Properties

Label 483.2.i.a.415.1
Level $483$
Weight $2$
Character 483.415
Analytic conductor $3.857$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(277,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.277");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 415.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 483.415
Dual form 483.2.i.a.277.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +(1.00000 + 1.73205i) q^{4} +(0.500000 + 2.59808i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(1.00000 + 1.73205i) q^{11} +(1.00000 - 1.73205i) q^{12} -3.00000 q^{13} +(-2.00000 + 3.46410i) q^{16} +(-1.00000 - 1.73205i) q^{17} +(-1.50000 + 2.59808i) q^{19} +(2.00000 - 1.73205i) q^{21} +(-0.500000 + 0.866025i) q^{23} +(2.50000 + 4.33013i) q^{25} +1.00000 q^{27} +(-4.00000 + 3.46410i) q^{28} +6.00000 q^{29} +(1.50000 + 2.59808i) q^{31} +(1.00000 - 1.73205i) q^{33} -2.00000 q^{36} +(1.50000 - 2.59808i) q^{37} +(1.50000 + 2.59808i) q^{39} +3.00000 q^{43} +(-2.00000 + 3.46410i) q^{44} +(5.00000 - 8.66025i) q^{47} +4.00000 q^{48} +(-6.50000 + 2.59808i) q^{49} +(-1.00000 + 1.73205i) q^{51} +(-3.00000 - 5.19615i) q^{52} +(2.00000 + 3.46410i) q^{53} +3.00000 q^{57} +(3.00000 + 5.19615i) q^{59} +(1.00000 - 1.73205i) q^{61} +(-2.50000 - 0.866025i) q^{63} -8.00000 q^{64} +(-0.500000 - 0.866025i) q^{67} +(2.00000 - 3.46410i) q^{68} +1.00000 q^{69} -6.00000 q^{71} +(-0.500000 - 0.866025i) q^{73} +(2.50000 - 4.33013i) q^{75} -6.00000 q^{76} +(-4.00000 + 3.46410i) q^{77} +(3.50000 - 6.06218i) q^{79} +(-0.500000 - 0.866025i) q^{81} +4.00000 q^{83} +(5.00000 + 1.73205i) q^{84} +(-3.00000 - 5.19615i) q^{87} +(7.00000 - 12.1244i) q^{89} +(-1.50000 - 7.79423i) q^{91} -2.00000 q^{92} +(1.50000 - 2.59808i) q^{93} -10.0000 q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + 2 q^{4} + q^{7} - q^{9} + 2 q^{11} + 2 q^{12} - 6 q^{13} - 4 q^{16} - 2 q^{17} - 3 q^{19} + 4 q^{21} - q^{23} + 5 q^{25} + 2 q^{27} - 8 q^{28} + 12 q^{29} + 3 q^{31} + 2 q^{33} - 4 q^{36}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 1.00000 + 1.73205i 0.500000 + 0.866025i
\(5\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(6\) 0 0
\(7\) 0.500000 + 2.59808i 0.188982 + 0.981981i
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 1.00000 + 1.73205i 0.301511 + 0.522233i 0.976478 0.215615i \(-0.0691756\pi\)
−0.674967 + 0.737848i \(0.735842\pi\)
\(12\) 1.00000 1.73205i 0.288675 0.500000i
\(13\) −3.00000 −0.832050 −0.416025 0.909353i \(-0.636577\pi\)
−0.416025 + 0.909353i \(0.636577\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) −1.00000 1.73205i −0.242536 0.420084i 0.718900 0.695113i \(-0.244646\pi\)
−0.961436 + 0.275029i \(0.911312\pi\)
\(18\) 0 0
\(19\) −1.50000 + 2.59808i −0.344124 + 0.596040i −0.985194 0.171442i \(-0.945157\pi\)
0.641071 + 0.767482i \(0.278491\pi\)
\(20\) 0 0
\(21\) 2.00000 1.73205i 0.436436 0.377964i
\(22\) 0 0
\(23\) −0.500000 + 0.866025i −0.104257 + 0.180579i
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.500000 + 0.866025i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) −4.00000 + 3.46410i −0.755929 + 0.654654i
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 1.50000 + 2.59808i 0.269408 + 0.466628i 0.968709 0.248199i \(-0.0798387\pi\)
−0.699301 + 0.714827i \(0.746505\pi\)
\(32\) 0 0
\(33\) 1.00000 1.73205i 0.174078 0.301511i
\(34\) 0 0
\(35\) 0 0
\(36\) −2.00000 −0.333333
\(37\) 1.50000 2.59808i 0.246598 0.427121i −0.715981 0.698119i \(-0.754020\pi\)
0.962580 + 0.270998i \(0.0873538\pi\)
\(38\) 0 0
\(39\) 1.50000 + 2.59808i 0.240192 + 0.416025i
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 3.00000 0.457496 0.228748 0.973486i \(-0.426537\pi\)
0.228748 + 0.973486i \(0.426537\pi\)
\(44\) −2.00000 + 3.46410i −0.301511 + 0.522233i
\(45\) 0 0
\(46\) 0 0
\(47\) 5.00000 8.66025i 0.729325 1.26323i −0.227844 0.973698i \(-0.573168\pi\)
0.957169 0.289530i \(-0.0934991\pi\)
\(48\) 4.00000 0.577350
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) 0 0
\(51\) −1.00000 + 1.73205i −0.140028 + 0.242536i
