Properties

Label 483.2.i.d
Level $483$
Weight $2$
Character orbit 483.i
Analytic conductor $3.857$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{3} + ( 1 - \zeta_{6} ) q^{4} + 3 \zeta_{6} q^{5} - q^{6} + ( -2 + 3 \zeta_{6} ) q^{7} + 3 q^{8} -\zeta_{6} q^{9} +O(q^{10})\) \( q + \zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{3} + ( 1 - \zeta_{6} ) q^{4} + 3 \zeta_{6} q^{5} - q^{6} + ( -2 + 3 \zeta_{6} ) q^{7} + 3 q^{8} -\zeta_{6} q^{9} + ( -3 + 3 \zeta_{6} ) q^{10} + ( 2 - 2 \zeta_{6} ) q^{11} + \zeta_{6} q^{12} - q^{13} + ( -3 + \zeta_{6} ) q^{14} -3 q^{15} + \zeta_{6} q^{16} + ( -1 + \zeta_{6} ) q^{17} + ( 1 - \zeta_{6} ) q^{18} + 3 q^{20} + ( -1 - 2 \zeta_{6} ) q^{21} + 2 q^{22} -\zeta_{6} q^{23} + ( -3 + 3 \zeta_{6} ) q^{24} + ( -4 + 4 \zeta_{6} ) q^{25} -\zeta_{6} q^{26} + q^{27} + ( 1 + 2 \zeta_{6} ) q^{28} -3 \zeta_{6} q^{30} + ( -10 + 10 \zeta_{6} ) q^{31} + ( 5 - 5 \zeta_{6} ) q^{32} + 2 \zeta_{6} q^{33} - q^{34} + ( -9 + 3 \zeta_{6} ) q^{35} - q^{36} + 2 \zeta_{6} q^{37} + ( 1 - \zeta_{6} ) q^{39} + 9 \zeta_{6} q^{40} + 4 q^{41} + ( 2 - 3 \zeta_{6} ) q^{42} + 4 q^{43} -2 \zeta_{6} q^{44} + ( 3 - 3 \zeta_{6} ) q^{45} + ( 1 - \zeta_{6} ) q^{46} -7 \zeta_{6} q^{47} - q^{48} + ( -5 - 3 \zeta_{6} ) q^{49} -4 q^{50} -\zeta_{6} q^{51} + ( -1 + \zeta_{6} ) q^{52} + ( 9 - 9 \zeta_{6} ) q^{53} + \zeta_{6} q^{54} + 6 q^{55} + ( -6 + 9 \zeta_{6} ) q^{56} + ( 4 - 4 \zeta_{6} ) q^{59} + ( -3 + 3 \zeta_{6} ) q^{60} + 2 \zeta_{6} q^{61} -10 q^{62} + ( 3 - \zeta_{6} ) q^{63} + 7 q^{64} -3 \zeta_{6} q^{65} + ( -2 + 2 \zeta_{6} ) q^{66} + ( 3 - 3 \zeta_{6} ) q^{67} + \zeta_{6} q^{68} + q^{69} + ( -3 - 6 \zeta_{6} ) q^{70} -15 q^{71} -3 \zeta_{6} q^{72} + ( 13 - 13 \zeta_{6} ) q^{73} + ( -2 + 2 \zeta_{6} ) q^{74} -4 \zeta_{6} q^{75} + ( 2 + 4 \zeta_{6} ) q^{77} + q^{78} -4 \zeta_{6} q^{79} + ( -3 + 3 \zeta_{6} ) q^{80} + ( -1 + \zeta_{6} ) q^{81} + 4 \zeta_{6} q^{82} + 6 q^{83} + ( -3 + \zeta_{6} ) q^{84} -3 q^{85} + 4 \zeta_{6} q^{86} + ( 6 - 6 \zeta_{6} ) q^{88} + 6 \zeta_{6} q^{89} + 3 q^{90} + ( 2 - 3 \zeta_{6} ) q^{91} - q^{92} -10 \zeta_{6} q^{93} + ( 7 - 7 \zeta_{6} ) q^{94} + 5 \zeta_{6} q^{96} + 16 q^{97} + ( 3 - 8 \zeta_{6} ) q^{98} -2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{2} - q^{3} + q^{4} + 3q^{5} - 2q^{6} - q^{7} + 6q^{8} - q^{9} + O(q^{10}) \) \( 2q + q^{2} - q^{3} + q^{4} + 3q^{5} - 