−0.932502 + 0.361164i \(0.882379\pi\)
\(312\) −4.61679 + 7.99652i −0.261375 + 0.452714i
\(313\) −0.671013 1.16223i −0.0379279 0.0656930i 0.846438 0.532487i \(-0.178742\pi\)
−0.884366 + 0.466794i \(0.845409\pi\)
\(314\) 30.7441 1.73499
\(315\) 0.172083 3.50460i 0.00969577 0.197462i
\(316\) 1.58970 0.0894274
\(317\) −0.254308 0.440475i −0.0142834 0.0247395i 0.858795 0.512319i \(-0.171213\pi\)
−0.873079 + 0.487579i \(0.837880\pi\)
\(318\) −2.83269 + 4.90636i −0.158849 + 0.275135i
\(319\) 5.29323 9.16814i 0.296364 0.513317i
\(320\) 5.61380 + 9.72339i 0.313821 + 0.543554i
\(321\) −13.9959 −0.781178
\(322\) 0.177179 3.60839i 0.00987380 0.201088i
\(323\) 9.94808 0.553526
\(324\) 0.0677246 + 0.117302i 0.00376248 + 0.00651680i
\(325\) 5.13175 8.88845i 0.284658 0.493042i
\(326\) 0.997832 1.72830i 0.0552648 0.0957215i
\(327\) 1.45473 + 2.51966i 0.0804466 + 0.139338i
\(328\) 32.7335 1.80740
\(329\) −3.86137 2.48954i −0.212884 0.137253i
\(330\) −2.57167 −0.141566
\(331\) −3.09517 5.36099i −0.170126 0.294666i 0.768338 0.640044i \(-0.221084\pi\)
−0.938464 + 0.345378i \(0.887751\pi\)
\(332\) 0.386413 0.669288i 0.0212072 0.0367319i
\(333\) 3.89919 6.75360i 0.213674 0.370095i
\(334\) −1.88642 3.26738i −0.103220 0.178783i
\(335\) 10.7330 0.586404
\(336\) 8.73292 4.48598i 0.476420 0.244730i
\(337\) −5.07603 −0.276509 −0.138254 0.990397i \(-0.544149\pi\)
−0.138254 + 0.990397i \(0.544149\pi\)
\(338\) 2.02952 + 3.51523i 0.110391 + 0.191203i
\(339\) 9.33118 16.1621i 0.506800 0.877804i
\(340\) −0.104152 + 0.180397i −0.00564845 + 0.00978340i
\(341\) 1.32524 + 2.29538i 0.0717657 + 0.124302i
\(342\) 11.7143 0.633437
\(343\) 2.71612 18.3200i 0.146657 0.989187i
\(344\) 34.5476 1.86268
\(345\) 0.663106 + 1.14853i 0.0357004 + 0.0618349i
\(346\) −12.8807 + 22.3100i −0.692471 + 1.19939i
\(347\) 12.7476 22.0795i 0.684326 1.18529i −0.289322 0.957232i \(-0.593430\pi\)
0.973648 0.228055i \(-0.0732367\pi\)
\(348\) −0.504873 0.874466i −0.0270640 0.0468763i
\(349\) −11.0135 −0.589541 −0.294771 0.955568i \(-0.595243\pi\)
−0.294771 + 0.955568i \(0.595243\pi\)
\(350\) −10.4156 + 5.35036i −0.556739 + 0.285989i
\(351\) −3.16661 −0.169021
\(352\) 0.543089 + 0.940658i 0.0289467 + 0.0501372i
\(353\) 3.32390 5.75717i 0.176914 0.306423i −0.763908 0.645325i \(-0.776722\pi\)
0.940822 + 0.338902i \(0.110055\pi\)
\(354\) 8.66205 15.0031i 0.460383 0.797406i
\(355\) −3.44138 5.96064i −0.182649 0.316358i
\(356\) 0.860795 0.0456221
\(357\) 2.57856 + 1.66247i 0.136472 + 0.0879873i
\(358\) −28.2904 −1.49520
\(359\) 3.92736 + 6.80239i 0.207278 + 0.359017i 0.950856 0.309633i \(-0.100206\pi\)
−0.743578 + 0.668649i \(0.766873\pi\)
\(360\) −1.93357 + 3.34903i −0.101908 + 0.176510i
\(361\) −27.2984 + 47.2822i −1.43676 + 2.48854i
\(362\) −0.468952 0.812249i −0.0246476 0.0426909i
\(363\) 8.98335 0.471504
\(364\) 0.0556539 1.13344i 0.00291706 0.0594082i
\(365\) 15.0772 0.789174
\(366\) −9.43193 16.3366i −0.493015 0.853926i
\(367\) −0.936185 + 1.62152i −0.0488684 + 0.0846426i −0.889425 0.457081i \(-0.848895\pi\)
0.840556 + 0.541724i \(0.182228\pi\)
\(368\) −1.85538 + 3.21361i −0.0967182 + 0.167521i
\(369\) 5.61288 + 9.72179i 0.292195 + 0.506096i
