# Properties

 Label 483.2.bf.a.19.17 Level $483$ Weight $2$ Character 483.19 Analytic conductor $3.857$ Analytic rank $0$ Dimension $640$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$483 = 3 \cdot 7 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 483.bf (of order $$66$$, degree $$20$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.85677441763$$ Analytic rank: $$0$$ Dimension: $$640$$ Relative dimension: $$32$$ over $$\Q(\zeta_{66})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

## Embedding invariants

 Embedding label 19.17 Character $$\chi$$ $$=$$ 483.19 Dual form 483.2.bf.a.178.17

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.174212 + 0.0166352i) q^{2} +(-0.690079 + 0.723734i) q^{3} +(-1.93378 - 0.372706i) q^{4} +(0.315538 - 0.162671i) q^{5} +(-0.132259 + 0.114603i) q^{6} +(2.63128 + 0.276333i) q^{7} +(-0.666518 - 0.195707i) q^{8} +(-0.0475819 - 0.998867i) q^{9} +O(q^{10})$$ $$q+(0.174212 + 0.0166352i) q^{2} +(-0.690079 + 0.723734i) q^{3} +(-1.93378 - 0.372706i) q^{4} +(0.315538 - 0.162671i) q^{5} +(-0.132259 + 0.114603i) q^{6} +(2.63128 + 0.276333i) q^{7} +(-0.666518 - 0.195707i) q^{8} +(-0.0475819 - 0.998867i) q^{9} +(0.0576764 - 0.0230902i) q^{10} +(0.132286 + 1.38536i) q^{11} +(1.60420 - 1.14235i) q^{12} +(-0.399449 - 0.0574321i) q^{13} +(0.453803 + 0.0919123i) q^{14} +(-0.100016 + 0.340622i) q^{15} +(3.54375 + 1.41870i) q^{16} +(0.00865619 - 0.0250104i) q^{17} +(0.00832702 - 0.174806i) q^{18} +(1.86799 + 5.39719i) q^{19} +(-0.670811 + 0.196968i) q^{20} +(-2.01578 + 1.71366i) q^{21} +0.243546i q^{22} +(4.33054 + 2.06067i) q^{23} +(0.601590 - 0.347328i) q^{24} +(-2.82718 + 3.97022i) q^{25} +(-0.0686332 - 0.0166502i) q^{26} +(0.755750 + 0.654861i) q^{27} +(-4.98534 - 1.51506i) q^{28} +(3.18409 + 3.67464i) q^{29} +(-0.0230902 + 0.0576764i) q^{30} +(4.35868 - 1.05741i) q^{31} +(1.82863 + 0.942725i) q^{32} +(-1.09392 - 0.860268i) q^{33} +(0.00192406 - 0.00421310i) q^{34} +(0.875221 - 0.340840i) q^{35} +(-0.280271 + 1.94933i) q^{36} +(8.03721 - 0.382860i) q^{37} +(0.235641 + 0.971327i) q^{38} +(0.317217 - 0.249462i) q^{39} +(-0.242148 + 0.0466701i) q^{40} +(-6.16670 + 9.59557i) q^{41} +(-0.379680 + 0.265006i) q^{42} +(-0.194037 - 0.660829i) q^{43} +(0.260520 - 2.72829i) q^{44} +(-0.177501 - 0.307440i) q^{45} +(0.720151 + 0.431033i) q^{46} +(-0.862571 - 0.498005i) q^{47} +(-3.47223 + 1.58571i) q^{48} +(6.84728 + 1.45422i) q^{49} +(-0.558573 + 0.644628i) q^{50} +(0.0121274 + 0.0235239i) q^{51} +(0.751043 + 0.259938i) q^{52} +(-8.03667 - 10.2195i) q^{53} +(0.120767 + 0.126656i) q^{54} +(0.267099 + 0.415615i) q^{55} +(-1.69971 - 0.699142i) q^{56} +(-5.19519 - 2.37256i) q^{57} +(0.493577 + 0.693132i) q^{58} +(-2.21707 - 5.53797i) q^{59} +(0.320360 - 0.621412i) q^{60} +(2.73057 - 2.60359i) q^{61} +(0.776923 - 0.111705i) q^{62} +(0.150819 - 2.64145i) q^{63} +(-6.11955 - 3.93279i) q^{64} +(-0.135384 + 0.0468568i) q^{65} +(-0.176263 - 0.168066i) q^{66} +(3.39259 + 2.41585i) q^{67} +(-0.0260607 + 0.0451385i) q^{68} +(-4.47980 + 1.71213i) q^{69} +(0.158143 - 0.0448188i) q^{70} +(-5.73856 - 12.5657i) q^{71} +(-0.163771 + 0.675075i) q^{72} +(-1.45338 + 7.54085i) q^{73} +(1.40654 + 0.0670019i) q^{74} +(-0.922406 - 4.78589i) q^{75} +(-1.60071 - 11.1332i) q^{76} +(-0.0347399 + 3.68183i) q^{77} +(0.0594127 - 0.0381822i) q^{78} +(6.42067 - 8.16455i) q^{79} +(1.34897 - 0.128811i) q^{80} +(-0.995472 + 0.0950560i) q^{81} +(-1.23393 + 1.56907i) q^{82} +(-8.45954 + 5.43662i) q^{83} +(4.53678 - 2.56255i) q^{84} +(-0.00133712 - 0.00929985i) q^{85} +(-0.0228104 - 0.118352i) q^{86} +(-4.85673 - 0.231355i) q^{87} +(0.182954 - 0.949256i) q^{88} +(3.10545 - 12.8008i) q^{89} +(-0.0258084 - 0.0565124i) q^{90} +(-1.03519 - 0.261501i) q^{91} +(-7.60631 - 5.59892i) q^{92} +(-2.24256 + 3.88422i) q^{93} +(-0.141985 - 0.101107i) q^{94} +(1.46739 + 1.39915i) q^{95} +(-1.94418 + 0.672888i) q^{96} +(10.0402 + 6.45243i) q^{97} +(1.16868 + 0.367248i) q^{98} +(1.37750 - 0.198054i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$640 q - 4 q^{2} + 36 q^{4} + 24 q^{8} - 32 q^{9}+O(q^{10})$$ 640 * q - 4 * q^2 + 36 * q^4 + 24 * q^8 - 32 * q^9 $$640 q - 4 q^{2} + 36 q^{4} + 24 q^{8} - 32 q^{9} + 4 q^{18} - 28 q^{23} + 56 q^{25} - 84 q^{26} - 176 q^{28} - 24 q^{29} + 12 q^{31} + 36 q^{32} - 76 q^{35} + 28 q^{36} + 44 q^{37} - 110 q^{42} - 88 q^{43} + 154 q^{44} + 8 q^{46} + 12 q^{47} - 8 q^{49} - 212 q^{50} + 44 q^{51} + 108 q^{52} - 110 q^{56} - 88 q^{57} + 2 q^{58} - 36 q^{59} - 168 q^{64} - 48 q^{70} + 16 q^{71} + 12 q^{72} - 48 q^{73} - 22 q^{74} + 48 q^{75} + 32 q^{78} - 44 q^{79} - 594 q^{80} + 32 q^{81} + 24 q^{82} + 352 q^{85} - 36 q^{87} - 330 q^{88} + 244 q^{92} - 24 q^{93} - 486 q^{94} - 154 q^{95} - 60 q^{96} - 24 q^{98} - 44 q^{99}+O(q^{100})$$ 640 * q - 4 * q^2 + 36 * q^4 + 24 * q^8 - 32 * q^9 + 4 * q^18 - 28 * q^23 + 56 * q^25 - 84 * q^26 - 176 * q^28 - 24 * q^29 + 12 * q^31 + 36 * q^32 - 76 * q^35 + 28 * q^36 + 44 * q^37 - 110 * q^42 - 88 * q^43 + 154 * q^44 + 8 * q^46 + 12 * q^47 - 8 * q^49 - 212 * q^50 + 44 * q^51 + 108 * q^52 - 110 * q^56 - 88 * q^57 + 2 * q^58 - 36 * q^59 - 168 * q^64 - 48 * q^70 + 16 * q^71 + 12 * q^72 - 48 * q^73 - 22 * q^74 + 48 * q^75 + 32 * q^78 - 44 * q^79 - 594 * q^80 + 32 * q^81 + 24 * q^82 + 352 * q^85 - 36 * q^87 - 330 * q^88 + 244 * q^92 - 24 * q^93 - 486 * q^94 - 154 * q^95 - 60 * q^96 - 24 * q^98 - 44 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/483\mathbb{Z}\right)^\times$$.

