# Properties

 Label 483.2.i.f.277.1 Level $483$ Weight $2$ Character 483.277 Analytic conductor $3.857$ Analytic rank $0$ Dimension $12$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$483 = 3 \cdot 7 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 483.i (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.85677441763$$ Analytic rank: $$0$$ Dimension: $$12$$ Relative dimension: $$6$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{12} - \cdots)$$ Defining polynomial: $$x^{12} - x^{11} + 8 x^{10} - 3 x^{9} + 42 x^{8} - 15 x^{7} + 101 x^{6} + 6 x^{5} + 150 x^{4} - 28 x^{3} + 40 x^{2} + 8 x + 4$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 277.1 Root $$-1.02170 + 1.76964i$$ of defining polynomial Character $$\chi$$ $$=$$ 483.277 Dual form 483.2.i.f.415.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.02170 - 1.76964i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-1.08774 + 1.88403i) q^{4} +(-0.971745 - 1.68311i) q^{5} -2.04340 q^{6} +(-1.16166 + 2.37709i) q^{7} +0.358585 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})$$ $$q+(-1.02170 - 1.76964i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-1.08774 + 1.88403i) q^{4} +(-0.971745 - 1.68311i) q^{5} -2.04340 q^{6} +(-1.16166 + 2.37709i) q^{7} +0.358585 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-1.98566 + 3.43927i) q^{10} +(2.83264 - 4.90628i) q^{11} +(1.08774 + 1.88403i) q^{12} -6.17812 q^{13} +(5.39345 - 0.372961i) q^{14} -1.94349 q^{15} +(1.80912 + 3.13348i) q^{16} +(-3.61732 + 6.26537i) q^{17} +(-1.02170 + 1.76964i) q^{18} +(-0.395110 - 0.684350i) q^{19} +4.22803 q^{20} +(1.47779 + 2.19457i) q^{21} -11.5765 q^{22} +(0.500000 + 0.866025i) q^{23} +(0.179293 - 0.310544i) q^{24} +(0.611424 - 1.05902i) q^{25} +(6.31219 + 10.9330i) q^{26} -1.00000 q^{27} +(-3.21491 - 4.77425i) q^{28} -5.34085 q^{29} +(1.98566 + 3.43927i) q^{30} +(-0.455658 + 0.789223i) q^{31} +(4.05534 - 7.02405i) q^{32} +(-2.83264 - 4.90628i) q^{33} +14.7832 q^{34} +(5.12974 - 0.354726i) q^{35} +2.17548 q^{36} +(0.486660 + 0.842920i) q^{37} +(-0.807367 + 1.39840i) q^{38} +(-3.08906 + 5.35041i) q^{39} +(-0.348454 - 0.603539i) q^{40} -1.51843 q^{41} +(2.37373 - 4.85734i) q^{42} -2.70342 q^{43} +(6.16237 + 10.6735i) q^{44} +(-0.971745 + 1.68311i) q^{45} +(1.02170 - 1.76964i) q^{46} +(0.764197 + 1.32363i) q^{47} +3.61824 q^{48} +(-4.30111 - 5.52273i) q^{49} -2.49877 q^{50} +(3.61732 + 6.26537i) q^{51} +(6.72020 - 11.6397i) q^{52} +(4.47902 - 7.75789i) q^{53} +(1.02170 + 1.76964i) q^{54} -11.0104 q^{55} +(-0.416553 + 0.852390i) q^{56} -0.790220 q^{57} +(5.45674 + 9.45136i) q^{58} +(5.44656 - 9.43371i) q^{59} +(2.11402 - 3.66158i) q^{60} +(3.15887 + 5.47133i) q^{61} +1.86218 q^{62} +(2.63945 - 0.182520i) q^{63} -9.33688 q^{64} +(6.00356 + 10.3985i) q^{65} +(-5.78823 + 10.0255i) q^{66} +(-3.65917 + 6.33786i) q^{67} +(-7.86941 - 13.6302i) q^{68} +1.00000 q^{69} +(-5.86879 - 8.71535i) q^{70} -8.75692 q^{71} +(-0.179293 - 0.310544i) q^{72} +(0.437625 - 0.757990i) q^{73} +(0.994442 - 1.72242i) q^{74} +(-0.611424 - 1.05902i) q^{75} +1.71911 q^{76} +(8.37211 + 12.4329i) q^{77} +12.6244 q^{78} +(-2.98327 - 5.16718i) q^{79} +(3.51600 - 6.08989i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(1.55138 + 2.68708i) q^{82} -0.273554 q^{83} +(-5.74208 + 0.397069i) q^{84} +14.0604 q^{85} +(2.76208 + 4.78407i) q^{86} +(-2.67042 + 4.62531i) q^{87} +(1.01575 - 1.75932i) q^{88} +(-8.81350 - 15.2654i) q^{89} +3.97133 q^{90} +(7.17686 - 14.6859i) q^{91} -2.17548 q^{92} +(0.455658 + 0.789223i) q^{93} +(1.56156 - 2.70470i) q^{94} +(-0.767892 + 1.33003i) q^{95} +(-4.05534 - 7.02405i) q^{96} +3.09620 q^{97} +(-5.37878 + 13.2540i) q^{98} -5.66529 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$12q + q^{2} + 6q^{3} - 3q^{4} - 3q^{5} + 2q^{6} - 2q^{7} - 6q^{8} - 6q^{9} + O(q^{10})$$ $$12q + q^{2} + 6q^{3} - 3q^{4} - 3q^{5} + 2q^{6} - 2q^{7} - 6q^{8} - 6q^{9} + 3q^{10} + 14q^{11} + 3q^{12} - q^{14} - 6q^{15} + 7q^{16} - 15q^{17} + q^{18} + q^{19} + 34q^{20} - 4q^{21} - 12q^{22} + 6q^{23} - 3q^{24} - 9q^{25} + 15q^{26} - 12q^{27} - 2q^{28} - 12q^{29} - 3q^{30} + 11q^{31} - 3q^{32} - 14q^{33} + 30q^{34} - q^{35} + 6q^{36} + 5q^{37} - 14q^{38} + 17q^{40} + 36q^{41} - 17q^{42} - 74q^{43} + 10q^{44} - 3q^{45} - q^{46} - 3q^{47} + 14q^{48} - 6q^{49} - 60q^{50} + 15q^{51} + 7q^{52} + 15q^{53} - q^{54} - 4q^{55} - 21q^{56} + 2q^{57} - 4q^{58} + 2q^{59} + 17q^{60} + 12q^{61} + 72q^{62} - 2q^{63} - 46q^{64} + 17q^{65} - 6q^{66} + 10q^{67} + q^{68} + 12q^{69} - 56q^{70} - 42q^{71} + 3q^{72} + 8q^{73} + 16q^{74} + 9q^{75} + 36q^{76} - 40q^{77} + 30q^{78} + 17q^{79} - 3q^{80} - 6q^{81} + 48q^{82} + 24q^{83} - 25q^{84} - 26q^{85} - 22q^{86} - 6q^{87} + 2q^{88} - 18q^{89} - 6q^{90} + 22q^{91} - 6q^{92} - 11q^{93} - 3q^{94} + 16q^{95} + 3q^{96} - 4q^{97} - 62q^{98} - 28q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/483\mathbb{Z}\right)^\times$$.