\(370\) 14.1223 0.734182
\(371\) 0.538352 10.9640i 0.0279499 0.569221i
\(372\) 0.252805 0.0131073
\(373\) 11.6887 + 20.2455i 0.605220 + 1.04827i 0.992017 + 0.126107i \(0.0402484\pi\)
−0.386796 + 0.922165i \(0.626418\pi\)
\(374\) 1.12430 1.94734i 0.0581361 0.100695i
\(375\) 5.46476 9.46524i 0.282199 0.488783i
\(376\) 2.53175 + 4.38512i 0.130565 + 0.226145i
\(377\) 23.6064 1.21579
\(378\) 3.03637 + 1.95764i 0.156174 + 0.100690i
\(379\) 20.9257 1.07488 0.537441 0.843301i \(-0.319391\pi\)
0.537441 + 0.843301i \(0.319391\pi\)
\(380\) −0.770528 1.33459i −0.0395273 0.0684633i
\(381\) 0.533154 0.923450i 0.0273143 0.0473098i
\(382\) −0.746239 + 1.29252i −0.0381809 + 0.0661313i
\(383\) 13.4095 + 23.2259i 0.685191 + 1.18679i 0.973377 + 0.229211i \(0.0736147\pi\)
−0.288185 + 0.957575i \(0.593052\pi\)
\(384\) −10.0304 −0.511860
\(385\) 4.43225 2.27679i 0.225889 0.116036i
\(386\) 10.1236 0.515279
\(387\) 5.92394 + 10.2606i 0.301131 + 0.521574i
\(388\) 0.0276584 0.0479058i 0.00140414 0.00243205i
\(389\) 12.8169 22.1995i 0.649842 1.12556i −0.333319 0.942814i \(-0.608169\pi\)
0.983160 0.182744i \(-0.0584981\pi\)
\(390\) −2.86724 4.96620i −0.145188 0.251474i
\(391\) −1.15960 −0.0586437
\(392\) −11.8884 + 16.5920i −0.600455 + 0.838022i
\(393\) 16.0144 0.807821
\(394\) −2.15802 3.73779i −0.108719 0.188307i
\(395\) −7.78252 + 13.4797i −0.391581 + 0.678238i
\(396\) −0.0961748 + 0.166580i −0.00483296 + 0.00837094i
\(397\) −5.09522 8.82518i −0.255722 0.442923i 0.709369 0.704837i \(-0.248980\pi\)
−0.965091 + 0.261914i \(0.915646\pi\)
\(398\) −2.47055 −0.123837
\(399\) −20.1896 + 10.3711i −1.01074 + 0.519204i
\(400\) 12.0272 0.601358
\(401\) −11.8908 20.5954i −0.593796 1.02849i −0.993716 0.111935i \(-0.964295\pi\)
0.399919 0.916550i \(-0.369038\pi\)
\(402\) −5.52540 + 9.57028i −0.275582 + 0.477322i
\(403\) −2.95511 + 5.11840i −0.147205 + 0.254966i
\(404\) −0.0490209 0.0849067i −0.00243888 0.00422427i
\(405\) −1.32621 −0.0659000
\(406\) −22.6355 14.5938i −1.12338 0.724277i
\(407\) 11.0744 0.548937
\(408\) −1.69066 2.92831i −0.0837001 0.144973i
\(409\) 7.21835 12.5026i 0.356925 0.618211i −0.630521 0.776172i \(-0.717159\pi\)
0.987445 + 0.157961i \(0.0504920\pi\)
\(410\) −10.1645 + 17.6054i −0.501988 + 0.869469i
\(411\) 0.463790 + 0.803307i 0.0228771 + 0.0396242i
\(412\) 1.93339 0.0952513
\(413\) −1.64622 + 33.5266i −0.0810053 + 1.64974i
\(414\) −1.36549 −0.0671100
\(415\) 3.78345 + 6.55314i 0.185722 + 0.321681i
\(416\) −1.21102 + 2.09754i −0.0593750 + 0.102841i
\(417\) −2.11284 + 3.65955i −0.103466 + 0.179209i
\(418\) 8.31766 + 14.4066i 0.406830 + 0.704651i
\(419\) 18.5772 0.907558 0.453779 0.891114i \(-0.350076\pi\)
0.453779 + 0.891114i \(0.350076\pi\)
\(420\) 0.0233085 0.474696i 0.00113734 0.0231628i
\(421\) −7.98595 −0.389211 −0.194606 0.980882i \(-0.562343\pi\)
−0.194606 + 0.980882i \(0.562343\pi\)
\(422\) 15.3970 + 26.6683i 0.749513 + 1.29819i
\(423\) −0.868249 + 1.50385i −0.0422157 + 0.0731197i
\(424\) −6.04906 + 10.4773i −0.293768 + 0.508822i
\(425\) 1.87923 + 3.25493i 0.0911562 + 0.157887i
\(426\) 7.08658 0.343346
\(427\) 30.7192 + 19.8056i 1.48661 + 0.958460i