 $$n$$ $$323$$ $$346$$ $$442$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{15}{22}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.174212 + 0.0166352i 0.123186 + 0.0117629i 0.156467 0.987683i $$-0.449990\pi$$
−0.0332808 + 0.999446i $$0.510596\pi$$
$$3$$ −0.690079 + 0.723734i −0.398417 + 0.417848i
$$4$$ −1.93378 0.372706i −0.966892 0.186353i
$$5$$ 0.315538 0.162671i 0.141113 0.0727487i −0.386224 0.922405i $$-0.626221\pi$$
0.527337 + 0.849656i $$0.323191\pi$$
$$6$$ −0.132259 + 0.114603i −0.0539946 + 0.0467866i
$$7$$ 2.63128 + 0.276333i 0.994531 + 0.104444i
$$8$$ −0.666518 0.195707i −0.235650 0.0691930i
$$9$$ −0.0475819 0.998867i −0.0158606 0.332956i
$$10$$ 0.0576764 0.0230902i 0.0182389 0.00730175i
$$11$$ 0.132286 + 1.38536i 0.0398857 + 0.417702i 0.993260 + 0.115910i $$0.0369786\pi$$
−0.953374 + 0.301791i $$0.902415\pi$$
$$12$$ 1.60420 1.14235i 0.463094 0.329768i
$$13$$ −0.399449 0.0574321i −0.110787 0.0159288i 0.0866982 0.996235i $$-0.472368\pi$$
−0.197485 + 0.980306i $$0.563278\pi$$
$$14$$ 0.453803 + 0.0919123i 0.121284 + 0.0245646i
$$15$$ −0.100016 + 0.340622i −0.0258239 + 0.0879481i
$$16$$ 3.54375 + 1.41870i 0.885937 + 0.354676i
$$17$$ 0.00865619 0.0250104i 0.00209943 0.00606592i −0.943946 0.330099i $$-0.892918\pi$$
0.946046 + 0.324033i $$0.105039\pi$$
$$18$$ 0.00832702 0.174806i 0.00196270 0.0412021i
$$19$$ 1.86799 + 5.39719i 0.428545 + 1.23820i 0.928235 + 0.371995i $$0.121326\pi$$
−0.499689 + 0.866205i $$0.666553\pi$$
$$20$$ −0.670811 + 0.196968i −0.149998 + 0.0440434i
$$21$$ −2.01578 + 1.71366i −0.439880 + 0.373950i
$$22$$ 0.243546i 0.0519243i
$$23$$ 4.33054 + 2.06067i 0.902981 + 0.429680i
$$24$$ 0.601590 0.347328i 0.122799 0.0708980i
$$25$$ −2.82718 + 3.97022i −0.565436 + 0.794044i
$$26$$ −0.0686332 0.0166502i −0.0134601 0.00326538i
$$27$$ 0.755750 + 0.654861i 0.145444 + 0.126028i
$$28$$ −4.98534 1.51506i −0.942141 0.286320i
$$29$$ 3.18409 + 3.67464i 0.591271 + 0.682363i 0.969989 0.243149i $$-0.0781805\pi$$
−0.378718 + 0.925512i $$0.623635\pi$$
$$30$$ −0.0230902 + 0.0576764i −0.00421567 + 0.0105302i
$$31$$ 4.35868 1.05741i 0.782843 0.189916i 0.175631 0.984456i $$-0.443803\pi$$
0.607211 + 0.794540i $$0.292288\pi$$
$$32$$ 1.82863 + 0.942725i 0.323259 + 0.166652i
$$33$$ −1.09392 0.860268i −0.190427 0.149754i
$$34$$ 0.00192406 0.00421310i 0.000329974 0.000722541i
$$35$$ 0.875221 0.340840i 0.147939 0.0576125i
$$36$$ −0.280271 + 1.94933i −0.0467118 + 0.324888i
$$37$$ 8.03721 0.382860i 1.32131 0.0629417i 0.624967 0.780651i $$-0.285112\pi$$
0.696343 + 0.717710i $$0.254809\pi$$
$$38$$ 0.235641 + 0.971327i 0.0382261 + 0.157570i
$$39$$ 0.317217 0.249462i 0.0507954 0.0399459i
$$40$$ −0.242148 + 0.0466701i −0.0382869 + 0.00737919i
$$41$$ −6.16670 + 9.59557i −0.963077 + 1.49858i −0.0990797 + 0.995079i $$0.531590\pi$$
−0.863997 + 0.503497i $$0.832046\pi$$
$$42$$ −0.379680 + 0.265006i −0.0585858 + 0.0408913i
$$43$$ −0.194037 0.660829i −0.0295903 0.100775i 0.943374 0.331732i $$-0.107633\pi$$
−0.972964 + 0.230956i $$0.925815\pi$$
$$44$$ 0.260520 2.72829i 0.0392749 0.411306i
$$45$$ −0.177501 0.307440i −0.0264603 0.0458305i
$$46$$ 0.720151 + 0.431033i 0.106180 + 0.0635523i
$$47$$ −0.862571 0.498005i −0.125819 0.0726415i 0.435770 0.900058i $$-0.356476\pi$$
−0.561588 + 0.827417i $$0.689810\pi$$
$$48$$ −3.47223 + 1.58571i −0.501173 + 0.228878i
$$49$$ 6.84728 + 1.45422i 0.978183 + 0.207746i
$$50$$ −0.558573 + 0.644628i −0.0789942 + 0.0911641i
$$51$$ 0.0121274 + 0.0235239i 0.00169818 + 0.00329401i
$$52$$ 0.751043 + 0.259938i 0.104151 + 0.0360470i
$$53$$ −8.03667 10.2195i −1.10392 1.40375i −0.905869 0.423559i $$-0.860781\pi$$
−0.198053 0.980191i $$-0.563462\pi$$
$$54$$ 0.120767 + 0.126656i 0.0164342 + 0.0172357i
$$55$$ 0.267099 + 0.415615i 0.0360157 + 0.0560415i
$$56$$ −1.69971 0.699142i −0.227134 0.0934267i
$$57$$ −5.19519 2.37256i −0.688119 0.314254i
$$58$$ 0.493577 + 0.693132i 0.0648098 + 0.0910127i
$$59$$ −2.21707 5.53797i −0.288638 0.720982i −0.999838 0.0179927i $$-0.994272\pi$$
0.711200 0.702989i $$-0.248152\pi$$
$$60$$ 0.320360 0.621412i 0.0413583 0.0802240i
$$61$$ 2.73057 2.60359i 0.349614 0.333356i −0.494840 0.868984i $$-0.664773\pi$$
0.844454 + 0.535628i $$0.179925\pi$$
$$62$$ 0.776923 0.111705i 0.0986693 0.0141865i
$$63$$ 0.150819 2.64145i 0.0190014 0.332791i
$$64$$ −6.11955 3.93279i −0.764943 0.491599i
$$65$$ −0.135384 + 0.0468568i −0.0167923 + 0.00581187i
$$66$$ −0.176263 0.168066i −0.0216964 0.0206875i
$$67$$ 3.39259 + 2.41585i 0.414470 + 0.295143i 0.768206 0.640202i $$-0.221149\pi$$
−0.353736 + 0.935345i $$0.615089\pi$$
$$68$$ −0.0260607 + 0.0451385i −0.00316033 + 0.00547385i
$$69$$ −4.47980 + 1.71213i −0.539304 + 0.206117i
$$70$$ 0.158143 0.0448188i 0.0189018 0.00535687i
$$71$$ −5.73856 12.5657i −0.681041 1.49127i −0.861536 0.507697i $$-0.830497\pi$$
0.180495 0.983576i $$-0.442230\pi$$
$$72$$ −0.163771 + 0.675075i −0.0193006 + 0.0795583i
$$73$$ −1.45338 + 7.54085i −0.170105 + 0.882590i 0.792126 + 0.610357i $$0.208974\pi$$
−0.962232 + 0.272232i $$0.912238\pi$$
$$74$$ 1.40654 + 0.0670019i 0.163507 + 0.00778882i
$$75$$ −0.922406 4.78589i −0.106510 0.552628i
$$76$$ −1.60071 11.1332i −0.183614 1.27707i
$$77$$ −0.0347399 + 3.68183i −0.00395898 + 0.419583i
$$78$$ 0.0594127 0.0381822i 0.00672716 0.00432328i
$$79$$ 6.42067 8.16455i 0.722382 0.918583i −0.276720 0.960951i $$-0.589247\pi$$
0.999102 + 0.0423671i $$0.0134899\pi$$
$$80$$ 1.34897 0.128811i 0.150819 0.0144015i
$$81$$ −0.995472 + 0.0950560i −0.110608 + 0.0105618i
$$82$$ −1.23393 + 1.56907i −0.136265 + 0.173275i
$$83$$ −8.45954 + 5.43662i −0.928556 + 0.596746i −0.915128 0.403163i $$-0.867911\pi$$
−0.0134276 + 0.999910i $$0.504274\pi$$
$$84$$ 4.53678 2.56255i 0.495003 0.279597i
$$85$$ −0.00133712 0.00929985i −0.000145031 0.00100871i
$$86$$ −0.0228104 0.118352i −0.00245971 0.0127622i
$$87$$ −4.85673 0.231355i −0.520696 0.0248038i
$$88$$ 0.182954 0.949256i 0.0195030 0.101191i
$$89$$ 3.10545 12.8008i 0.329177 1.35689i −0.531207 0.847242i $$-0.678262\pi$$
0.860385 0.509645i $$-0.170223\pi$$
$$90$$ −0.0258084 0.0565124i −0.00272044 0.00595693i
$$91$$ −1.03519 0.261501i −0.108518 0.0274128i
$$92$$ −7.60631 5.59892i −0.793013 0.583728i
$$93$$ −2.24256 + 3.88422i −0.232542 + 0.402775i
$$94$$ −0.141985 0.101107i −0.0146447 0.0104284i
$$95$$ 1.46739 + 1.39915i 0.150551 + 0.143550i
$$96$$ −1.94418 + 0.672888i −0.198427 + 0.0686763i
$$97$$ 10.0402 + 6.45243i 1.01943 + 0.655146i 0.939816 0.341681i $$-0.110996\pi$$
0.0796102 + 0.996826i $$0.474632\pi$$
$$98$$ 1.16868 + 0.367248i 0.118055 + 0.0370976i
$$99$$ 1.37750 0.198054i 0.138444 0.0199052i
$$100$$ 6.94689 6.62384i 0.694689 0.662384i
$$101$$ −4.62404 + 8.96939i −0.460109 + 0.892487i 0.538642 + 0.842535i $$0.318937\pi$$
−0.998752 + 0.0499529i $$0.984093\pi$$
$$102$$ 0.00172141 + 0.00429988i 0.000170445 + 0.000425752i
$$103$$ −1.67950 2.35853i −0.165486 0.232393i 0.723503 0.690321i $$-0.242531\pi$$