 $$n$$ $$323$$ $$346$$ $$442$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.02170 1.76964i −0.722451 1.25132i −0.960015 0.279950i $$-0.909682\pi$$
0.237563 0.971372i $$-0.423651\pi$$
$$3$$ 0.500000 0.866025i 0.288675 0.500000i
$$4$$ −1.08774 + 1.88403i −0.543871 + 0.942013i
$$5$$ −0.971745 1.68311i −0.434577 0.752710i 0.562684 0.826672i $$-0.309769\pi$$
−0.997261 + 0.0739621i $$0.976436\pi$$
$$6$$ −2.04340 −0.834215
$$7$$ −1.16166 + 2.37709i −0.439065 + 0.898455i
$$8$$ 0.358585 0.126779
$$9$$ −0.500000 0.866025i −0.166667 0.288675i
$$10$$ −1.98566 + 3.43927i −0.627922 + 1.08759i
$$11$$ 2.83264 4.90628i 0.854074 1.47930i −0.0234266 0.999726i $$-0.507458\pi$$
0.877501 0.479575i $$-0.159209\pi$$
$$12$$ 1.08774 + 1.88403i 0.314004 + 0.543871i
$$13$$ −6.17812 −1.71350 −0.856751 0.515730i $$-0.827521\pi$$
−0.856751 + 0.515730i $$0.827521\pi$$
$$14$$ 5.39345 0.372961i 1.44146 0.0996781i
$$15$$ −1.94349 −0.501807
$$16$$ 1.80912 + 3.13348i 0.452279 + 0.783371i
$$17$$ −3.61732 + 6.26537i −0.877328 + 1.51958i −0.0230655 + 0.999734i $$0.507343\pi$$
−0.854262 + 0.519842i $$0.825991\pi$$
$$18$$ −1.02170 + 1.76964i −0.240817 + 0.417107i
$$19$$ −0.395110 0.684350i −0.0906444 0.157001i 0.817138 0.576442i $$-0.195559\pi$$
−0.907782 + 0.419441i $$0.862226\pi$$
$$20$$ 4.22803 0.945417
$$21$$ 1.47779 + 2.19457i 0.322480 + 0.478894i
$$22$$ −11.5765 −2.46811
$$23$$ 0.500000 + 0.866025i 0.104257 + 0.180579i
$$24$$ 0.179293 0.310544i 0.0365980 0.0633896i
$$25$$ 0.611424 1.05902i 0.122285 0.211804i
$$26$$ 6.31219 + 10.9330i 1.23792 + 2.14414i
$$27$$ −1.00000 −0.192450
$$28$$ −3.21491 4.77425i −0.607561 0.902249i
$$29$$ −5.34085 −0.991770 −0.495885 0.868388i $$-0.665156\pi$$
−0.495885 + 0.868388i $$0.665156\pi$$
$$30$$ 1.98566 + 3.43927i 0.362531 + 0.627922i
$$31$$ −0.455658 + 0.789223i −0.0818386 + 0.141749i −0.904040 0.427449i $$-0.859413\pi$$
0.822201 + 0.569197i $$0.192746\pi$$
$$32$$ 4.05534 7.02405i 0.716889 1.24169i
$$33$$ −2.83264 4.90628i −0.493100 0.854074i
$$34$$ 14.7832 2.53531
$$35$$ 5.12974 0.354726i 0.867084 0.0599596i
$$36$$ 2.17548 0.362581
$$37$$ 0.486660 + 0.842920i 0.0800064 + 0.138575i 0.903252 0.429110i $$-0.141173\pi$$
−0.823246 + 0.567685i $$0.807839\pi$$
$$38$$ −0.807367 + 1.39840i −0.130972 + 0.226851i
$$39$$ −3.08906 + 5.35041i −0.494645 + 0.856751i
$$40$$ −0.348454 0.603539i −0.0550953 0.0954279i
$$41$$ −1.51843 −0.237140 −0.118570 0.992946i $$-0.537831\pi$$
−0.118570 + 0.992946i $$0.537831\pi$$
$$42$$ 2.37373 4.85734i 0.366275 0.749505i
$$43$$ −2.70342 −0.412268 −0.206134 0.978524i $$-0.566088\pi$$
−0.206134 + 0.978524i $$0.566088\pi$$
$$44$$ 6.16237 + 10.6735i 0.929013 + 1.60910i
$$45$$ −0.971745 + 1.68311i −0.144859 + 0.250903i
$$46$$ 1.02170 1.76964i 0.150641 0.260919i
$$47$$ 0.764197 + 1.32363i 0.111470 + 0.193071i 0.916363 0.400348i $$-0.131111\pi$$
−0.804893 + 0.593419i $$0.797778\pi$$
$$48$$ 3.61824 0.522247
$$49$$ −4.30111 5.52273i −0.614444 0.788961i
$$50$$ −2.49877 −0.353379
$$51$$ 3.61732 + 6.26537i 0.506525 + 0.877328i
$$52$$ 6.72020 11.6397i 0.931924 1.61414i
$$53$$ 4.47902 7.75789i 0.615240 1.06563i −0.375102 0.926984i $$-0.622392\pi$$
0.990342 0.138644i $$-0.0442744\pi$$
$$54$$ 1.02170 + 1.76964i 0.139036 + 0.240817i
$$55$$ −11.0104 −1.48465
$$56$$ −0.416553 + 0.852390i −0.0556643 + 0.113905i
$$57$$ −0.790220 −0.104667
$$58$$ 5.45674 + 9.45136i 0.716506 + 1.24102i
$$59$$ 5.44656 9.43371i 0.709081 1.22817i −0.256117 0.966646i $$-0.582443\pi$$
0.965198 0.261519i $$-0.0842235\pi$$
$$60$$ 2.11402 3.66158i 0.272918 0.472708i
$$61$$ 3.15887 + 5.47133i 0.404452 + 0.700532i 0.994258 0.107014i $$-0.0341288\pi$$
−0.589805 + 0.807546i $$0.700795\pi$$
$$62$$ 1.86218 0.236497
$$63$$ 2.63945 0.182520i 0.332539 0.0229954i
$$64$$ −9.33688 −1.16711
$$65$$ 6.00356 + 10.3985i 0.744649 + 1.28977i
$$66$$ −5.78823 + 10.0255i −0.712481 + 1.23405i
$$67$$ −3.65917 + 6.33786i −0.447038 + 0.774293i −0.998192 0.0601108i $$-0.980855\pi$$
0.551153 + 0.834404i $$0.314188\pi$$
$$68$$ −7.86941 13.6302i −0.954307 1.65291i
$$69$$ 1.00000 0.120386
$$70$$ −5.86879 8.71535i −0.701455 1.04168i
$$71$$ −8.75692 −1.03926 −0.519628 0.854393i $$-0.673929\pi$$
−0.519628 + 0.854393i $$0.673929\pi$$
$$72$$ −0.179293 0.310544i −0.0211299 0.0365980i
$$73$$ 0.437625 0.757990i 0.0512202 0.0887160i −0.839279 0.543702i $$-0.817022\pi$$
0.890499 + 0.454986i $$0.150356\pi$$
$$74$$ 0.994442 1.72242i 0.115601 0.200228i
$$75$$ −0.611424 1.05902i −0.0706012 0.122285i
$$76$$ 1.71911 0.197196
$$77$$ 8.37211 + 12.4329i 0.954091 + 1.41686i
$$78$$ 12.6244 1.42943
$$79$$ −2.98327 5.16718i −0.335644 0.581353i 0.647964 0.761671i $$-0.275621\pi$$
−0.983608 + 0.180318i $$0.942287\pi$$
$$80$$ 3.51600 6.08989i 0.393101 0.680871i
$$81$$ −0.500000 + 0.866025i −0.0555556 + 0.0962250i
$$82$$ 1.55138 + 2.68708i 0.171322 + 0.296738i
$$83$$ −0.273554 −0.0300265 −0.0150132 0.999887i $$-0.504779\pi$$
−0.0150132 + 0.999887i $$0.504779\pi$$
$$84$$ −5.74208 + 0.397069i −0.626512 + 0.0433238i
$$85$$ 14.0604 1.52507
$$86$$ 2.76208 + 4.78407i 0.297843 + 0.515879i
$$87$$ −2.67042 + 4.62531i −0.286299 + 0.495885i
$$88$$ 1.01575 1.75932i 0.108279 0.187544i
$$89$$ −8.81350 15.2654i −0.934229 1.61813i −0.776002 0.630730i $$-0.782755\pi$$
−0.158227 0.987403i $$-0.550578\pi$$
$$90$$ 3.97133 0.418615
$$91$$ 7.17686 14.6859i 0.752339 1.53950i
$$92$$ −2.17548 −0.226810
$$93$$ 0.455658 + 0.789223i 0.0472495 + 0.0818386i
$$94$$ 1.56156 2.70470i 0.161063 0.278969i
$$95$$ −0.767892 + 1.33003i −0.0787840 + 0.136458i
$$96$$ −4.05534 7.02405i −0.413896 0.716889i
$$97$$ 3.09620 0.314372 0.157186 0.987569i $$-0.449758\pi$$
0.157186 + 0.987569i $$0.449758\pi$$
$$98$$ −5.37878 + 13.2540i −0.543338 + 1.33885i
$$99$$ −5.66529 −0.569383
$$100$$ 1.33014 + 2.30388i 0.133014 + 0.230388i
$$101$$ −6.71382 + 11.6287i −0.668050 + 1.15710i 0.310398 + 0.950607i $$0.399538\pi$$
−0.978449 + 0.206491i $$0.933796\pi$$
$$102$$ 7.39162 12.8027i 0.731880 1.26765i
$$103$$ −3.16827 5.48760i −0.312178 0.540709i 0.666655 0.745366i $$-0.267725\pi$$
−0.978834 + 0.204657i $$0.934392\pi$$
