Properties

Label 483.2.d.c
Level $483$
Weight $2$
Character orbit 483.d
Analytic conductor $3.857$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(461,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.461");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{16}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{16}^{4} q^{2} + (\zeta_{16}^{7} + \zeta_{16}^{5} + \zeta_{16}) q^{3} + q^{4} + (2 \zeta_{16}^{7} + \cdots - 2 \zeta_{16}) q^{5} + \cdots + (\zeta_{16}^{6} - 2 \zeta_{16}^{4} - 2) q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{16}^{4} q^{2} + (\zeta_{16}^{7} + \zeta_{16}^{5} + \zeta_{16}) q^{3} + q^{4} + (2 \zeta_{16}^{7} + \cdots - 2 \zeta_{16}) q^{5} + \cdots + ( - 4 \zeta_{16}^{6} + 3 \zeta_{16}^{4} + \cdots - 5) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{4} - 8 q^{7} - 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8 q^{4} - 8 q^{7} - 16 q^{9} - 8 q^{15} - 8 q^{16} - 16 q^{18} + 24 q^{21} - 16 q^{22} + 40 q^{25} - 8 q^{28} - 16 q^{36} + 16 q^{37} + 32 q^{39} + 8 q^{42} - 32 q^{43} - 8 q^{46} - 8 q^{49} - 16 q^{51} - 16 q^{57} - 8 q^{60} + 8 q^{63} - 56 q^{64} + 16 q^{67} + 16 q^{70} - 48 q^{72} + 16 q^{78} + 16 q^{79} + 24 q^{84} + 64 q^{85} - 48 q^{88} - 32 q^{91} + 16 q^{93} - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
461.1
−0.382683 + 0.923880i
0.923880 + 0.382683i
−0.923880 0.382683i
0.382683 0.923880i
−0.382683 0.923880i
0.923880 0.382683i
−0.923880 + 0.382683i
0.382683 + 0.923880i
1.00000i −0.923880 + 1.46508i 1.00000 3.37849 1.46508 + 0.923880i −2.41421 1.08239i 3.00000i −1.29289 2.70711i 3.37849i
461.2 1.00000i −0.382683 + 1.68925i 1.00000 −2.93015 1.68925 + 0.382683i 0.414214 2.61313i 3.00000i −2.70711 1.29289i 2.93015i
461.3 1.00000i 0.382683 1.68925i 1.00000 2.93015 −1.68925 0.382683i 0.414214 + 2.61313i 3.00000i −2.70711 1.29289i 2.93015i
461.4 1.00000i 0.923880 1.46508i 1.00000 −3.37849 −1.46508 0.923880i −2.41421 + 1.08239i 3.00000i −1.29289 2.70711i 3.37849i
461.5 1.00000i −0.923880 1.46508i 1.00000 3.37849 1.46508 0.923880i −2.41421 + 1.08239i 3.00000i −1.29289 + 2.70711i 3.37849i
461.6 1.00000i −0.382683 1.68925i 1.00000 −2.93015 1.68925 0.382683i 0.414214 + 2.61313i 3.00000i −2.70711 + 1.29289i 2.93015i
461.7 1.00000i 0.382683 + 1.68925i 1.00000 2.93015 −1.68925 + 0.382683i 0.414214 2.61313i 3.00000i −2.70711 + 1.29289i 2.93015i
461.8 1.00000i 0.923880 + 1.46508i 1.00000 −3.37849 −1.46508 + 0.923880i −2.41421 1.08239i 3.00000i −1.29289 + 2.70711i 3.37849i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 461.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 483.2.d.c 8
3.b odd 2 1 inner 483.2.d.c 8
7.b odd 2 1 inner 483.2.d.c 8
21.c even 2 1 inner 483.2.d.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
483.2.d.c 8 1.a even 1 1 trivial
483.2.d.c 8 3.b odd 2 1 inner
483.2.d.c 8 7.b odd 2 1 inner
483.2.d.c 8 21.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(483, [\chi])\):

\( T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{4} - 20T_{5}^{2} + 98 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} + 8 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$5$ \( (T^{4} - 20 T^{2} + 98)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 4 T^{3} + 10 T^{2} + \cdots + 49)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 12 T^{2} + 4)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 16 T^{2} + 32)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} - 20 T^{2} + 2)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 32 T^{2} + 128)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 18)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} + 68 T^{2} + 1058)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 4 T - 68)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} - 160 T^{2} + 6272)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 8 T - 16)^{4} \) Copy content Toggle raw display
$47$ \( (T^{4} - 52 T^{2} + 578)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 24 T^{2} + 16)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 100 T^{2} + 1922)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 244 T^{2} + 10082)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 4 T - 158)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + 96 T^{2} + 256)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 80 T^{2} + 1568)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 4 T - 158)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 80 T^{2} + 32)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} - 180 T^{2} + 7938)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 148 T^{2} + 1058)^{2} \) Copy content Toggle raw display
show more
show less