−0.888989 + 0.457929i $$0.848592\pi$$
$$104$$ 0.255000 + 0.116455i 0.0250048 + 0.0114193i
$$105$$ −0.357294 + 0.868633i −0.0348683 + 0.0847699i
$$106$$ −1.23008 1.91404i −0.119476 0.185908i
$$107$$ 2.21688 + 2.32499i 0.214313 + 0.224765i 0.822112 0.569326i $$-0.192796\pi$$
−0.607799 + 0.794091i $$0.707947\pi$$
$$108$$ −1.21739 1.54803i −0.117143 0.148959i
$$109$$ 6.32903 + 2.19050i 0.606211 + 0.209812i 0.612893 0.790166i $$-0.290006\pi$$
−0.00668197 + 0.999978i $$0.502127\pi$$
$$110$$ 0.0396180 + 0.0768481i 0.00377742 + 0.00732718i
$$111$$ −5.26922 + 6.08101i −0.500132 + 0.577184i
$$112$$ 8.93256 + 4.71226i 0.844048 + 0.445267i
$$113$$ −6.52412 + 2.97946i −0.613737 + 0.280284i −0.697931 0.716165i $$-0.745896\pi$$
0.0841937 + 0.996449i $$0.473169\pi$$
$$114$$ −0.865593 0.499751i −0.0810702 0.0468059i
$$115$$ 1.70166 0.0542335i 0.158681 0.00505730i
$$116$$ −4.78778 8.29269i −0.444535 0.769956i
$$117$$ −0.0383605 + 0.401729i −0.00354643 + 0.0371399i
$$118$$ −0.294114 1.00166i −0.0270754 0.0922102i
$$119$$ 0.0296881 0.0634174i 0.00272150 0.00581347i
$$120$$ 0.133324 0.207456i 0.0121708 0.0189381i
$$121$$ 8.89949 1.71524i 0.809045 0.155931i
$$122$$ 0.519008 0.408152i 0.0469888 0.0369524i
$$123$$ −2.68913 11.0848i −0.242471 0.999479i
$$124$$ −8.82286 + 0.420284i −0.792316 + 0.0377427i
$$125$$ −0.498853 + 3.46960i −0.0446188 + 0.310330i
$$126$$ 0.0702154 0.457662i 0.00625528 0.0407718i
$$127$$ 7.92335 17.3497i 0.703084 1.53954i −0.133108 0.991102i $$-0.542496\pi$$
0.836192 0.548437i $$-0.184777\pi$$
$$128$$ −4.23502 3.33046i −0.374326 0.294374i
$$129$$ 0.612165 + 0.315593i 0.0538981 + 0.0277864i
$$130$$ −0.0243649 + 0.00591086i −0.00213694 + 0.000518417i
$$131$$ −4.99796 + 12.4843i −0.436674 + 1.09076i 0.532947 + 0.846148i $$0.321084\pi$$
−0.969621 + 0.244611i $$0.921340\pi$$
$$132$$ 1.79478 + 2.07128i 0.156215 + 0.180282i
$$133$$ 3.42377 + 14.7177i 0.296879 + 1.27619i
$$134$$ 0.550839 + 0.477305i 0.0475853 + 0.0412329i
$$135$$ 0.344995 + 0.0836948i 0.0296924 + 0.00720330i
$$136$$ −0.0106642 + 0.0149758i −0.000914449 + 0.00128416i
$$137$$ 12.0205 6.94002i 1.02698 0.592926i 0.110860 0.993836i $$-0.464639\pi$$
0.916117 + 0.400910i $$0.131306\pi$$
$$138$$ −0.808914 + 0.223751i −0.0688593 + 0.0190470i
$$139$$ 4.07816i 0.345905i 0.984930 + 0.172953i $$0.0553307\pi$$
−0.984930 + 0.172953i $$0.944669\pi$$
$$140$$ −1.81952 + 0.332910i −0.153778 + 0.0281361i
$$141$$ 0.955665 0.280609i 0.0804815 0.0236315i
$$142$$ −0.790690 2.28455i −0.0663532 0.191715i
$$143$$ 0.0267227 0.560978i 0.00223466 0.0469114i
$$144$$ 1.24848 3.60724i 0.104040 0.300603i
$$145$$ 1.60246 + 0.641528i 0.133077 + 0.0532760i
$$146$$ −0.378639 + 1.28953i −0.0313364 + 0.106722i
$$147$$ −5.77763 + 3.95208i −0.476531 + 0.325962i
$$148$$ −15.6849 2.25515i −1.28929 0.185372i
$$149$$ −8.78795 + 6.25787i −0.719937 + 0.512665i −0.880314 0.474391i $$-0.842668\pi$$
0.160377 + 0.987056i $$0.448729\pi$$
$$150$$ −0.0810794 0.849102i −0.00662011 0.0693289i
$$151$$ −6.03414 + 2.41570i −0.491051 + 0.196587i −0.603955 0.797019i $$-0.706409\pi$$
0.112903 + 0.993606i $$0.463985\pi$$
$$152$$ −0.188776 3.96290i −0.0153118 0.321434i
$$153$$ −0.0253940 0.00745634i −0.00205298 0.000602809i
$$154$$ −0.0673000 + 0.640839i −0.00542319 + 0.0516403i
$$155$$ 1.20332 1.04268i 0.0966531 0.0837504i
$$156$$ −0.706405 + 0.364177i −0.0565577 + 0.0291575i
$$157$$ −8.21777 1.58384i −0.655849 0.126405i −0.149539 0.988756i $$-0.547779\pi$$
−0.506310 + 0.862351i $$0.668991\pi$$
$$158$$ 1.25437 1.31555i 0.0997926 0.104659i
$$159$$ 12.9421 + 1.23582i 1.02638 + 0.0980070i
$$160$$ 0.730357 0.0577398
$$161$$ 10.8254 + 6.61889i 0.853165 + 0.521641i
$$162$$ −0.175004 −0.0137496
$$163$$ −19.5241 1.86433i −1.52925 0.146025i −0.703756 0.710442i $$-0.748495\pi$$
−0.825490 + 0.564417i $$0.809101\pi$$
$$164$$ 15.5014 16.2574i 1.21046 1.26949i
$$165$$ −0.485114 0.0934981i −0.0377661 0.00727882i
$$166$$ −1.56419 + 0.806396i −0.121405 + 0.0625884i
$$167$$ −5.19297 + 4.49974i −0.401844 + 0.348200i −0.832216 0.554452i $$-0.812928\pi$$
0.430371 + 0.902652i $$0.358383\pi$$
$$168$$ 1.67893 0.747678i 0.129532 0.0576846i
$$169$$ −12.3171 3.61664i −0.947473 0.278203i
$$170$$ −7.82364e−5 0.00164238i −6.00046e−6 0.000125965i
$$171$$ 5.30219 2.12268i 0.405469 0.162325i
$$172$$ 0.128930 + 1.35022i 0.00983085 + 0.102953i
$$173$$ −1.96423 + 1.39872i −0.149338 + 0.106343i −0.652284 0.757975i $$-0.726189\pi$$
0.502946 + 0.864318i $$0.332250\pi$$
$$174$$ −0.842250 0.121097i −0.0638508 0.00918036i
$$175$$ −8.53622 + 9.66553i −0.645277 + 0.730645i
$$176$$ −1.49663 + 5.09704i −0.112812 + 0.384204i
$$177$$ 5.53797 + 2.21707i 0.416259 + 0.166645i
$$178$$ 0.753950 2.17840i 0.0565109 0.163278i
$$179$$ 0.247235 5.19011i 0.0184792 0.387927i −0.970615 0.240640i $$-0.922643\pi$$
0.989094 0.147287i $$-0.0470542\pi$$
$$180$$ 0.228663 + 0.660679i 0.0170436 + 0.0492441i
$$181$$ −6.99474 + 2.05384i −0.519915 + 0.152661i −0.531153 0.847276i $$-0.678241\pi$$
0.0112378 + 0.999937i $$0.496423\pi$$
$$182$$ −0.175992 0.0627771i −0.0130454 0.00465335i
$$183$$ 3.77289i 0.278900i
$$184$$ −2.48310 2.22099i −0.183056 0.163734i
$$185$$ 2.47377 1.42823i 0.181875 0.105005i
$$186$$ −0.455294 + 0.639371i −0.0333838 + 0.0468809i
$$187$$ 0.0357935 + 0.00868342i 0.00261748 + 0.000634994i
$$188$$ 1.48242 + 1.28452i 0.108116 + 0.0936833i
$$189$$ 1.80763 + 1.93196i 0.131486 + 0.140530i
$$190$$ 0.232361 + 0.268158i 0.0168572 + 0.0194543i
$$191$$ 8.51267 21.2636i 0.615955 1.53858i −0.211694 0.977336i $$-0.567898\pi$$
0.827649 0.561245i $$-0.189678\pi$$
$$192$$ 7.06927 1.71499i 0.510180 0.123768i
$$193$$ 1.10181 + 0.568023i 0.0793101 + 0.0408872i 0.497425 0.867507i $$-0.334279\pi$$
−0.418115 + 0.908394i $$0.637309\pi$$
$$194$$ 1.64178 + 1.29111i 0.117873 + 0.0926962i
$$195$$ 0.0595137 0.130317i 0.00426186 0.00933218i
$$196$$ −12.6992 5.36418i −0.907083 0.383155i
$$197$$ −0.838065 + 5.82887i −0.0597096 + 0.415290i 0.937942 + 0.346793i $$0.112729\pi$$
−0.997651 + 0.0684967i $$0.978180\pi$$
$$198$$ 0.243270 0.0115884i 0.0172885 0.000823552i
$$199$$ 1.86921 + 7.70498i 0.132505 + 0.546191i 0.998903 + 0.0468371i $$0.0149142\pi$$
−0.866398 + 0.499354i $$0.833571\pi$$
$$200$$ 2.66137 2.09292i 0.188187 0.147992i
$$201$$ −4.08958 + 0.788203i −0.288457 + 0.0555955i
$$202$$ −0.954769 + 1.48565i −0.0671773 + 0.104530i
$$203$$ 7.36281 + 10.5489i 0.516768 + 0.740386i
$$204$$ −0.0146843 0.0500102i −0.00102811 0.00350141i
$$205$$ −0.384905 + 4.03091i −0.0268830 + 0.281531i
$$206$$ −0.253354 0.438822i −0.0176520 0.0305742i
$$207$$ 1.85229 4.42369i 0.128743 0.307468i
$$208$$ −1.33407 0.770224i −0.0925009 0.0534054i
$$209$$ −7.22994 + 3.30180i −0.500106 + 0.228391i
$$210$$ −0.0766946 + 0.145382i −0.00529243 + 0.0100323i
$$211$$ 3.38436 3.90576i 0.232989 0.268883i −0.627201 0.778857i $$-0.715800\pi$$