$$104$$ −2.21538 −0.217236
$$105$$ 2.25767 4.61985i 0.220326 0.450851i
$$106$$ −18.3049 −1.77792
$$107$$ −7.98043 13.8225i −0.771497 1.33627i −0.936742 0.350020i $$-0.886175\pi$$
0.165245 0.986253i $$-0.447159\pi$$
$$108$$ 1.08774 1.88403i 0.104668 0.181290i
$$109$$ 0.0235357 0.0407651i 0.00225431 0.00390459i −0.864896 0.501951i $$-0.832616\pi$$
0.867150 + 0.498046i $$0.165949\pi$$
$$110$$ 11.2494 + 19.4845i 1.07258 + 1.85777i
$$111$$ 0.973320 0.0923835
$$112$$ −9.55015 + 0.660400i −0.902404 + 0.0624020i
$$113$$ −6.27141 −0.589965 −0.294982 0.955503i $$-0.595314\pi$$
−0.294982 + 0.955503i $$0.595314\pi$$
$$114$$ 0.807367 + 1.39840i 0.0756169 + 0.130972i
$$115$$ 0.971745 1.68311i 0.0906157 0.156951i
$$116$$ 5.80947 10.0623i 0.539395 0.934260i
$$117$$ 3.08906 + 5.35041i 0.285584 + 0.494645i
$$118$$ −22.2590 −2.04911
$$119$$ −10.6913 15.8769i −0.980067 1.45543i
$$120$$ −0.696907 −0.0636186
$$121$$ −10.5477 18.2692i −0.958886 1.66084i
$$122$$ 6.45484 11.1801i 0.584394 1.01220i
$$123$$ −0.759217 + 1.31500i −0.0684563 + 0.118570i
$$124$$ −0.991277 1.71694i −0.0890193 0.154186i
$$125$$ −12.0940 −1.08172
$$126$$ −3.01972 4.48438i −0.269018 0.399501i
$$127$$ −12.4325 −1.10320 −0.551601 0.834108i $$-0.685983\pi$$
−0.551601 + 0.834108i $$0.685983\pi$$
$$128$$ 1.42882 + 2.47479i 0.126291 + 0.218743i
$$129$$ −1.35171 + 2.34123i −0.119011 + 0.206134i
$$130$$ 12.2677 21.2482i 1.07595 1.86359i
$$131$$ 1.65549 + 2.86739i 0.144641 + 0.250525i 0.929239 0.369480i $$-0.120464\pi$$
−0.784598 + 0.620005i $$0.787131\pi$$
$$132$$ 12.3247 1.07273
$$133$$ 2.08574 0.144231i 0.180857 0.0125064i
$$134$$ 14.9543 1.29185
$$135$$ 0.971745 + 1.68311i 0.0836345 + 0.144859i
$$136$$ −1.29712 + 2.24667i −0.111227 + 0.192651i
$$137$$ 6.52210 11.2966i 0.557220 0.965134i −0.440507 0.897749i $$-0.645201\pi$$
0.997727 0.0673847i $$-0.0214655\pi$$
$$138$$ −1.02170 1.76964i −0.0869729 0.150641i
$$139$$ −11.3674 −0.964169 −0.482084 0.876125i $$-0.660120\pi$$
−0.482084 + 0.876125i $$0.660120\pi$$
$$140$$ −4.91152 + 10.0504i −0.415099 + 0.849415i
$$141$$ 1.52839 0.128714
$$142$$ 8.94694 + 15.4966i 0.750811 + 1.30044i
$$143$$ −17.5004 + 30.3116i −1.46346 + 2.53478i
$$144$$ 1.80912 3.13348i 0.150760 0.261124i
$$145$$ 5.18994 + 8.98924i 0.431001 + 0.746516i
$$146$$ −1.78849 −0.148016
$$147$$ −6.93337 + 0.963504i −0.571855 + 0.0794685i
$$148$$ −2.11744 −0.174053
$$149$$ −8.10300 14.0348i −0.663824 1.14978i −0.979603 0.200944i $$-0.935599\pi$$
0.315779 0.948833i $$-0.397734\pi$$
$$150$$ −1.24938 + 2.16400i −0.102012 + 0.176690i
$$151$$ 6.46687 11.2009i 0.526266 0.911520i −0.473266 0.880920i $$-0.656925\pi$$
0.999532 0.0305999i $$-0.00974177\pi$$
$$152$$ −0.141681 0.245398i −0.0114918 0.0199044i
$$153$$ 7.23463 0.584885
$$154$$ 13.4479 27.5183i 1.08366 2.21748i
$$155$$ 1.77113 0.142261
$$156$$ −6.72020 11.6397i −0.538047 0.931924i
$$157$$ 4.86721 8.43026i 0.388446 0.672808i −0.603795 0.797140i $$-0.706345\pi$$
0.992241 + 0.124332i $$0.0396787\pi$$
$$158$$ −6.09602 + 10.5586i −0.484973 + 0.839999i
$$159$$ −4.47902 7.75789i −0.355209 0.615240i
$$160$$ −15.7630 −1.24618
$$161$$ −2.63945 + 0.182520i −0.208018 + 0.0143846i
$$162$$ 2.04340 0.160545
$$163$$ 12.0461 + 20.8645i 0.943525 + 1.63423i 0.758677 + 0.651467i $$0.225846\pi$$
0.184848 + 0.982767i $$0.440821\pi$$
$$164$$ 1.65167 2.86077i 0.128973 0.223389i
$$165$$ −5.50521 + 9.53531i −0.428580 + 0.742323i
$$166$$ 0.279490 + 0.484091i 0.0216927 + 0.0375728i
$$167$$ −12.2582 −0.948566 −0.474283 0.880373i $$-0.657293\pi$$
−0.474283 + 0.880373i $$0.657293\pi$$
$$168$$ 0.529914 + 0.786941i 0.0408838 + 0.0607138i
$$169$$ 25.1692 1.93609
$$170$$ −14.3655 24.8818i −1.10179 1.90835i
$$171$$ −0.395110 + 0.684350i −0.0302148 + 0.0523336i
$$172$$ 2.94062 5.09331i 0.224220 0.388361i
$$173$$ 2.94398 + 5.09912i 0.223826 + 0.387679i 0.955967 0.293475i $$-0.0948118\pi$$
−0.732140 + 0.681154i $$0.761478\pi$$
$$174$$ 10.9135 0.827349
$$175$$ 1.80711 + 2.68363i 0.136605 + 0.202863i
$$176$$ 20.4984 1.54512
$$177$$ −5.44656 9.43371i −0.409388 0.709081i
$$178$$ −18.0095 + 31.1934i −1.34987 + 2.33804i
$$179$$ 8.48661 14.6992i 0.634319 1.09867i −0.352340 0.935872i $$-0.614614\pi$$
0.986659 0.162801i $$-0.0520528\pi$$
$$180$$ −2.11402 3.66158i −0.157569 0.272918i
$$181$$ 19.1241 1.42149 0.710743 0.703452i $$-0.248359\pi$$
0.710743 + 0.703452i $$0.248359\pi$$
$$182$$ −33.3214 + 2.30420i −2.46994 + 0.170799i
$$183$$ 6.31775 0.467021
$$184$$ 0.179293 + 0.310544i 0.0132176 + 0.0228936i
$$185$$ 0.945819 1.63821i 0.0695380 0.120443i
$$186$$ 0.931092 1.61270i 0.0682709 0.118249i
$$187$$ 20.4931 + 35.4952i 1.49861 + 2.59566i
$$188$$ −3.32500 −0.242500
$$189$$ 1.16166 2.37709i 0.0844981 0.172908i
$$190$$ 3.13822 0.227670
$$191$$ 10.3435 + 17.9155i 0.748432 + 1.29632i 0.948574 + 0.316555i $$0.102526\pi$$
−0.200142 + 0.979767i $$0.564140\pi$$
$$192$$ −4.66844 + 8.08598i −0.336916 + 0.583555i
$$193$$ −1.11450 + 1.93038i −0.0802237 + 0.138952i −0.903346 0.428913i $$-0.858897\pi$$
0.823122 + 0.567864i $$0.192230\pi$$
$$194$$ −3.16339 5.47916i −0.227118 0.393380i
$$195$$ 12.0071 0.859847
$$196$$ 15.0834 2.09609i 1.07739 0.149721i
$$197$$ 19.3710 1.38013 0.690064 0.723748i $$-0.257582\pi$$
0.690064 + 0.723748i $$0.257582\pi$$
$$198$$ 5.78823 + 10.0255i 0.411351 + 0.712481i
$$199$$ −12.3420 + 21.3770i −0.874902 + 1.51538i −0.0180354 + 0.999837i $$0.505741\pi$$
−0.856867 + 0.515538i $$0.827592\pi$$
$$200$$ 0.219248 0.379748i 0.0155032 0.0268523i
$$201$$ 3.65917 + 6.33786i 0.258098 + 0.447038i
$$202$$ 27.4381 1.93054
$$203$$ 6.20423 12.6957i 0.435452 0.891061i
$$204$$ −15.7388 −1.10194
$$205$$ 1.47553 + 2.55569i 0.103056 + 0.178497i
$$206$$ −6.47403 + 11.2134i −0.451067 + 0.781272i
$$207$$ 0.500000 0.866025i 0.0347524 0.0601929i
$$208$$ −11.1769 19.3590i −0.774982 1.34231i
$$209$$ −4.47682 −0.309668
$$210$$ −10.4821 + 0.724846i −0.723334 + 0.0500192i
$$211$$ 9.90378 0.681804 0.340902 0.940099i $$-0.389267\pi$$
0.340902 + 0.940099i $$0.389267\pi$$
$$212$$ 9.74403 + 16.8772i 0.669223 + 1.15913i
$$213$$ −4.37846 + 7.58371i −0.300007 + 0.519628i