\(428\) −1.89574 −0.0916340
\(429\) −2.24843 3.89439i −0.108555 0.188023i
\(430\) −10.7278 + 18.5811i −0.517341 + 0.896060i
\(431\) 9.01713 15.6181i 0.434340 0.752299i −0.562902 0.826524i \(-0.690315\pi\)
0.997242 + 0.0742252i \(0.0236484\pi\)
\(432\) −1.85538 3.21361i −0.0892669 0.154615i
\(433\) −13.6502 −0.655989 −0.327995 0.944680i \(-0.606373\pi\)
−0.327995 + 0.944680i \(0.606373\pi\)
\(434\) 5.99783 3.08100i 0.287905 0.147893i
\(435\) 9.88664 0.474028
\(436\) 0.197042 + 0.341286i 0.00943658 + 0.0163446i
\(437\) 4.28943 7.42951i 0.205191 0.355402i
\(438\) −7.76183 + 13.4439i −0.370874 + 0.642373i
\(439\) −5.43271 9.40973i −0.259289 0.449102i 0.706762 0.707451i \(-0.250155\pi\)
−0.966052 + 0.258349i \(0.916822\pi\)
\(440\) −5.49166 −0.261805
\(441\) −6.96633 0.685774i −0.331730 0.0326559i
\(442\) 5.01408 0.238495
\(443\) −7.55614 13.0876i −0.359003 0.621812i 0.628791 0.777574i \(-0.283550\pi\)
−0.987795 + 0.155762i \(0.950217\pi\)
\(444\) 0.528142 0.914770i 0.0250645 0.0434130i
\(445\) −4.21411 + 7.29906i −0.199768 + 0.346008i
\(446\) 9.86452 + 17.0859i 0.467099 + 0.809039i
\(447\) 16.4464 0.777887
\(448\) 19.9238 10.2346i 0.941310 0.483538i
\(449\) 6.14432 0.289968 0.144984 0.989434i \(-0.453687\pi\)
0.144984 + 0.989434i \(0.453687\pi\)
\(450\) 2.21288 + 3.83282i 0.104316 + 0.180681i
\(451\) −7.97077 + 13.8058i −0.375329 + 0.650089i
\(452\) 1.26390 2.18914i 0.0594489 0.102969i
\(453\) −4.09419 7.09135i −0.192362 0.333180i
\(454\) −4.47717 −0.210124
\(455\) 9.33843 + 6.02076i 0.437792 + 0.282258i
\(456\) 25.0153 1.17145
\(457\) −14.7924 25.6212i −0.691960 1.19851i −0.971195 0.238287i \(-0.923414\pi\)
0.279235 0.960223i \(-0.409919\pi\)
\(458\) 0.180198 0.312112i 0.00842011 0.0145841i
\(459\) 0.579802 1.00425i 0.0270628 0.0468742i
\(460\) 0.0898171 + 0.155568i 0.00418774 + 0.00725339i
\(461\) −34.7997 −1.62078 −0.810391 0.585890i \(-0.800745\pi\)
−0.810391 + 0.585890i \(0.800745\pi\)
\(462\) −0.251609 + 5.12422i −0.0117059 + 0.238400i
\(463\) 15.8969 0.738793 0.369397 0.929272i \(-0.379564\pi\)
0.369397 + 0.929272i \(0.379564\pi\)
\(464\) 13.8315 + 23.9568i 0.642110 + 1.11217i
\(465\) −1.23763 + 2.14364i −0.0573939 + 0.0994091i
\(466\) −12.1876 + 21.1095i −0.564579 + 0.977880i
\(467\) −3.64308 6.31000i −0.168582 0.291992i 0.769340 0.638840i \(-0.220585\pi\)
−0.937921 + 0.346848i \(0.887252\pi\)
\(468\) −0.428914 −0.0198266
\(469\) 1.05010 21.3862i 0.0484892 0.987521i
\(470\) −3.14466 −0.145052
\(471\) 11.2576 + 19.4987i 0.518721 + 0.898452i
\(472\) 18.4974 32.0384i 0.851410 1.47469i
\(473\) −8.41251 + 14.5709i −0.386808 + 0.669971i
\(474\) −8.01299 13.8789i −0.368049 0.637479i
\(475\) −27.8055 −1.27580
\(476\) 0.349263 + 0.225180i 0.0160085 + 0.0103211i
\(477\) −4.14898 −0.189969
\(478\) −1.15278 1.99668i −0.0527270 0.0913259i
\(479\) 9.30781 16.1216i 0.425285 0.736614i −0.571162 0.820837i \(-0.693507\pi\)
0.996447 + 0.0842227i \(0.0268407\pi\)
\(480\) −0.507188 + 0.878475i −0.0231499 + 0.0400967i
\(481\) 12.3472 + 21.3860i 0.562984 + 0.975117i
\(482\) 26.0015 1.18434
\(483\) 2.35341 1.20891i 0.107084 0.0550074i
\(484\) 1.21679 0.0553086