0.860190 + 0.509974i $$0.170345\pi$$
$$212$$ 11.7323 + 22.7575i 0.805780 + 1.56299i
$$213$$ 13.0543 + 4.51813i 0.894464 + 0.309577i
$$214$$ 0.347529 + 0.441919i 0.0237566 + 0.0302089i
$$215$$ −0.168724 0.176952i −0.0115069 0.0120681i
$$216$$ −0.375559 0.584382i −0.0255536 0.0397621i
$$217$$ 11.7611 1.57788i 0.798397 0.107114i
$$218$$ 1.06615 + 0.486894i 0.0722088 + 0.0329767i
$$219$$ −4.45462 6.25564i −0.301015 0.422717i
$$220$$ −0.361610 0.903259i −0.0243798 0.0608977i
$$221$$ −0.00489411 + 0.00949324i −0.000329213 + 0.000638584i
$$222$$ −1.01912 + 0.971727i −0.0683987 + 0.0652180i
$$223$$ 18.7943 2.70221i 1.25856 0.180954i 0.519428 0.854514i $$-0.326145\pi$$
0.739132 + 0.673561i $$0.235236\pi$$
$$224$$ 4.55114 + 2.98589i 0.304086 + 0.199503i
$$225$$ 4.10025 + 2.63507i 0.273350 + 0.175671i
$$226$$ −1.18614 + 0.410527i −0.0789009 + 0.0273079i
$$227$$ 7.20386 + 6.86887i 0.478137 + 0.455903i 0.890411 0.455157i $$-0.150417\pi$$
−0.412274 + 0.911060i $$0.635265\pi$$
$$228$$ 9.16210 + 6.52430i 0.606775 + 0.432083i
$$229$$ −3.04725 + 5.27798i −0.201368 + 0.348779i −0.948969 0.315368i $$-0.897872\pi$$
0.747602 + 0.664147i $$0.231205\pi$$
$$230$$ 0.297352 + 0.0188594i 0.0196068 + 0.00124355i
$$231$$ −2.64069 2.56589i −0.173745 0.168823i
$$232$$ −1.40310 3.07236i −0.0921180 0.201710i
$$233$$ 0.953925 3.93213i 0.0624937 0.257603i −0.931991 0.362480i $$-0.881930\pi$$
0.994485 + 0.104878i $$0.0334451\pi$$
$$234$$ −0.0133657 + 0.0693477i −0.000873742 + 0.00453340i
$$235$$ −0.353185 0.0168243i −0.0230392 0.00109749i
$$236$$ 2.22330 + 11.5356i 0.144724 + 0.750900i
$$237$$ 1.47819 + 10.2810i 0.0960188 + 0.667825i
$$238$$ 0.00622696 0.0105542i 0.000403634 0.000684126i
$$239$$ 13.7866 8.86009i 0.891779 0.573111i −0.0125627 0.999921i $$-0.503999\pi$$
0.904341 + 0.426810i $$0.140363\pi$$
$$240$$ −0.837670 + 1.06518i −0.0540714 + 0.0687574i
$$241$$ −26.5134 + 2.53172i −1.70788 + 0.163082i −0.902791 0.430079i $$-0.858486\pi$$
−0.805084 + 0.593161i $$0.797880\pi$$
$$242$$ 1.57893 0.150769i 0.101497 0.00969182i
$$243$$ 0.618159 0.786053i 0.0396549 0.0504253i
$$244$$ −6.25071 + 4.01709i −0.400161 + 0.257168i
$$245$$ 2.39714 0.654993i 0.153147 0.0418460i
$$246$$ −0.284081 1.97583i −0.0181123 0.125974i
$$247$$ −0.436193 2.26318i −0.0277543 0.144003i
$$248$$ −3.11208 0.148247i −0.197617 0.00941367i
$$249$$ 1.90309 9.87416i 0.120603 0.625749i
$$250$$ −0.144623 + 0.596145i −0.00914678 + 0.0377035i
$$251$$ −10.6288 23.2738i −0.670882 1.46903i −0.872023 0.489465i $$-0.837192\pi$$
0.201141 0.979562i $$-0.435535\pi$$
$$252$$ −1.27614 + 5.05178i −0.0803890 + 0.318232i
$$253$$ −2.28191 + 6.27196i −0.143462 + 0.394315i
$$254$$ 1.66895 2.89071i 0.104720 0.181380i
$$255$$ 0.00765333 + 0.00544991i 0.000479270 + 0.000341287i
$$256$$ 9.84696 + 9.38905i 0.615435 + 0.586816i
$$257$$ −4.92668 + 1.70514i −0.307318 + 0.106364i −0.476374 0.879243i $$-0.658049\pi$$
0.169056 + 0.985606i $$0.445928\pi$$
$$258$$ 0.101396 + 0.0651634i 0.00631266 + 0.00405690i
$$259$$ 21.2540 + 1.21354i 1.32066 + 0.0754056i
$$260$$ 0.279267 0.0401525i 0.0173194 0.00249016i
$$261$$ 3.51897 3.35533i 0.217819 0.207690i
$$262$$ −1.07838 + 2.09177i −0.0666226 + 0.129230i
$$263$$ −6.94283 17.3423i −0.428113 1.06937i −0.972988 0.230857i $$-0.925847\pi$$
0.544874 0.838518i $$-0.316577\pi$$
$$264$$ 0.560756 + 0.787472i 0.0345122 + 0.0484656i
$$265$$ −4.19829 1.91729i −0.257899 0.117778i
$$266$$ 0.351629 + 2.62095i 0.0215597 + 0.160701i
$$267$$ 7.12140 + 11.0811i 0.435823 + 0.678153i
$$268$$ −5.66013 5.93617i −0.345747 0.362609i
$$269$$ 16.8494 + 21.4257i 1.02733 + 1.30635i 0.950974 + 0.309270i $$0.100085\pi$$
0.0763515 + 0.997081i $$0.475673\pi$$
$$270$$ 0.0587098 + 0.0203196i 0.00357296 + 0.00123661i
$$271$$ −6.71412 13.0236i −0.407854 0.791126i 0.592037 0.805911i $$-0.298324\pi$$
−0.999891 + 0.0147849i $$0.995294\pi$$
$$272$$ 0.0661577 0.0763500i 0.00401140 0.00462940i
$$273$$ 0.903622 0.568747i 0.0546897 0.0344222i
$$274$$ 2.20955 1.00907i 0.133484 0.0609601i
$$275$$ −5.87418 3.39146i −0.354227 0.204513i
$$276$$ 9.30109 1.64125i 0.559860 0.0987916i
$$277$$ 4.60308 + 7.97277i 0.276572 + 0.479038i 0.970531 0.240978i $$-0.0774681\pi$$
−0.693958 + 0.720015i $$0.744135\pi$$
$$278$$ −0.0678410 + 0.710463i −0.00406883 + 0.0426107i
$$279$$ −1.26360 4.30343i −0.0756499 0.257640i
$$280$$ −0.650055 + 0.0558888i −0.0388482 + 0.00333999i
$$281$$ −1.66565 + 2.59180i −0.0993642 + 0.154614i −0.887376 0.461046i $$-0.847474\pi$$
0.788012 + 0.615660i $$0.211111\pi$$
$$282$$ 0.171156 0.0329876i 0.0101922 0.00196438i
$$283$$ 0.761883 0.599152i 0.0452893 0.0356159i −0.595258 0.803535i $$-0.702950\pi$$
0.640547 + 0.767919i $$0.278708\pi$$
$$284$$ 6.41382 + 26.4381i 0.380590 + 1.56881i
$$285$$ −2.02523 + 0.0964734i −0.119964 + 0.00571459i
$$286$$ 0.0139874 0.0972843i 0.000827091 0.00575254i
$$287$$ −18.8779 + 23.5446i −1.11433 + 1.38979i
$$288$$ 0.854647 1.87142i 0.0503606 0.110274i
$$289$$ 13.3624 + 10.5083i 0.786021 + 0.618134i
$$290$$ 0.268495 + 0.138419i 0.0157666 + 0.00812823i
$$291$$ −11.5984 + 2.81373i −0.679908 + 0.164944i
$$292$$ 5.62105 14.0407i 0.328947 0.821669i
$$293$$ 17.4452 + 20.1329i 1.01916 + 1.17618i 0.984249 + 0.176785i $$0.0565699\pi$$
0.0349127 + 0.999390i $$0.488885\pi$$
$$294$$ −1.07227 + 0.592386i −0.0625363 + 0.0345487i
$$295$$ −1.60044 1.38679i −0.0931810 0.0807418i
$$296$$ −5.43187 1.31776i −0.315721 0.0765931i
$$297$$ −0.807243 + 1.13361i −0.0468410 + 0.0657790i
$$298$$ −1.63506 + 0.944004i −0.0947167 + 0.0546847i
$$299$$ −1.61148 1.07185i −0.0931945 0.0619865i
$$300$$ 9.59868i 0.554180i
$$301$$ −0.327957 1.79245i −0.0189031 0.103315i
$$302$$ −1.09140 + 0.320464i −0.0628031 + 0.0184407i
$$303$$ −3.30050 9.53616i −0.189609 0.547838i
$$304$$ −1.03734 + 21.7764i −0.0594954 + 1.24896i
$$305$$ 0.438069 1.26572i 0.0250838 0.0724748i
$$306$$ −0.00429988 0.00172141i −0.000245808 9.84067e-5i
$$307$$ 2.13817 7.28195i 0.122032 0.415603i −0.875704 0.482847i $$-0.839603\pi$$
0.997737 + 0.0672445i $$0.0214208\pi$$
$$308$$ 1.43942 7.10691i 0.0820186 0.404954i
$$309$$ 2.86594 + 0.412059i 0.163037 + 0.0234412i
$$310$$ 0.226978 0.161630i 0.0128915 0.00917997i
$$311$$ −1.84399 19.3111i −0.104563 1.09503i −0.883660 0.468130i $$-0.844928\pi$$
0.779097 0.626904i $$-0.215678\pi$$
$$312$$ −0.260252 + 0.104189i −0.0147339 + 0.00589856i
$$313$$ 0.0405241 + 0.850705i 0.00229056 + 0.0480847i 0.999723 0.0235258i $$-0.00748918\pi$$
−0.997433 + 0.0716105i $$0.977186\pi$$
$$314$$ −1.40528 0.412628i −0.0793046 0.0232859i
$$315$$ −0.382098 0.858011i −0.0215288 0.0483435i
$$316$$ −15.4592 + 13.3955i −0.869647 + 0.753553i
$$317$$ 17.0734 8.80194i 0.958936 0.494366i 0.0936288 0.995607i $$-0.470153\pi$$
0.865308 + 0.501241i $$0.167123\pi$$
$$318$$ 2.23411 + 0.430589i 0.125282 + 0.0241462i
$$319$$ −4.66949 + 4.89722i −0.261441 + 0.274191i