$$214$$ −16.3072 + 28.2449i −1.11474 + 1.93078i
$$215$$ 2.62703 + 4.55016i 0.179162 + 0.310318i
$$216$$ −0.358585 −0.0243987
$$217$$ −1.34673 1.99995i −0.0914223 0.135765i
$$218$$ −0.0961859 −0.00651453
$$219$$ −0.437625 0.757990i −0.0295720 0.0512202i
$$220$$ 11.9765 20.7439i 0.807456 1.39856i
$$221$$ 22.3482 38.7082i 1.50330 2.60380i
$$222$$ −0.994442 1.72242i −0.0667425 0.115601i
$$223$$ 2.21461 0.148301 0.0741507 0.997247i $$-0.476375\pi$$
0.0741507 + 0.997247i $$0.476375\pi$$
$$224$$ 11.9859 + 17.7994i 0.800840 + 1.18927i
$$225$$ −1.22285 −0.0815232
$$226$$ 6.40750 + 11.0981i 0.426221 + 0.738236i
$$227$$ 2.79017 4.83271i 0.185190 0.320758i −0.758451 0.651730i $$-0.774043\pi$$
0.943640 + 0.330972i $$0.107377\pi$$
$$228$$ 0.859555 1.48879i 0.0569254 0.0985978i
$$229$$ −3.48930 6.04364i −0.230579 0.399375i 0.727400 0.686214i $$-0.240729\pi$$
−0.957979 + 0.286839i $$0.907395\pi$$
$$230$$ −3.97133 −0.261862
$$231$$ 14.9532 1.03403i 0.983851 0.0680341i
$$232$$ −1.91515 −0.125736
$$233$$ −12.2021 21.1347i −0.799388 1.38458i −0.920015 0.391882i $$-0.871824\pi$$
0.120628 0.992698i $$-0.461509\pi$$
$$234$$ 6.31219 10.9330i 0.412640 0.714714i
$$235$$ 1.48521 2.57246i 0.0968843 0.167809i
$$236$$ 11.8489 + 20.5229i 0.771298 + 1.33593i
$$237$$ −5.96655 −0.387569
$$238$$ −17.1731 + 35.1411i −1.11316 + 2.27786i
$$239$$ 0.424159 0.0274365 0.0137183 0.999906i $$-0.495633\pi$$
0.0137183 + 0.999906i $$0.495633\pi$$
$$240$$ −3.51600 6.08989i −0.226957 0.393101i
$$241$$ 8.15623 14.1270i 0.525389 0.910000i −0.474174 0.880431i $$-0.657253\pi$$
0.999563 0.0295691i $$-0.00941352\pi$$
$$242$$ −21.5533 + 37.3314i −1.38550 + 2.39975i
$$243$$ 0.500000 + 0.866025i 0.0320750 + 0.0555556i
$$244$$ −13.7442 −0.879880
$$245$$ −5.11578 + 12.6059i −0.326835 + 0.805363i
$$246$$ 3.10277 0.197825
$$247$$ 2.44104 + 4.22800i 0.155319 + 0.269021i
$$248$$ −0.163392 + 0.283004i −0.0103754 + 0.0179708i
$$249$$ −0.136777 + 0.236905i −0.00866790 + 0.0150132i
$$250$$ 12.3565 + 21.4021i 0.781493 + 1.35358i
$$251$$ −15.9242 −1.00513 −0.502564 0.864540i $$-0.667610\pi$$
−0.502564 + 0.864540i $$0.667610\pi$$
$$252$$ −2.52717 + 5.17132i −0.159197 + 0.325763i
$$253$$ 5.66529 0.356174
$$254$$ 12.7022 + 22.0009i 0.797010 + 1.38046i
$$255$$ 7.03021 12.1767i 0.440249 0.762534i
$$256$$ −6.41723 + 11.1150i −0.401077 + 0.694686i
$$257$$ 15.0785 + 26.1167i 0.940569 + 1.62911i 0.764389 + 0.644756i $$0.223041\pi$$
0.176181 + 0.984358i $$0.443626\pi$$
$$258$$ 5.52417 0.343920
$$259$$ −2.56903 + 0.177650i −0.159632 + 0.0110387i
$$260$$ −26.1213 −1.61997
$$261$$ 2.67042 + 4.62531i 0.165295 + 0.286299i
$$262$$ 3.38283 5.85923i 0.208992 0.361984i
$$263$$ −7.58281 + 13.1338i −0.467576 + 0.809866i −0.999314 0.0370435i $$-0.988206\pi$$
0.531737 + 0.846909i $$0.321539\pi$$
$$264$$ −1.01575 1.75932i −0.0625148 0.108279i
$$265$$ −17.4098 −1.06948
$$266$$ −2.38624 3.54365i −0.146310 0.217275i
$$267$$ −17.6270 −1.07876
$$268$$ −7.96046 13.7879i −0.486263 0.842231i
$$269$$ −0.235417 + 0.407754i −0.0143536 + 0.0248612i −0.873113 0.487518i $$-0.837902\pi$$
0.858759 + 0.512379i $$0.171236\pi$$
$$270$$ 1.98566 3.43927i 0.120844 0.209307i
$$271$$ 3.64368 + 6.31104i 0.221338 + 0.383368i 0.955214 0.295914i $$-0.0956243\pi$$
−0.733877 + 0.679283i $$0.762291\pi$$
$$272$$ −26.1766 −1.58719
$$273$$ −9.12997 13.5583i −0.552571 0.820586i
$$274$$ −26.6545 −1.61026
$$275$$ −3.46389 5.99964i −0.208881 0.361792i
$$276$$ −1.08774 + 1.88403i −0.0654744 + 0.113405i
$$277$$ −1.48011 + 2.56362i −0.0889310 + 0.154033i −0.907060 0.421002i $$-0.861678\pi$$
0.818129 + 0.575035i $$0.195012\pi$$
$$278$$ 11.6141 + 20.1161i 0.696565 + 1.20649i
$$279$$ 0.911316 0.0545591
$$280$$ 1.83945 0.127199i 0.109928 0.00760162i
$$281$$ 7.16141 0.427214 0.213607 0.976920i $$-0.431479\pi$$
0.213607 + 0.976920i $$0.431479\pi$$
$$282$$ −1.56156 2.70470i −0.0929895 0.161063i
$$283$$ 10.0053 17.3297i 0.594753 1.03014i −0.398828 0.917026i $$-0.630583\pi$$
0.993582 0.113117i $$-0.0360835\pi$$
$$284$$ 9.52527 16.4983i 0.565221 0.978991i
$$285$$ 0.767892 + 1.33003i 0.0454860 + 0.0787840i
$$286$$ 71.5207 4.22911
$$287$$ 1.76390 3.60945i 0.104120 0.213059i
$$288$$ −8.11067 −0.477926
$$289$$ −17.6699 30.6052i −1.03941 1.80031i
$$290$$ 10.6051 18.3686i 0.622754 1.07864i
$$291$$ 1.54810 2.68139i 0.0907514 0.157186i
$$292$$ 0.952047 + 1.64899i 0.0557144 + 0.0965001i
$$293$$ 6.27910 0.366829 0.183414 0.983036i $$-0.441285\pi$$
0.183414 + 0.983036i $$0.441285\pi$$
$$294$$ 8.78888 + 11.2851i 0.512578 + 0.658163i
$$295$$ −21.1707 −1.23260
$$296$$ 0.174509 + 0.302259i 0.0101431 + 0.0175684i
$$297$$ −2.83264 + 4.90628i −0.164367 + 0.284691i
$$298$$ −16.5577 + 28.6787i −0.959161 + 1.66132i
$$299$$ −3.08906 5.35041i −0.178645 0.309422i
$$300$$ 2.66029 0.153592
$$301$$ 3.14045 6.42627i 0.181012 0.370404i
$$302$$ −26.4288 −1.52081
$$303$$ 6.71382 + 11.6287i 0.385699 + 0.668050i
$$304$$ 1.42960 2.47614i 0.0819932 0.142016i
$$305$$ 6.13924 10.6335i 0.351532 0.608871i
$$306$$ −7.39162 12.8027i −0.422551 0.731880i
$$307$$ 25.1923 1.43780 0.718900 0.695114i $$-0.244646\pi$$
0.718900 + 0.695114i $$0.244646\pi$$
$$308$$ −32.5305 + 2.24951i −1.85360 + 0.128178i
$$309$$ −6.33653 −0.360473
$$310$$ −1.80957 3.13426i −0.102776 0.178014i
$$311$$ −5.96103 + 10.3248i −0.338019 + 0.585466i −0.984060 0.177837i $$-0.943090\pi$$
0.646041 + 0.763303i $$0.276423\pi$$
$$312$$ −1.10769 + 1.91858i −0.0627107 + 0.108618i
$$313$$ −5.02115 8.69689i −0.283812 0.491578i 0.688508 0.725229i $$-0.258266\pi$$
−0.972320 + 0.233651i $$0.924933\pi$$
$$314$$ −19.8913 −1.12253
$$315$$ −2.87207 4.26512i −0.161823 0.240312i
$$316$$ 12.9801 0.730189
$$317$$ 4.43105 + 7.67480i 0.248872 + 0.431060i 0.963213 0.268738i $$-0.0866067\pi$$
−0.714341 + 0.699798i $$0.753273\pi$$
$$318$$ −9.15243 + 15.8525i −0.513243 + 0.888962i
$$319$$ −15.1287 + 26.2037i −0.847046 + 1.46713i
$$320$$ 9.07307 + 15.7150i 0.507200 + 0.878496i
$$321$$ −15.9609 −0.890849
$$322$$ 3.01972 + 4.48438i 0.168282 + 0.249905i
$$323$$ 5.71695 0.318099
$$324$$ −1.08774 1.88403i −0.0604301 0.104668i