\(485\) 0.270809 + 0.469056i 0.0122968 + 0.0212987i
\(486\) 0.682743 1.18255i 0.0309698 0.0536413i
\(487\) −4.81446 + 8.33888i −0.218164 + 0.377871i −0.954247 0.299021i \(-0.903340\pi\)
0.736083 + 0.676892i \(0.236673\pi\)
\(488\) −20.1414 34.8859i −0.911758 1.57921i
\(489\) 1.46151 0.0660915
\(490\) −5.23224 11.5463i −0.236368 0.521607i
\(491\) −4.61117 −0.208099 −0.104050 0.994572i \(-0.533180\pi\)
−0.104050 + 0.994572i \(0.533180\pi\)
\(492\) 0.760260 + 1.31681i 0.0342752 + 0.0593663i
\(493\) −4.32231 + 7.48645i −0.194667 + 0.337173i
\(494\) −18.5473 + 32.1249i −0.834483 + 1.44537i
\(495\) −0.941667 1.63102i −0.0423248 0.0733087i
\(496\) −6.92583 −0.310979
\(497\) −12.2137 + 6.27400i −0.547859 + 0.281427i
\(498\) −7.79099 −0.349123
\(499\) −6.42833 11.1342i −0.287771 0.498435i 0.685506 0.728067i \(-0.259581\pi\)
−0.973277 + 0.229632i \(0.926248\pi\)
\(500\) 0.740198 1.28206i 0.0331026 0.0573355i
\(501\) 1.38150 2.39283i 0.0617210 0.106904i
\(502\) 13.8863 + 24.0518i 0.619777 + 1.07349i
\(503\) 15.4383 0.688360 0.344180 0.938904i \(-0.388157\pi\)
0.344180 + 0.938904i \(0.388157\pi\)
\(504\) 6.48401 + 4.18043i 0.288821 + 0.186211i
\(505\) 0.959948 0.0427171
\(506\) −0.969554 1.67932i −0.0431019 0.0746547i
\(507\) −1.48630 + 2.57434i −0.0660088 + 0.114331i
\(508\) 0.0722153 0.125081i 0.00320404 0.00554956i
\(509\) −5.70161 9.87549i −0.252720 0.437723i 0.711554 0.702631i \(-0.247992\pi\)
−0.964274 + 0.264908i \(0.914658\pi\)
\(510\) 2.09995 0.0929874
\(511\) 1.47513 30.0423i 0.0652561 1.32899i
\(512\) −24.4788 −1.08182
\(513\) 4.28943 + 7.42951i 0.189383 + 0.328021i
\(514\) 6.57451 11.3874i 0.289989 0.502276i
\(515\) −9.46511 + 16.3940i −0.417083 + 0.722408i
\(516\) 0.802394 + 1.38979i 0.0353234 + 0.0611819i
\(517\) −2.46598 −0.108454
\(518\) 1.38171 28.1396i 0.0607088 1.23638i
\(519\) −18.8661 −0.828131
\(520\) −6.12284 10.6051i −0.268505 0.465063i
\(521\) −7.48785 + 12.9693i −0.328049 + 0.568197i −0.982125 0.188232i \(-0.939724\pi\)
0.654076 + 0.756429i \(0.273058\pi\)
\(522\) −5.08971 + 8.81564i −0.222771 + 0.385850i
\(523\) 5.70754 + 9.88575i 0.249573 + 0.432274i 0.963407 0.268041i \(-0.0863763\pi\)
−0.713834 + 0.700315i \(0.753043\pi\)
\(524\) 2.16914 0.0947593
\(525\) −7.20722 4.64671i −0.314549 0.202799i
\(526\) −6.62953 −0.289061
\(527\) −1.08215 1.87435i −0.0471394 0.0816478i
\(528\) 2.63480 4.56360i 0.114665 0.198605i
\(529\) −0.500000 + 0.866025i −0.0217391 + 0.0376533i
\(530\) −3.75674 6.50687i −0.163182 0.282640i
\(531\) 12.6871 0.550575
\(532\) −2.73466 + 1.40476i −0.118563 + 0.0609039i
\(533\) −35.5476 −1.53974
\(534\) −4.33891 7.51521i −0.187763 0.325215i
\(535\) 9.28079 16.0748i 0.401244 0.694974i
\(536\) −11.7992 + 20.4368i −0.509648 + 0.882737i
\(537\) −10.3591 17.9425i −0.447029 0.774276i
\(538\) 17.3943 0.749923
\(539\) −4.10301 9.05433i −0.176729 0.389998i
\(540\) −0.179634 −0.00773023
\(541\) −9.06483 15.7007i −0.389727 0.675027i 0.602685 0.797979i \(-0.294097\pi\)
−0.992413 + 0.122951i \(0.960764\pi\)
\(542\) 15.0217 26.0184i 0.645239 1.11759i
\(543\) 0.343433 0.594843i 0.0147381 0.0255271i
\(544\) −0.443472 0.768115i −0.0190137 0.0329327i