\(52\) −3.00000 5.19615i −0.416025 0.720577i
\(53\) 2.00000 + 3.46410i 0.274721 + 0.475831i 0.970065 0.242846i \(-0.0780811\pi\)
−0.695344 + 0.718677i \(0.744748\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) 3.00000 + 5.19615i 0.390567 + 0.676481i 0.992524 0.122047i \(-0.0389457\pi\)
−0.601958 + 0.798528i \(0.705612\pi\)
\(60\) 0 0
\(61\) 1.00000 1.73205i 0.128037 0.221766i −0.794879 0.606768i \(-0.792466\pi\)
0.922916 + 0.385002i \(0.125799\pi\)
\(62\) 0 0
\(63\) −2.50000 0.866025i −0.314970 0.109109i
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −0.500000 0.866025i −0.0610847 0.105802i 0.833866 0.551967i \(-0.186123\pi\)
−0.894951 + 0.446165i \(0.852789\pi\)
\(68\) 2.00000 3.46410i 0.242536 0.420084i
\(69\) 1.00000 0.120386
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) −0.500000 0.866025i −0.0585206 0.101361i 0.835281 0.549823i \(-0.185305\pi\)
−0.893801 + 0.448463i \(0.851972\pi\)
\(74\) 0 0
\(75\) 2.50000 4.33013i 0.288675 0.500000i
\(76\) −6.00000 −0.688247
\(77\) −4.00000 + 3.46410i −0.455842 + 0.394771i
\(78\) 0 0
\(79\) 3.50000 6.06218i 0.393781 0.682048i −0.599164 0.800626i \(-0.704500\pi\)
0.992945 + 0.118578i \(0.0378336\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 5.00000 + 1.73205i 0.545545 + 0.188982i
\(85\) 0 0
\(86\) 0 0
\(87\) −3.00000 5.19615i −0.321634 0.557086i
\(88\) 0 0
\(89\) 7.00000 12.1244i 0.741999 1.28518i −0.209585 0.977790i \(-0.567211\pi\)
0.951584 0.307389i \(-0.0994552\pi\)
\(90\) 0 0
\(91\) −1.50000 7.79423i −0.157243 0.817057i
\(92\) −2.00000 −0.208514
\(93\) 1.50000 2.59808i 0.155543 0.269408i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) −5.00000 + 8.66025i −0.500000 + 0.866025i
\(101\) −8.00000 13.8564i −0.796030 1.37876i −0.922183 0.386753i \(-0.873597\pi\)
0.126153 0.992011i \(-0.459737\pi\)
\(102\) 0 0
\(103\) 0.500000 0.866025i 0.0492665 0.0853320i −0.840341 0.542059i \(-0.817645\pi\)
0.889607 + 0.456727i \(0.150978\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.00000 13.8564i 0.773389 1.33955i −0.162306 0.986740i \(-0.551893\pi\)
0.935695 0.352809i \(-0.114773\pi\)
\(108\) 1.00000 + 1.73205i 0.0962250 + 0.166667i
\(109\) 4.50000 + 7.79423i 0.431022 + 0.746552i 0.996962 0.0778949i \(-0.0248199\pi\)
−0.565940 + 0.824447i \(0.691487\pi\)
\(110\) 0 0
\(111\) −3.00000 −0.284747
\(112\) −10.0000 3.46410i −0.944911 0.327327i
\(113\) −18.0000 −1.69330 −0.846649 0.532152i \(-0.821383\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.00000 + 10.3923i 0.557086 + 0.964901i
\(117\) 1.50000 2.59808i 0.138675 0.240192i
\(118\) 0 0
\(119\) 4.00000 3.46410i 0.366679 0.317554i
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 0 0
\(123\) 0 0
\(124\) −3.00000 + 5.19615i −0.269408 + 0.466628i
\(125\) 0 0
\(126\) 0 0
\(127\) 1.00000 0.0887357 0.0443678 0.999015i \(-0.485873\pi\)
0.0443678 + 0.999015i \(0.485873\pi\)
\(128\) 0 0
\(129\) −1.50000 2.59808i −0.132068 0.228748i
\(130\) 0 0
\(131\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(132\) 4.00000 0.348155
\(133\) −7.50000 2.59808i −0.650332 0.225282i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 10.3923i −0.512615 0.887875i −0.999893 0.0146279i \(-0.995344\pi\)
0.487278 0.873247i \(-0.337990\pi\)
\(138\) 0 0
\(139\) 21.0000 1.78120 0.890598 0.454791i \(-0.150286\pi\)
0.890598 + 0.454791i \(0.150286\pi\)
\(140\) 0 0
\(141\) −10.0000 −0.842152
\(142\) 0 0
\(143\) −3.00000 5.19615i −0.250873 0.434524i
\(144\) −2.00000 3.46410i −0.166667 0.288675i
\(145\) 0 0
\(146\) 0 0
\(147\) 5.50000 + 4.33013i 0.453632 + 0.357143i
\(148\) 6.00000 0.493197
\(149\) −5.00000 + 8.66025i −0.409616 + 0.709476i −0.994847 0.101391i \(-0.967671\pi\)
0.585231 + 0.810867i \(0.301004\pi\)
\(150\) 0 0
\(151\) 6.00000 + 10.3923i 0.488273 + 0.845714i 0.999909 0.0134886i \(-0.00429367\pi\)
−0.511636 + 0.859202i \(0.670960\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 0 0
\(156\) −3.00000 + 5.19615i −0.240192 + 0.416025i
\(157\) 1.00000 + 1.73205i 0.0798087 + 0.138233i 0.903167 0.429289i \(-0.141236\pi\)
