Properties

Label 483.2.i.d.415.1
Level $483$
Weight $2$
Character 483.415
Analytic conductor $3.857$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(277,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.277");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 415.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 483.415
Dual form 483.2.i.d.277.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.50000 - 2.59808i) q^{5} -1.00000 q^{6} +(-0.500000 - 2.59808i) q^{7} +3.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-1.50000 - 2.59808i) q^{10} +(1.00000 + 1.73205i) q^{11} +(0.500000 - 0.866025i) q^{12} -1.00000 q^{13} +(-2.50000 - 0.866025i) q^{14} -3.00000 q^{15} +(0.500000 - 0.866025i) q^{16} +(-0.500000 - 0.866025i) q^{17} +(0.500000 + 0.866025i) q^{18} +3.00000 q^{20} +(-2.00000 + 1.73205i) q^{21} +2.00000 q^{22} +(-0.500000 + 0.866025i) q^{23} +(-1.50000 - 2.59808i) q^{24} +(-2.00000 - 3.46410i) q^{25} +(-0.500000 + 0.866025i) q^{26} +1.00000 q^{27} +(2.00000 - 1.73205i) q^{28} +(-1.50000 + 2.59808i) q^{30} +(-5.00000 - 8.66025i) q^{31} +(2.50000 + 4.33013i) q^{32} +(1.00000 - 1.73205i) q^{33} -1.00000 q^{34} +(-7.50000 - 2.59808i) q^{35} -1.00000 q^{36} +(1.00000 - 1.73205i) q^{37} +(0.500000 + 0.866025i) q^{39} +(4.50000 - 7.79423i) q^{40} +4.00000 q^{41} +(0.500000 + 2.59808i) q^{42} +4.00000 q^{43} +(-1.00000 + 1.73205i) q^{44} +(1.50000 + 2.59808i) q^{45} +(0.500000 + 0.866025i) q^{46} +(-3.50000 + 6.06218i) q^{47} -1.00000 q^{48} +(-6.50000 + 2.59808i) q^{49} -4.00000 q^{50} +(-0.500000 + 0.866025i) q^{51} +(-0.500000 - 0.866025i) q^{52} +(4.50000 + 7.79423i) q^{53} +(0.500000 - 0.866025i) q^{54} +6.00000 q^{55} +(-1.50000 - 7.79423i) q^{56} +(2.00000 + 3.46410i) q^{59} +(-1.50000 - 2.59808i) q^{60} +(1.00000 - 1.73205i) q^{61} -10.0000 q^{62} +(2.50000 + 0.866025i) q^{63} +7.00000 q^{64} +(-1.50000 + 2.59808i) q^{65} +(-1.00000 - 1.73205i) q^{66} +(1.50000 + 2.59808i) q^{67} +(0.500000 - 0.866025i) q^{68} +1.00000 q^{69} +(-6.00000 + 5.19615i) q^{70} -15.0000 q^{71} +(-1.50000 + 2.59808i) q^{72} +(6.50000 + 11.2583i) q^{73} +(-1.00000 - 1.73205i) q^{74} +(-2.00000 + 3.46410i) q^{75} +(4.00000 - 3.46410i) q^{77} +1.00000 q^{78} +(-2.00000 + 3.46410i) q^{79} +(-1.50000 - 2.59808i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(2.00000 - 3.46410i) q^{82} +6.00000 q^{83} +(-2.50000 - 0.866025i) q^{84} -3.00000 q^{85} +(2.00000 - 3.46410i) q^{86} +(3.00000 + 5.19615i) q^{88} +(3.00000 - 5.19615i) q^{89} +3.00000 q^{90} +(0.500000 + 2.59808i) q^{91} -1.00000 q^{92} +(-5.00000 + 8.66025i) q^{93} +(3.50000 + 6.06218i) q^{94} +(2.50000 - 4.33013i) q^{96} +16.0000 q^{97} +(-1.00000 + 6.92820i) q^{98} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{3} + q^{4} + 3 q^{5} - 2 q^{6} - q^{7} + 6 q^{8} - q^{9} - 3 q^{10} + 2 q^{11} + q^{12} - 2 q^{13} - 5 q^{14} - 6 q^{15} + q^{16} - q^{17} + q^{18} + 6 q^{20} - 4 q^{21} + 4 q^{22}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i −0.633316 0.773893i \(-0.718307\pi\)
0.986869 + 0.161521i \(0.0516399\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.50000 2.59808i 0.670820 1.16190i −0.306851 0.951757i \(-0.599275\pi\)
0.977672 0.210138i \(-0.0673912\pi\)
\(6\) −1.00000 −0.408248
\(7\) −0.500000 2.59808i −0.188982 0.981981i
\(8\) 3.00000 1.06066
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −1.50000 2.59808i −0.474342 0.821584i
\(11\) 1.00000 + 1.73205i 0.301511 + 0.522233i 0.976478 0.215615i \(-0.0691756\pi\)
−0.674967 + 0.737848i \(0.735842\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) −2.50000 0.866025i −0.668153 0.231455i
\(15\) −3.00000 −0.774597
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) −0.500000 0.866025i −0.121268 0.210042i 0.799000 0.601331i \(-0.205363\pi\)
−0.920268 + 0.391289i \(0.872029\pi\)
\(18\) 0.500000 + 0.866025i 0.117851 + 0.204124i
\(19\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(20\) 3.00000 0.670820
\(21\) −2.00000 + 1.73205i −0.436436 + 0.377964i
\(22\) 2.00000 0.426401
\(23\) −0.500000 + 0.866025i −0.104257 + 0.180579i
\(24\) −1.50000 2.59808i −0.306186 0.530330i
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) −0.500000 + 0.866025i −0.0980581 + 0.169842i
\(27\) 1.00000 0.192450
\(28\) 2.00000 1.73205i 0.377964 0.327327i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) −1.50000 + 2.59808i −0.273861 + 0.474342i
\(31\) −5.00000 8.66025i −0.898027 1.55543i −0.830014 0.557743i \(-0.811667\pi\)
−0.0680129 0.997684i \(-0.521666\pi\)
\(32\) 2.50000 + 4.33013i 0.441942 + 0.765466i
\(33\) 1.00000 1.73205i 0.174078 0.301511i
\(34\) −1.00000 −0.171499
\(35\) −7.50000 2.59808i −1.26773 0.439155i
\(36\) −1.00000 −0.166667
\(37\) 1.00000 1.73205i 0.164399 0.284747i −0.772043 0.635571i \(-0.780765\pi\)
0.936442 + 0.350823i \(0.114098\pi\)
\(38\) 0 0
\(39\) 0.500000 + 0.866025i 0.0800641 + 0.138675i
\(40\) 4.50000 7.79423i 0.711512 1.23238i
\(41\) 4.00000 0.624695 0.312348 0.949968i \(-0.398885\pi\)
0.312348 + 0.949968i \(0.398885\pi\)
\(42\) 0.500000 + 2.59808i 0.0771517 + 0.400892i
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) −1.00000 + 1.73205i −0.150756 + 0.261116i
\(45\) 1.50000 + 2.59808i 0.223607 + 0.387298i
\(46\) 0.500000 + 0.866025i 0.0737210 + 0.127688i