$$320$$ −2.57070 0.245472i −0.143707 0.0137223i
$$321$$ −3.21250 −0.179304
$$322$$ 1.77581 + 1.33317i 0.0989621 + 0.0742946i
$$323$$ 0.151156 0.00841052
$$324$$ 1.96046 + 0.187201i 0.108914 + 0.0104000i
$$325$$ 1.35733 1.42353i 0.0752913 0.0789632i
$$326$$ −3.37031 0.649574i −0.186664 0.0359766i
$$327$$ −5.95287 + 3.06892i −0.329194 + 0.169711i
$$328$$ 5.98814 5.18875i 0.330640 0.286501i
$$329$$ −2.13205 1.54875i −0.117544 0.0853853i
$$330$$ −0.0829571 0.0243584i −0.00456664 0.00134089i
$$331$$ 0.277942 + 5.83472i 0.0152771 + 0.320705i 0.993551 + 0.113388i $$0.0361703\pi$$
−0.978274 + 0.207318i $$0.933527\pi$$
$$332$$ 18.3852 7.36032i 1.00902 0.403950i
$$333$$ −0.764852 8.00989i −0.0419136 0.438939i
$$334$$ −0.979530 + 0.697520i −0.0535975 + 0.0381666i
$$335$$ 1.46348 + 0.210416i 0.0799584 + 0.0114963i
$$336$$ −9.57460 + 3.21297i −0.522337 + 0.175282i
$$337$$ 2.86359 9.75251i 0.155990 0.531253i −0.843997 0.536348i $$-0.819804\pi$$
0.999987 + 0.00509479i $$0.00162173\pi$$
$$338$$ −2.08563 0.834958i −0.113443 0.0454158i
$$339$$ 2.34582 6.77779i 0.127407 0.368119i
$$340$$ −0.000880418 0.0184823i −4.77474e−5 0.00100234i
$$341$$ 2.04148 + 5.89847i 0.110552 + 0.319420i
$$342$$ 0.959014 0.281592i 0.0518576 0.0152268i
$$343$$ 17.6153 + 5.71860i 0.951135 + 0.308775i
$$344$$ 0.478429i 0.0257951i
$$345$$ −1.13503 + 1.26898i −0.0611081 + 0.0683195i
$$346$$ −0.365460 + 0.210998i −0.0196472 + 0.0113433i
$$347$$ −0.590479 + 0.829212i −0.0316986 + 0.0445144i −0.830121 0.557583i $$-0.811729\pi$$
0.798423 + 0.602098i $$0.205668\pi$$
$$348$$ 9.30565 + 2.25753i 0.498835 + 0.121016i
$$349$$ −20.9565 18.1589i −1.12178 0.972025i −0.121987 0.992532i $$-0.538927\pi$$
−0.999790 + 0.0205063i $$0.993472\pi$$
$$350$$ −1.64789 + 1.54184i −0.0880837 + 0.0824150i
$$351$$ −0.264273 0.304988i −0.0141059 0.0162790i
$$352$$ −1.06411 + 2.65802i −0.0567173 + 0.141673i
$$353$$ 15.0459 3.65010i 0.800813 0.194275i 0.185589 0.982627i $$-0.440581\pi$$
0.615224 + 0.788352i $$0.289066\pi$$
$$354$$ 0.927896 + 0.478364i 0.0493171 + 0.0254247i
$$355$$ −3.85481 3.03145i −0.204592 0.160893i
$$356$$ −10.7762 + 23.5967i −0.571139 + 1.25062i
$$357$$ 0.0254102 + 0.0652493i 0.00134485 + 0.00345336i
$$358$$ 0.129410 0.900063i 0.00683951 0.0475698i
$$359$$ −12.8383 + 0.611566i −0.677582 + 0.0322772i −0.383552 0.923519i $$-0.625299\pi$$
−0.294030 + 0.955796i $$0.594996\pi$$
$$360$$ 0.0581391 + 0.239653i 0.00306420 + 0.0126308i
$$361$$ −10.7053 + 8.41872i −0.563435 + 0.443090i
$$362$$ −1.25273 + 0.241444i −0.0658421 + 0.0126900i
$$363$$ −4.89998 + 7.62451i −0.257182 + 0.400183i
$$364$$ 1.90438 + 0.891509i 0.0998164 + 0.0467278i
$$365$$ 0.768082 + 2.61585i 0.0402033 + 0.136920i
$$366$$ −0.0627628 + 0.657281i −0.00328066 + 0.0343566i
$$367$$ −11.2369 19.4629i −0.586563 1.01596i −0.994679 0.103027i $$-0.967147\pi$$
0.408115 0.912930i $$-0.366186\pi$$
$$368$$ 12.4229 + 13.4463i 0.647587 + 0.700935i
$$369$$ 9.87813 + 5.70314i 0.514235 + 0.296894i
$$370$$ 0.454717 0.207662i 0.0236396 0.0107959i
$$371$$ −18.3228 29.1111i −0.951270 1.51137i
$$372$$ 5.78429 6.67543i 0.299902 0.346105i
$$373$$ 8.75038 + 16.9734i 0.453078 + 0.878848i 0.999155 + 0.0411129i $$0.0130903\pi$$
−0.546077 + 0.837735i $$0.683879\pi$$
$$374$$ 0.00609119 + 0.00210818i 0.000314968 + 0.000109012i
$$375$$ −2.16682 2.75533i −0.111894 0.142285i
$$376$$ 0.477455 + 0.500741i 0.0246229 + 0.0258237i
$$377$$ −1.06084 1.65070i −0.0546360 0.0850153i
$$378$$ 0.282771 + 0.366640i 0.0145442 + 0.0188579i
$$379$$ −2.99429 1.36745i −0.153807 0.0702411i 0.337024 0.941496i $$-0.390579\pi$$
−0.490831 + 0.871255i $$0.663307\pi$$
$$380$$ −2.31614 3.25256i −0.118815 0.166853i
$$381$$ 7.08884 + 17.7071i 0.363172 + 0.907161i
$$382$$ 1.83673 3.56276i 0.0939752 0.182287i
$$383$$ 16.1984 15.4452i 0.827700 0.789210i −0.152273 0.988338i $$-0.548659\pi$$
0.979974 + 0.199128i $$0.0638109\pi$$
$$384$$ 5.33286 0.766750i 0.272141 0.0391280i
$$385$$ 0.587965 + 1.16741i 0.0299655 + 0.0594966i
$$386$$ 0.182499 + 0.117285i 0.00928896 + 0.00596965i
$$387$$ −0.650848 + 0.225261i −0.0330845 + 0.0114506i
$$388$$ −17.0107 16.2197i −0.863587 0.823428i
$$389$$ −31.9603 22.7588i −1.62045 1.15392i −0.870095 0.492883i $$-0.835943\pi$$
−0.750355 0.661035i $$-0.770118\pi$$
$$390$$ 0.0125358 0.0217127i 0.000634776 0.00109946i
$$391$$ 0.0890243 0.0904711i 0.00450215 0.00457532i
$$392$$ −4.27923 2.30933i −0.216134 0.116639i
$$393$$ −5.58633 12.2324i −0.281793 0.617041i
$$394$$ −0.242965 + 1.00151i −0.0122404 + 0.0504556i
$$395$$ 0.697830 3.62068i 0.0351116 0.182176i
$$396$$ −2.73760 0.130408i −0.137569 0.00655324i
$$397$$ −5.43117 28.1796i −0.272583 1.41429i −0.817560 0.575843i $$-0.804674\pi$$
0.544978 0.838451i $$-0.316538\pi$$
$$398$$ 0.197464 + 1.37339i 0.00989796 + 0.0688418i
$$399$$ −13.0144 7.67848i −0.651534 0.384405i
$$400$$ −15.6514 + 10.0585i −0.782569 + 0.502927i
$$401$$ −16.5015 + 20.9834i −0.824046 + 1.04786i 0.173961 + 0.984753i $$0.444343\pi$$
−0.998007 + 0.0631073i $$0.979899\pi$$
$$402$$ −0.725565 + 0.0692830i −0.0361879 + 0.00345552i
$$403$$ −1.80180 + 0.172051i −0.0897541 + 0.00857048i
$$404$$ 12.2848 15.6215i 0.611194 0.777196i
$$405$$ −0.298646 + 0.191928i −0.0148399 + 0.00953700i
$$406$$ 1.10720 + 1.96022i 0.0549496 + 0.0972839i
$$407$$ 1.59361 + 11.0838i 0.0789922 + 0.549403i
$$408$$ −0.00347934 0.0180525i −0.000172253 0.000893734i
$$409$$ −35.0130 1.66787i −1.73128 0.0824710i −0.841898 0.539636i $$-0.818562\pi$$
−0.889382 + 0.457165i $$0.848865\pi$$
$$410$$ −0.134110 + 0.695828i −0.00662322 + 0.0343645i
$$411$$ −3.27234 + 13.4888i −0.161413 + 0.665353i
$$412$$ 2.36875 + 5.18685i 0.116700 + 0.255538i
$$413$$ −4.30340 15.1846i −0.211757 0.747185i
$$414$$ 0.396278 0.739845i 0.0194760 0.0363614i
$$415$$ −1.78493 + 3.09158i −0.0876186 + 0.151760i
$$416$$ −0.676302 0.481593i −0.0331584 0.0236120i
$$417$$ −2.95150 2.81425i −0.144536 0.137815i
$$418$$ −1.31447 + 0.454941i −0.0642926 + 0.0222519i
$$419$$ 24.4069 + 15.6853i 1.19235 + 0.766279i 0.977617 0.210393i $$-0.0674744\pi$$
0.214736 + 0.976672i $$0.431111\pi$$
$$420$$ 1.01467 1.54658i 0.0495111 0.0754656i
$$421$$ 13.4758 1.93753i 0.656770 0.0944292i 0.194130 0.980976i $$-0.437812\pi$$
0.462639 + 0.886547i $$0.346902\pi$$
$$422$$ 0.654567 0.624128i 0.0318638 0.0303821i
$$423$$ −0.456399 + 0.885290i −0.0221909 + 0.0430443i
$$424$$ 3.35656 + 8.38428i 0.163009 + 0.407177i
$$425$$ 0.0748243 + 0.105076i 0.00362951 + 0.00509693i
$$426$$ 2.19904 + 1.00427i 0.106544 + 0.0486570i
$$427$$ 7.90436 6.09624i 0.382519 0.295018i
$$428$$ −3.42042 5.32228i −0.165332 0.257262i
$$429$$ 0.387558 + 0.406459i 0.0187115 + 0.0196240i
$$430$$ −0.0264500 0.0336339i −0.00127553 0.00162197i
$$431$$ −18.7789 6.49944i −0.904547 0.313067i −0.165096 0.986277i $$-0.552794\pi$$
−0.739451 + 0.673211i $$0.764915\pi$$
$$432$$ 1.74913 + 3.39284i 0.0841552 + 0.163238i