−0.823359 + 0.567521i \(0.807902\pi\)
\(158\) 0 0
\(159\) 2.00000 3.46410i 0.158610 0.274721i
\(160\) 0 0
\(161\) −2.50000 0.866025i −0.197028 0.0682524i
\(162\) 0 0
\(163\) 10.0000 17.3205i 0.783260 1.35665i −0.146772 0.989170i \(-0.546888\pi\)
0.930033 0.367477i \(-0.119778\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) −4.00000 −0.307692
\(170\) 0 0
\(171\) −1.50000 2.59808i −0.114708 0.198680i
\(172\) 3.00000 + 5.19615i 0.228748 + 0.396203i
\(173\) −3.00000 + 5.19615i −0.228086 + 0.395056i −0.957241 0.289292i \(-0.906580\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(174\) 0 0
\(175\) −10.0000 + 8.66025i −0.755929 + 0.654654i
\(176\) −8.00000 −0.603023
\(177\) 3.00000 5.19615i 0.225494 0.390567i
\(178\) 0 0
\(179\) 10.0000 + 17.3205i 0.747435 + 1.29460i 0.949048 + 0.315130i \(0.102048\pi\)
−0.201613 + 0.979465i \(0.564618\pi\)
\(180\) 0 0
\(181\) −5.00000 −0.371647 −0.185824 0.982583i \(-0.559495\pi\)
−0.185824 + 0.982583i \(0.559495\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.00000 3.46410i 0.146254 0.253320i
\(188\) 20.0000 1.45865
\(189\) 0.500000 + 2.59808i 0.0363696 + 0.188982i
\(190\) 0 0
\(191\) 3.00000 5.19615i 0.217072 0.375980i −0.736839 0.676068i \(-0.763683\pi\)
0.953912 + 0.300088i \(0.0970159\pi\)
\(192\) 4.00000 + 6.92820i 0.288675 + 0.500000i
\(193\) 2.50000 + 4.33013i 0.179954 + 0.311689i 0.941865 0.335993i \(-0.109072\pi\)
−0.761911 + 0.647682i \(0.775738\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −11.0000 8.66025i −0.785714 0.618590i
\(197\) 4.00000 0.284988 0.142494 0.989796i \(-0.454488\pi\)
0.142494 + 0.989796i \(0.454488\pi\)
\(198\) 0 0
\(199\) 4.00000 + 6.92820i 0.283552 + 0.491127i 0.972257 0.233915i \(-0.0751537\pi\)
−0.688705 + 0.725042i \(0.741820\pi\)
\(200\) 0 0
\(201\) −0.500000 + 0.866025i −0.0352673 + 0.0610847i
\(202\) 0 0
\(203\) 3.00000 + 15.5885i 0.210559 + 1.09410i
\(204\) −4.00000 −0.280056
\(205\) 0 0
\(206\) 0 0
\(207\) −0.500000 0.866025i −0.0347524 0.0601929i
\(208\) 6.00000 10.3923i 0.416025 0.720577i
\(209\) −6.00000 −0.415029
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) −4.00000 + 6.92820i −0.274721 + 0.475831i
\(213\) 3.00000 + 5.19615i 0.205557 + 0.356034i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −6.00000 + 5.19615i −0.407307 + 0.352738i
\(218\) 0 0
\(219\) −0.500000 + 0.866025i −0.0337869 + 0.0585206i
\(220\) 0 0
\(221\) 3.00000 + 5.19615i 0.201802 + 0.349531i
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) −5.00000 −0.333333
\(226\) 0 0
\(227\) −1.00000 1.73205i −0.0663723 0.114960i 0.830930 0.556378i \(-0.187809\pi\)
−0.897302 + 0.441417i \(0.854476\pi\)
\(228\) 3.00000 + 5.19615i 0.198680 + 0.344124i
\(229\) −7.50000 + 12.9904i −0.495614 + 0.858429i −0.999987 0.00505719i \(-0.998390\pi\)
0.504373 + 0.863486i \(0.331724\pi\)
\(230\) 0 0
\(231\) 5.00000 + 1.73205i 0.328976 + 0.113961i
\(232\) 0 0
\(233\) −1.00000 + 1.73205i −0.0655122 + 0.113470i −0.896921 0.442191i \(-0.854201\pi\)
0.831409 + 0.555661i \(0.187535\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −6.00000 + 10.3923i −0.390567 + 0.676481i
\(237\) −7.00000 −0.454699
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) 7.00000 + 12.1244i 0.450910 + 0.780998i 0.998443 0.0557856i \(-0.0177663\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 4.00000 0.256074
\(245\) 0 0
\(246\) 0 0
\(247\) 4.50000 7.79423i 0.286328 0.495935i
\(248\) 0 0
\(249\) −2.00000 3.46410i −0.126745 0.219529i
\(250\) 0 0
\(251\) −26.0000 −1.64111 −0.820553 0.571571i \(-0.806334\pi\)
−0.820553 + 0.571571i \(0.806334\pi\)
\(252\) −1.00000 5.19615i −0.0629941 0.327327i
\(253\) −2.00000 −0.125739
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 10.0000 17.3205i 0.623783 1.08042i −0.364992 0.931011i \(-0.618928\pi\)
0.988775 0.149413i \(-0.0477384\pi\)
\(258\) 0 0
\(259\) 7.50000 + 2.59808i 0.466027 + 0.161437i
\(260\) 0 0
\(261\) −3.00000 + 5.19615i −0.185695 + 0.321634i
\(262\) 0 0
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −14.0000 −0.856786