$$325$$ −3.77745 + 6.54274i −0.209535 + 0.362926i
$$326$$ 24.6151 42.6345i 1.36330 2.36131i
$$327$$ −0.0235357 0.0407651i −0.00130153 0.00225431i
$$328$$ −0.544489 −0.0300644
$$329$$ −4.03412 + 0.278962i −0.222408 + 0.0153797i
$$330$$ 22.4987 1.23851
$$331$$ 11.4496 + 19.8313i 0.629327 + 1.09003i 0.987687 + 0.156443i $$0.0500028\pi$$
−0.358360 + 0.933584i $$0.616664\pi$$
$$332$$ 0.297556 0.515383i 0.0163305 0.0282853i
$$333$$ 0.486660 0.842920i 0.0266688 0.0461917i
$$334$$ 12.5242 + 21.6925i 0.685292 + 1.18696i
$$335$$ 14.2231 0.777091
$$336$$ −4.20315 + 8.60087i −0.229301 + 0.469216i
$$337$$ 12.2517 0.667392 0.333696 0.942681i $$-0.391704\pi$$
0.333696 + 0.942681i $$0.391704\pi$$
$$338$$ −25.7153 44.5403i −1.39873 2.42267i
$$339$$ −3.13570 + 5.43120i −0.170308 + 0.294982i
$$340$$ −15.2941 + 26.4902i −0.829440 + 1.43663i
$$341$$ 2.58143 + 4.47117i 0.139792 + 0.242128i
$$342$$ 1.61473 0.0873149
$$343$$ 18.1244 3.80860i 0.978627 0.205645i
$$344$$ −0.969407 −0.0522669
$$345$$ −0.971745 1.68311i −0.0523170 0.0906157i
$$346$$ 6.01572 10.4195i 0.323407 0.560158i
$$347$$ 3.22916 5.59307i 0.173351 0.300252i −0.766239 0.642556i $$-0.777874\pi$$
0.939589 + 0.342304i $$0.111207\pi$$
$$348$$ −5.80947 10.0623i −0.311420 0.539395i
$$349$$ 20.5047 1.09759 0.548795 0.835957i $$-0.315087\pi$$
0.548795 + 0.835957i $$0.315087\pi$$
$$350$$ 2.90271 5.93980i 0.155156 0.317495i
$$351$$ 6.17812 0.329764
$$352$$ −22.9747 39.7933i −1.22455 2.12099i
$$353$$ −7.25563 + 12.5671i −0.386178 + 0.668881i −0.991932 0.126772i $$-0.959538\pi$$
0.605754 + 0.795652i $$0.292872\pi$$
$$354$$ −11.1295 + 19.2769i −0.591526 + 1.02455i
$$355$$ 8.50949 + 14.7389i 0.451637 + 0.782258i
$$356$$ 38.3473 2.03240
$$357$$ −19.0954 + 1.32046i −1.01064 + 0.0698864i
$$358$$ −34.6831 −1.83306
$$359$$ −2.33890 4.05109i −0.123442 0.213808i 0.797681 0.603080i $$-0.206060\pi$$
−0.921123 + 0.389272i $$0.872727\pi$$
$$360$$ −0.348454 + 0.603539i −0.0183651 + 0.0318093i
$$361$$ 9.18778 15.9137i 0.483567 0.837563i
$$362$$ −19.5391 33.8428i −1.02695 1.77874i
$$363$$ −21.0955 −1.10723
$$364$$ 19.8621 + 29.4959i 1.04106 + 1.54601i
$$365$$ −1.70104 −0.0890366
$$366$$ −6.45484 11.1801i −0.337400 0.584394i
$$367$$ 14.0330 24.3058i 0.732515 1.26875i −0.223289 0.974752i $$-0.571679\pi$$
0.955805 0.294002i $$-0.0949872\pi$$
$$368$$ −1.80912 + 3.13348i −0.0943068 + 0.163344i
$$369$$ 0.759217 + 1.31500i 0.0395233 + 0.0684563i
$$370$$ −3.86537 −0.200951
$$371$$ 13.2381 + 19.6590i 0.687288 + 1.02065i
$$372$$ −1.98255 −0.102791
$$373$$ −7.31514 12.6702i −0.378763 0.656037i 0.612119 0.790765i $$-0.290317\pi$$
−0.990883 + 0.134728i $$0.956984\pi$$
$$374$$ 41.8757 72.5308i 2.16534 3.75048i
$$375$$ −6.04702 + 10.4737i −0.312267 + 0.540862i
$$376$$ 0.274030 + 0.474634i 0.0141320 + 0.0244774i
$$377$$ 32.9964 1.69940
$$378$$ −5.39345 + 0.372961i −0.277409 + 0.0191831i
$$379$$ −2.44369 −0.125524 −0.0627620 0.998029i $$-0.519991\pi$$
−0.0627620 + 0.998029i $$0.519991\pi$$
$$380$$ −1.67054 2.89345i −0.0856967 0.148431i
$$381$$ −6.21623 + 10.7668i −0.318467 + 0.551601i
$$382$$ 21.1360 36.6086i 1.08141 1.87306i
$$383$$ −15.3896 26.6555i −0.786371 1.36203i −0.928177 0.372140i $$-0.878624\pi$$
0.141806 0.989894i $$-0.454709\pi$$
$$384$$ 2.85764 0.145828
$$385$$ 12.7903 26.1728i 0.651856 1.33389i
$$386$$ 4.55475 0.231831
$$387$$ 1.35171 + 2.34123i 0.0687113 + 0.119011i
$$388$$ −3.36787 + 5.83333i −0.170978 + 0.296142i
$$389$$ −6.09275 + 10.5530i −0.308915 + 0.535056i −0.978125 0.208017i $$-0.933299\pi$$
0.669210 + 0.743073i $$0.266632\pi$$
$$390$$ −12.2677 21.2482i −0.621197 1.07595i
$$391$$ −7.23463 −0.365871
$$392$$ −1.54231 1.98037i −0.0778986 0.100024i
$$393$$ 3.31098 0.167017
$$394$$ −19.7914 34.2797i −0.997075 1.72698i
$$395$$ −5.79796 + 10.0424i −0.291727 + 0.505286i
$$396$$ 6.16237 10.6735i 0.309671 0.536366i
$$397$$ −10.6522 18.4501i −0.534618 0.925986i −0.999182 0.0404462i $$-0.987122\pi$$
0.464563 0.885540i $$-0.346211\pi$$
$$398$$ 50.4394 2.52830
$$399$$ 0.917964 1.87842i 0.0459557 0.0940387i
$$400$$ 4.42455 0.221228
$$401$$ −3.70140 6.41101i −0.184839 0.320151i 0.758683 0.651460i $$-0.225843\pi$$
−0.943522 + 0.331309i $$0.892510\pi$$
$$402$$ 7.47714 12.9508i 0.372926 0.645927i
$$403$$ 2.81511 4.87591i 0.140231 0.242886i
$$404$$ −14.6058 25.2980i −0.726667 1.25862i
$$405$$ 1.94349 0.0965728
$$406$$ −28.8056 + 1.99193i −1.42960 + 0.0988578i
$$407$$ 5.51414 0.273326
$$408$$ 1.29712 + 2.24667i 0.0642168 + 0.111227i
$$409$$ −13.2337 + 22.9214i −0.654364 + 1.13339i 0.327689 + 0.944786i $$0.393730\pi$$
−0.982053 + 0.188606i $$0.939603\pi$$
$$410$$ 3.01510 5.22231i 0.148905 0.257911i
$$411$$ −6.52210 11.2966i −0.321711 0.557220i
$$412$$ 13.7850 0.679140
$$413$$ 16.0977 + 23.9057i 0.792118 + 1.17632i
$$414$$ −2.04340 −0.100428
$$415$$ 0.265825 + 0.460422i 0.0130488 + 0.0226012i
$$416$$ −25.0544 + 43.3954i −1.22839 + 2.12764i
$$417$$ −5.68369 + 9.84444i −0.278331 + 0.482084i
$$418$$ 4.57397 + 7.92235i 0.223720 + 0.387495i
$$419$$ −30.7294 −1.50123 −0.750614 0.660741i $$-0.770242\pi$$
−0.750614 + 0.660741i $$0.770242\pi$$
$$420$$ 6.24815 + 9.27871i 0.304878 + 0.452755i
$$421$$ 2.65571 0.129432 0.0647158 0.997904i $$-0.479386\pi$$
0.0647158 + 0.997904i $$0.479386\pi$$
$$422$$ −10.1187 17.5261i −0.492570 0.853157i
$$423$$ 0.764197 1.32363i 0.0371565 0.0643570i
$$424$$ 1.60611 2.78187i 0.0779996 0.135099i
$$425$$ 4.42343 + 7.66160i 0.214568 + 0.371642i
$$426$$ 17.8939 0.866962
$$427$$ −16.6754 + 1.15311i −0.806978 + 0.0558031i
$$428$$ 34.7226 1.67838
$$429$$ 17.5004 + 30.3116i 0.844928 + 1.46346i
$$430$$ 5.36808 9.29779i 0.258872 0.448379i
$$431$$ −10.6270 + 18.4066i −0.511887 + 0.886613i 0.488019 + 0.872833i $$0.337720\pi$$
−0.999905 + 0.0137802i $$0.995613\pi$$
$$432$$ −1.80912 3.13348i −0.0870412 0.150760i
$$433$$ −16.8730 −0.810864 −0.405432 0.914125i $$-0.632879\pi$$
−0.405432 + 0.914125i $$0.632879\pi$$
$$434$$ −2.16322 + 4.42658i −0.103838 + 0.212482i
$$435$$ 10.3799 0.497677
$$436$$ 0.0512016 + 0.0886838i 0.00245211 + 0.00424719i
$$437$$ 0.395110 0.684350i 0.0189007 0.0327369i