\(47\) −3.50000 + 6.06218i −0.510527 + 0.884260i 0.489398 + 0.872060i \(0.337217\pi\)
−0.999926 + 0.0121990i \(0.996117\pi\)
\(48\) −1.00000 −0.144338
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) −4.00000 −0.565685
\(51\) −0.500000 + 0.866025i −0.0700140 + 0.121268i
\(52\) −0.500000 0.866025i −0.0693375 0.120096i
\(53\) 4.50000 + 7.79423i 0.618123 + 1.07062i 0.989828 + 0.142269i \(0.0454398\pi\)
−0.371706 + 0.928351i \(0.621227\pi\)
\(54\) 0.500000 0.866025i 0.0680414 0.117851i
\(55\) 6.00000 0.809040
\(56\) −1.50000 7.79423i −0.200446 1.04155i
\(57\) 0 0
\(58\) 0 0
\(59\) 2.00000 + 3.46410i 0.260378 + 0.450988i 0.966342 0.257260i \(-0.0828195\pi\)
−0.705965 + 0.708247i \(0.749486\pi\)
\(60\) −1.50000 2.59808i −0.193649 0.335410i
\(61\) 1.00000 1.73205i 0.128037 0.221766i −0.794879 0.606768i \(-0.792466\pi\)
0.922916 + 0.385002i \(0.125799\pi\)
\(62\) −10.0000 −1.27000
\(63\) 2.50000 + 0.866025i 0.314970 + 0.109109i
\(64\) 7.00000 0.875000
\(65\) −1.50000 + 2.59808i −0.186052 + 0.322252i
\(66\) −1.00000 1.73205i −0.123091 0.213201i
\(67\) 1.50000 + 2.59808i 0.183254 + 0.317406i 0.942987 0.332830i \(-0.108004\pi\)
−0.759733 + 0.650236i \(0.774670\pi\)
\(68\) 0.500000 0.866025i 0.0606339 0.105021i
\(69\) 1.00000 0.120386
\(70\) −6.00000 + 5.19615i −0.717137 + 0.621059i
\(71\) −15.0000 −1.78017 −0.890086 0.455792i \(-0.849356\pi\)
−0.890086 + 0.455792i \(0.849356\pi\)
\(72\) −1.50000 + 2.59808i −0.176777 + 0.306186i
\(73\) 6.50000 + 11.2583i 0.760767 + 1.31769i 0.942455 + 0.334332i \(0.108511\pi\)
−0.181688 + 0.983356i \(0.558156\pi\)
\(74\) −1.00000 1.73205i −0.116248 0.201347i
\(75\) −2.00000 + 3.46410i −0.230940 + 0.400000i
\(76\) 0 0
\(77\) 4.00000 3.46410i 0.455842 0.394771i
\(78\) 1.00000 0.113228
\(79\) −2.00000 + 3.46410i −0.225018 + 0.389742i −0.956325 0.292306i \(-0.905577\pi\)
0.731307 + 0.682048i \(0.238911\pi\)
\(80\) −1.50000 2.59808i −0.167705 0.290474i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 2.00000 3.46410i 0.220863 0.382546i
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) −2.50000 0.866025i −0.272772 0.0944911i
\(85\) −3.00000 −0.325396
\(86\) 2.00000 3.46410i 0.215666 0.373544i
\(87\) 0 0
\(88\) 3.00000 + 5.19615i 0.319801 + 0.553912i
\(89\) 3.00000 5.19615i 0.317999 0.550791i −0.662071 0.749441i \(-0.730322\pi\)
0.980071 + 0.198650i \(0.0636557\pi\)
\(90\) 3.00000 0.316228
\(91\) 0.500000 + 2.59808i 0.0524142 + 0.272352i
\(92\) −1.00000 −0.104257
\(93\) −5.00000 + 8.66025i −0.518476 + 0.898027i
\(94\) 3.50000 + 6.06218i 0.360997 + 0.625266i
\(95\) 0 0
\(96\) 2.50000 4.33013i 0.255155 0.441942i
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) −1.00000 + 6.92820i −0.101015 + 0.699854i
\(99\) −2.00000 −0.201008
\(100\) 2.00000 3.46410i 0.200000 0.346410i
\(101\) 9.00000 + 15.5885i 0.895533 + 1.55111i 0.833143 + 0.553058i \(0.186539\pi\)
0.0623905 + 0.998052i \(0.480128\pi\)
\(102\) 0.500000 + 0.866025i 0.0495074 + 0.0857493i
\(103\) −5.50000 + 9.52628i −0.541931 + 0.938652i 0.456862 + 0.889538i \(0.348973\pi\)
−0.998793 + 0.0491146i \(0.984360\pi\)
\(104\) −3.00000 −0.294174
\(105\) 1.50000 + 7.79423i 0.146385 + 0.760639i
\(106\) 9.00000 0.874157
\(107\) −2.00000 + 3.46410i −0.193347 + 0.334887i −0.946357 0.323122i \(-0.895268\pi\)
0.753010 + 0.658009i \(0.228601\pi\)
\(108\) 0.500000 + 0.866025i 0.0481125 + 0.0833333i
\(109\) −4.00000 6.92820i −0.383131 0.663602i 0.608377 0.793648i \(-0.291821\pi\)
−0.991508 + 0.130046i \(0.958487\pi\)
\(110\) 3.00000 5.19615i 0.286039 0.495434i
\(111\) −2.00000 −0.189832
\(112\) −2.50000 0.866025i −0.236228 0.0818317i
\(113\) 7.00000 0.658505 0.329252 0.944242i \(-0.393203\pi\)
0.329252 + 0.944242i \(0.393203\pi\)
\(114\) 0 0
\(115\) 1.50000 + 2.59808i 0.139876 + 0.242272i
\(116\) 0 0
\(117\) 0.500000 0.866025i 0.0462250 0.0800641i
\(118\) 4.00000 0.368230
\(119\) −2.00000 + 1.73205i −0.183340 + 0.158777i
\(120\) −9.00000 −0.821584
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) −1.00000 1.73205i −0.0905357 0.156813i
\(123\) −2.00000 3.46410i −0.180334 0.312348i
\(124\) 5.00000 8.66025i 0.449013 0.777714i
\(125\) 3.00000 0.268328
\(126\) 2.00000 1.73205i 0.178174 0.154303i
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) −1.50000 + 2.59808i −0.132583 + 0.229640i
\(129\) −2.00000 3.46410i −0.176090 0.304997i
\(130\) 1.50000 + 2.59808i 0.131559 + 0.227866i
\(131\) 1.50000 2.59808i 0.131056 0.226995i −0.793028 0.609185i \(-0.791497\pi\)
0.924084 + 0.382190i \(0.124830\pi\)
\(132\) 2.00000 0.174078
\(133\) 0 0
\(134\) 3.00000 0.259161
\(135\) 1.50000 2.59808i 0.129099 0.223607i
\(136\) −1.50000 2.59808i −0.128624 0.222783i
\(137\) 8.50000 + 14.7224i 0.726204 + 1.25782i 0.958477 + 0.285171i \(0.0920506\pi\)
−0.232273 + 0.972651i \(0.574616\pi\)
\(138\) 0.500000 0.866025i 0.0425628 0.0737210i
\(139\) −10.0000 −0.848189 −0.424094 0.905618i \(-0.639408\pi\)
−0.424094 + 0.905618i \(0.639408\pi\)
\(140\) −1.50000 7.79423i −0.126773 0.658733i
\(141\) 7.00000 0.589506
\(142\) −7.50000 + 12.9904i −0.629386 + 1.09013i
\(143\) −1.00000 1.73205i −0.0836242 0.144841i
\(144\) 0.500000 + 0.866025i 0.0416667 + 0.0721688i
\(145\) 0 0
\(146\) 13.0000 1.07589
\(147\) 5.50000 + 4.33013i 0.453632 + 0.357143i
\(148\) 2.00000 0.164399