\(268\) 1.00000 1.73205i 0.0610847 0.105802i
\(269\) 12.0000 + 20.7846i 0.731653 + 1.26726i 0.956176 + 0.292791i \(0.0945841\pi\)
−0.224523 + 0.974469i \(0.572083\pi\)
\(270\) 0 0
\(271\) −10.0000 + 17.3205i −0.607457 + 1.05215i 0.384201 + 0.923249i \(0.374477\pi\)
−0.991658 + 0.128897i \(0.958856\pi\)
\(272\) 8.00000 0.485071
\(273\) −6.00000 + 5.19615i −0.363137 + 0.314485i
\(274\) 0 0
\(275\) −5.00000 + 8.66025i −0.301511 + 0.522233i
\(276\) 1.00000 + 1.73205i 0.0601929 + 0.104257i
\(277\) 3.50000 + 6.06218i 0.210295 + 0.364241i 0.951807 0.306699i \(-0.0992243\pi\)
−0.741512 + 0.670940i \(0.765891\pi\)
\(278\) 0 0
\(279\) −3.00000 −0.179605
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) −7.50000 12.9904i −0.445829 0.772198i 0.552281 0.833658i \(-0.313758\pi\)
−0.998110 + 0.0614601i \(0.980424\pi\)
\(284\) −6.00000 10.3923i −0.356034 0.616670i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) 0 0
\(291\) 5.00000 + 8.66025i 0.293105 + 0.507673i
\(292\) 1.00000 1.73205i 0.0585206 0.101361i
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.00000 + 1.73205i 0.0580259 + 0.100504i
\(298\) 0 0
\(299\) 1.50000 2.59808i 0.0867472 0.150251i
\(300\) 10.0000 0.577350
\(301\) 1.50000 + 7.79423i 0.0864586 + 0.449252i
\(302\) 0 0
\(303\) −8.00000 + 13.8564i −0.459588 + 0.796030i
\(304\) −6.00000 10.3923i −0.344124 0.596040i
\(305\) 0 0
\(306\) 0 0
\(307\) 27.0000 1.54097 0.770486 0.637457i \(-0.220014\pi\)
0.770486 + 0.637457i \(0.220014\pi\)
\(308\) −10.0000 3.46410i −0.569803 0.197386i
\(309\) −1.00000 −0.0568880
\(310\) 0 0
\(311\) 11.0000 + 19.0526i 0.623753 + 1.08037i 0.988781 + 0.149375i \(0.0477261\pi\)
−0.365028 + 0.930997i \(0.618941\pi\)
\(312\) 0 0
\(313\) −0.500000 + 0.866025i −0.0282617 + 0.0489506i −0.879810 0.475325i \(-0.842331\pi\)
0.851549 + 0.524276i \(0.175664\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 14.0000 0.787562
\(317\) −1.00000 + 1.73205i −0.0561656 + 0.0972817i −0.892741 0.450570i \(-0.851221\pi\)
0.836576 + 0.547852i \(0.184554\pi\)
\(318\) 0 0
\(319\) 6.00000 + 10.3923i 0.335936 + 0.581857i
\(320\) 0 0
\(321\) −16.0000 −0.893033
\(322\) 0 0
\(323\) 6.00000 0.333849
\(324\) 1.00000 1.73205i 0.0555556 0.0962250i
\(325\) −7.50000 12.9904i −0.416025 0.720577i
\(326\) 0 0
\(327\) 4.50000 7.79423i 0.248851 0.431022i
\(328\) 0 0
\(329\) 25.0000 + 8.66025i 1.37829 + 0.477455i
\(330\) 0 0
\(331\) 6.50000 11.2583i 0.357272 0.618814i −0.630232 0.776407i \(-0.717040\pi\)
0.987504 + 0.157593i \(0.0503735\pi\)
\(332\) 4.00000 + 6.92820i 0.219529 + 0.380235i
\(333\) 1.50000 + 2.59808i 0.0821995 + 0.142374i
\(334\) 0 0
\(335\) 0 0
\(336\) 2.00000 + 10.3923i 0.109109 + 0.566947i
\(337\) 27.0000 1.47078 0.735392 0.677642i \(-0.236998\pi\)
0.735392 + 0.677642i \(0.236998\pi\)
\(338\) 0 0
\(339\) 9.00000 + 15.5885i 0.488813 + 0.846649i
\(340\) 0 0
\(341\) −3.00000 + 5.19615i −0.162459 + 0.281387i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.0000 + 24.2487i 0.751559 + 1.30174i 0.947067 + 0.321037i \(0.104031\pi\)
−0.195507 + 0.980702i \(0.562635\pi\)
\(348\) 6.00000 10.3923i 0.321634 0.557086i
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) −3.00000 −0.160128
\(352\) 0 0
\(353\) −5.00000 8.66025i −0.266123 0.460939i 0.701734 0.712439i \(-0.252409\pi\)
−0.967857 + 0.251500i \(0.919076\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 28.0000 1.48400
\(357\) −5.00000 1.73205i −0.264628 0.0916698i
\(358\) 0 0
\(359\) 5.00000 8.66025i 0.263890 0.457071i −0.703382 0.710812i \(-0.748328\pi\)
0.967272 + 0.253741i \(0.0816611\pi\)
\(360\) 0 0
\(361\) 5.00000 + 8.66025i 0.263158 + 0.455803i
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 12.0000 10.3923i 0.628971 0.544705i
\(365\) 0 0
\(366\) 0 0
\(367\) −18.5000 32.0429i −0.965692 1.67263i −0.707744 0.706469i \(-0.750287\pi\)
−0.257948 0.966159i \(-0.583046\pi\)
\(368\) −2.00000 3.46410i −0.104257 0.180579i
\(369\) 0 0
\(370\) 0 0
\(371\) −8.00000 + 6.92820i −0.415339 + 0.359694i
\(372\) 6.00000 0.311086