\(545\) −3.85855 −0.165282
\(546\) −10.1760 + 5.22729i −0.435494 + 0.223707i
\(547\) −13.0632 −0.558543 −0.279271 0.960212i \(-0.590093\pi\)
−0.279271 + 0.960212i \(0.590093\pi\)
\(548\) 0.0628199 + 0.108807i 0.00268353 + 0.00464802i
\(549\) 6.90738 11.9639i 0.294800 0.510608i
\(550\) −3.14248 + 5.44294i −0.133996 + 0.232088i
\(551\) −31.9768 55.3855i −1.36226 2.35950i
\(552\) −2.91593 −0.124110
\(553\) 26.0978 + 16.8260i 1.10979 + 0.715516i
\(554\) 0.225912 0.00959808
\(555\) 5.17115 + 8.95670i 0.219503 + 0.380191i
\(556\) −0.286183 + 0.495684i −0.0121369 + 0.0210217i
\(557\) 13.4457 23.2886i 0.569711 0.986768i −0.426883 0.904307i \(-0.640389\pi\)
0.996594 0.0824615i \(-0.0262781\pi\)
\(558\) −1.27428 2.20713i −0.0539448 0.0934351i
\(559\) −37.5176 −1.58683
\(560\) −0.638557 + 13.0047i −0.0269840 + 0.549550i
\(561\) 1.64674 0.0695253
\(562\) 14.3238 + 24.8095i 0.604211 + 1.04652i
\(563\) −4.88702 + 8.46457i −0.205963 + 0.356739i −0.950439 0.310910i \(-0.899366\pi\)
0.744476 + 0.667649i \(0.232699\pi\)
\(564\) −0.117604 + 0.203695i −0.00495200 + 0.00857712i
\(565\) 12.3751 + 21.4343i 0.520625 + 0.901749i
\(566\) −1.11263 −0.0467673
\(567\) −0.129755 + 2.64257i −0.00544921 + 0.110977i
\(568\) 15.1330 0.634968
\(569\) 21.9945 + 38.0956i 0.922057 + 1.59705i 0.796227 + 0.604998i \(0.206826\pi\)
0.125830 + 0.992052i \(0.459841\pi\)
\(570\) −7.76782 + 13.4543i −0.325358 + 0.563537i
\(571\) −3.09960 + 5.36867i −0.129714 + 0.224672i −0.923566 0.383440i \(-0.874739\pi\)
0.793852 + 0.608112i \(0.208073\pi\)
\(572\) −0.304548 0.527492i −0.0127338 0.0220556i
\(573\) −1.09300 −0.0456608
\(574\) 34.0855 + 21.9759i 1.42270 + 0.917258i
\(575\) 3.24116 0.135166
\(576\) −4.23296 7.33171i −0.176373 0.305488i
\(577\) −7.28016 + 12.6096i −0.303077 + 0.524945i −0.976831 0.214010i \(-0.931347\pi\)
0.673754 + 0.738956i \(0.264681\pi\)
\(578\) 10.6886 18.5131i 0.444585 0.770044i
\(579\) 3.70697 + 6.42066i 0.154056 + 0.266833i
\(580\) 1.33914 0.0556046
\(581\) 13.4277 6.89764i 0.557077 0.286162i
\(582\) −0.557658 −0.0231157
\(583\) −2.94596 5.10255i −0.122009 0.211326i
\(584\) −16.5750 + 28.7087i −0.685878 + 1.18797i
\(585\) 2.09980 3.63695i 0.0868158 0.150369i
\(586\) 8.64280 + 14.9698i 0.357031 + 0.618395i
\(587\) −16.3784 −0.676009 −0.338004 0.941145i \(-0.609752\pi\)
−0.338004 + 0.941145i \(0.609752\pi\)
\(588\) −0.943583 0.0928876i −0.0389127 0.00383062i
\(589\) 16.0118 0.659753
\(590\) 11.4877 + 19.8973i 0.472941 + 0.819158i
\(591\) 1.58040 2.73734i 0.0650091 0.112599i
\(592\) −14.4689 + 25.0609i −0.594670 + 1.03000i
\(593\) −13.6157 23.5830i −0.559129 0.968440i −0.997569 0.0696795i \(-0.977802\pi\)
0.438440 0.898760i \(-0.355531\pi\)
\(594\) 1.93911 0.0795625
\(595\) −3.61926 + 1.85916i −0.148375 + 0.0762182i
\(596\) 2.22765 0.0912481
\(597\) −0.904642 1.56689i −0.0370245 0.0641283i
\(598\) 2.16198 3.74466i 0.0884099 0.153130i
\(599\) −20.2644 + 35.0990i −0.827981 + 1.43411i 0.0716385 + 0.997431i \(0.477177\pi\)
−0.899620 + 0.436675i \(0.856156\pi\)
\(600\) 4.72550 + 8.18480i 0.192918 + 0.334143i
\(601\) 8.69739 0.354774 0.177387 0.984141i \(-0.443236\pi\)