$$438$$ −0.894244 + 1.54888i −0.0427286 + 0.0740082i
$$439$$ 5.54524 + 9.60464i 0.264660 + 0.458405i 0.967474 0.252969i $$-0.0814069\pi$$
−0.702814 + 0.711373i $$0.748074\pi$$
$$440$$ −3.94818 −0.188222
$$441$$ −2.63227 + 6.48623i −0.125346 + 0.308868i
$$442$$ −91.3327 −4.34425
$$443$$ 6.38709 + 11.0628i 0.303460 + 0.525608i 0.976917 0.213618i $$-0.0685248\pi$$
−0.673457 + 0.739226i $$0.735191\pi$$
$$444$$ −1.05872 + 1.83376i −0.0502447 + 0.0870264i
$$445$$ −17.1290 + 29.6682i −0.811990 + 1.40641i
$$446$$ −2.26267 3.91906i −0.107140 0.185573i
$$447$$ −16.2060 −0.766518
$$448$$ 10.8463 22.1946i 0.512438 1.04860i
$$449$$ 38.7094 1.82681 0.913405 0.407052i $$-0.133443\pi$$
0.913405 + 0.407052i $$0.133443\pi$$
$$450$$ 1.24938 + 2.16400i 0.0588965 + 0.102012i
$$451$$ −4.30119 + 7.44987i −0.202535 + 0.350801i
$$452$$ 6.82168 11.8155i 0.320865 0.555754i
$$453$$ −6.46687 11.2009i −0.303840 0.526266i
$$454$$ −11.4029 −0.535162
$$455$$ −31.6921 + 2.19154i −1.48575 + 0.102741i
$$456$$ −0.283361 −0.0132696
$$457$$ 18.1453 + 31.4287i 0.848803 + 1.47017i 0.882277 + 0.470731i $$0.156010\pi$$
−0.0334733 + 0.999440i $$0.510657\pi$$
$$458$$ −7.13003 + 12.3496i −0.333164 + 0.577057i
$$459$$ 3.61732 6.26537i 0.168842 0.292443i
$$460$$ 2.11402 + 3.66158i 0.0985665 + 0.170722i
$$461$$ −3.70588 −0.172600 −0.0862999 0.996269i $$-0.527504\pi$$
−0.0862999 + 0.996269i $$0.527504\pi$$
$$462$$ −17.1076 25.4053i −0.795917 1.18196i
$$463$$ −29.9926 −1.39387 −0.696937 0.717132i $$-0.745454\pi$$
−0.696937 + 0.717132i $$0.745454\pi$$
$$464$$ −9.66222 16.7355i −0.448557 0.776924i
$$465$$ 0.885566 1.53385i 0.0410672 0.0711304i
$$466$$ −24.9338 + 43.1866i −1.15504 + 2.00058i
$$467$$ −14.0422 24.3219i −0.649797 1.12548i −0.983171 0.182687i $$-0.941521\pi$$
0.333374 0.942795i $$-0.391813\pi$$
$$468$$ −13.4404 −0.621283
$$469$$ −10.8150 16.0606i −0.499389 0.741609i
$$470$$ −6.06975 −0.279977
$$471$$ −4.86721 8.43026i −0.224269 0.388446i
$$472$$ 1.95306 3.38279i 0.0898967 0.155706i
$$473$$ −7.65782 + 13.2637i −0.352107 + 0.609867i
$$474$$ 6.09602 + 10.5586i 0.280000 + 0.484973i
$$475$$ −0.966319 −0.0443377
$$476$$ 41.5418 2.87265i 1.90407 0.131668i
$$477$$ −8.95803 −0.410160
$$478$$ −0.433363 0.750607i −0.0198216 0.0343319i
$$479$$ 6.40920 11.1011i 0.292844 0.507221i −0.681637 0.731690i $$-0.738732\pi$$
0.974481 + 0.224470i $$0.0720650\pi$$
$$480$$ −7.88151 + 13.6512i −0.359740 + 0.623088i
$$481$$ −3.00664 5.20766i −0.137091 0.237449i
$$482$$ −33.3329 −1.51827
$$483$$ −1.16166 + 2.37709i −0.0528572 + 0.108161i
$$484$$ 45.8929 2.08604
$$485$$ −3.00872 5.21126i −0.136619 0.236631i
$$486$$ 1.02170 1.76964i 0.0463453 0.0802723i
$$487$$ −4.66872 + 8.08646i −0.211560 + 0.366433i −0.952203 0.305466i $$-0.901188\pi$$
0.740643 + 0.671899i $$0.234521\pi$$
$$488$$ 1.13273 + 1.96194i 0.0512761 + 0.0888128i
$$489$$ 24.0922 1.08949
$$490$$ 27.5347 3.82639i 1.24389 0.172859i
$$491$$ −1.98455 −0.0895616 −0.0447808 0.998997i $$-0.514259\pi$$
−0.0447808 + 0.998997i $$0.514259\pi$$
$$492$$ −1.65167 2.86077i −0.0744628 0.128973i
$$493$$ 19.3195 33.4624i 0.870108 1.50707i
$$494$$ 4.98801 8.63949i 0.224421 0.388709i
$$495$$ 5.50521 + 9.53531i 0.247441 + 0.428580i
$$496$$ −3.29736 −0.148056
$$497$$ 10.1725 20.8160i 0.456301 0.933724i
$$498$$ 0.558981 0.0250485
$$499$$ 20.4371 + 35.3981i 0.914890 + 1.58464i 0.807062 + 0.590467i $$0.201057\pi$$
0.107829 + 0.994169i $$0.465610\pi$$
$$500$$ 13.1552 22.7855i 0.588318 1.01900i
$$501$$ −6.12909 + 10.6159i −0.273827 + 0.474283i
$$502$$ 16.2698 + 28.1801i 0.726156 + 1.25774i
$$503$$ −2.08575 −0.0929989 −0.0464994 0.998918i $$-0.514807\pi$$
−0.0464994 + 0.998918i $$0.514807\pi$$
$$504$$ 0.946468 0.0654490i 0.0421590 0.00291533i
$$505$$ 26.0965 1.16128
$$506$$ −5.78823 10.0255i −0.257318 0.445688i
$$507$$ 12.5846 21.7971i 0.558901 0.968045i
$$508$$ 13.5233 23.4231i 0.600000 1.03923i
$$509$$ 8.70994 + 15.0861i 0.386062 + 0.668678i 0.991916 0.126897i $$-0.0405019\pi$$
−0.605854 + 0.795576i $$0.707169\pi$$
$$510$$ −28.7311 −1.27223
$$511$$ 1.29344 + 1.92080i 0.0572183 + 0.0849711i
$$512$$ 31.9412 1.41162
$$513$$ 0.395110 + 0.684350i 0.0174445 + 0.0302148i
$$514$$ 30.8114 53.3668i 1.35903 2.35391i
$$515$$ −6.15749 + 10.6651i −0.271331 + 0.469960i
$$516$$ −2.94062 5.09331i −0.129454 0.224220i
$$517$$ 8.65879 0.380813
$$518$$ 2.93915 + 4.36474i 0.129139 + 0.191776i
$$519$$ 5.88796 0.258453
$$520$$ 2.15279 + 3.72874i 0.0944060 + 0.163516i
$$521$$ 6.62437 11.4737i 0.290219 0.502674i −0.683642 0.729817i $$-0.739605\pi$$
0.973861 + 0.227143i $$0.0729385\pi$$
$$522$$ 5.45674 9.45136i 0.238835 0.413675i
$$523$$ −3.24619 5.62257i −0.141946 0.245858i 0.786283 0.617866i $$-0.212003\pi$$
−0.928229 + 0.372008i $$0.878669\pi$$
$$524$$ −7.20298 −0.314664
$$525$$ 3.22764 0.223194i 0.140866 0.00974099i
$$526$$ 30.9894 1.35120
$$527$$ −3.29652 5.70973i −0.143599 0.248720i
$$528$$ 10.2492 17.7521i 0.446038 0.772561i
$$529$$ −0.500000 + 0.866025i −0.0217391 + 0.0376533i
$$530$$ 17.7876 + 30.8091i 0.772646 + 1.33826i
$$531$$ −10.8931 −0.472721
$$532$$ −1.99702 + 4.08648i −0.0865817 + 0.177171i
$$533$$ 9.38107 0.406339
$$534$$ 18.0095 + 31.1934i 0.779348 + 1.34987i
$$535$$ −15.5099 + 26.8639i −0.670551 + 1.16143i
$$536$$ −1.31212 + 2.27267i −0.0566751 + 0.0981642i
$$537$$ −8.48661 14.6992i −0.366224 0.634319i
$$538$$ 0.962101 0.0414791
$$539$$ −39.2796 + 5.45853i −1.69189 + 0.235115i
$$540$$ −4.22803 −0.181946
$$541$$ −8.51918 14.7556i −0.366268 0.634395i 0.622711 0.782452i $$-0.286031\pi$$
−0.988979 + 0.148057i $$0.952698\pi$$
$$542$$ 7.44550 12.8960i 0.319811 0.553930i
$$543$$ 9.56206 16.5620i 0.410347 0.710743i
$$544$$ 29.3389 + 50.8164i 1.25789 + 2.17874i
$$545$$ −0.0914829 −0.00391870
$$546$$ −14.6652 + 30.0093i −0.627612 + 1.28428i
$$547$$ −29.4820 −1.26056 −0.630280 0.776368i $$-0.717060\pi$$
−0.630280 + 0.776368i $$0.717060\pi$$
$$548$$ 14.1887 + 24.5756i 0.606112 + 1.04982i
$$549$$ 3.15887 5.47133i 0.134817 0.233511i
$$550$$ −7.07812 + 12.2597i −0.301812 + 0.522754i
$$551$$ 2.11022 + 3.65501i 0.0898984 + 0.155709i
$$552$$ 0.358585 0.0152624
