Properties

Label 483.2.h.a
Level $483$
Weight $2$
Character orbit 483.h
Analytic conductor $3.857$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(160,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.160");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.342102016.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{6} + 4x^{4} + 4x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - \beta_1 q^{3} - q^{4} + ( - \beta_{5} + \beta_{4}) q^{5} + \beta_1 q^{6} + ( - \beta_{7} - \beta_{5} + \beta_{2}) q^{7} + 3 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} - \beta_1 q^{3} - q^{4} + ( - \beta_{5} + \beta_{4}) q^{5} + \beta_1 q^{6} + ( - \beta_{7} - \beta_{5} + \beta_{2}) q^{7} + 3 q^{8} - q^{9} + (\beta_{5} - \beta_{4}) q^{10} + (\beta_{7} + \beta_{5} + \cdots + \beta_{2}) q^{11}+ \cdots + ( - \beta_{7} - \beta_{5} + \cdots - \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - 8 q^{4} + 24 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{2} - 8 q^{4} + 24 q^{8} - 8 q^{9} - 8 q^{16} + 8 q^{18} - 4 q^{23} + 16 q^{25} - 40 q^{32} + 20 q^{35} + 8 q^{36} - 8 q^{39} + 4 q^{46} + 36 q^{49} - 16 q^{50} + 56 q^{64} - 20 q^{70} - 56 q^{71} - 24 q^{72} + 16 q^{77} + 8 q^{78} + 8 q^{81} - 56 q^{85} + 4 q^{92} + 16 q^{93} + 72 q^{95} - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + x^{6} + 4x^{4} + 4x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{7} + \nu^{5} + 2\nu^{3} ) / 16 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} - \nu^{6} + 3\nu^{5} + 5\nu^{4} + 2\nu^{3} - 2\nu^{2} + 8 ) / 16 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{6} - 3\nu^{4} + 8\nu^{3} - 10\nu^{2} + 24\nu - 8 ) / 16 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} - \nu^{6} + \nu^{5} - 3\nu^{4} - 6\nu^{3} - 10\nu^{2} + 8\nu - 8 ) / 16 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{7} - \nu^{6} - \nu^{5} - 3\nu^{4} + 6\nu^{3} - 10\nu^{2} - 8\nu - 8 ) / 16 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{6} - 3\nu^{4} + 6\nu^{2} - 8 ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{7} - \nu^{6} - 3\nu^{5} + 5\nu^{4} - 2\nu^{3} - 2\nu^{2} + 8 ) / 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{5} + \beta_{3} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{6} - \beta_{5} - \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{5} - 2\beta_{4} + \beta_{3} + 3\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 2\beta_{7} - \beta_{6} - \beta_{5} - \beta_{4} + 2\beta_{2} - 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -4\beta_{7} - \beta_{5} + 2\beta_{4} - \beta_{3} + 4\beta_{2} + 5\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -6\beta_{7} - 7\beta_{6} - 3\beta_{5} - 3\beta_{4} - 6\beta_{2} - 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -4\beta_{7} + \beta_{5} - 2\beta_{4} + \beta_{3} + 4\beta_{2} - 21\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
160.1
−0.599676 1.28078i
−1.17915 + 0.780776i
1.17915 + 0.780776i
0.599676 1.28078i
−0.599676 + 1.28078i
−1.17915 0.780776i
1.17915 0.780776i
0.599676 + 1.28078i
−1.00000 1.00000i −1.00000 −3.33513 1.00000i −2.60399 + 0.468213i 3.00000 −1.00000 3.33513
160.2 −1.00000 1.00000i −1.00000 −1.69614 1.00000i 2.17238 1.51022i 3.00000 −1.00000 1.69614
160.3 −1.00000 1.00000i −1.00000 1.69614 1.00000i −2.17238 + 1.51022i 3.00000 −1.00000 −1.69614
160.4 −1.00000 1.00000i −1.00000 3.33513 1.00000i 2.60399 0.468213i 3.00000 −1.00000 −3.33513
160.5 −1.00000 1.00000i −1.00000 −3.33513 1.00000i −2.60399 0.468213i 3.00000 −1.00000 3.33513
160.6 −1.00000 1.00000i −1.00000 −1.69614 1.00000i 2.17238 + 1.51022i 3.00000 −1.00000 1.69614
160.7 −1.00000 1.00000i −1.00000 1.69614 1.00000i −2.17238 1.51022i 3.00000 −1.00000 −1.69614
160.8 −1.00000 1.00000i −1.00000 3.33513 1.00000i 2.60399 + 0.468213i 3.00000 −1.00000 −3.33513
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 160.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
23.b odd 2 1 inner
161.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 483.2.h.a 8
3.b odd 2 1 1449.2.h.d 8
7.b odd 2 1 inner 483.2.h.a 8
21.c even 2 1 1449.2.h.d 8
23.b odd 2 1 inner 483.2.h.a 8
69.c even 2 1 1449.2.h.d 8
161.c even 2 1 inner 483.2.h.a 8
483.c odd 2 1 1449.2.h.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
483.2.h.a 8 1.a even 1 1 trivial
483.2.h.a 8 7.b odd 2 1 inner
483.2.h.a 8 23.b odd 2 1 inner
483.2.h.a 8 161.c even 2 1 inner
1449.2.h.d 8 3.b odd 2 1
1449.2.h.d 8 21.c even 2 1
1449.2.h.d 8 69.c even 2 1
1449.2.h.d 8 483.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(483, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{8} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$5$ \( (T^{4} - 14 T^{2} + 32)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} - 18 T^{6} + \cdots + 2401 \) Copy content Toggle raw display
$11$ \( (T^{4} + 20 T^{2} + 32)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 36 T^{2} + 256)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} - 14 T^{2} + 32)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} - 62 T^{2} + 128)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 2 T^{3} + \cdots + 529)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 68)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} + 144 T^{2} + 4096)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 40 T^{2} + 128)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + 132 T^{2} + 1024)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 10 T^{2} + 8)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 52 T^{2} + 64)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 126 T^{2} + 2592)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 52 T^{2} + 64)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} - 40 T^{2} + 128)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + 250 T^{2} + 5000)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 14 T + 32)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} + 144 T^{2} + 4096)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 266 T^{2} + 1352)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} - 320 T^{2} + 8192)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} - 126 T^{2} + 2592)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} - 40 T^{2} + 128)^{2} \) Copy content Toggle raw display
show more
show less