$$433$$ 8.75389 10.1025i 0.420685 0.485497i −0.505360 0.862908i $$-0.668640\pi$$
0.926046 + 0.377412i $$0.123186\pi$$
$$434$$ 2.07517 0.0792367i 0.0996114 0.00380348i
$$435$$ −1.57012 + 0.717049i −0.0752814 + 0.0343799i
$$436$$ −11.4226 6.59482i −0.547041 0.315835i
$$437$$ −3.03246 + 27.2221i −0.145062 + 1.30221i
$$438$$ −0.671983 1.16391i −0.0321086 0.0556137i
$$439$$ 2.14202 22.4322i 0.102233 1.07063i −0.788170 0.615457i $$-0.788971\pi$$
0.890403 0.455173i $$-0.150423\pi$$
$$440$$ −0.0966876 0.329288i −0.00460940 0.0156982i
$$441$$ 1.12677 6.90872i 0.0536556 0.328987i
$$442$$ −0.00101053 + 0.00157242i −4.80661e−5 + 7.47923e-5i
$$443$$ 30.8675 5.94922i 1.46656 0.282656i 0.607412 0.794387i $$-0.292208\pi$$
0.859146 + 0.511731i $$0.170995\pi$$
$$444$$ 12.4560 9.79548i 0.591134 0.464873i
$$445$$ −1.10244 4.54432i −0.0522607 0.215421i
$$446$$ 3.31914 0.158110i 0.157166 0.00748672i
$$447$$ 1.53535 10.6786i 0.0726194 0.505079i
$$448$$ −15.0155 12.0393i −0.709415 0.568804i
$$449$$ 6.69449 14.6589i 0.315932 0.691795i −0.683333 0.730106i $$-0.739470\pi$$
0.999266 + 0.0383110i $$0.0121978\pi$$
$$450$$ 0.670476 + 0.527268i 0.0316065 + 0.0248556i
$$451$$ −14.1091 7.27374i −0.664371 0.342507i
$$452$$ 13.7267 3.33006i 0.645650 0.156633i
$$453$$ 2.41570 6.03414i 0.113500 0.283508i
$$454$$ 1.14073 + 1.31647i 0.0535371 + 0.0617851i
$$455$$ −0.369181 + 0.0858824i −0.0173075 + 0.00402623i
$$456$$ 2.99836 + 2.59809i 0.140411 + 0.121667i
$$457$$ 8.43922 + 2.04733i 0.394770 + 0.0957702i 0.428230 0.903670i $$-0.359137\pi$$
−0.0334598 + 0.999440i $$0.510653\pi$$
$$458$$ −0.618666 + 0.868794i −0.0289083 + 0.0405961i
$$459$$ 0.0229202 0.0132330i 0.00106983 0.000617664i
$$460$$ −3.31086 0.529345i −0.154370 0.0246808i
$$461$$ 28.5449i 1.32947i −0.747080 0.664735i $$-0.768545\pi$$
0.747080 0.664735i $$-0.231455\pi$$
$$462$$ −0.417355 0.490937i −0.0194171 0.0228404i
$$463$$ −6.42146 + 1.88551i −0.298431 + 0.0876271i −0.427520 0.904006i $$-0.640613\pi$$
0.129090 + 0.991633i $$0.458795\pi$$
$$464$$ 6.07040 + 17.5393i 0.281811 + 0.814240i
$$465$$ −0.0757610 + 1.59042i −0.00351333 + 0.0737539i
$$466$$ 0.231596 0.669154i 0.0107285 0.0309980i
$$467$$ 4.77253 + 1.91063i 0.220846 + 0.0884135i 0.479447 0.877571i $$-0.340837\pi$$
−0.258601 + 0.965984i $$0.583261\pi$$
$$468$$ 0.223908 0.762561i 0.0103502 0.0352494i
$$469$$ 8.25927 + 7.29426i 0.381378 + 0.336818i
$$470$$ −0.0612490 0.00880628i −0.00282521 0.000406203i
$$471$$ 6.81719 4.85450i 0.314120 0.223684i
$$472$$ 0.393894 + 4.12505i 0.0181305 + 0.189871i
$$473$$ 0.889818 0.356229i 0.0409139 0.0163794i
$$474$$ 0.0864908 + 1.81567i 0.00397266 + 0.0833963i
$$475$$ −26.7092 7.84252i −1.22550 0.359840i
$$476$$ −0.0810464 + 0.111571i −0.00371476 + 0.00511384i
$$477$$ −9.82548 + 8.51383i −0.449878 + 0.389821i
$$478$$ 2.54917 1.31419i 0.116596 0.0601095i
$$479$$ −26.5471 5.11653i −1.21297 0.233780i −0.457646 0.889134i $$-0.651307\pi$$
−0.755322 + 0.655354i $$0.772519\pi$$
$$480$$ −0.504004 + 0.528584i −0.0230045 + 0.0241264i
$$481$$ −3.23244 0.308661i −0.147387 0.0140737i
$$482$$ −4.66105 −0.212305
$$483$$ −12.2607 + 3.26719i −0.557882 + 0.148662i
$$484$$ −17.8490 −0.811317
$$485$$ 4.21768 + 0.402740i 0.191515 + 0.0182875i
$$486$$ 0.120767 0.126656i 0.00547808 0.00574525i
$$487$$ 30.4566 + 5.87003i 1.38012 + 0.265996i 0.824699 0.565572i $$-0.191345\pi$$
0.555422 + 0.831569i $$0.312557\pi$$
$$488$$ −2.32952 + 1.20095i −0.105452 + 0.0543644i
$$489$$ 14.8224 12.8437i 0.670294 0.580813i
$$490$$ 0.428505 0.0742305i 0.0193579 0.00335339i
$$491$$ 5.84011 + 1.71481i 0.263560 + 0.0773883i 0.410843 0.911706i $$-0.365234\pi$$
−0.147283 + 0.989094i $$0.547053\pi$$
$$492$$ 1.06884 + 22.4378i 0.0481872 + 1.01157i
$$493$$ 0.119466 0.0478271i 0.00538049 0.00215402i
$$494$$ −0.0383414 0.401529i −0.00172506 0.0180656i
$$495$$ 0.402435 0.286573i 0.0180881 0.0128805i
$$496$$ 16.9462 + 2.43650i 0.760908 + 0.109402i
$$497$$ −11.6274 34.6496i −0.521562 1.55425i
$$498$$ 0.495798 1.68853i 0.0222172 0.0756650i
$$499$$ 1.33725 + 0.535353i 0.0598634 + 0.0239657i 0.401401 0.915902i $$-0.368523\pi$$
−0.341538 + 0.939868i $$0.610948\pi$$
$$500$$ 2.25782 6.52353i 0.100973 0.291741i
$$501$$ 0.326949 6.86351i 0.0146070 0.306639i
$$502$$ −1.46449 4.23137i −0.0653634 0.188855i
$$503$$ 0.188809 0.0554393i 0.00841857 0.00247192i −0.277521 0.960720i $$-0.589513\pi$$
0.285939 + 0.958248i $$0.407694\pi$$
$$504$$ −0.617474 + 1.73106i −0.0275045 + 0.0771074i
$$505$$ 3.58238i 0.159414i
$$506$$ −0.501870 + 1.05469i −0.0223108 + 0.0468866i
$$507$$ 11.1173 6.41857i 0.493736 0.285059i
$$508$$ −21.7884 + 30.5975i −0.966704 + 1.35755i
$$509$$ −1.37745 0.334167i −0.0610546 0.0148117i 0.205115 0.978738i $$-0.434243\pi$$
−0.266170 + 0.963926i $$0.585758\pi$$
$$510$$ 0.00124264 + 0.00107675i 5.50249e−5 + 4.76794e-5i
$$511$$ −5.90804 + 19.4405i −0.261356 + 0.859996i
$$512$$ 8.61565 + 9.94299i 0.380762 + 0.439422i
$$513$$ −2.12268 + 5.30219i −0.0937185 + 0.234098i
$$514$$ −0.886649 + 0.215099i −0.0391084 + 0.00948760i
$$515$$ −0.913611 0.470999i −0.0402585 0.0207547i
$$516$$ −1.06617 0.838447i −0.0469356 0.0369106i
$$517$$ 0.575811 1.26085i 0.0253241 0.0554521i
$$518$$ 3.68250 + 0.564976i 0.161800 + 0.0248236i
$$519$$ 0.343172 2.38681i 0.0150636 0.104769i
$$520$$ 0.0994060 0.00473529i 0.00435924 0.000207656i
$$521$$ 3.12645 + 12.8874i 0.136972 + 0.564607i 0.998391 + 0.0567113i $$0.0180615\pi$$
−0.861418 + 0.507896i $$0.830423\pi$$
$$522$$ 0.668861 0.525998i 0.0292753 0.0230223i
$$523$$ −13.6478 + 2.63039i −0.596776 + 0.115019i −0.478690 0.877984i $$-0.658888\pi$$
−0.118086 + 0.993003i $$0.537676\pi$$
$$524$$ 14.3180 22.2792i 0.625483 0.973271i
$$525$$ −1.10461 12.8479i −0.0482090 0.560729i
$$526$$ −0.921028 3.13673i −0.0401587 0.136768i
$$527$$ 0.0112834 0.118166i 0.000491515 0.00514737i
$$528$$ −2.65611 4.60052i −0.115592 0.200212i
$$529$$ 14.5072 + 17.8477i 0.630750 + 0.775986i
$$530$$ −0.699495 0.403854i −0.0303841 0.0175423i
$$531$$ −5.42620 + 2.47806i −0.235477 + 0.107539i
$$532$$ −1.13545 29.7369i −0.0492281 1.28926i
$$533$$ 3.01438 3.47877i 0.130567 0.150682i
$$534$$ 1.05629 + 2.04892i 0.0457103 + 0.0886656i
$$535$$ 1.07772 + 0.373002i 0.0465938 + 0.0161263i
$$536$$ −1.78842 2.27416i −0.0772479 0.0982287i
$$537$$ 3.58564 + 3.76052i 0.154732 + 0.162278i
$$538$$ 2.57894 + 4.01290i 0.111186 + 0.173009i
$$539$$ −1.10882 + 9.67832i −0.0477603 + 0.416875i
$$540$$ −0.635952 0.290429i −0.0273670 0.0124981i
$$541$$ −26.5195 37.2414i −1.14016 1.60113i −0.720500 0.693455i $$-0.756088\pi$$
−0.419663 0.907680i $$-0.637852\pi$$
$$542$$ −0.953027 2.38055i −0.0409360 0.102253i
$$543$$ 3.34049 6.47965i 0.143354 0.278068i
$$544$$ 0.0394069 0.0375744i 0.00168956 0.00161099i
$$545$$ 2.35338 0.338365i 0.100808 0.0144940i
$$546$$ 0.166882 0.0840504i 0.00714191 0.00359703i
$$547$$ 16.1502 + 10.3791i 0.690534 + 0.443779i 0.838276 0.545247i $$-0.183564\pi$$