\(149\) −2.50000 + 4.33013i −0.204808 + 0.354738i −0.950072 0.312032i \(-0.898990\pi\)
0.745264 + 0.666770i \(0.232324\pi\)
\(150\) 2.00000 + 3.46410i 0.163299 + 0.282843i
\(151\) −2.00000 3.46410i −0.162758 0.281905i 0.773099 0.634285i \(-0.218706\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(152\) 0 0
\(153\) 1.00000 0.0808452
\(154\) −1.00000 5.19615i −0.0805823 0.418718i
\(155\) −30.0000 −2.40966
\(156\) −0.500000 + 0.866025i −0.0400320 + 0.0693375i
\(157\) −5.00000 8.66025i −0.399043 0.691164i 0.594565 0.804048i \(-0.297324\pi\)
−0.993608 + 0.112884i \(0.963991\pi\)
\(158\) 2.00000 + 3.46410i 0.159111 + 0.275589i
\(159\) 4.50000 7.79423i 0.356873 0.618123i
\(160\) 15.0000 1.18585
\(161\) 2.50000 + 0.866025i 0.197028 + 0.0682524i
\(162\) −1.00000 −0.0785674
\(163\) 10.0000 17.3205i 0.783260 1.35665i −0.146772 0.989170i \(-0.546888\pi\)
0.930033 0.367477i \(-0.119778\pi\)
\(164\) 2.00000 + 3.46410i 0.156174 + 0.270501i
\(165\) −3.00000 5.19615i −0.233550 0.404520i
\(166\) 3.00000 5.19615i 0.232845 0.403300i
\(167\) −19.0000 −1.47026 −0.735132 0.677924i \(-0.762880\pi\)
−0.735132 + 0.677924i \(0.762880\pi\)
\(168\) −6.00000 + 5.19615i −0.462910 + 0.400892i
\(169\) −12.0000 −0.923077
\(170\) −1.50000 + 2.59808i −0.115045 + 0.199263i
\(171\) 0 0
\(172\) 2.00000 + 3.46410i 0.152499 + 0.264135i
\(173\) 8.00000 13.8564i 0.608229 1.05348i −0.383304 0.923622i \(-0.625214\pi\)
0.991532 0.129861i \(-0.0414530\pi\)
\(174\) 0 0
\(175\) −8.00000 + 6.92820i −0.604743 + 0.523723i
\(176\) 2.00000 0.150756
\(177\) 2.00000 3.46410i 0.150329 0.260378i
\(178\) −3.00000 5.19615i −0.224860 0.389468i
\(179\) 5.50000 + 9.52628i 0.411089 + 0.712028i 0.995009 0.0997838i \(-0.0318151\pi\)
−0.583920 + 0.811811i \(0.698482\pi\)
\(180\) −1.50000 + 2.59808i −0.111803 + 0.193649i
\(181\) −26.0000 −1.93256 −0.966282 0.257485i \(-0.917106\pi\)
−0.966282 + 0.257485i \(0.917106\pi\)
\(182\) 2.50000 + 0.866025i 0.185312 + 0.0641941i
\(183\) −2.00000 −0.147844
\(184\) −1.50000 + 2.59808i −0.110581 + 0.191533i
\(185\) −3.00000 5.19615i −0.220564 0.382029i
\(186\) 5.00000 + 8.66025i 0.366618 + 0.635001i
\(187\) 1.00000 1.73205i 0.0731272 0.126660i
\(188\) −7.00000 −0.510527
\(189\) −0.500000 2.59808i −0.0363696 0.188982i
\(190\) 0 0
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) −3.50000 6.06218i −0.252591 0.437500i
\(193\) 5.50000 + 9.52628i 0.395899 + 0.685717i 0.993215 0.116289i \(-0.0370998\pi\)
−0.597317 + 0.802005i \(0.703766\pi\)
\(194\) 8.00000 13.8564i 0.574367 0.994832i
\(195\) 3.00000 0.214834
\(196\) −5.50000 4.33013i −0.392857 0.309295i
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) −1.00000 + 1.73205i −0.0710669 + 0.123091i
\(199\) −8.00000 13.8564i −0.567105 0.982255i −0.996850 0.0793045i \(-0.974730\pi\)
0.429745 0.902950i \(-0.358603\pi\)
\(200\) −6.00000 10.3923i −0.424264 0.734847i
\(201\) 1.50000 2.59808i 0.105802 0.183254i
\(202\) 18.0000 1.26648
\(203\) 0 0
\(204\) −1.00000 −0.0700140
\(205\) 6.00000 10.3923i 0.419058 0.725830i
\(206\) 5.50000 + 9.52628i 0.383203 + 0.663727i
\(207\) −0.500000 0.866025i −0.0347524 0.0601929i
\(208\) −0.500000 + 0.866025i −0.0346688 + 0.0600481i
\(209\) 0 0
\(210\) 7.50000 + 2.59808i 0.517549 + 0.179284i
\(211\) −22.0000 −1.51454 −0.757271 0.653101i \(-0.773468\pi\)
−0.757271 + 0.653101i \(0.773468\pi\)
\(212\) −4.50000 + 7.79423i −0.309061 + 0.535310i
\(213\) 7.50000 + 12.9904i 0.513892 + 0.890086i
\(214\) 2.00000 + 3.46410i 0.136717 + 0.236801i
\(215\) 6.00000 10.3923i 0.409197 0.708749i
\(216\) 3.00000 0.204124
\(217\) −20.0000 + 17.3205i −1.35769 + 1.17579i
\(218\) −8.00000 −0.541828
\(219\) 6.50000 11.2583i 0.439229 0.760767i
\(220\) 3.00000 + 5.19615i 0.202260 + 0.350325i
\(221\) 0.500000 + 0.866025i 0.0336336 + 0.0582552i
\(222\) −1.00000 + 1.73205i −0.0671156 + 0.116248i
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 10.0000 8.66025i 0.668153 0.578638i
\(225\) 4.00000 0.266667
\(226\) 3.50000 6.06218i 0.232817 0.403250i
\(227\) 7.00000 + 12.1244i 0.464606 + 0.804722i 0.999184 0.0403978i \(-0.0128625\pi\)
−0.534577 + 0.845120i \(0.679529\pi\)
\(228\) 0 0
\(229\) −14.0000 + 24.2487i −0.925146 + 1.60240i −0.133820 + 0.991006i \(0.542724\pi\)
−0.791326 + 0.611394i \(0.790609\pi\)
\(230\) 3.00000 0.197814
\(231\) −5.00000 1.73205i −0.328976 0.113961i
\(232\) 0 0
\(233\) 12.0000 20.7846i 0.786146 1.36165i −0.142166 0.989843i \(-0.545407\pi\)
0.928312 0.371802i \(-0.121260\pi\)
\(234\) −0.500000 0.866025i −0.0326860 0.0566139i
\(235\) 10.5000 + 18.1865i 0.684944 + 1.18636i
\(236\) −2.00000 + 3.46410i −0.130189 + 0.225494i
\(237\) 4.00000 0.259828
\(238\) 0.500000 + 2.59808i 0.0324102 + 0.168408i
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) −1.50000 + 2.59808i −0.0968246 + 0.167705i
\(241\) −3.00000 5.19615i −0.193247 0.334714i 0.753077 0.657932i \(-0.228569\pi\)
−0.946324 + 0.323218i \(0.895235\pi\)
\(242\) −3.50000 6.06218i −0.224989 0.389692i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 2.00000 0.128037
\(245\) −3.00000 + 20.7846i −0.191663 + 1.32788i
\(246\) −4.00000 −0.255031
\(247\) 0 0
\(248\) −15.0000 25.9808i −0.952501 1.64978i
\(249\) −3.00000 5.19615i −0.190117 0.329293i
\(250\) 1.50000 2.59808i 0.0948683 0.164317i