\(373\) 5.50000 9.52628i 0.284779 0.493252i −0.687776 0.725923i \(-0.741413\pi\)
0.972556 + 0.232671i \(0.0747464\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −18.0000 −0.927047
\(378\) 0 0
\(379\) 29.0000 1.48963 0.744815 0.667271i \(-0.232538\pi\)
0.744815 + 0.667271i \(0.232538\pi\)
\(380\) 0 0
\(381\) −0.500000 0.866025i −0.0256158 0.0443678i
\(382\) 0 0
\(383\) −9.00000 + 15.5885i −0.459879 + 0.796533i −0.998954 0.0457244i \(-0.985440\pi\)
0.539076 + 0.842257i \(0.318774\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.50000 + 2.59808i −0.0762493 + 0.132068i
\(388\) −10.0000 17.3205i −0.507673 0.879316i
\(389\) −18.0000 31.1769i −0.912636 1.58073i −0.810326 0.585980i \(-0.800710\pi\)
−0.102311 0.994753i \(-0.532624\pi\)
\(390\) 0 0
\(391\) 2.00000 0.101144
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) −2.00000 3.46410i −0.100504 0.174078i
\(397\) −3.50000 + 6.06218i −0.175660 + 0.304252i −0.940389 0.340099i \(-0.889539\pi\)
0.764730 + 0.644351i \(0.222873\pi\)
\(398\) 0 0
\(399\) 1.50000 + 7.79423i 0.0750939 + 0.390199i
\(400\) −20.0000 −1.00000
\(401\) −16.0000 + 27.7128i −0.799002 + 1.38391i 0.121265 + 0.992620i \(0.461305\pi\)
−0.920267 + 0.391292i \(0.872028\pi\)
\(402\) 0 0
\(403\) −4.50000 7.79423i −0.224161 0.388258i
\(404\) 16.0000 27.7128i 0.796030 1.37876i
\(405\) 0 0
\(406\) 0 0
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) −18.5000 32.0429i −0.914766 1.58442i −0.807243 0.590219i \(-0.799041\pi\)
−0.107523 0.994203i \(-0.534292\pi\)
\(410\) 0 0
\(411\) −6.00000 + 10.3923i −0.295958 + 0.512615i
\(412\) 2.00000 0.0985329
\(413\) −12.0000 + 10.3923i −0.590481 + 0.511372i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −10.5000 18.1865i −0.514187 0.890598i
\(418\) 0 0
\(419\) −28.0000 −1.36789 −0.683945 0.729534i \(-0.739737\pi\)
−0.683945 + 0.729534i \(0.739737\pi\)
\(420\) 0 0
\(421\) 15.0000 0.731055 0.365528 0.930800i \(-0.380889\pi\)
0.365528 + 0.930800i \(0.380889\pi\)
\(422\) 0 0
\(423\) 5.00000 + 8.66025i 0.243108 + 0.421076i
\(424\) 0 0
\(425\) 5.00000 8.66025i 0.242536 0.420084i
\(426\) 0 0
\(427\) 5.00000 + 1.73205i 0.241967 + 0.0838198i
\(428\) 32.0000 1.54678
\(429\) −3.00000 + 5.19615i −0.144841 + 0.250873i
\(430\) 0 0
\(431\) −6.00000 10.3923i −0.289010 0.500580i 0.684564 0.728953i \(-0.259993\pi\)
−0.973574 + 0.228373i \(0.926659\pi\)
\(432\) −2.00000 + 3.46410i −0.0962250 + 0.166667i
\(433\) −7.00000 −0.336399 −0.168199 0.985753i \(-0.553795\pi\)
−0.168199 + 0.985753i \(0.553795\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −9.00000 + 15.5885i −0.431022 + 0.746552i
\(437\) −1.50000 2.59808i −0.0717547 0.124283i
\(438\) 0 0
\(439\) −4.00000 + 6.92820i −0.190910 + 0.330665i −0.945552 0.325471i \(-0.894477\pi\)
0.754642 + 0.656136i \(0.227810\pi\)
\(440\) 0 0
\(441\) 1.00000 6.92820i 0.0476190 0.329914i
\(442\) 0 0
\(443\) 7.00000 12.1244i 0.332580 0.576046i −0.650437 0.759560i \(-0.725414\pi\)
0.983017 + 0.183515i \(0.0587475\pi\)
\(444\) −3.00000 5.19615i −0.142374 0.246598i
\(445\) 0 0
\(446\) 0 0
\(447\) 10.0000 0.472984
\(448\) −4.00000 20.7846i −0.188982 0.981981i
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −18.0000 31.1769i −0.846649 1.46644i
\(453\) 6.00000 10.3923i 0.281905 0.488273i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −13.5000 + 23.3827i −0.631503 + 1.09380i 0.355741 + 0.934585i \(0.384228\pi\)
−0.987245 + 0.159211i \(0.949105\pi\)
\(458\) 0 0
\(459\) −1.00000 1.73205i −0.0466760 0.0808452i
\(460\) 0 0
\(461\) −10.0000 −0.465746 −0.232873 0.972507i \(-0.574813\pi\)
−0.232873 + 0.972507i \(0.574813\pi\)
\(462\) 0 0
\(463\) −29.0000 −1.34774 −0.673872 0.738848i \(-0.735370\pi\)
−0.673872 + 0.738848i \(0.735370\pi\)
\(464\) −12.0000 + 20.7846i −0.557086 + 0.964901i
\(465\) 0 0
\(466\) 0 0
\(467\) 13.0000 22.5167i 0.601568 1.04195i −0.391015 0.920384i \(-0.627876\pi\)
0.992584 0.121563i \(-0.0387905\pi\)
\(468\) 6.00000 0.277350
\(469\) 2.00000 1.73205i 0.0923514 0.0799787i
\(470\) 0 0
\(471\) 1.00000 1.73205i 0.0460776 0.0798087i
\(472\) 0 0