$$553$$ 15.7484 1.08901i 0.669690 0.0463096i
$$554$$ 6.04890 0.256993
$$555$$ −0.945819 1.63821i −0.0401478 0.0695380i
$$556$$ 12.3648 21.4164i 0.524383 0.908259i
$$557$$ 5.11579 8.86081i 0.216763 0.375445i −0.737053 0.675835i $$-0.763783\pi$$
0.953817 + 0.300390i $$0.0971167\pi$$
$$558$$ −0.931092 1.61270i −0.0394162 0.0682709i
$$559$$ 16.7020 0.706421
$$560$$ 10.3918 + 15.4322i 0.439135 + 0.652130i
$$561$$ 40.9863 1.73044
$$562$$ −7.31681 12.6731i −0.308641 0.534582i
$$563$$ −11.6300 + 20.1437i −0.490144 + 0.848955i −0.999936 0.0113434i $$-0.996389\pi$$
0.509791 + 0.860298i $$0.329723\pi$$
$$564$$ −1.66250 + 2.87953i −0.0700038 + 0.121250i
$$565$$ 6.09421 + 10.5555i 0.256385 + 0.444072i
$$566$$ −40.8897 −1.71872
$$567$$ −1.47779 2.19457i −0.0620614 0.0921632i
$$568$$ −3.14010 −0.131756
$$569$$ −9.82012 17.0089i −0.411681 0.713052i 0.583393 0.812190i $$-0.301725\pi$$
−0.995074 + 0.0991379i $$0.968392\pi$$
$$570$$ 1.56911 2.71778i 0.0657228 0.113835i
$$571$$ 20.7881 36.0060i 0.869953 1.50680i 0.00791006 0.999969i $$-0.497482\pi$$
0.862043 0.506835i $$-0.169185\pi$$
$$572$$ −38.0719 65.9424i −1.59187 2.75719i
$$573$$ 20.6871 0.864215
$$574$$ −8.18960 + 0.566317i −0.341827 + 0.0236376i
$$575$$ 1.22285 0.0509963
$$576$$ 4.66844 + 8.08598i 0.194518 + 0.336916i
$$577$$ 0.708839 1.22774i 0.0295093 0.0511117i −0.850894 0.525338i $$-0.823939\pi$$
0.880403 + 0.474226i $$0.157272\pi$$
$$578$$ −36.1068 + 62.5387i −1.50184 + 2.60127i
$$579$$ 1.11450 + 1.93038i 0.0463172 + 0.0802237i
$$580$$ −22.5813 −0.937636
$$581$$ 0.317776 0.650263i 0.0131836 0.0269774i
$$582$$ −6.32678 −0.262254
$$583$$ −25.3749 43.9507i −1.05092 1.82025i
$$584$$ 0.156926 0.271804i 0.00649365 0.0112473i
$$585$$ 6.00356 10.3985i 0.248216 0.429924i
$$586$$ −6.41536 11.1117i −0.265016 0.459021i
$$587$$ 28.5127 1.17685 0.588423 0.808553i $$-0.299749\pi$$
0.588423 + 0.808553i $$0.299749\pi$$
$$588$$ 5.72646 14.1107i 0.236155 0.581915i
$$589$$ 0.720140 0.0296728
$$590$$ 21.6301 + 37.4644i 0.890496 + 1.54238i
$$591$$ 9.68551 16.7758i 0.398409 0.690064i
$$592$$ −1.76085 + 3.04988i −0.0723705 + 0.125349i
$$593$$ 4.12693 + 7.14806i 0.169473 + 0.293536i 0.938235 0.346000i $$-0.112460\pi$$
−0.768762 + 0.639535i $$0.779127\pi$$
$$594$$ 11.5765 0.474988
$$595$$ −16.3334 + 33.4229i −0.669604 + 1.37020i
$$596$$ 35.2559 1.44414
$$597$$ 12.3420 + 21.3770i 0.505125 + 0.874902i
$$598$$ −6.31219 + 10.9330i −0.258124 + 0.447085i
$$599$$ −12.6215 + 21.8611i −0.515700 + 0.893219i 0.484133 + 0.874994i $$0.339135\pi$$
−0.999834 + 0.0182252i $$0.994198\pi$$
$$600$$ −0.219248 0.379748i −0.00895075 0.0155032i
$$601$$ 19.9481 0.813702 0.406851 0.913495i $$-0.366627\pi$$
0.406851 + 0.913495i $$0.366627\pi$$
$$602$$ −14.5808 + 1.00827i −0.594267 + 0.0410940i
$$603$$ 7.31833 0.298026
$$604$$ 14.0686 + 24.3675i 0.572442 + 0.991499i
$$605$$ −20.4994 + 35.5061i −0.833421 + 1.44353i
$$606$$ 13.7190 23.7621i 0.557297 0.965268i
$$607$$ −14.0308 24.3021i −0.569493 0.986392i −0.996616 0.0821979i $$-0.973806\pi$$
0.427123 0.904194i $$-0.359527\pi$$
$$608$$ −6.40921 −0.259928
$$609$$ −7.89266 11.7209i −0.319827 0.474953i
$$610$$ −25.0898 −1.01586
$$611$$ −4.72130 8.17753i −0.191003 0.330827i
$$612$$ −7.86941 + 13.6302i −0.318102 + 0.550969i
$$613$$ 17.4932 30.2992i 0.706545 1.22377i −0.259585 0.965720i $$-0.583586\pi$$
0.966131 0.258053i $$-0.0830808\pi$$
$$614$$ −25.7390 44.5812i −1.03874 1.79915i
$$615$$ 2.95106 0.118998
$$616$$ 3.00212 + 4.45825i 0.120959 + 0.179628i
$$617$$ −30.9952 −1.24782 −0.623911 0.781496i $$-0.714457\pi$$
−0.623911 + 0.781496i $$0.714457\pi$$
$$618$$ 6.47403 + 11.2134i 0.260424 + 0.451067i
$$619$$ −15.6072 + 27.0324i −0.627305 + 1.08652i 0.360785 + 0.932649i $$0.382509\pi$$
−0.988090 + 0.153875i $$0.950825\pi$$
$$620$$ −1.92654 + 3.33686i −0.0773716 + 0.134011i
$$621$$ −0.500000 0.866025i −0.0200643 0.0347524i
$$622$$ 24.3615 0.976809
$$623$$ 46.5256 3.21728i 1.86401 0.128898i
$$624$$ −22.3539 −0.894872
$$625$$ 8.69520 + 15.0605i 0.347808 + 0.602421i
$$626$$ −10.2602 + 17.7712i −0.410081 + 0.710281i
$$627$$ −2.23841 + 3.87704i −0.0893935 + 0.154834i
$$628$$ 10.5885 + 18.3399i 0.422529 + 0.731842i
$$629$$ −7.04161 −0.280767
$$630$$ −4.61332 + 9.44020i −0.183799 + 0.376107i
$$631$$ 19.1609 0.762782 0.381391 0.924414i $$-0.375445\pi$$
0.381391 + 0.924414i $$0.375445\pi$$
$$632$$ −1.06976 1.85288i −0.0425527 0.0737035i
$$633$$ 4.95189 8.57693i 0.196820 0.340902i
$$634$$ 9.05441 15.6827i 0.359596 0.622839i
$$635$$ 12.0812 + 20.9252i 0.479427 + 0.830392i
$$636$$ 19.4881 0.772752
$$637$$ 26.5727 + 34.1201i 1.05285 + 1.35189i
$$638$$ 61.8281 2.44780
$$639$$ 4.37846 + 7.58371i 0.173209 + 0.300007i
$$640$$ 2.77690 4.80973i 0.109767 0.190121i
$$641$$ −8.07996 + 13.9949i −0.319139 + 0.552765i −0.980309 0.197471i $$-0.936727\pi$$
0.661169 + 0.750237i $$0.270060\pi$$
$$642$$ 16.3072 + 28.2449i 0.643594 + 1.11474i
$$643$$ −44.7116 −1.76325 −0.881627 0.471947i $$-0.843551\pi$$
−0.881627 + 0.471947i $$0.843551\pi$$
$$644$$ 2.52717 5.17132i 0.0995843 0.203779i
$$645$$ 5.25407 0.206879
$$646$$ −5.84100 10.1169i −0.229811 0.398045i
$$647$$ −3.97538 + 6.88557i −0.156288 + 0.270700i −0.933527 0.358506i $$-0.883286\pi$$
0.777239 + 0.629205i $$0.216620\pi$$
$$648$$ −0.179293 + 0.310544i −0.00704328 + 0.0121993i
$$649$$ −30.8563 53.4447i −1.21122 2.09789i
$$650$$ 15.4377 0.605516
$$651$$ −2.40537 + 0.166333i −0.0942739 + 0.00651912i
$$652$$ −52.4123 −2.05262
$$653$$ 21.3512 + 36.9814i 0.835537 + 1.44719i 0.893592 + 0.448880i $$0.148177\pi$$
−0.0580551 + 0.998313i $$0.518490\pi$$
$$654$$ −0.0480929 + 0.0832994i −0.00188058 + 0.00325726i
$$655$$ 3.21742 5.57274i 0.125715 0.217745i
$$656$$ −2.74703 4.75799i −0.107253 0.185768i
$$657$$ −0.875251 −0.0341468
$$658$$ 4.61532 + 6.85390i 0.179924 + 0.267193i
$$659$$ −31.2099 −1.21577 −0.607883 0.794027i $$-0.707981\pi$$
−0.607883 + 0.794027i $$0.707981\pi$$
$$660$$ −11.9765 20.7439i −0.466185 0.807456i
$$661$$ −2.94999 + 5.10953i −0.114741 + 0.198738i −0.917676 0.397329i $$-0.869937\pi$$
0.802935 + 0.596067i $$0.203271\pi$$