\(251\) 10.0000 0.631194 0.315597 0.948893i \(-0.397795\pi\)
0.315597 + 0.948893i \(0.397795\pi\)
\(252\) 0.500000 + 2.59808i 0.0314970 + 0.163663i
\(253\) −2.00000 −0.125739
\(254\) 1.00000 1.73205i 0.0627456 0.108679i
\(255\) 1.50000 + 2.59808i 0.0939336 + 0.162698i
\(256\) 8.50000 + 14.7224i 0.531250 + 0.920152i
\(257\) 9.00000 15.5885i 0.561405 0.972381i −0.435970 0.899961i \(-0.643595\pi\)
0.997374 0.0724199i \(-0.0230722\pi\)
\(258\) −4.00000 −0.249029
\(259\) −5.00000 1.73205i −0.310685 0.107624i
\(260\) −3.00000 −0.186052
\(261\) 0 0
\(262\) −1.50000 2.59808i −0.0926703 0.160510i
\(263\) 8.00000 + 13.8564i 0.493301 + 0.854423i 0.999970 0.00771799i \(-0.00245674\pi\)
−0.506669 + 0.862141i \(0.669123\pi\)
\(264\) 3.00000 5.19615i 0.184637 0.319801i
\(265\) 27.0000 1.65860
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) −1.50000 + 2.59808i −0.0916271 + 0.158703i
\(269\) −2.00000 3.46410i −0.121942 0.211210i 0.798591 0.601874i \(-0.205579\pi\)
−0.920534 + 0.390664i \(0.872246\pi\)
\(270\) −1.50000 2.59808i −0.0912871 0.158114i
\(271\) −7.00000 + 12.1244i −0.425220 + 0.736502i −0.996441 0.0842940i \(-0.973137\pi\)
0.571221 + 0.820796i \(0.306470\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 2.00000 1.73205i 0.121046 0.104828i
\(274\) 17.0000 1.02701
\(275\) 4.00000 6.92820i 0.241209 0.417786i
\(276\) 0.500000 + 0.866025i 0.0300965 + 0.0521286i
\(277\) −6.50000 11.2583i −0.390547 0.676448i 0.601975 0.798515i \(-0.294381\pi\)
−0.992522 + 0.122068i \(0.961047\pi\)
\(278\) −5.00000 + 8.66025i −0.299880 + 0.519408i
\(279\) 10.0000 0.598684
\(280\) −22.5000 7.79423i −1.34463 0.465794i
\(281\) 27.0000 1.61068 0.805342 0.592810i \(-0.201981\pi\)
0.805342 + 0.592810i \(0.201981\pi\)
\(282\) 3.50000 6.06218i 0.208422 0.360997i
\(283\) −15.5000 26.8468i −0.921379 1.59588i −0.797283 0.603606i \(-0.793730\pi\)
−0.124096 0.992270i \(-0.539603\pi\)
\(284\) −7.50000 12.9904i −0.445043 0.770837i
\(285\) 0 0
\(286\) −2.00000 −0.118262
\(287\) −2.00000 10.3923i −0.118056 0.613438i
\(288\) −5.00000 −0.294628
\(289\) 8.00000 13.8564i 0.470588 0.815083i
\(290\) 0 0
\(291\) −8.00000 13.8564i −0.468968 0.812277i
\(292\) −6.50000 + 11.2583i −0.380384 + 0.658844i
\(293\) −13.0000 −0.759468 −0.379734 0.925096i \(-0.623985\pi\)
−0.379734 + 0.925096i \(0.623985\pi\)
\(294\) 6.50000 2.59808i 0.379088 0.151523i
\(295\) 12.0000 0.698667
\(296\) 3.00000 5.19615i 0.174371 0.302020i
\(297\) 1.00000 + 1.73205i 0.0580259 + 0.100504i
\(298\) 2.50000 + 4.33013i 0.144821 + 0.250838i
\(299\) 0.500000 0.866025i 0.0289157 0.0500835i
\(300\) −4.00000 −0.230940
\(301\) −2.00000 10.3923i −0.115278 0.599002i
\(302\) −4.00000 −0.230174
\(303\) 9.00000 15.5885i 0.517036 0.895533i
\(304\) 0 0
\(305\) −3.00000 5.19615i −0.171780 0.297531i
\(306\) 0.500000 0.866025i 0.0285831 0.0495074i
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 5.00000 + 1.73205i 0.284901 + 0.0986928i
\(309\) 11.0000 0.625768
\(310\) −15.0000 + 25.9808i −0.851943 + 1.47561i
\(311\) −10.5000 18.1865i −0.595400 1.03126i −0.993490 0.113917i \(-0.963660\pi\)
0.398090 0.917346i \(-0.369673\pi\)
\(312\) 1.50000 + 2.59808i 0.0849208 + 0.147087i
\(313\) 4.00000 6.92820i 0.226093 0.391605i −0.730554 0.682855i \(-0.760738\pi\)
0.956647 + 0.291250i \(0.0940712\pi\)
\(314\) −10.0000 −0.564333
\(315\) 6.00000 5.19615i 0.338062 0.292770i
\(316\) −4.00000 −0.225018
\(317\) −5.00000 + 8.66025i −0.280828 + 0.486408i −0.971589 0.236675i \(-0.923942\pi\)
0.690761 + 0.723083i \(0.257276\pi\)
\(318\) −4.50000 7.79423i −0.252347 0.437079i
\(319\) 0 0
\(320\) 10.5000 18.1865i 0.586968 1.01666i
\(321\) 4.00000 0.223258
\(322\) 2.00000 1.73205i 0.111456 0.0965234i
\(323\) 0 0
\(324\) 0.500000 0.866025i 0.0277778 0.0481125i
\(325\) 2.00000 + 3.46410i 0.110940 + 0.192154i
\(326\) −10.0000 17.3205i −0.553849 0.959294i
\(327\) −4.00000 + 6.92820i −0.221201 + 0.383131i
\(328\) 12.0000 0.662589
\(329\) 17.5000 + 6.06218i 0.964806 + 0.334219i
\(330\) −6.00000 −0.330289
\(331\) 17.0000 29.4449i 0.934405 1.61844i 0.158712 0.987325i \(-0.449266\pi\)
0.775692 0.631111i \(-0.217401\pi\)
\(332\) 3.00000 + 5.19615i 0.164646 + 0.285176i
\(333\) 1.00000 + 1.73205i 0.0547997 + 0.0949158i
\(334\) −9.50000 + 16.4545i −0.519817 + 0.900349i
\(335\) 9.00000 0.491723
\(336\) 0.500000 + 2.59808i 0.0272772 + 0.141737i
\(337\) −12.0000 −0.653682 −0.326841 0.945079i \(-0.605984\pi\)
−0.326841 + 0.945079i \(0.605984\pi\)
\(338\) −6.00000 + 10.3923i −0.326357 + 0.565267i
\(339\) −3.50000 6.06218i −0.190094 0.329252i
\(340\) −1.50000 2.59808i −0.0813489 0.140900i
\(341\) 10.0000 17.3205i 0.541530 0.937958i
\(342\) 0 0
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) 12.0000 0.646997
\(345\) 1.50000 2.59808i 0.0807573 0.139876i
\(346\) −8.00000 13.8564i −0.430083 0.744925i
\(347\) −1.50000 2.59808i −0.0805242 0.139472i 0.822951 0.568112i \(-0.192326\pi\)
−0.903475 + 0.428640i \(0.858993\pi\)
\(348\) 0 0
\(349\) −5.00000 −0.267644 −0.133822 0.991005i \(-0.542725\pi\)
−0.133822 + 0.991005i \(0.542725\pi\)
\(350\) 2.00000 + 10.3923i 0.106904 + 0.555492i
\(351\) −1.00000 −0.0533761
\(352\) −5.00000 + 8.66025i −0.266501 + 0.461593i
\(353\) 2.00000 + 3.46410i 0.106449 + 0.184376i 0.914329 0.404971i \(-0.132718\pi\)
−0.807880 + 0.589347i \(0.799385\pi\)
