Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [483,2,Mod(344,483)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(483, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("483.344");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.e (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.85677441763\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
344.1 | − | 2.64103i | −1.65834 | + | 0.499912i | −4.97503 | −2.97721 | 1.32028 | + | 4.37972i | − | 1.00000i | 7.85715i | 2.50018 | − | 1.65805i | 7.86291i | ||||||||||
344.2 | − | 2.64103i | −1.65834 | + | 0.499912i | −4.97503 | 2.97721 | 1.32028 | + | 4.37972i | 1.00000i | 7.85715i | 2.50018 | − | 1.65805i | − | 7.86291i | ||||||||||
344.3 | − | 2.35218i | 1.12077 | − | 1.32055i | −3.53277 | −2.32116 | −3.10619 | − | 2.63627i | 1.00000i | 3.60535i | −0.487727 | − | 2.96009i | 5.45980i | |||||||||||
344.4 | − | 2.35218i | 1.12077 | − | 1.32055i | −3.53277 | 2.32116 | −3.10619 | − | 2.63627i | − | 1.00000i | 3.60535i | −0.487727 | − | 2.96009i | − | 5.45980i | |||||||||
344.5 | − | 2.27845i | −0.307505 | + | 1.70454i | −3.19131 | −0.401391 | 3.88369 | + | 0.700634i | 1.00000i | 2.71435i | −2.81088 | − | 1.04831i | 0.914548i | |||||||||||
344.6 | − | 2.27845i | −0.307505 | + | 1.70454i | −3.19131 | 0.401391 | 3.88369 | + | 0.700634i | − | 1.00000i | 2.71435i | −2.81088 | − | 1.04831i | − | 0.914548i | |||||||||
344.7 | − | 2.26372i | −1.42471 | − | 0.984983i | −3.12443 | −3.16242 | −2.22973 | + | 3.22515i | 1.00000i | 2.54539i | 1.05962 | + | 2.80664i | 7.15884i | |||||||||||
344.8 | − | 2.26372i | −1.42471 | − | 0.984983i | −3.12443 | 3.16242 | −2.22973 | + | 3.22515i | − | 1.00000i | 2.54539i | 1.05962 | + | 2.80664i | − | 7.15884i | |||||||||
344.9 | − | 1.98227i | 0.949942 | + | 1.44831i | −1.92939 | −4.16373 | 2.87095 | − | 1.88304i | − | 1.00000i | − | 0.139961i | −1.19522 | + | 2.75163i | 8.25364i | |||||||||
344.10 | − | 1.98227i | 0.949942 | + | 1.44831i | −1.92939 | 4.16373 | 2.87095 | − | 1.88304i | 1.00000i | − | 0.139961i | −1.19522 | + | 2.75163i | − | 8.25364i | |||||||||
344.11 | − | 1.67931i | 1.72585 | + | 0.146449i | −0.820088 | −1.07520 | 0.245933 | − | 2.89824i | 1.00000i | − | 1.98144i | 2.95711 | + | 0.505497i | 1.80559i | ||||||||||
344.12 | − | 1.67931i | 1.72585 | + | 0.146449i | −0.820088 | 1.07520 | 0.245933 | − | 2.89824i | − | 1.00000i | − | 1.98144i | 2.95711 | + | 0.505497i | − | 1.80559i | ||||||||
344.13 | − | 1.44207i | 0.0348577 | − | 1.73170i | −0.0795775 | −2.43097 | −2.49724 | − | 0.0502674i | − | 1.00000i | − | 2.76939i | −2.99757 | − | 0.120726i | 3.50564i | |||||||||
344.14 | − | 1.44207i | 0.0348577 | − | 1.73170i | −0.0795775 | 2.43097 | −2.49724 | − | 0.0502674i | 1.00000i | − | 2.76939i | −2.99757 | − | 0.120726i | − | 3.50564i | |||||||||
344.15 | − | 1.06181i | −1.10086 | + | 1.33720i | 0.872554 | −4.21218 | 1.41986 | + | 1.16891i | 1.00000i | − | 3.05011i | −0.576205 | − | 2.94414i | 4.47255i | ||||||||||
344.16 | − | 1.06181i | −1.10086 | + | 1.33720i | 0.872554 | 4.21218 | 1.41986 | + | 1.16891i | − | 1.00000i | − | 3.05011i | −0.576205 | − | 2.94414i | − | 4.47255i | ||||||||
344.17 | − | 0.800018i | −1.73165 | − | 0.0370806i | 1.35997 | −1.73737 | −0.0296651 | + | 1.38535i | − | 1.00000i | − | 2.68804i | 2.99725 | + | 0.128422i | 1.38993i | |||||||||
344.18 | − | 0.800018i | −1.73165 | − | 0.0370806i | 1.35997 | 1.73737 | −0.0296651 | + | 1.38535i | 1.00000i | − | 2.68804i | 2.99725 | + | 0.128422i | − | 1.38993i | |||||||||
344.19 | − | 0.548382i | 1.56357 | − | 0.745160i | 1.69928 | −2.39464 | −0.408632 | − | 0.857431i | − | 1.00000i | − | 2.02862i | 1.88947 | − | 2.33021i | 1.31318i | |||||||||
344.20 | − | 0.548382i | 1.56357 | − | 0.745160i | 1.69928 | 2.39464 | −0.408632 | − | 0.857431i | 1.00000i | − | 2.02862i | 1.88947 | − | 2.33021i | − | 1.31318i | |||||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
23.b | odd | 2 | 1 | inner |
69.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 483.2.e.a | ✓ | 48 |
3.b | odd | 2 | 1 | inner | 483.2.e.a | ✓ | 48 |
23.b | odd | 2 | 1 | inner | 483.2.e.a | ✓ | 48 |
69.c | even | 2 | 1 | inner | 483.2.e.a | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
483.2.e.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
483.2.e.a | ✓ | 48 | 3.b | odd | 2 | 1 | inner |
483.2.e.a | ✓ | 48 | 23.b | odd | 2 | 1 | inner |
483.2.e.a | ✓ | 48 | 69.c | even | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(483, [\chi])\).