−0.147742 + 0.989026i $$0.547200\pi$$
$$548$$ −25.8316 + 8.94040i −1.10347 + 0.381915i
$$549$$ −2.73057 2.60359i −0.116538 0.111119i
$$550$$ −0.966933 0.688550i −0.0412302 0.0293599i
$$551$$ −13.8849 + 24.0493i −0.591515 + 1.02453i
$$552$$ 3.32094 0.264439i 0.141349 0.0112553i
$$553$$ 19.1507 19.7090i 0.814372 0.838111i
$$554$$ 0.669281 + 1.46552i 0.0284350 + 0.0622641i
$$555$$ −0.673436 + 2.77594i −0.0285857 + 0.117832i
$$556$$ 1.51996 7.88629i 0.0644605 0.334453i
$$557$$ 26.1949 + 1.24782i 1.10992 + 0.0528718i 0.594520 0.804081i $$-0.297342\pi$$
0.515395 + 0.856952i $$0.327645\pi$$
$$558$$ −0.148546 0.770728i −0.00628844 0.0326275i
$$559$$ 0.0395550 + 0.275111i 0.00167300 + 0.0116360i
$$560$$ 3.58511 + 0.0338273i 0.151499 + 0.00142946i
$$561$$ −0.0309848 + 0.0199128i −0.00130818 + 0.000840717i
$$562$$ −0.333290 + 0.423813i −0.0140590 + 0.0178775i
$$563$$ −21.5565 + 2.05840i −0.908498 + 0.0867511i −0.538832 0.842413i $$-0.681134\pi$$
−0.369666 + 0.929165i $$0.620528\pi$$
$$564$$ −1.95264 + 0.186454i −0.0822208 + 0.00785113i
$$565$$ −1.57393 + 2.00142i −0.0662159 + 0.0842004i
$$566$$ 0.142696 0.0917051i 0.00599795 0.00385465i
$$567$$ −2.64563 0.0249629i −0.111106 0.00104834i
$$568$$ 1.36565 + 9.49833i 0.0573015 + 0.398541i
$$569$$ 1.06050 + 5.50237i 0.0444583 + 0.230671i 0.997361 0.0726055i $$-0.0231314\pi$$
−0.952902 + 0.303277i $$0.901919\pi$$
$$570$$ −0.354423 0.0168832i −0.0148451 0.000707161i
$$571$$ 0.157157 0.815408i 0.00657682 0.0341238i −0.978492 0.206285i $$-0.933863\pi$$
0.985069 + 0.172161i $$0.0550749\pi$$
$$572$$ −0.260756 + 1.07485i −0.0109028 + 0.0449418i
$$573$$ 9.51479 + 20.8345i 0.397486 + 0.870373i
$$574$$ −3.68042 + 3.78770i −0.153618 + 0.158096i
$$575$$ −20.4246 + 11.3673i −0.851764 + 0.474050i
$$576$$ −3.63716 + 6.29974i −0.151548 + 0.262489i
$$577$$ −13.2014 9.40067i −0.549581 0.391355i 0.271265 0.962505i $$-0.412558\pi$$
−0.820846 + 0.571150i $$0.806498\pi$$
$$578$$ 2.15307 + 2.05295i 0.0895558 + 0.0853913i
$$579$$ −1.17143 + 0.405437i −0.0486832 + 0.0168494i
$$580$$ −2.85971 1.83782i −0.118743 0.0763114i
$$581$$ −23.7618 + 11.9676i −0.985804 + 0.496501i
$$582$$ −2.06738 + 0.297244i −0.0856955 + 0.0123212i
$$583$$ 13.0945 12.4856i 0.542318 0.517100i
$$584$$ 2.44450 4.74167i 0.101154 0.196212i
$$585$$ 0.0532456 + 0.133001i 0.00220143 + 0.00549891i
$$586$$ 2.70425 + 3.79759i 0.111711 + 0.156877i
$$587$$ −24.1477 11.0279i −0.996680 0.455169i −0.150813 0.988562i $$-0.548189\pi$$
−0.845867 + 0.533394i $$0.820916\pi$$
$$588$$ 12.6457 5.48911i 0.521498 0.226367i
$$589$$ 13.8490 + 21.5494i 0.570637 + 0.887928i
$$590$$ −0.255745 0.268218i −0.0105289 0.0110423i
$$591$$ −3.64022 4.62891i −0.149739 0.190408i
$$592$$ 29.0250 + 10.0457i 1.19292 + 0.412874i
$$593$$ 3.69107 + 7.15967i 0.151574 + 0.294012i 0.952381 0.304910i $$-0.0986263\pi$$
−0.800807 + 0.598922i $$0.795596\pi$$
$$594$$ −0.159489 + 0.184060i −0.00654391 + 0.00755208i
$$595$$ −0.000948471 0.0248400i −3.88835e−5 0.00101834i
$$596$$ 19.3264 8.82605i 0.791638 0.361529i
$$597$$ −6.86625 3.96423i −0.281017 0.162245i
$$598$$ −0.262909 0.213535i −0.0107511 0.00873211i
$$599$$ −9.23270 15.9915i −0.377238 0.653395i 0.613421 0.789756i $$-0.289793\pi$$
−0.990659 + 0.136360i $$0.956459\pi$$
$$600$$ −0.321835 + 3.37040i −0.0131388 + 0.137596i
$$601$$ −9.67651 32.9552i −0.394713 1.34427i −0.882091 0.471078i $$-0.843865\pi$$
0.487378 0.873191i $$-0.337953\pi$$
$$602$$ −0.0273161 0.317720i −0.00111332 0.0129493i
$$603$$ 2.25169 3.50369i 0.0916958 0.142681i
$$604$$ 12.5691 2.42249i 0.511428 0.0985697i
$$605$$ 2.52911 1.98891i 0.102823 0.0808608i
$$606$$ −0.416349 1.71621i −0.0169130 0.0697164i
$$607$$ 9.38356 0.446994i 0.380867 0.0181429i 0.143724 0.989618i $$-0.454092\pi$$
0.237143 + 0.971475i $$0.423789\pi$$
$$608$$ −1.67221 + 11.6305i −0.0678170 + 0.471678i
$$609$$ −12.7155 1.95084i −0.515258 0.0790519i
$$610$$ 0.0973722 0.213215i 0.00394248 0.00863283i
$$611$$ 0.315951 + 0.248467i 0.0127820 + 0.0100519i
$$612$$ 0.0463274 + 0.0238834i 0.00187268 + 0.000965431i
$$613$$ −46.5424 + 11.2911i −1.87983 + 0.456041i −0.999821 0.0189197i $$-0.993977\pi$$
−0.880007 + 0.474961i $$0.842462\pi$$
$$614$$ 0.493631 1.23303i 0.0199213 0.0497611i
$$615$$ −2.65169 3.06022i −0.106927 0.123400i
$$616$$ 0.743715 2.44720i 0.0299651 0.0986007i
$$617$$ −9.80953 8.50000i −0.394917 0.342197i 0.434655 0.900597i $$-0.356870\pi$$
−0.829572 + 0.558400i $$0.811416\pi$$
$$618$$ 0.492424 + 0.119461i 0.0198082 + 0.00480542i
$$619$$ −20.8333 + 29.2563i −0.837363 + 1.17591i 0.145094 + 0.989418i $$0.453652\pi$$
−0.982456 + 0.186493i $$0.940288\pi$$
$$620$$ −2.71558 + 1.56784i −0.109060 + 0.0629660i
$$621$$ 1.92335 + 4.39326i 0.0771815 + 0.176295i
$$622$$ 3.39490i 0.136123i
$$623$$ 11.7086 32.8245i 0.469096 1.31509i
$$624$$ 1.47805 0.433994i 0.0591693 0.0173737i
$$625$$ −7.56361 21.8536i −0.302544 0.874144i
$$626$$ −0.00709187 + 0.148877i −0.000283448 + 0.00595031i
$$627$$ 2.59960 7.51106i 0.103818 0.299963i
$$628$$ 15.3011 + 6.12563i 0.610580 + 0.244439i
$$629$$ 0.0599961 0.204328i 0.00239220 0.00814709i
$$630$$ −0.0522928 0.155832i −0.00208339 0.00620849i
$$631$$ 28.8192 + 4.14357i 1.14727 + 0.164953i 0.689615 0.724176i $$-0.257780\pi$$
0.457657 + 0.889129i $$0.348689\pi$$
$$632$$ −5.87735 + 4.18524i −0.233789 + 0.166480i
$$633$$ 0.491255 + 5.14466i 0.0195256 + 0.204482i
$$634$$ 3.12080 1.24938i 0.123943 0.0496192i
$$635$$ −0.322180 6.76340i −0.0127853 0.268397i
$$636$$ −24.5666 7.21342i −0.974131 0.286031i
$$637$$ −2.65162 0.974141i −0.105061 0.0385969i
$$638$$ −0.894944 + 0.775474i −0.0354312 + 0.0307013i
$$639$$ −12.2784 + 6.32996i −0.485726 + 0.250409i
$$640$$ −1.87808 0.361970i −0.0742376 0.0143081i
$$641$$ −17.0165 + 17.8464i −0.672113 + 0.704892i −0.968174 0.250277i $$-0.919478\pi$$
0.296061 + 0.955169i $$0.404327\pi$$
$$642$$ −0.559654 0.0534404i −0.0220878 0.00210913i
$$643$$ 17.1267 0.675411 0.337705 0.941252i $$-0.390349\pi$$
0.337705 + 0.941252i $$0.390349\pi$$
$$644$$ −18.4672 16.8342i −0.727709 0.663361i
$$645$$ 0.244499 0.00962715
$$646$$ 0.0263330 + 0.00251450i 0.00103606 + 9.89317e-5i
$$647$$ 19.5858 20.5410i 0.769998 0.807551i −0.215631 0.976475i $$-0.569181\pi$$
0.985629 + 0.168924i $$0.0540292\pi$$
$$648$$ 0.682103 + 0.131465i 0.0267955 + 0.00516441i
$$649$$ 7.37879 3.80403i 0.289643 0.149321i
$$650$$ 0.260144 0.225416i 0.0102037 0.00884154i
$$651$$ −6.97413 + 9.60078i −0.273338 + 0.376284i
$$652$$ 37.0606 + 10.8820i 1.45140 + 0.426170i
$$653$$ 0.0418723 + 0.879007i 0.00163859 + 0.0343982i 0.999539 0.0303758i $$-0.00967039\pi$$
−0.997900 + 0.0647740i $$0.979367\pi$$
$$654$$ −1.08811 + 0.435613i −0.0425485 + 0.0170338i
$$655$$ 0.453790 + 4.75230i 0.0177310 + 0.185688i
$$656$$ −35.4665 + 25.2556i −1.38473 + 0.986064i
$$657$$ 7.60146 + 1.09293i 0.296561 + 0.0426391i
$$658$$ −0.345664 0.305277i −0.0134754 0.0119009i