0.177387 + 0.984141i \(0.443236\pi\)
\(602\) 35.9745 + 23.1938i 1.46621 + 0.945311i
\(603\) −8.09295 −0.329570
\(604\) −0.554555 0.960517i −0.0225645 0.0390829i
\(605\) −5.95691 + 10.3177i −0.242183 + 0.419473i
\(606\) −0.494188 + 0.855958i −0.0200750 + 0.0347709i
\(607\) −10.0215 17.3578i −0.406761 0.704530i 0.587764 0.809033i \(-0.300008\pi\)
−0.994525 + 0.104502i \(0.966675\pi\)
\(608\) 6.56169 0.266112
\(609\) 0.967299 19.6998i 0.0391969 0.798277i
\(610\) 25.0175 1.01293
\(611\) −2.74940 4.76210i −0.111229 0.192654i
\(612\) 0.0785337 0.136024i 0.00317454 0.00549846i
\(613\) 10.0301 17.3726i 0.405111 0.701672i −0.589224 0.807970i \(-0.700566\pi\)
0.994334 + 0.106298i \(0.0338997\pi\)
\(614\) 2.07190 + 3.58863i 0.0836150 + 0.144825i
\(615\) −14.8877 −0.600331
\(616\) −0.537299 + 10.9425i −0.0216484 + 0.440887i
\(617\) 35.9585 1.44764 0.723818 0.689991i \(-0.242385\pi\)
0.723818 + 0.689991i \(0.242385\pi\)
\(618\) −9.74541 16.8795i −0.392018 0.678995i
\(619\) 7.40997 12.8344i 0.297832 0.515860i −0.677808 0.735239i \(-0.737070\pi\)
0.975640 + 0.219379i \(0.0704033\pi\)
\(620\) −0.167636 + 0.290355i −0.00673244 + 0.0116609i
\(621\) −0.500000 0.866025i −0.0200643 0.0347524i
\(622\) 37.5190 1.50437
\(623\) 14.1316 + 9.11104i 0.566169 + 0.365026i
\(624\) 11.7505 0.470397
\(625\) −0.855482 1.48174i −0.0342193 0.0592695i
\(626\) −0.916258 + 1.58701i −0.0366211 + 0.0634295i
\(627\) −6.09136 + 10.5505i −0.243266 + 0.421348i
\(628\) 1.52483 + 2.64108i 0.0608473 + 0.105391i
\(629\) −9.04303 −0.360569
\(630\) −4.26184 + 2.18925i −0.169796 + 0.0872217i
\(631\) −25.6933 −1.02284 −0.511418 0.859332i \(-0.670880\pi\)
−0.511418 + 0.859332i \(0.670880\pi\)
\(632\) −17.1113 29.6377i −0.680652 1.17892i
\(633\) −11.2758 + 19.5303i −0.448174 + 0.776260i
\(634\) −0.347254 + 0.601462i −0.0137912 + 0.0238871i
\(635\) 0.707075 + 1.22469i 0.0280594 + 0.0486004i
\(636\) −0.561976 −0.0222838
\(637\) 12.9105 18.0184i 0.511531 0.713915i
\(638\) −14.4557 −0.572305
\(639\) 2.59489 + 4.49449i 0.102652 + 0.177799i
\(640\) 6.65119 11.5202i 0.262911 0.455376i
\(641\) −9.87984 + 17.1124i −0.390230 + 0.675899i −0.992480 0.122409i \(-0.960938\pi\)
0.602249 + 0.798308i \(0.294271\pi\)
\(642\) 9.55563 + 16.5508i 0.377131 + 0.653210i
\(643\) −6.27845 −0.247598 −0.123799 0.992307i \(-0.539508\pi\)
−0.123799 + 0.992307i \(0.539508\pi\)
\(644\) 0.318767 0.163746i 0.0125612 0.00645251i
\(645\) −15.7128 −0.618691
\(646\) −6.79198 11.7641i −0.267227 0.462850i
\(647\) 23.4542 40.6238i 0.922078 1.59709i 0.125883 0.992045i \(-0.459823\pi\)
0.796195 0.605041i \(-0.206843\pi\)
\(648\) 1.45796 2.52527i 0.0572742 0.0992018i
\(649\) 9.00841 + 15.6030i 0.353611 + 0.612472i
\(650\) −14.0147 −0.549700
\(651\) 4.15027 + 2.67580i 0.162662 + 0.104873i
\(652\) 0.197960 0.00775270
\(653\) −14.6588 25.3898i −0.573643 0.993579i −0.996188 0.0872370i \(-0.972196\pi\)
0.422544 0.906342i \(-0.361137\pi\)
\(654\) 1.98641 3.44056i 0.0776747 0.134537i
\(655\) −10.6193 + 18.3931i −0.414929 + 0.718677i
\(656\) −20.8280 36.0752i −0.813197 1.40850i
\(657\) −11.3686 −0.443531
\(658\) −0.307671 + 6.26596i −0.0119943 + 0.244272i