\(354\) −2.00000 3.46410i −0.106299 0.184115i
\(355\) −22.5000 + 38.9711i −1.19418 + 2.06837i
\(356\) 6.00000 0.317999
\(357\) 2.50000 + 0.866025i 0.132314 + 0.0458349i
\(358\) 11.0000 0.581368
\(359\) −11.0000 + 19.0526i −0.580558 + 1.00556i 0.414855 + 0.909887i \(0.363832\pi\)
−0.995413 + 0.0956683i \(0.969501\pi\)
\(360\) 4.50000 + 7.79423i 0.237171 + 0.410792i
\(361\) 9.50000 + 16.4545i 0.500000 + 0.866025i
\(362\) −13.0000 + 22.5167i −0.683265 + 1.18345i
\(363\) −7.00000 −0.367405
\(364\) −2.00000 + 1.73205i −0.104828 + 0.0907841i
\(365\) 39.0000 2.04135
\(366\) −1.00000 + 1.73205i −0.0522708 + 0.0905357i
\(367\) 9.50000 + 16.4545i 0.495896 + 0.858917i 0.999989 0.00473247i \(-0.00150640\pi\)
−0.504093 + 0.863649i \(0.668173\pi\)
\(368\) 0.500000 + 0.866025i 0.0260643 + 0.0451447i
\(369\) −2.00000 + 3.46410i −0.104116 + 0.180334i
\(370\) −6.00000 −0.311925
\(371\) 18.0000 15.5885i 0.934513 0.809312i
\(372\) −10.0000 −0.518476
\(373\) 13.0000 22.5167i 0.673114 1.16587i −0.303902 0.952703i \(-0.598289\pi\)
0.977016 0.213165i \(-0.0683772\pi\)
\(374\) −1.00000 1.73205i −0.0517088 0.0895622i
\(375\) −1.50000 2.59808i −0.0774597 0.134164i
\(376\) −10.5000 + 18.1865i −0.541496 + 0.937899i
\(377\) 0 0
\(378\) −2.50000 0.866025i −0.128586 0.0445435i
\(379\) −19.0000 −0.975964 −0.487982 0.872854i \(-0.662267\pi\)
−0.487982 + 0.872854i \(0.662267\pi\)
\(380\) 0 0
\(381\) −1.00000 1.73205i −0.0512316 0.0887357i
\(382\) 0 0
\(383\) 3.00000 5.19615i 0.153293 0.265511i −0.779143 0.626846i \(-0.784346\pi\)
0.932436 + 0.361335i \(0.117679\pi\)
\(384\) 3.00000 0.153093
\(385\) −3.00000 15.5885i −0.152894 0.794461i
\(386\) 11.0000 0.559885
\(387\) −2.00000 + 3.46410i −0.101666 + 0.176090i
\(388\) 8.00000 + 13.8564i 0.406138 + 0.703452i
\(389\) 3.00000 + 5.19615i 0.152106 + 0.263455i 0.932002 0.362454i \(-0.118061\pi\)
−0.779895 + 0.625910i \(0.784728\pi\)
\(390\) 1.50000 2.59808i 0.0759555 0.131559i
\(391\) 1.00000 0.0505722
\(392\) −19.5000 + 7.79423i −0.984899 + 0.393668i
\(393\) −3.00000 −0.151330
\(394\) −9.00000 + 15.5885i −0.453413 + 0.785335i
\(395\) 6.00000 + 10.3923i 0.301893 + 0.522894i
\(396\) −1.00000 1.73205i −0.0502519 0.0870388i
\(397\) −10.5000 + 18.1865i −0.526980 + 0.912756i 0.472526 + 0.881317i \(0.343342\pi\)
−0.999506 + 0.0314391i \(0.989991\pi\)
\(398\) −16.0000 −0.802008
\(399\) 0 0
\(400\) −4.00000 −0.200000
\(401\) 5.50000 9.52628i 0.274657 0.475720i −0.695392 0.718631i \(-0.744769\pi\)
0.970049 + 0.242911i \(0.0781024\pi\)
\(402\) −1.50000 2.59808i −0.0748132 0.129580i
\(403\) 5.00000 + 8.66025i 0.249068 + 0.431398i
\(404\) −9.00000 + 15.5885i −0.447767 + 0.775555i
\(405\) −3.00000 −0.149071
\(406\) 0 0
\(407\) 4.00000 0.198273
\(408\) −1.50000 + 2.59808i −0.0742611 + 0.128624i
\(409\) −15.5000 26.8468i −0.766426 1.32749i −0.939490 0.342578i \(-0.888700\pi\)
0.173064 0.984911i \(-0.444633\pi\)
\(410\) −6.00000 10.3923i −0.296319 0.513239i
\(411\) 8.50000 14.7224i 0.419274 0.726204i
\(412\) −11.0000 −0.541931
\(413\) 8.00000 6.92820i 0.393654 0.340915i
\(414\) −1.00000 −0.0491473
\(415\) 9.00000 15.5885i 0.441793 0.765207i
\(416\) −2.50000 4.33013i −0.122573 0.212302i
\(417\) 5.00000 + 8.66025i 0.244851 + 0.424094i
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) −6.00000 + 5.19615i −0.292770 + 0.253546i
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) −11.0000 + 19.0526i −0.535472 + 0.927464i
\(423\) −3.50000 6.06218i −0.170176 0.294753i
\(424\) 13.5000 + 23.3827i 0.655618 + 1.13556i
\(425\) −2.00000 + 3.46410i −0.0970143 + 0.168034i
\(426\) 15.0000 0.726752
\(427\) −5.00000 1.73205i −0.241967 0.0838198i
\(428\) −4.00000 −0.193347
\(429\) −1.00000 + 1.73205i −0.0482805 + 0.0836242i
\(430\) −6.00000 10.3923i −0.289346 0.501161i
\(431\) 16.0000 + 27.7128i 0.770693 + 1.33488i 0.937184 + 0.348836i \(0.113423\pi\)
−0.166491 + 0.986043i \(0.553244\pi\)
\(432\) 0.500000 0.866025i 0.0240563 0.0416667i
\(433\) −22.0000 −1.05725 −0.528626 0.848855i \(-0.677293\pi\)
−0.528626 + 0.848855i \(0.677293\pi\)
\(434\) 5.00000 + 25.9808i 0.240008 + 1.24712i
\(435\) 0 0
\(436\) 4.00000 6.92820i 0.191565 0.331801i
\(437\) 0 0
\(438\) −6.50000 11.2583i −0.310582 0.537944i
\(439\) −11.0000 + 19.0526i −0.525001 + 0.909329i 0.474575 + 0.880215i \(0.342602\pi\)
−0.999576 + 0.0291138i \(0.990731\pi\)
\(440\) 18.0000 0.858116
\(441\) 1.00000 6.92820i 0.0476190 0.329914i
\(442\) 1.00000 0.0475651
\(443\) 5.50000 9.52628i 0.261313 0.452607i −0.705278 0.708931i \(-0.749178\pi\)
0.966591 + 0.256323i \(0.0825112\pi\)
\(444\) −1.00000 1.73205i −0.0474579 0.0821995i
\(445\) −9.00000 15.5885i −0.426641 0.738964i
\(446\) 2.00000 3.46410i 0.0947027 0.164030i
\(447\) 5.00000 0.236492
\(448\) −3.50000 18.1865i −0.165359 0.859233i
\(449\) 14.0000 0.660701 0.330350 0.943858i \(-0.392833\pi\)
0.330350 + 0.943858i \(0.392833\pi\)
\(450\) 2.00000 3.46410i 0.0942809 0.163299i
\(451\) 4.00000 + 6.92820i 0.188353 + 0.326236i
\(452\) 3.50000 + 6.06218i 0.164626 + 0.285141i
\(453\) −2.00000 + 3.46410i −0.0939682 + 0.162758i
\(454\) 14.0000 0.657053
\(455\) 7.50000 + 2.59808i 0.351605 + 0.121800i
\(456\) 0 0
\(457\) −8.00000 + 13.8564i −0.374224 + 0.648175i −0.990211 0.139581i \(-0.955424\pi\)
0.615986 + 0.787757i \(0.288758\pi\)
