Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [483,2,Mod(461,483)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(483, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("483.461");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.85677441763\) |
Analytic rank: | \(0\) |
Dimension: | \(44\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
461.1 | − | 2.69219i | −0.983586 | + | 1.42568i | −5.24788 | −3.85613 | 3.83820 | + | 2.64800i | 2.38743 | + | 1.14025i | 8.74391i | −1.06512 | − | 2.80455i | 10.3814i | |||||||||
461.2 | − | 2.69219i | 0.983586 | − | 1.42568i | −5.24788 | 3.85613 | −3.83820 | − | 2.64800i | 2.38743 | − | 1.14025i | 8.74391i | −1.06512 | − | 2.80455i | − | 10.3814i | ||||||||
461.3 | − | 2.66529i | −1.68218 | + | 0.412627i | −5.10378 | 3.04244 | 1.09977 | + | 4.48351i | −2.34832 | + | 1.21877i | 8.27248i | 2.65948 | − | 1.38823i | − | 8.10899i | ||||||||
461.4 | − | 2.66529i | 1.68218 | − | 0.412627i | −5.10378 | −3.04244 | −1.09977 | − | 4.48351i | −2.34832 | − | 1.21877i | 8.27248i | 2.65948 | − | 1.38823i | 8.10899i | |||||||||
461.5 | − | 2.52935i | −0.292165 | − | 1.70723i | −4.39759 | −0.707387 | −4.31818 | + | 0.738987i | −2.12498 | + | 1.57622i | 6.06435i | −2.82928 | + | 0.997587i | 1.78923i | |||||||||
461.6 | − | 2.52935i | 0.292165 | + | 1.70723i | −4.39759 | 0.707387 | 4.31818 | − | 0.738987i | −2.12498 | − | 1.57622i | 6.06435i | −2.82928 | + | 0.997587i | − | 1.78923i | ||||||||
461.7 | − | 2.33753i | −1.20492 | − | 1.24426i | −3.46403 | −1.30830 | −2.90848 | + | 2.81653i | 1.98664 | + | 1.74736i | 3.42222i | −0.0963491 | + | 2.99845i | 3.05818i | |||||||||
461.8 | − | 2.33753i | 1.20492 | + | 1.24426i | −3.46403 | 1.30830 | 2.90848 | − | 2.81653i | 1.98664 | − | 1.74736i | 3.42222i | −0.0963491 | + | 2.99845i | − | 3.05818i | ||||||||
461.9 | − | 2.16117i | −1.71298 | + | 0.256312i | −2.67065 | 0.517542 | 0.553932 | + | 3.70204i | 1.45986 | − | 2.20654i | 1.44938i | 2.86861 | − | 0.878114i | − | 1.11850i | ||||||||
461.10 | − | 2.16117i | 1.71298 | − | 0.256312i | −2.67065 | −0.517542 | −0.553932 | − | 3.70204i | 1.45986 | + | 2.20654i | 1.44938i | 2.86861 | − | 0.878114i | 1.11850i | |||||||||
461.11 | − | 1.85828i | −0.542877 | − | 1.64477i | −1.45321 | 2.02465 | −3.05645 | + | 1.00882i | −1.70901 | − | 2.01972i | − | 1.01610i | −2.41057 | + | 1.78582i | − | 3.76237i | |||||||
461.12 | − | 1.85828i | 0.542877 | + | 1.64477i | −1.45321 | −2.02465 | 3.05645 | − | 1.00882i | −1.70901 | + | 2.01972i | − | 1.01610i | −2.41057 | + | 1.78582i | 3.76237i | ||||||||
461.13 | − | 1.77247i | −1.65077 | − | 0.524365i | −1.14166 | −3.73040 | −0.929423 | + | 2.92594i | −2.02732 | − | 1.69999i | − | 1.52139i | 2.45008 | + | 1.73121i | 6.61202i | ||||||||
461.14 | − | 1.77247i | 1.65077 | + | 0.524365i | −1.14166 | 3.73040 | 0.929423 | − | 2.92594i | −2.02732 | + | 1.69999i | − | 1.52139i | 2.45008 | + | 1.73121i | − | 6.61202i | |||||||
461.15 | − | 1.64139i | −1.53811 | + | 0.796381i | −0.694157 | −0.500649 | 1.30717 | + | 2.52463i | −0.751445 | + | 2.53680i | − | 2.14340i | 1.73155 | − | 2.44984i | 0.821759i | ||||||||
461.16 | − | 1.64139i | 1.53811 | − | 0.796381i | −0.694157 | 0.500649 | −1.30717 | − | 2.52463i | −0.751445 | − | 2.53680i | − | 2.14340i | 1.73155 | − | 2.44984i | − | 0.821759i | |||||||
461.17 | − | 0.714425i | −0.852976 | − | 1.50746i | 1.48960 | −0.589252 | −1.07697 | + | 0.609388i | 2.38371 | − | 1.14801i | − | 2.49306i | −1.54486 | + | 2.57165i | 0.420976i | ||||||||
461.18 | − | 0.714425i | 0.852976 | + | 1.50746i | 1.48960 | 0.589252 | 1.07697 | − | 0.609388i | 2.38371 | + | 1.14801i | − | 2.49306i | −1.54486 | + | 2.57165i | − | 0.420976i | |||||||
461.19 | − | 0.549000i | −1.68022 | − | 0.420554i | 1.69860 | 3.60956 | −0.230884 | + | 0.922440i | 1.38729 | − | 2.25287i | − | 2.03053i | 2.64627 | + | 1.41325i | − | 1.98165i | |||||||
461.20 | − | 0.549000i | 1.68022 | + | 0.420554i | 1.69860 | −3.60956 | 0.230884 | − | 0.922440i | 1.38729 | + | 2.25287i | − | 2.03053i | 2.64627 | + | 1.41325i | 1.98165i | ||||||||
See all 44 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 483.2.d.d | ✓ | 44 |
3.b | odd | 2 | 1 | inner | 483.2.d.d | ✓ | 44 |
7.b | odd | 2 | 1 | inner | 483.2.d.d | ✓ | 44 |
21.c | even | 2 | 1 | inner | 483.2.d.d | ✓ | 44 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
483.2.d.d | ✓ | 44 | 1.a | even | 1 | 1 | trivial |
483.2.d.d | ✓ | 44 | 3.b | odd | 2 | 1 | inner |
483.2.d.d | ✓ | 44 | 7.b | odd | 2 | 1 | inner |
483.2.d.d | ✓ | 44 | 21.c | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(483, [\chi])\):
\( T_{2}^{22} + 41 T_{2}^{20} + 728 T_{2}^{18} + 7327 T_{2}^{16} + 45911 T_{2}^{14} + 184992 T_{2}^{12} + \cdots + 576 \) |
\( T_{5}^{22} - 59 T_{5}^{20} + 1395 T_{5}^{18} - 16866 T_{5}^{16} + 110742 T_{5}^{14} - 393352 T_{5}^{12} + \cdots - 1536 \) |