\(659\) −8.04283 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(660\) −0.127548 0.220920i −0.00496480 0.00859929i
\(661\) −6.43869 + 11.1521i −0.250436 + 0.433768i −0.963646 0.267182i \(-0.913907\pi\)
0.713210 + 0.700951i \(0.247241\pi\)
\(662\) −4.22641 + 7.32035i −0.164264 + 0.284513i
\(663\) 1.83600 + 3.18005i 0.0713045 + 0.123503i
\(664\) −16.6373 −0.645651
\(665\) 1.47627 30.0655i 0.0572475 1.16589i
\(666\) −10.6486 −0.412624
\(667\) 3.72740 + 6.45604i 0.144325 + 0.249979i
\(668\) 0.187123 0.324107i 0.00724002 0.0125401i
\(669\) −7.22419 + 12.5127i −0.279303 + 0.483767i
\(670\) −7.32785 12.6922i −0.283100 0.490343i
\(671\) 19.6181 0.757350
\(672\) 1.70080 + 1.09656i 0.0656098 + 0.0423006i
\(673\) 42.5924 1.64182 0.820909 0.571059i \(-0.193467\pi\)
0.820909 + 0.571059i \(0.193467\pi\)
\(674\) 3.46562 + 6.00263i 0.133491 + 0.231213i
\(675\) −1.62058 + 2.80693i −0.0623762 + 0.108039i
\(676\) −0.201318 + 0.348693i −0.00774300 + 0.0134113i
\(677\) −5.81225 10.0671i −0.223383 0.386911i 0.732450 0.680821i \(-0.238377\pi\)
−0.955833 + 0.293910i \(0.905043\pi\)
\(678\) −25.4832 −0.978676
\(679\) 0.961122 0.493715i 0.0368845 0.0189470i
\(680\) 4.48434 0.171967
\(681\) −1.63940 2.83953i −0.0628221 0.108811i
\(682\) 1.80959 3.13431i 0.0692930 0.120019i
\(683\) −4.42079 + 7.65703i −0.169157 + 0.292988i −0.938124 0.346301i \(-0.887438\pi\)
0.768967 + 0.639289i \(0.220771\pi\)
\(684\) 0.581000 + 1.00632i 0.0222151 + 0.0384777i
\(685\) −1.23017 −0.0470022
\(686\) −23.5186 + 9.29592i −0.897946 + 0.354920i
\(687\) 0.263933 0.0100697
\(688\) −21.9823 38.0745i −0.838068 1.45158i
\(689\) 6.56910 11.3780i 0.250263 0.433468i
\(690\) 0.905461 1.56830i 0.0344703 0.0597043i
\(691\) −12.6339 21.8825i −0.480615 0.832450i 0.519138 0.854691i \(-0.326253\pi\)
−0.999753 + 0.0222409i \(0.992920\pi\)
\(692\) −2.55540 −0.0971417
\(693\) −3.34204 + 1.71676i −0.126954 + 0.0652143i
\(694\) −34.8133 −1.32149
\(695\) −2.80208 4.85334i −0.106289 0.184098i
\(696\) −10.8688 + 18.8253i −0.411981 + 0.713573i
\(697\) 6.50871 11.2734i 0.246535 0.427011i
\(698\) 7.51941 + 13.0240i 0.284614 + 0.492966i
\(699\) −17.8509 −0.675184
\(700\) −0.976213 0.629393i −0.0368974 0.0237888i
\(701\) 17.9512 0.678009 0.339005 0.940785i \(-0.389910\pi\)
0.339005 + 0.940785i \(0.389910\pi\)
\(702\) 2.16198 + 3.74466i 0.0815986 + 0.141333i
\(703\) 33.4506 57.9382i 1.26161 2.18518i
\(704\) 6.01117 10.4117i 0.226555 0.392404i
\(705\) −1.15148 1.99442i −0.0433673 0.0751143i
\(706\) −9.07748 −0.341636
\(707\) 0.0939204 1.91276i 0.00353224 0.0719368i
\(708\) 1.71846 0.0645838
\(709\) 18.7313 + 32.4436i 0.703470 + 1.21845i 0.967241 + 0.253861i \(0.0817005\pi\)
−0.263770 + 0.964585i \(0.584966\pi\)
\(710\) −4.69915 + 8.13917i −0.176356 + 0.305458i
\(711\) 5.86823 10.1641i 0.220076 0.381183i
\(712\) −9.26552 16.0484i −0.347240 0.601437i
\(713\) −1.86642 −0.0698980
\(714\) 0.205457 4.18430i 0.00768905 0.156593i
\(715\) 5.96378 0.223033
\(716\) −1.40313 2.43030i −0.0524376 0.0908245i
\(717\) 0.844229 1.46225i 0.0315283 0.0546086i
\(718\) 5.36276 9.28857i 0.200136 0.346646i
\(719\) −15.8091 27.3822i −0.589580 1.02118i −0.994287 0.106736i \(-0.965960\pi\)