\(458\) 14.0000 + 24.2487i 0.654177 + 1.13307i
\(459\) −0.500000 0.866025i −0.0233380 0.0404226i
\(460\) −1.50000 + 2.59808i −0.0699379 + 0.121136i
\(461\) −42.0000 −1.95614 −0.978068 0.208288i \(-0.933211\pi\)
−0.978068 + 0.208288i \(0.933211\pi\)
\(462\) −4.00000 + 3.46410i −0.186097 + 0.161165i
\(463\) 40.0000 1.85896 0.929479 0.368875i \(-0.120257\pi\)
0.929479 + 0.368875i \(0.120257\pi\)
\(464\) 0 0
\(465\) 15.0000 + 25.9808i 0.695608 + 1.20483i
\(466\) −12.0000 20.7846i −0.555889 0.962828i
\(467\) 14.0000 24.2487i 0.647843 1.12210i −0.335794 0.941935i \(-0.609005\pi\)
0.983637 0.180161i \(-0.0576619\pi\)
\(468\) 1.00000 0.0462250
\(469\) 6.00000 5.19615i 0.277054 0.239936i
\(470\) 21.0000 0.968658
\(471\) −5.00000 + 8.66025i −0.230388 + 0.399043i
\(472\) 6.00000 + 10.3923i 0.276172 + 0.478345i
\(473\) 4.00000 + 6.92820i 0.183920 + 0.318559i
\(474\) 2.00000 3.46410i 0.0918630 0.159111i
\(475\) 0 0
\(476\) −2.50000 0.866025i −0.114587 0.0396942i
\(477\) −9.00000 −0.412082
\(478\) −8.00000 + 13.8564i −0.365911 + 0.633777i
\(479\) −8.00000 13.8564i −0.365529 0.633115i 0.623332 0.781958i \(-0.285779\pi\)
−0.988861 + 0.148842i \(0.952445\pi\)
\(480\) −7.50000 12.9904i −0.342327 0.592927i
\(481\) −1.00000 + 1.73205i −0.0455961 + 0.0789747i
\(482\) −6.00000 −0.273293
\(483\) −0.500000 2.59808i −0.0227508 0.118217i
\(484\) 7.00000 0.318182
\(485\) 24.0000 41.5692i 1.08978 1.88756i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) −8.00000 13.8564i −0.362515 0.627894i 0.625859 0.779936i \(-0.284748\pi\)
−0.988374 + 0.152042i \(0.951415\pi\)
\(488\) 3.00000 5.19615i 0.135804 0.235219i
\(489\) −20.0000 −0.904431
\(490\) 16.5000 + 12.9904i 0.745394 + 0.586846i
\(491\) 9.00000 0.406164 0.203082 0.979162i \(-0.434904\pi\)
0.203082 + 0.979162i \(0.434904\pi\)
\(492\) 2.00000 3.46410i 0.0901670 0.156174i
\(493\) 0 0
\(494\) 0 0
\(495\) −3.00000 + 5.19615i −0.134840 + 0.233550i
\(496\) −10.0000 −0.449013
\(497\) 7.50000 + 38.9711i 0.336421 + 1.74809i
\(498\) −6.00000 −0.268866
\(499\) −18.0000 + 31.1769i −0.805791 + 1.39567i 0.109965 + 0.993935i \(0.464926\pi\)
−0.915756 + 0.401735i \(0.868407\pi\)
\(500\) 1.50000 + 2.59808i 0.0670820 + 0.116190i
\(501\) 9.50000 + 16.4545i 0.424429 + 0.735132i
\(502\) 5.00000 8.66025i 0.223161 0.386526i
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 7.50000 + 2.59808i 0.334077 + 0.115728i
\(505\) 54.0000 2.40297
\(506\) −1.00000 + 1.73205i −0.0444554 + 0.0769991i
\(507\) 6.00000 + 10.3923i 0.266469 + 0.461538i
\(508\) 1.00000 + 1.73205i 0.0443678 + 0.0768473i
\(509\) −3.00000 + 5.19615i −0.132973 + 0.230315i −0.924821 0.380402i \(-0.875786\pi\)
0.791849 + 0.610718i \(0.209119\pi\)
\(510\) 3.00000 0.132842
\(511\) 26.0000 22.5167i 1.15017 0.996078i
\(512\) 11.0000 0.486136
\(513\) 0 0
\(514\) −9.00000 15.5885i −0.396973 0.687577i
\(515\) 16.5000 + 28.5788i 0.727077 + 1.25933i
\(516\) 2.00000 3.46410i 0.0880451 0.152499i
\(517\) −14.0000 −0.615719
\(518\) −4.00000 + 3.46410i −0.175750 + 0.152204i
\(519\) −16.0000 −0.702322
\(520\) −4.50000 + 7.79423i −0.197338 + 0.341800i
\(521\) 14.5000 + 25.1147i 0.635257 + 1.10030i 0.986461 + 0.163998i \(0.0524390\pi\)
−0.351204 + 0.936299i \(0.614228\pi\)
\(522\) 0 0
\(523\) −8.50000 + 14.7224i −0.371679 + 0.643767i −0.989824 0.142297i \(-0.954551\pi\)
0.618145 + 0.786064i \(0.287884\pi\)
\(524\) 3.00000 0.131056
\(525\) 10.0000 + 3.46410i 0.436436 + 0.151186i
\(526\) 16.0000 0.697633
\(527\) −5.00000 + 8.66025i −0.217803 + 0.377247i
\(528\) −1.00000 1.73205i −0.0435194 0.0753778i
\(529\) −0.500000 0.866025i −0.0217391 0.0376533i
\(530\) 13.5000 23.3827i 0.586403 1.01568i
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) −4.00000 −0.173259
\(534\) −3.00000 + 5.19615i −0.129823 + 0.224860i
\(535\) 6.00000 + 10.3923i 0.259403 + 0.449299i
\(536\) 4.50000 + 7.79423i 0.194370 + 0.336659i
\(537\) 5.50000 9.52628i 0.237343 0.411089i
\(538\) −4.00000 −0.172452
\(539\) −11.0000 8.66025i −0.473804 0.373024i
\(540\) 3.00000 0.129099
\(541\) −2.50000 + 4.33013i −0.107483 + 0.186167i −0.914750 0.404020i \(-0.867613\pi\)
0.807267 + 0.590187i \(0.200946\pi\)
\(542\) 7.00000 + 12.1244i 0.300676 + 0.520786i
\(543\) 13.0000 + 22.5167i 0.557883 + 0.966282i
\(544\) 2.50000 4.33013i 0.107187 0.185653i
\(545\) −24.0000 −1.02805
\(546\) −0.500000 2.59808i −0.0213980 0.111187i
\(547\) −26.0000 −1.11168 −0.555840 0.831289i \(-0.687603\pi\)
−0.555840 + 0.831289i \(0.687603\pi\)
\(548\) −8.50000 + 14.7224i −0.363102 + 0.628911i
\(549\) 1.00000 + 1.73205i 0.0426790 + 0.0739221i
\(550\) −4.00000 6.92820i −0.170561 0.295420i
\(551\) 0 0
\(552\) 3.00000 0.127688
\(553\) 10.0000 + 3.46410i 0.425243 + 0.147309i
\(554\) −13.0000 −0.552317
\(555\) −3.00000 + 5.19615i −0.127343 + 0.220564i
\(556\) −5.00000 8.66025i −0.212047 0.367277i
\(557\) 7.00000 + 12.1244i 0.296600 + 0.513725i 0.975356 0.220638i \(-0.0708140\pi\)
−0.678756 + 0.734364i \(0.737481\pi\)
\(558\) 5.00000 8.66025i 0.211667 0.366618i
\(559\) −4.00000 −0.169182
\(560\) −6.00000 + 5.19615i −0.253546 + 0.219578i
\(561\) −2.00000 −0.0844401
\(562\) 13.5000 23.3827i 0.569463 0.986339i
\(563\) −20.0000 34.6410i −0.842900 1.45994i −0.887433 0.460937i \(-0.847513\pi\)
0.0445334 0.999008i \(-0.485820\pi\)