\(473\) 3.00000 + 5.19615i 0.137940 + 0.238919i
\(474\) 0 0
\(475\) −15.0000 −0.688247
\(476\) 10.0000 + 3.46410i 0.458349 + 0.158777i
\(477\) −4.00000 −0.183147
\(478\) 0 0
\(479\) −9.00000 15.5885i −0.411220 0.712255i 0.583803 0.811895i \(-0.301564\pi\)
−0.995023 + 0.0996406i \(0.968231\pi\)
\(480\) 0 0
\(481\) −4.50000 + 7.79423i −0.205182 + 0.355386i
\(482\) 0 0
\(483\) 0.500000 + 2.59808i 0.0227508 + 0.118217i
\(484\) 14.0000 0.636364
\(485\) 0 0
\(486\) 0 0
\(487\) −9.50000 16.4545i −0.430486 0.745624i 0.566429 0.824110i \(-0.308325\pi\)
−0.996915 + 0.0784867i \(0.974991\pi\)
\(488\) 0 0
\(489\) −20.0000 −0.904431
\(490\) 0 0
\(491\) 30.0000 1.35388 0.676941 0.736038i \(-0.263305\pi\)
0.676941 + 0.736038i \(0.263305\pi\)
\(492\) 0 0
\(493\) −6.00000 10.3923i −0.270226 0.468046i
\(494\) 0 0
\(495\) 0 0
\(496\) −12.0000 −0.538816
\(497\) −3.00000 15.5885i −0.134568 0.699238i
\(498\) 0 0
\(499\) 17.5000 30.3109i 0.783408 1.35690i −0.146538 0.989205i \(-0.546813\pi\)
0.929946 0.367697i \(-0.119854\pi\)
\(500\) 0 0
\(501\) −8.00000 13.8564i −0.357414 0.619059i
\(502\) 0 0
\(503\) −36.0000 −1.60516 −0.802580 0.596544i \(-0.796540\pi\)
−0.802580 + 0.596544i \(0.796540\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.00000 + 3.46410i 0.0888231 + 0.153846i
\(508\) 1.00000 + 1.73205i 0.0443678 + 0.0768473i
\(509\) −10.0000 + 17.3205i −0.443242 + 0.767718i −0.997928 0.0643419i \(-0.979505\pi\)
0.554686 + 0.832060i \(0.312839\pi\)
\(510\) 0 0
\(511\) 2.00000 1.73205i 0.0884748 0.0766214i
\(512\) 0 0
\(513\) −1.50000 + 2.59808i −0.0662266 + 0.114708i
\(514\) 0 0
\(515\) 0 0
\(516\) 3.00000 5.19615i 0.132068 0.228748i
\(517\) 20.0000 0.879599
\(518\) 0 0
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) −3.00000 5.19615i −0.131432 0.227648i 0.792797 0.609486i \(-0.208624\pi\)
−0.924229 + 0.381839i \(0.875291\pi\)
\(522\) 0 0
\(523\) −10.5000 + 18.1865i −0.459133 + 0.795242i −0.998915 0.0465630i \(-0.985173\pi\)
0.539782 + 0.841805i \(0.318507\pi\)
\(524\) 0 0
\(525\) 12.5000 + 4.33013i 0.545545 + 0.188982i
\(526\) 0 0
\(527\) 3.00000 5.19615i 0.130682 0.226348i
\(528\) 4.00000 + 6.92820i 0.174078 + 0.301511i
\(529\) −0.500000 0.866025i −0.0217391 0.0376533i
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) −3.00000 15.5885i −0.130066 0.675845i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 10.0000 17.3205i 0.431532 0.747435i
\(538\) 0 0
\(539\) −11.0000 8.66025i −0.473804 0.373024i
\(540\) 0 0
\(541\) −8.50000 + 14.7224i −0.365444 + 0.632967i −0.988847 0.148933i \(-0.952416\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) 0 0
\(543\) 2.50000 + 4.33013i 0.107285 + 0.185824i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 12.0000 20.7846i 0.512615 0.887875i
\(549\) 1.00000 + 1.73205i 0.0426790 + 0.0739221i
\(550\) 0 0
\(551\) −9.00000 + 15.5885i −0.383413 + 0.664091i
\(552\) 0 0
\(553\) 17.5000 + 6.06218i 0.744176 + 0.257790i
\(554\) 0 0
\(555\) 0 0
\(556\) 21.0000 + 36.3731i 0.890598 + 1.54256i
\(557\) −9.00000 15.5885i −0.381342 0.660504i 0.609912 0.792469i \(-0.291205\pi\)
−0.991254 + 0.131965i \(0.957871\pi\)
\(558\) 0 0
\(559\) −9.00000 −0.380659
\(560\) 0 0
\(561\) −4.00000 −0.168880
\(562\) 0 0
\(563\) 18.0000 + 31.1769i 0.758610 + 1.31395i 0.943560 + 0.331202i \(0.107454\pi\)
−0.184950 + 0.982748i \(0.559212\pi\)
\(564\) −10.0000 17.3205i −0.421076 0.729325i
\(565\) 0 0
\(566\) 0 0
\(567\) 2.00000 1.73205i 0.0839921 0.0727393i
\(568\) 0 0
\(569\) 20.0000 34.6410i 0.838444 1.45223i −0.0527519 0.998608i \(-0.516799\pi\)
0.891196 0.453619i \(-0.149867\pi\)
\(570\) 0 0
\(571\) 8.50000 + 14.7224i 0.355714 + 0.616115i 0.987240 0.159240i \(-0.0509044\pi\)
−0.631526 + 0.775355i \(0.717571\pi\)
\(572\) 6.00000 10.3923i 0.250873 0.434524i
\(573\) −6.00000 −0.250654
\(574\) 0 0
\(575\) −5.00000 −0.208514
\(576\) 4.00000 6.92820i 0.166667 0.288675i
\(577\) −1.50000 2.59808i −0.0624458 0.108159i 0.833112 0.553104i \(-0.186557\pi\)
−0.895558 + 0.444945i \(0.853223\pi\)
\(578\) 0 0
\(579\) 2.50000 4.33013i 0.103896 0.179954i