2q^{6} - q^{7} + 6q^{8} - q^{9} - 3q^{10} + 2q^{11} + q^{12} - 2q^{13} - 5q^{14} - 6q^{15} + q^{16} - q^{17} + q^{18} + 6q^{20} - 4q^{21} + 4q^{22} - q^{23} - 3q^{24} - 4q^{25} - q^{26} + 2q^{27} + 4q^{28} - 3q^{30} - 10q^{31} + 5q^{32} + 2q^{33} - 2q^{34} - 15q^{35} - 2q^{36} + 2q^{37} + q^{39} + 9q^{40} + 8q^{41} + q^{42} + 8q^{43} - 2q^{44} + 3q^{45} + q^{46} - 7q^{47} - 2q^{48} - 13q^{49} - 8q^{50} - q^{51} - q^{52} + 9q^{53} + q^{54} + 12q^{55} - 3q^{56} + 4q^{59} - 3q^{60} + 2q^{61} - 20q^{62} + 5q^{63} + 14q^{64} - 3q^{65} - 2q^{66} + 3q^{67} + q^{68} + 2q^{69} - 12q^{70} - 30q^{71} - 3q^{72} + 13q^{73} - 2q^{74} - 4q^{75} + 8q^{77} + 2q^{78} - 4q^{79} - 3q^{80} - q^{81} + 4q^{82} + 12q^{83} - 5q^{84} - 6q^{85} + 4q^{86} + 6q^{88} + 6q^{89} + 6q^{90} + q^{91} - 2q^{92} - 10q^{93} + 7q^{94} + 5q^{96} + 32q^{97} - 2q^{98} - 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
277.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 0.866025i 1.50000 + 2.59808i −1.00000 −0.500000 + 2.59808i 3.00000 −0.500000 0.866025i −1.50000 + 2.59808i
415.1 0.500000 0.866025i −0.500000 0.866025i 0.500000 + 0.866025i 1.50000 2.59808i −1.00000 −0.500000 2.59808i 3.00000 −0.500000 + 0.866025i −1.50000 2.59808i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 483.2.i.d 2
7.c even 3 1 inner 483.2.i.d 2
7.c even 3 1 3381.2.a.c 1
7.d odd 6 1 3381.2.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
483.2.i.d 2 1.a even 1 1 trivial
483.2.i.d 2 7.c even 3 1 inner
3381.2.a.b 1 7.d odd 6 1
3381.2.a.c 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(483, [\chi])\):

\( T_{2}^{2} - T_{2} + 1 \)
\( T_{5}^{2} - 3 T_{5} + 9 \)
\( T_{11}^{2} - 2 T_{11} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T + T^{2} \)
$3$ \( 1 + T + T^{2} \)
$5$ \( 9 - 3 T + T^{2} \)
$7$ \( 7 + T + T^{2} \)
$11$ \( 4 - 2 T + T^{2} \)
$13$ \( ( 1 + T )^{2} \)
$17$ \( 1 + T + T^{2} \)
$19$ \( T^{2} \)
$23$ \( 1 + T + T^{2} \)
$29$ \( T^{2} \)
$31$ \( 100 + 10 T + T^{2} \)
$37$ \( 4 - 2 T + T^{2} \)
$41$ \( ( -4 + T )^{2} \)
$43$ \( ( -4 + T )^{2} \)
$47$ \( 49 + 7 T + T^{2} \)
$53$ \( 81 - 9 T + T^{2} \)
$59$ \( 16 - 4 T + T^{2} \)
$61$ \( 4 - 2 T + T^{2} \)
$67$ \( 9 - 3 T + T^{2} \)
$71$ \( ( 15 + T )^{2} \)
$73$ \( 169 - 13 T + T^{2} \)
$79$ \( 16 + 4 T + T^{2} \)
$83$ \( ( -6 + T )^{2} \)
$89$ \( 36 - 6 T + T^{2} \)
$97$ \( ( -16 + T )^{2} \)
show more
show less