\(564\) 3.50000 + 6.06218i 0.147377 + 0.255264i
\(565\) 10.5000 18.1865i 0.441738 0.765113i
\(566\) −31.0000 −1.30303
\(567\) −2.00000 + 1.73205i −0.0839921 + 0.0727393i
\(568\) −45.0000 −1.88816
\(569\) −16.5000 + 28.5788i −0.691716 + 1.19809i 0.279559 + 0.960128i \(0.409812\pi\)
−0.971275 + 0.237959i \(0.923522\pi\)
\(570\) 0 0
\(571\) −3.50000 6.06218i −0.146470 0.253694i 0.783450 0.621455i \(-0.213458\pi\)
−0.929921 + 0.367760i \(0.880125\pi\)
\(572\) 1.00000 1.73205i 0.0418121 0.0724207i
\(573\) 0 0
\(574\) −10.0000 3.46410i −0.417392 0.144589i
\(575\) 4.00000 0.166812
\(576\) −3.50000 + 6.06218i −0.145833 + 0.252591i
\(577\) 1.00000 + 1.73205i 0.0416305 + 0.0721062i 0.886090 0.463513i \(-0.153411\pi\)
−0.844459 + 0.535620i \(0.820078\pi\)
\(578\) −8.00000 13.8564i −0.332756 0.576351i
\(579\) 5.50000 9.52628i 0.228572 0.395899i
\(580\) 0 0
\(581\) −3.00000 15.5885i −0.124461 0.646718i
\(582\) −16.0000 −0.663221
\(583\) −9.00000 + 15.5885i −0.372742 + 0.645608i
\(584\) 19.5000 + 33.7750i 0.806916 + 1.39762i
\(585\) −1.50000 2.59808i −0.0620174 0.107417i
\(586\) −6.50000 + 11.2583i −0.268513 + 0.465077i
\(587\) −37.0000 −1.52715 −0.763577 0.645717i \(-0.776559\pi\)
−0.763577 + 0.645717i \(0.776559\pi\)
\(588\) −1.00000 + 6.92820i −0.0412393 + 0.285714i
\(589\) 0 0
\(590\) 6.00000 10.3923i 0.247016 0.427844i
\(591\) 9.00000 + 15.5885i 0.370211 + 0.641223i
\(592\) −1.00000 1.73205i −0.0410997 0.0711868i
\(593\) −13.0000 + 22.5167i −0.533846 + 0.924648i 0.465372 + 0.885115i \(0.345920\pi\)
−0.999218 + 0.0395334i \(0.987413\pi\)
\(594\) 2.00000 0.0820610
\(595\) 1.50000 + 7.79423i 0.0614940 + 0.319532i
\(596\) −5.00000 −0.204808
\(597\) −8.00000 + 13.8564i −0.327418 + 0.567105i
\(598\) −0.500000 0.866025i −0.0204465 0.0354144i
\(599\) −19.5000 33.7750i −0.796748 1.38001i −0.921723 0.387849i \(-0.873218\pi\)
0.124975 0.992160i \(-0.460115\pi\)
\(600\) −6.00000 + 10.3923i −0.244949 + 0.424264i
\(601\) 18.0000 0.734235 0.367118 0.930175i \(-0.380345\pi\)
0.367118 + 0.930175i \(0.380345\pi\)
\(602\) −10.0000 3.46410i −0.407570 0.141186i
\(603\) −3.00000 −0.122169
\(604\) 2.00000 3.46410i 0.0813788 0.140952i
\(605\) −10.5000 18.1865i −0.426886 0.739388i
\(606\) −9.00000 15.5885i −0.365600 0.633238i
\(607\) −3.00000 + 5.19615i −0.121766 + 0.210905i −0.920464 0.390827i \(-0.872189\pi\)
0.798698 + 0.601732i \(0.205522\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −6.00000 −0.242933
\(611\) 3.50000 6.06218i 0.141595 0.245249i
\(612\) 0.500000 + 0.866025i 0.0202113 + 0.0350070i
\(613\) 1.00000 + 1.73205i 0.0403896 + 0.0699569i 0.885514 0.464614i \(-0.153807\pi\)
−0.845124 + 0.534570i \(0.820473\pi\)
\(614\) −10.0000 + 17.3205i −0.403567 + 0.698999i
\(615\) −12.0000 −0.483887
\(616\) 12.0000 10.3923i 0.483494 0.418718i
\(617\) −29.0000 −1.16750 −0.583748 0.811935i \(-0.698414\pi\)
−0.583748 + 0.811935i \(0.698414\pi\)
\(618\) 5.50000 9.52628i 0.221242 0.383203i
\(619\) 13.5000 + 23.3827i 0.542611 + 0.939829i 0.998753 + 0.0499226i \(0.0158975\pi\)
−0.456142 + 0.889907i \(0.650769\pi\)
\(620\) −15.0000 25.9808i −0.602414 1.04341i
\(621\) −0.500000 + 0.866025i −0.0200643 + 0.0347524i
\(622\) −21.0000 −0.842023
\(623\) −15.0000 5.19615i −0.600962 0.208179i
\(624\) 1.00000 0.0400320
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) −4.00000 6.92820i −0.159872 0.276907i
\(627\) 0 0
\(628\) 5.00000 8.66025i 0.199522 0.345582i
\(629\) −2.00000 −0.0797452
\(630\) −1.50000 7.79423i −0.0597614 0.310530i
\(631\) −5.00000 −0.199047 −0.0995234 0.995035i \(-0.531732\pi\)
−0.0995234 + 0.995035i \(0.531732\pi\)
\(632\) −6.00000 + 10.3923i −0.238667 + 0.413384i
\(633\) 11.0000 + 19.0526i 0.437211 + 0.757271i
\(634\) 5.00000 + 8.66025i 0.198575 + 0.343943i
\(635\) 3.00000 5.19615i 0.119051 0.206203i
\(636\) 9.00000 0.356873
\(637\) 6.50000 2.59808i 0.257539 0.102940i
\(638\) 0 0
\(639\) 7.50000 12.9904i 0.296695 0.513892i
\(640\) 4.50000 + 7.79423i 0.177878 + 0.308094i
\(641\) −16.5000 28.5788i −0.651711 1.12880i −0.982708 0.185164i \(-0.940718\pi\)
0.330997 0.943632i \(-0.392615\pi\)
\(642\) 2.00000 3.46410i 0.0789337 0.136717i
\(643\) 12.0000 0.473234 0.236617 0.971603i \(-0.423961\pi\)
0.236617 + 0.971603i \(0.423961\pi\)
\(644\) 0.500000 + 2.59808i 0.0197028 + 0.102379i
\(645\) −12.0000 −0.472500
\(646\) 0 0
\(647\) −4.00000 6.92820i −0.157256 0.272376i 0.776622 0.629967i \(-0.216932\pi\)
−0.933878 + 0.357591i \(0.883598\pi\)
\(648\) −1.50000 2.59808i −0.0589256 0.102062i
\(649\) −4.00000 + 6.92820i −0.157014 + 0.271956i
\(650\) 4.00000 0.156893
\(651\) 25.0000 + 8.66025i 0.979827 + 0.339422i
\(652\) 20.0000 0.783260
\(653\) 9.00000 15.5885i 0.352197 0.610023i −0.634437 0.772975i \(-0.718768\pi\)
0.986634 + 0.162951i \(0.0521013\pi\)
\(654\) 4.00000 + 6.92820i 0.156412 + 0.270914i
\(655\) −4.50000 7.79423i −0.175830 0.304546i
\(656\) 2.00000 3.46410i 0.0780869 0.135250i
\(657\) −13.0000 −0.507178
\(658\) 14.0000 12.1244i 0.545777 0.472657i
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 3.00000 5.19615i 0.116775 0.202260i
\(661\) 4.00000 + 6.92820i 0.155582 + 0.269476i 0.933271 0.359174i \(-0.116941\pi\)
−0.777689 + 0.628649i \(0.783608\pi\)
\(662\) −17.0000 29.4449i −0.660724 1.14441i
\(663\) 0.500000 0.866025i 0.0194184 0.0336336i