$$659$$ 0.237664 0.809410i 0.00925808 0.0315301i −0.954734 0.297460i $$-0.903861\pi$$
0.963992 + 0.265929i $$0.0856788\pi$$
$$660$$ 0.903259 + 0.361610i 0.0351593 + 0.0140757i
$$661$$ −3.02714 + 8.74635i −0.117742 + 0.340193i −0.988437 0.151629i $$-0.951548\pi$$
0.870695 + 0.491823i $$0.163669\pi$$
$$662$$ −0.0486410 + 1.02110i −0.00189049 + 0.0396862i
$$663$$ −0.00349326 0.0100931i −0.000135667 0.000391984i
$$664$$ 6.70242 1.96801i 0.260104 0.0763735i
$$665$$ 3.47448 + 4.08705i 0.134734 + 0.158489i
$$666$$ 1.40814i 0.0545643i
$$667$$ 6.21662 + 22.4746i 0.240708 + 0.870218i
$$668$$ 11.7192 6.76607i 0.453428 0.261787i
$$669$$ −11.0139 + 15.4668i −0.425821 + 0.597982i
$$670$$ 0.251455 + 0.0610022i 0.00971454 + 0.00235672i
$$671$$ 3.96813 + 3.43841i 0.153188 + 0.132738i
$$672$$ −5.30163 + 1.23332i −0.204515 + 0.0475762i
$$673$$ 29.9798 + 34.5985i 1.15564 + 1.33368i 0.933465 + 0.358668i $$0.116769\pi$$
0.222172 + 0.975008i $$0.428686\pi$$
$$674$$ 0.661106 1.65136i 0.0254649 0.0636081i
$$675$$ −4.73658 + 1.14908i −0.182311 + 0.0442282i
$$676$$ 22.4708 + 11.5845i 0.864260 + 0.445557i
$$677$$ 32.8654 + 25.8456i 1.26312 + 0.993328i 0.999589 + 0.0286771i $$0.00912945\pi$$
0.263531 + 0.964651i $$0.415113\pi$$
$$678$$ 0.521418 1.14175i 0.0200249 0.0438485i
$$679$$ 24.6355 + 19.7526i 0.945425 + 0.758035i
$$680$$ −0.000928836 0.00646020i −3.56192e−5 0.000247737i
$$681$$ −9.94246 + 0.473618i −0.380996 + 0.0181491i
$$682$$ 0.257527 + 1.06154i 0.00986123 + 0.0406485i
$$683$$ −8.79054 + 6.91295i −0.336360 + 0.264517i −0.772025 0.635592i $$-0.780756\pi$$
0.435664 + 0.900109i $$0.356513\pi$$
$$684$$ −11.0444 + 2.12864i −0.422295 + 0.0813906i
$$685$$ 2.66397 4.14522i 0.101785 0.158381i
$$686$$ 2.97365 + 1.28928i 0.113535 + 0.0492249i
$$687$$ −1.71702 5.84762i −0.0655083 0.223101i
$$688$$ 0.249902 2.61709i 0.00952742 0.0997757i
$$689$$ 2.62331 + 4.54371i 0.0999403 + 0.173102i
$$690$$ −0.218845 + 0.202189i −0.00833130 + 0.00769720i
$$691$$ 30.7110 + 17.7310i 1.16830 + 0.674519i 0.953279 0.302091i $$-0.0976846\pi$$
0.215021 + 0.976609i $$0.431018\pi$$
$$692$$ 4.31972 1.97275i 0.164211 0.0749926i
$$693$$ 3.67931 0.140488i 0.139765 0.00533669i
$$694$$ −0.116662 + 0.134636i −0.00442844 + 0.00511070i
$$695$$ 0.663399 + 1.28681i 0.0251642 + 0.0488117i
$$696$$ 3.19182 + 1.10470i 0.120986 + 0.0418735i
$$697$$ 0.186609 + 0.237293i 0.00706832 + 0.00898810i
$$698$$ −3.34879 3.51211i −0.126754 0.132935i
$$699$$ 2.18753 + 3.40387i 0.0827402 + 0.128746i
$$700$$ 20.1096 15.5095i 0.760072 0.586206i
$$701$$ 27.8454 + 12.7166i 1.05171 + 0.480299i 0.864820 0.502083i $$-0.167433\pi$$
0.186888 + 0.982381i $$0.440160\pi$$
$$702$$ −0.0409659 0.0575286i −0.00154616 0.00217128i
$$703$$ 17.0798 + 42.6632i 0.644175 + 1.60907i
$$704$$ 4.63881 8.99803i 0.174832 0.339126i
$$705$$ 0.255902 0.244002i 0.00963782 0.00918964i
$$706$$ 2.68189 0.385598i 0.100934 0.0145122i
$$707$$ −14.6457 + 22.3232i −0.550808 + 0.839550i
$$708$$ −9.88292 6.35137i −0.371423 0.238699i
$$709$$ −15.8222 + 5.47611i −0.594215 + 0.205660i −0.607590 0.794251i $$-0.707864\pi$$
0.0133753 + 0.999911i $$0.495742\pi$$
$$710$$ −0.621123 0.592240i −0.0233103 0.0222264i
$$711$$ −8.46081 6.02491i −0.317305 0.225952i
$$712$$ −4.57506 + 7.92423i −0.171457 + 0.296973i
$$713$$ 21.0544 + 4.40269i 0.788495 + 0.164882i
$$714$$ 0.00334132 + 0.0117899i 0.000125046 + 0.000441225i
$$715$$ −0.0828230 0.181357i −0.00309740 0.00678237i
$$716$$ −2.41249 + 9.94440i −0.0901588 + 0.371640i
$$717$$ −3.10147 + 16.0920i −0.115827 + 0.600966i
$$718$$ −2.24676 0.107026i −0.0838484 0.00399419i
$$719$$ 5.43518 + 28.2004i 0.202698 + 1.05170i 0.930606 + 0.366022i $$0.119280\pi$$
−0.727908 + 0.685674i $$0.759507\pi$$
$$720$$ −0.192852 1.34131i −0.00718715 0.0499877i
$$721$$ −3.76750 6.67006i −0.140309 0.248406i
$$722$$ −2.00503 + 1.28855i −0.0746194 + 0.0479550i
$$723$$ 16.4640 20.9357i 0.612303 0.778607i
$$724$$ 14.2918 1.36470i 0.531151 0.0507187i
$$725$$ −23.5911 + 2.25268i −0.876152 + 0.0836624i
$$726$$ −0.980468 + 1.24677i −0.0363886 + 0.0462718i
$$727$$ 13.6678 8.78376i 0.506910 0.325772i −0.262065 0.965050i $$-0.584403\pi$$
0.768975 + 0.639279i $$0.220767\pi$$
$$728$$ 0.638796 + 0.376890i 0.0236754 + 0.0139685i
$$729$$ 0.142315 + 0.989821i 0.00527092 + 0.0366601i
$$730$$ 0.0902936 + 0.468488i 0.00334192 + 0.0173395i
$$731$$ −0.0182072 0.000867317i −0.000673418 3.20789e-5i
$$732$$ 1.40618 7.29596i 0.0519740 0.269666i
$$733$$ −7.71624 + 31.8068i −0.285006 + 1.17481i 0.631689 + 0.775222i $$0.282362\pi$$
−0.916695 + 0.399588i $$0.869153\pi$$
$$734$$ −1.63383 3.57760i −0.0603059 0.132052i
$$735$$ −1.18017 + 2.18689i −0.0435313 + 0.0806645i
$$736$$ 5.97632 + 7.85073i 0.220290 + 0.289382i
$$737$$ −2.89803 + 5.01954i −0.106750 + 0.184897i
$$738$$ 1.62601 + 1.15788i 0.0598543 + 0.0426220i
$$739$$ −7.21704 6.88144i −0.265483 0.253138i 0.545631 0.838026i $$-0.316290\pi$$
−0.811114 + 0.584888i $$0.801139\pi$$
$$740$$ −5.31604 + 1.83990i −0.195421 + 0.0676360i
$$741$$ 1.93895 + 1.24609i 0.0712291 + 0.0457762i
$$742$$ −2.70777 5.37628i −0.0994053 0.197370i
$$743$$ 37.5023 5.39202i 1.37583 0.197814i 0.585586 0.810610i $$-0.300864\pi$$
0.790241 + 0.612796i $$0.209955\pi$$
$$744$$ 2.25487 2.15002i 0.0826677 0.0788235i
$$745$$ −1.75496 + 3.40414i −0.0642967 + 0.124718i
$$746$$ 1.24206 + 3.10252i 0.0454751 + 0.113591i
$$747$$ 5.83298 + 8.19128i 0.213418 + 0.299703i
$$748$$ −0.0659806 0.0301323i −0.00241249 0.00110175i
$$749$$ 5.19075 + 6.73030i 0.189666 + 0.245920i
$$750$$ −0.331649 0.516056i −0.0121101 0.0188437i
$$751$$ 8.92724 + 9.36262i 0.325760 + 0.341647i 0.866165 0.499758i $$-0.166578\pi$$
−0.540406 + 0.841405i $$0.681729\pi$$
$$752$$ −2.35021 2.98854i −0.0857034 0.108981i
$$753$$ 24.1787 + 8.36833i 0.881121 + 0.304959i
$$754$$ −0.157351 0.305218i −0.00573038 0.0111154i
$$755$$ −1.51103 + 1.74383i −0.0549922 + 0.0634643i
$$756$$ −2.77551 4.40971i −0.100944 0.160380i
$$757$$ 3.16540 1.44559i 0.115048 0.0525409i −0.357059 0.934082i $$-0.616221\pi$$
0.472108 + 0.881541i $$0.343493\pi$$
$$758$$ −0.498893 0.288036i −0.0181206 0.0104619i
$$759$$ −2.96454 5.97964i −0.107606 0.217047i
$$760$$ −0.704215 1.21974i −0.0255446 0.0442445i
$$761$$ 2.00454 20.9925i 0.0726644 0.760976i −0.883555 0.468327i $$-0.844857\pi$$
0.956220 0.292650i $$-0.0945369\pi$$
$$762$$ 0.940398 + 3.20270i 0.0340670 + 0.116022i
$$763$$ 16.0481 + 7.51274i 0.580982 + 0.271979i
$$764$$ −24.3868 + 37.9465i −0.882282 + 1.37286i
$$765$$ −0.00922569 + 0.00177811i −0.000333556 + 6.42876e-5i
$$766$$ 3.07888 2.42126i 0.111245 0.0874837i
$$767$$ 0.567548 + 2.33947i 0.0204930 + 0.0844732i
$$768$$ −13.5904 + 0.647388i −0.490400 + 0.0233606i
$$769$$ 6.10635 42.4706i 0.220201 1.53153i −0.517077 0.855939i $$-0.672980\pi$$
0.737277 0.675590i $$-0.236111\pi$$
$$770$$ 0.0830103 + 0.213157i 0.00299148 + 0.00768164i