0.404707 0.914446i \(-0.367373\pi\)
\(720\) 4.92124 0.183404
\(721\) 31.7402 + 20.4639i 1.18207 + 0.762114i
\(722\) 74.5512 2.77451
\(723\) 9.52098 + 16.4908i 0.354089 + 0.613300i
\(724\) 0.0465177 0.0805710i 0.00172882 0.00299440i
\(725\) 12.0811 20.9251i 0.448681 0.777139i
\(726\) −6.13332 10.6232i −0.227629 0.394265i
\(727\) 0.00894509 0.000331755 0.000165878 1.00000i \(-0.499947\pi\)
0.000165878 1.00000i \(0.499947\pi\)
\(728\) −21.7304 + 11.1626i −0.805382 + 0.413714i
\(729\) 1.00000 0.0370370
\(730\) −10.2938 17.8294i −0.380991 0.659896i
\(731\) 6.86943 11.8982i 0.254075 0.440071i
\(732\) 0.935599 1.62050i 0.0345807 0.0598956i
\(733\) −12.8555 22.2663i −0.474828 0.822426i 0.524756 0.851252i \(-0.324156\pi\)
−0.999584 + 0.0288262i \(0.990823\pi\)
\(734\) 2.55669 0.0943693
\(735\) 5.40704 7.54631i 0.199442 0.278350i
\(736\) −0.764868 −0.0281934
\(737\) −5.74634 9.95296i −0.211669 0.366622i
\(738\) 7.66430 13.2750i 0.282127 0.488658i
\(739\) 8.38289 14.5196i 0.308370 0.534112i −0.669636 0.742689i \(-0.733550\pi\)
0.978006 + 0.208577i \(0.0668833\pi\)
\(740\) 0.700428 + 1.21318i 0.0257483 + 0.0445973i
\(741\) −27.1659 −0.997964
\(742\) −13.3329 + 6.84894i −0.489468 + 0.251433i
\(743\) 13.6484 0.500712 0.250356 0.968154i \(-0.419452\pi\)
0.250356 + 0.968154i \(0.419452\pi\)
\(744\) −2.72117 4.71321i −0.0997630 0.172795i
\(745\) −10.9057 + 18.8892i −0.399553 + 0.692047i
\(746\) 15.9608 27.6449i 0.584367 1.01215i
\(747\) −2.85283 4.94125i −0.104380 0.180791i
\(748\) 0.223049 0.00815549
\(749\) −31.1221 20.0654i −1.13718 0.733172i
\(750\) −14.9241 −0.544951
\(751\) 9.75722 + 16.9000i 0.356046 + 0.616690i 0.987296 0.158889i \(-0.0507913\pi\)
−0.631250 + 0.775579i \(0.717458\pi\)
\(752\) 3.22186 5.58042i 0.117489 0.203497i
\(753\) −10.1695 + 17.6141i −0.370598 + 0.641895i
\(754\) −16.1171 27.9157i −0.586951 1.01663i
\(755\) 10.8595 0.395218
\(756\) −0.0175752 + 0.357934i −0.000639206 + 0.0130179i
\(757\) 11.1059 0.403652 0.201826 0.979421i \(-0.435312\pi\)
0.201826 + 0.979421i \(0.435312\pi\)
\(758\) −14.2869 24.7456i −0.518923 0.898801i
\(759\) 0.710043 1.22983i 0.0257729 0.0446400i
\(760\) −16.5878 + 28.7309i −0.601702 + 1.04218i
\(761\) −14.6605 25.3927i −0.531442 0.920485i −0.999327 0.0366951i \(-0.988317\pi\)
0.467884 0.883790i \(-0.345016\pi\)
\(762\) −1.45603 −0.0527464
\(763\) −0.377517 + 7.68843i −0.0136670 + 0.278340i
\(764\) −0.148046 −0.00535613
\(765\) 0.768940 + 1.33184i 0.0278011 + 0.0481529i
\(766\) 18.3104 31.7146i 0.661582 1.14589i
\(767\) −20.0876 + 34.7927i −0.725321 + 1.25629i
\(768\) −1.61777 2.80205i −0.0583761 0.101110i
\(769\) −9.29965 −0.335354 −0.167677 0.985842i \(-0.553627\pi\)
−0.167677 + 0.985842i \(0.553627\pi\)
\(770\) −5.71849 3.68688i −0.206080 0.132866i
\(771\) 9.62955 0.346800
\(772\) 0.502106 + 0.869673i 0.0180712 + 0.0313002i
\(773\) −16.7718 + 29.0496i −0.603240 + 1.04484i 0.389087 + 0.921201i \(0.372791\pi\)
−0.992327 + 0.123642i \(0.960543\pi\)
\(774\) 8.08906 14.0107i 0.290755 0.503603i
\(775\) 3.02469 + 5.23891i 0.108650 + 0.188187i
\(776\) −1.19085 −0.0427491
\(777\) 18.3528 9.42756i 0.658402