$$662$$ 23.3961 40.5233i 0.909316 1.57498i
$$663$$ −22.3482 38.7082i −0.867932 1.50330i
$$664$$ −0.0980926 −0.00380673
$$665$$ −2.26957 3.37038i −0.0880100 0.130698i
$$666$$ −1.98888 −0.0770677
$$667$$ −2.67042 4.62531i −0.103399 0.179093i
$$668$$ 13.3337 23.0947i 0.515898 0.893561i
$$669$$ 1.10731 1.91791i 0.0428109 0.0741507i
$$670$$ −14.5317 25.1697i −0.561410 0.972391i
$$671$$ 35.7919 1.38173
$$672$$ 21.4077 1.48036i 0.825820 0.0571061i
$$673$$ −6.61159 −0.254858 −0.127429 0.991848i $$-0.540673\pi$$
−0.127429 + 0.991848i $$0.540673\pi$$
$$674$$ −12.5175 21.6810i −0.482158 0.835122i
$$675$$ −0.611424 + 1.05902i −0.0235337 + 0.0407616i
$$676$$ −27.3776 + 47.4193i −1.05298 + 1.82382i
$$677$$ −1.85836 3.21878i −0.0714227 0.123708i 0.828102 0.560577i $$-0.189421\pi$$
−0.899525 + 0.436869i $$0.856087\pi$$
$$678$$ 12.8150 0.492157
$$679$$ −3.59673 + 7.35995i −0.138030 + 0.282449i
$$680$$ 5.04187 0.193347
$$681$$ −2.79017 4.83271i −0.106919 0.185190i
$$682$$ 5.27490 9.13640i 0.201986 0.349851i
$$683$$ −14.7835 + 25.6057i −0.565674 + 0.979775i 0.431313 + 0.902202i $$0.358050\pi$$
−0.996987 + 0.0775731i $$0.975283\pi$$
$$684$$ −0.859555 1.48879i −0.0328659 0.0569254i
$$685$$ −25.3513 −0.968622
$$686$$ −25.2576 28.1824i −0.964338 1.07601i
$$687$$ −6.97859 −0.266250
$$688$$ −4.89080 8.47112i −0.186460 0.322958i
$$689$$ −27.6719 + 47.9291i −1.05422 + 1.82596i
$$690$$ −1.98566 + 3.43927i −0.0755929 + 0.130931i
$$691$$ −0.301946 0.522985i −0.0114866 0.0198953i 0.860225 0.509915i $$-0.170323\pi$$
−0.871712 + 0.490019i $$0.836990\pi$$
$$692$$ −12.8092 −0.486931
$$693$$ 6.58112 13.4669i 0.249996 0.511565i
$$694$$ −13.1969 −0.500949
$$695$$ 11.0462 + 19.1326i 0.419006 + 0.725740i
$$696$$ −0.957575 + 1.65857i −0.0362968 + 0.0628679i
$$697$$ 5.49266 9.51356i 0.208049 0.360352i
$$698$$ −20.9496 36.2858i −0.792955 1.37344i
$$699$$ −24.4042 −0.923053
$$700$$ −7.02169 + 0.485556i −0.265395 + 0.0183523i
$$701$$ 8.15835 0.308136 0.154068 0.988060i $$-0.450762\pi$$
0.154068 + 0.988060i $$0.450762\pi$$
$$702$$ −6.31219 10.9330i −0.238238 0.412640i
$$703$$ 0.384568 0.666092i 0.0145043 0.0251221i
$$704$$ −26.4481 + 45.8094i −0.996799 + 1.72651i
$$705$$ −1.48521 2.57246i −0.0559362 0.0968843i
$$706$$ 29.6523 1.11598
$$707$$ −19.8433 29.4679i −0.746282 1.10825i
$$708$$ 23.6978 0.890618
$$709$$ 12.1135 + 20.9812i 0.454932 + 0.787965i 0.998684 0.0512807i $$-0.0163303\pi$$
−0.543753 + 0.839246i $$0.682997\pi$$
$$710$$ 17.3883 30.1174i 0.652571 1.13029i
$$711$$ −2.98327 + 5.16718i −0.111881 + 0.193784i
$$712$$ −3.16039 5.47396i −0.118441 0.205145i
$$713$$ −0.911316 −0.0341290
$$714$$ 21.8465 + 32.4429i 0.817586 + 1.21414i
$$715$$ 68.0238 2.54394
$$716$$ 18.4625 + 31.9780i 0.689976 + 1.19507i
$$717$$ 0.212079 0.367332i 0.00792025 0.0137183i
$$718$$ −4.77931 + 8.27800i −0.178362 + 0.308932i
$$719$$ −1.29252 2.23871i −0.0482029 0.0834899i 0.840917 0.541164i $$-0.182016\pi$$
−0.889120 + 0.457674i $$0.848683\pi$$
$$720$$ −7.03200 −0.262067
$$721$$ 16.7249 1.15654i 0.622870 0.0430719i
$$722$$ −37.5486 −1.39741
$$723$$ −8.15623 14.1270i −0.303333 0.525389i
$$724$$ −20.8021 + 36.0303i −0.773105 + 1.33906i
$$725$$ −3.26552 + 5.65605i −0.121278 + 0.210060i
$$726$$ 21.5533 + 37.3314i 0.799917 + 1.38550i
$$727$$ −1.39574 −0.0517650 −0.0258825 0.999665i $$-0.508240\pi$$
−0.0258825 + 0.999665i $$0.508240\pi$$
$$728$$ 2.57352 5.26617i 0.0953809 0.195177i
$$729$$ 1.00000 0.0370370
$$730$$ 1.73795 + 3.01022i 0.0643246 + 0.111413i
$$731$$ 9.77912 16.9379i 0.361694 0.626472i
$$732$$ −6.87208 + 11.9028i −0.253999 + 0.439940i
$$733$$ −10.2450 17.7449i −0.378408 0.655421i 0.612423 0.790530i $$-0.290195\pi$$
−0.990831 + 0.135109i $$0.956862\pi$$
$$734$$ −57.3500 −2.11683
$$735$$ 8.35915 + 10.7334i 0.308332 + 0.395906i
$$736$$ 8.11067 0.298963
$$737$$ 20.7302 + 35.9058i 0.763608 + 1.32261i
$$738$$ 1.55138 2.68708i 0.0571073 0.0989127i
$$739$$ 23.7408 41.1203i 0.873320 1.51263i 0.0147776 0.999891i $$-0.495296\pi$$
0.858542 0.512743i $$-0.171371\pi$$
$$740$$ 2.05761 + 3.56389i 0.0756394 + 0.131011i
$$741$$ 4.88207 0.179347
$$742$$ 21.2640 43.5123i 0.780625 1.59739i
$$743$$ −41.4450 −1.52047 −0.760235 0.649648i $$-0.774916\pi$$
−0.760235 + 0.649648i $$0.774916\pi$$
$$744$$ 0.163392 + 0.283004i 0.00599025 + 0.0103754i
$$745$$ −15.7481 + 27.2765i −0.576966 + 0.999334i
$$746$$ −14.9478 + 25.8903i −0.547276 + 0.947910i
$$747$$ 0.136777 + 0.236905i 0.00500441 + 0.00866790i
$$748$$ −89.1650 −3.26020
$$749$$ 42.1279 2.91318i 1.53932 0.106445i
$$750$$ 24.7130 0.902390
$$751$$ −5.79428 10.0360i −0.211436 0.366218i 0.740728 0.671805i $$-0.234481\pi$$
−0.952164 + 0.305587i $$0.901147\pi$$
$$752$$ −2.76504 + 4.78920i −0.100831 + 0.174644i
$$753$$ −7.96212 + 13.7908i −0.290156 + 0.502564i
$$754$$ −33.7124 58.3916i −1.22773 2.12650i
$$755$$ −25.1366 −0.914814
$$756$$ 3.21491 + 4.77425i 0.116925 + 0.173638i
$$757$$ −11.3101 −0.411073 −0.205536 0.978649i $$-0.565894\pi$$
−0.205536 + 0.978649i $$0.565894\pi$$
$$758$$ 2.49672 + 4.32445i 0.0906850 + 0.157071i
$$759$$ 2.83264 4.90628i 0.102818 0.178087i
$$760$$ −0.275355 + 0.476929i −0.00998817 + 0.0173000i
$$761$$ 10.9129 + 18.9016i 0.395591 + 0.685184i 0.993176 0.116621i $$-0.0372063\pi$$
−0.597585 + 0.801805i $$0.703873\pi$$
$$762$$ 25.4045 0.920308
$$763$$ 0.0695618 + 0.103302i 0.00251831 + 0.00373977i
$$764$$ −45.0044 −1.62820
$$765$$ −7.03021 12.1767i −0.254178 0.440249i
$$766$$ −31.4471 + 54.4679i −1.13623 + 1.96801i
$$767$$ −33.6495 + 58.2826i −1.21501 + 2.10446i
$$768$$ 6.41723 + 11.1150i 0.231562 + 0.401077i
$$769$$ −24.1550 −0.871052 −0.435526 0.900176i $$-0.643438\pi$$
−0.435526 + 0.900176i $$0.643438\pi$$
$$770$$ −59.3842 + 4.10646i −2.14006 + 0.147987i
$$771$$ 30.1569 1.08608
$$772$$ −2.42459 4.19951i −0.0872627 0.151144i
$$773$$ −7.36948 + 12.7643i −0.265062 + 0.459101i −0.967580 0.252565i $$-0.918726\pi$$
0.702518 + 0.711666i $$0.252059\pi$$
$$774$$ 2.76208 4.78407i 0.0992810 0.171960i
$$775$$ 0.557201 + 0.965100i 0.0200152 + 0.0346674i
$$776$$ 1.11025 0.0398558
$$777$$ −1.13066 + 2.31367i −0.0405624 + 0.0830024i
$$778$$