\(580\) 0 0
\(581\) 2.00000 + 10.3923i 0.0829740 + 0.431145i
\(582\) 0 0
\(583\) −4.00000 + 6.92820i −0.165663 + 0.286937i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.0000 0.742940 0.371470 0.928445i \(-0.378854\pi\)
0.371470 + 0.928445i \(0.378854\pi\)
\(588\) −2.00000 + 13.8564i −0.0824786 + 0.571429i
\(589\) −9.00000 −0.370839
\(590\) 0 0
\(591\) −2.00000 3.46410i −0.0822690 0.142494i
\(592\) 6.00000 + 10.3923i 0.246598 + 0.427121i
\(593\) 17.0000 29.4449i 0.698106 1.20916i −0.271016 0.962575i \(-0.587360\pi\)
0.969122 0.246581i \(-0.0793071\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −20.0000 −0.819232
\(597\) 4.00000 6.92820i 0.163709 0.283552i
\(598\) 0 0
\(599\) 20.0000 + 34.6410i 0.817178 + 1.41539i 0.907754 + 0.419504i \(0.137796\pi\)
−0.0905757 + 0.995890i \(0.528871\pi\)
\(600\) 0 0
\(601\) −13.0000 −0.530281 −0.265141 0.964210i \(-0.585418\pi\)
−0.265141 + 0.964210i \(0.585418\pi\)
\(602\) 0 0
\(603\) 1.00000 0.0407231
\(604\) −12.0000 + 20.7846i −0.488273 + 0.845714i
\(605\) 0 0
\(606\) 0 0
\(607\) −19.5000 + 33.7750i −0.791481 + 1.37088i 0.133570 + 0.991039i \(0.457356\pi\)
−0.925050 + 0.379845i \(0.875977\pi\)
\(608\) 0 0
\(609\) 12.0000 10.3923i 0.486265 0.421117i
\(610\) 0 0
\(611\) −15.0000 + 25.9808i −0.606835 + 1.05107i
\(612\) 2.00000 + 3.46410i 0.0808452 + 0.140028i
\(613\) 19.0000 + 32.9090i 0.767403 + 1.32918i 0.938967 + 0.344008i \(0.111785\pi\)
−0.171564 + 0.985173i \(0.554882\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) 3.50000 + 6.06218i 0.140677 + 0.243659i 0.927752 0.373198i \(-0.121739\pi\)
−0.787075 + 0.616858i \(0.788405\pi\)
\(620\) 0 0
\(621\) −0.500000 + 0.866025i −0.0200643 + 0.0347524i
\(622\) 0 0
\(623\) 35.0000 + 12.1244i 1.40225 + 0.485752i
\(624\) −12.0000 −0.480384
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) 0 0
\(627\) 3.00000 + 5.19615i 0.119808 + 0.207514i
\(628\) −2.00000 + 3.46410i −0.0798087 + 0.138233i
\(629\) −6.00000 −0.239236
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 0 0
\(633\) −6.00000 10.3923i −0.238479 0.413057i
\(634\) 0 0
\(635\) 0 0
\(636\) 8.00000 0.317221
\(637\) 19.5000 7.79423i 0.772618 0.308819i
\(638\) 0 0
\(639\) 3.00000 5.19615i 0.118678 0.205557i
\(640\) 0 0
\(641\) −24.0000 41.5692i −0.947943 1.64189i −0.749749 0.661723i \(-0.769826\pi\)
−0.198194 0.980163i \(-0.563508\pi\)
\(642\) 0 0
\(643\) −41.0000 −1.61688 −0.808441 0.588577i \(-0.799688\pi\)
−0.808441 + 0.588577i \(0.799688\pi\)
\(644\) −1.00000 5.19615i −0.0394055 0.204757i
\(645\) 0 0
\(646\) 0 0
\(647\) 15.0000 + 25.9808i 0.589711 + 1.02141i 0.994270 + 0.106897i \(0.0340916\pi\)
−0.404559 + 0.914512i \(0.632575\pi\)
\(648\) 0 0
\(649\) −6.00000 + 10.3923i −0.235521 + 0.407934i
\(650\) 0 0
\(651\) 7.50000 + 2.59808i 0.293948 + 0.101827i
\(652\) 40.0000 1.56652
\(653\) 13.0000 22.5167i 0.508729 0.881145i −0.491220 0.871036i \(-0.663449\pi\)
0.999949 0.0101092i \(-0.00321793\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1.00000 0.0390137
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 5.50000 + 9.52628i 0.213925 + 0.370529i 0.952940 0.303160i \(-0.0980418\pi\)
−0.739014 + 0.673690i \(0.764708\pi\)
\(662\) 0 0
\(663\) 3.00000 5.19615i 0.116510 0.201802i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −3.00000 + 5.19615i −0.116160 + 0.201196i
\(668\) 16.0000 + 27.7128i 0.619059 + 1.07224i
\(669\) −8.00000 13.8564i −0.309298 0.535720i
\(670\) 0 0
\(671\) 4.00000 0.154418
\(672\) 0 0
\(673\) 7.00000 0.269830 0.134915 0.990857i \(-0.456924\pi\)
0.134915 + 0.990857i \(0.456924\pi\)
\(674\) 0 0
\(675\) 2.50000 + 4.33013i 0.0962250 + 0.166667i
\(676\) −4.00000 6.92820i −0.153846 0.266469i
\(677\) −11.0000 + 19.0526i −0.422764 + 0.732249i −0.996209 0.0869952i \(-0.972274\pi\)
0.573444 + 0.819244i \(0.305607\pi\)
\(678\) 0 0
\(679\) −5.00000 25.9808i −0.191882 0.997050i
\(680\) 0 0
\(681\) −1.00000 + 1.73205i −0.0383201 + 0.0663723i
\(682\) 0 0
\(683\) 2.00000 + 3.46410i 0.0765279 + 0.132550i 0.901750 0.432259i \(-0.142283\pi\)