\(664\) 18.0000 0.698535
\(665\) 0 0
\(666\) 2.00000 0.0774984
\(667\) 0 0
\(668\) −9.50000 16.4545i −0.367566 0.636643i
\(669\) −2.00000 3.46410i −0.0773245 0.133930i
\(670\) 4.50000 7.79423i 0.173850 0.301117i
\(671\) 4.00000 0.154418
\(672\) −12.5000 4.33013i −0.482198 0.167038i
\(673\) 50.0000 1.92736 0.963679 0.267063i \(-0.0860531\pi\)
0.963679 + 0.267063i \(0.0860531\pi\)
\(674\) −6.00000 + 10.3923i −0.231111 + 0.400297i
\(675\) −2.00000 3.46410i −0.0769800 0.133333i
\(676\) −6.00000 10.3923i −0.230769 0.399704i
\(677\) 5.50000 9.52628i 0.211382 0.366125i −0.740765 0.671764i \(-0.765537\pi\)
0.952147 + 0.305639i \(0.0988702\pi\)
\(678\) −7.00000 −0.268833
\(679\) −8.00000 41.5692i −0.307012 1.59528i
\(680\) −9.00000 −0.345134
\(681\) 7.00000 12.1244i 0.268241 0.464606i
\(682\) −10.0000 17.3205i −0.382920 0.663237i
\(683\) −20.5000 35.5070i −0.784411 1.35864i −0.929350 0.369199i \(-0.879632\pi\)
0.144940 0.989440i \(-0.453701\pi\)
\(684\) 0 0
\(685\) 51.0000 1.94861
\(686\) 18.5000 0.866025i 0.706333 0.0330650i
\(687\) 28.0000 1.06827
\(688\) 2.00000 3.46410i 0.0762493 0.132068i
\(689\) −4.50000 7.79423i −0.171436 0.296936i
\(690\) −1.50000 2.59808i −0.0571040 0.0989071i
\(691\) 11.0000 19.0526i 0.418460 0.724793i −0.577325 0.816514i \(-0.695903\pi\)
0.995785 + 0.0917209i \(0.0292368\pi\)
\(692\) 16.0000 0.608229
\(693\) 1.00000 + 5.19615i 0.0379869 + 0.197386i
\(694\) −3.00000 −0.113878
\(695\) −15.0000 + 25.9808i −0.568982 + 0.985506i
\(696\) 0 0
\(697\) −2.00000 3.46410i −0.0757554 0.131212i
\(698\) −2.50000 + 4.33013i −0.0946264 + 0.163898i
\(699\) −24.0000 −0.907763
\(700\) −10.0000 3.46410i −0.377964 0.130931i
\(701\) −39.0000 −1.47301 −0.736505 0.676432i \(-0.763525\pi\)
−0.736505 + 0.676432i \(0.763525\pi\)
\(702\) −0.500000 + 0.866025i −0.0188713 + 0.0326860i
\(703\) 0 0
\(704\) 7.00000 + 12.1244i 0.263822 + 0.456954i
\(705\) 10.5000 18.1865i 0.395453 0.684944i
\(706\) 4.00000 0.150542
\(707\) 36.0000 31.1769i 1.35392 1.17253i
\(708\) 4.00000 0.150329
\(709\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(710\) 22.5000 + 38.9711i 0.844410 + 1.46256i
\(711\) −2.00000 3.46410i −0.0750059 0.129914i
\(712\) 9.00000 15.5885i 0.337289 0.584202i
\(713\) 10.0000 0.374503
\(714\) 2.00000 1.73205i 0.0748481 0.0648204i
\(715\) −6.00000 −0.224387
\(716\) −5.50000 + 9.52628i −0.205545 + 0.356014i
\(717\) 8.00000 + 13.8564i 0.298765 + 0.517477i
\(718\) 11.0000 + 19.0526i 0.410516 + 0.711035i
\(719\) −7.50000 + 12.9904i −0.279703 + 0.484459i −0.971311 0.237814i \(-0.923569\pi\)
0.691608 + 0.722273i \(0.256903\pi\)
\(720\) 3.00000 0.111803
\(721\) 27.5000 + 9.52628i 1.02415 + 0.354777i
\(722\) 19.0000 0.707107
\(723\) −3.00000 + 5.19615i −0.111571 + 0.193247i
\(724\) −13.0000 22.5167i −0.483141 0.836825i
\(725\) 0 0
\(726\) −3.50000 + 6.06218i −0.129897 + 0.224989i
\(727\) 32.0000 1.18681 0.593407 0.804902i \(-0.297782\pi\)
0.593407 + 0.804902i \(0.297782\pi\)
\(728\) 1.50000 + 7.79423i 0.0555937 + 0.288873i
\(729\) 1.00000 0.0370370
\(730\) 19.5000 33.7750i 0.721727 1.25007i
\(731\) −2.00000 3.46410i −0.0739727 0.128124i
\(732\) −1.00000 1.73205i −0.0369611 0.0640184i
\(733\) 12.0000 20.7846i 0.443230 0.767697i −0.554697 0.832052i \(-0.687166\pi\)
0.997927 + 0.0643554i \(0.0204991\pi\)
\(734\) 19.0000 0.701303
\(735\) 19.5000 7.79423i 0.719268 0.287494i
\(736\) −5.00000 −0.184302
\(737\) −3.00000 + 5.19615i −0.110506 + 0.191403i
\(738\) 2.00000 + 3.46410i 0.0736210 + 0.127515i
\(739\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(740\) 3.00000 5.19615i 0.110282 0.191014i
\(741\) 0 0
\(742\) −4.50000 23.3827i −0.165200 0.858405i
\(743\) −18.0000 −0.660356 −0.330178 0.943919i \(-0.607109\pi\)
−0.330178 + 0.943919i \(0.607109\pi\)
\(744\) −15.0000 + 25.9808i −0.549927 + 0.952501i
\(745\) 7.50000 + 12.9904i 0.274779 + 0.475931i
\(746\) −13.0000 22.5167i −0.475964 0.824394i
\(747\) −3.00000 + 5.19615i −0.109764 + 0.190117i
\(748\) 2.00000 0.0731272
\(749\) 10.0000 + 3.46410i 0.365392 + 0.126576i
\(750\) −3.00000 −0.109545
\(751\) 20.0000 34.6410i 0.729810 1.26407i −0.227153 0.973859i \(-0.572942\pi\)
0.956963 0.290209i \(-0.0937250\pi\)
\(752\) 3.50000 + 6.06218i 0.127632 + 0.221065i
\(753\) −5.00000 8.66025i −0.182210 0.315597i
\(754\) 0 0
\(755\) −12.0000 −0.436725
\(756\) 2.00000 1.73205i 0.0727393 0.0629941i
\(757\) 12.0000 0.436147 0.218074 0.975932i \(-0.430023\pi\)
0.218074 + 0.975932i \(0.430023\pi\)
\(758\) −9.50000 + 16.4545i −0.345056 + 0.597654i
\(759\) 1.00000 + 1.73205i 0.0362977 + 0.0628695i
\(760\) 0 0
\(761\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(762\) −2.00000 −0.0724524
\(763\) −16.0000 + 13.8564i −0.579239 + 0.501636i
\(764\) 0 0
\(765\) 1.50000 2.59808i 0.0542326 0.0939336i
\(766\) −3.00000 5.19615i −0.108394 0.187745i
\(767\) −2.00000 3.46410i −0.0722158 0.125081i
\(768\) 8.50000 14.7224i 0.306717 0.531250i
\(769\) −26.0000 −0.937584 −0.468792 0.883309i \(-0.655311\pi\)
−0.468792 + 0.883309i \(0.655311\pi\)
\(770\) −15.0000 5.19615i −0.540562 0.187256i
\(771\) −18.0000 −0.648254
\(772\) −5.50000 + 9.52628i −0.197949 + 0.342858i
\(773\) −4.50000 7.79423i −0.161854 0.280339i 0.773680 0.633577i \(-0.218414\pi\)
−0.935534 + 0.353238i \(0.885081\pi\)
\(774\) 2.00000 + 3.46410i 0.0718885