−0.825222 + 0.564809i \(0.808950\pi\)
\(684\) 3.00000 5.19615i 0.114708 0.198680i
\(685\) 0 0
\(686\) 0 0
\(687\) 15.0000 0.572286
\(688\) −6.00000 + 10.3923i −0.228748 + 0.396203i
\(689\) −6.00000 10.3923i −0.228582 0.395915i
\(690\) 0 0
\(691\) −21.5000 + 37.2391i −0.817899 + 1.41664i 0.0893292 + 0.996002i \(0.471528\pi\)
−0.907228 + 0.420640i \(0.861806\pi\)
\(692\) −12.0000 −0.456172
\(693\) −1.00000 5.19615i −0.0379869 0.197386i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 2.00000 0.0756469
\(700\) −25.0000 8.66025i −0.944911 0.327327i
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 0 0
\(703\) 4.50000 + 7.79423i 0.169721 + 0.293965i
\(704\) −8.00000 13.8564i −0.301511 0.522233i
\(705\) 0 0
\(706\) 0 0
\(707\) 32.0000 27.7128i 1.20348 1.04225i
\(708\) 12.0000 0.450988
\(709\) 5.00000 8.66025i 0.187779 0.325243i −0.756730 0.653727i \(-0.773204\pi\)
0.944509 + 0.328484i \(0.106538\pi\)
\(710\) 0 0
\(711\) 3.50000 + 6.06218i 0.131260 + 0.227349i
\(712\) 0 0
\(713\) −3.00000 −0.112351
\(714\) 0 0
\(715\) 0 0
\(716\) −20.0000 + 34.6410i −0.747435 + 1.29460i
\(717\) 12.0000 + 20.7846i 0.448148 + 0.776215i
\(718\) 0 0
\(719\) −13.0000 + 22.5167i −0.484818 + 0.839730i −0.999848 0.0174426i \(-0.994448\pi\)
0.515030 + 0.857172i \(0.327781\pi\)
\(720\) 0 0
\(721\) 2.50000 + 0.866025i 0.0931049 + 0.0322525i
\(722\) 0 0
\(723\) 7.00000 12.1244i 0.260333 0.450910i
\(724\) −5.00000 8.66025i −0.185824 0.321856i
\(725\) 15.0000 + 25.9808i 0.557086 + 0.964901i
\(726\) 0 0
\(727\) 1.00000 0.0370879 0.0185440 0.999828i \(-0.494097\pi\)
0.0185440 + 0.999828i \(0.494097\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −3.00000 5.19615i −0.110959 0.192187i
\(732\) −2.00000 3.46410i −0.0739221 0.128037i
\(733\) −17.5000 + 30.3109i −0.646377 + 1.11956i 0.337604 + 0.941288i \(0.390383\pi\)
−0.983982 + 0.178270i \(0.942950\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.00000 1.73205i 0.0368355 0.0638009i
\(738\) 0 0
\(739\) −14.5000 25.1147i −0.533391 0.923861i −0.999239 0.0389959i \(-0.987584\pi\)
0.465848 0.884865i \(-0.345749\pi\)
\(740\) 0 0
\(741\) −9.00000 −0.330623
\(742\) 0 0
\(743\) −8.00000 −0.293492 −0.146746 0.989174i \(-0.546880\pi\)
−0.146746 + 0.989174i \(0.546880\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −2.00000 + 3.46410i −0.0731762 + 0.126745i
\(748\) 8.00000 0.292509
\(749\) 40.0000 + 13.8564i 1.46157 + 0.506302i
\(750\) 0 0
\(751\) −5.50000 + 9.52628i −0.200698 + 0.347619i −0.948753 0.316017i \(-0.897654\pi\)
0.748056 + 0.663636i \(0.230988\pi\)
\(752\) 20.0000 + 34.6410i 0.729325 + 1.26323i
\(753\) 13.0000 + 22.5167i 0.473746 + 0.820553i
\(754\) 0 0
\(755\) 0 0
\(756\) −4.00000 + 3.46410i −0.145479 + 0.125988i
\(757\) −46.0000 −1.67190 −0.835949 0.548807i \(-0.815082\pi\)
−0.835949 + 0.548807i \(0.815082\pi\)
\(758\) 0 0
\(759\) 1.00000 + 1.73205i 0.0362977 + 0.0628695i
\(760\) 0 0
\(761\) −15.0000 + 25.9808i −0.543750 + 0.941802i 0.454935 + 0.890525i \(0.349663\pi\)
−0.998684 + 0.0512772i \(0.983671\pi\)
\(762\) 0 0
\(763\) −18.0000 + 15.5885i −0.651644 + 0.564340i
\(764\) 12.0000 0.434145
\(765\) 0 0
\(766\) 0 0
\(767\) −9.00000 15.5885i −0.324971 0.562867i
\(768\) −8.00000 + 13.8564i −0.288675 + 0.500000i
\(769\) 29.0000 1.04577 0.522883 0.852404i \(-0.324856\pi\)
0.522883 + 0.852404i \(0.324856\pi\)
\(770\) 0 0
\(771\) −20.0000 −0.720282
\(772\) −5.00000 + 8.66025i −0.179954 + 0.311689i
\(773\) −5.00000 8.66025i −0.179838 0.311488i 0.761987 0.647592i \(-0.224224\pi\)
−0.941825 + 0.336104i \(0.890891\pi\)
\(774\) 0 0
\(775\) −7.50000 + 12.9904i −0.269408 + 0.466628i
\(776\) 0 0
\(777\) −1.50000 7.79423i −0.0538122 0.279616i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −6.00000 10.3923i −0.214697 0.371866i
\(782\) 0 0
\(783\) 6.00000 0.214423
\(784\) 4.00000 27.7128i 0.142857 0.989743i
\(785\) 0 0
\(786\) 0 0
\(787\) −4.00000 6.92820i −0.142585 0.246964i 0.785885 0.618373i \(-0.212208\pi\)
−0.928469 + 0.371409i \(0.878875\pi\)
\(788\) 4.00000 + 6.92820i 0.142494 + 0.246807i
\(789\) 0