Properties

Label 483.2.bf.a.178.17
Level $483$
Weight $2$
Character 483.178
Analytic conductor $3.857$
Analytic rank $0$
Dimension $640$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(10,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(66))
 
chi = DirichletCharacter(H, H._module([0, 11, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.10");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.bf (of order \(66\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(640\)
Relative dimension: \(32\) over \(\Q(\zeta_{66})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

Embedding invariants

Embedding label 178.17
Character \(\chi\) \(=\) 483.178
Dual form 483.2.bf.a.19.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.174212 - 0.0166352i) q^{2} +(-0.690079 - 0.723734i) q^{3} +(-1.93378 + 0.372706i) q^{4} +(0.315538 + 0.162671i) q^{5} +(-0.132259 - 0.114603i) q^{6} +(2.63128 - 0.276333i) q^{7} +(-0.666518 + 0.195707i) q^{8} +(-0.0475819 + 0.998867i) q^{9} +O(q^{10})\) \(q+(0.174212 - 0.0166352i) q^{2} +(-0.690079 - 0.723734i) q^{3} +(-1.93378 + 0.372706i) q^{4} +(0.315538 + 0.162671i) q^{5} +(-0.132259 - 0.114603i) q^{6} +(2.63128 - 0.276333i) q^{7} +(-0.666518 + 0.195707i) q^{8} +(-0.0475819 + 0.998867i) q^{9} +(0.0576764 + 0.0230902i) q^{10} +(0.132286 - 1.38536i) q^{11} +(1.60420 + 1.14235i) q^{12} +(-0.399449 + 0.0574321i) q^{13} +(0.453803 - 0.0919123i) q^{14} +(-0.100016 - 0.340622i) q^{15} +(3.54375 - 1.41870i) q^{16} +(0.00865619 + 0.0250104i) q^{17} +(0.00832702 + 0.174806i) q^{18} +(1.86799 - 5.39719i) q^{19} +(-0.670811 - 0.196968i) q^{20} +(-2.01578 - 1.71366i) q^{21} -0.243546i q^{22} +(4.33054 - 2.06067i) q^{23} +(0.601590 + 0.347328i) q^{24} +(-2.82718 - 3.97022i) q^{25} +(-0.0686332 + 0.0166502i) q^{26} +(0.755750 - 0.654861i) q^{27} +(-4.98534 + 1.51506i) q^{28} +(3.18409 - 3.67464i) q^{29} +(-0.0230902 - 0.0576764i) q^{30} +(4.35868 + 1.05741i) q^{31} +(1.82863 - 0.942725i) q^{32} +(-1.09392 + 0.860268i) q^{33} +(0.00192406 + 0.00421310i) q^{34} +(0.875221 + 0.340840i) q^{35} +(-0.280271 - 1.94933i) q^{36} +(8.03721 + 0.382860i) q^{37} +(0.235641 - 0.971327i) q^{38} +(0.317217 + 0.249462i) q^{39} +(-0.242148 - 0.0466701i) q^{40} +(-6.16670 - 9.59557i) q^{41} +(-0.379680 - 0.265006i) q^{42} +(-0.194037 + 0.660829i) q^{43} +(0.260520 + 2.72829i) q^{44} +(-0.177501 + 0.307440i) q^{45} +(0.720151 - 0.431033i) q^{46} +(-0.862571 + 0.498005i) q^{47} +(-3.47223 - 1.58571i) q^{48} +(6.84728 - 1.45422i) q^{49} +(-0.558573 - 0.644628i) q^{50} +(0.0121274 - 0.0235239i) q^{51} +(0.751043 - 0.259938i) q^{52} +(-8.03667 + 10.2195i) q^{53} +(0.120767 - 0.126656i) q^{54} +(0.267099 - 0.415615i) q^{55} +(-1.69971 + 0.699142i) q^{56} +(-5.19519 + 2.37256i) q^{57} +(0.493577 - 0.693132i) q^{58} +(-2.21707 + 5.53797i) q^{59} +(0.320360 + 0.621412i) q^{60} +(2.73057 + 2.60359i) q^{61} +(0.776923 + 0.111705i) q^{62} +(0.150819 + 2.64145i) q^{63} +(-6.11955 + 3.93279i) q^{64} +(-0.135384 - 0.0468568i) q^{65} +(-0.176263 + 0.168066i) q^{66} +(3.39259 - 2.41585i) q^{67} +(-0.0260607 - 0.0451385i) q^{68} +(-4.47980 - 1.71213i) q^{69} +(0.158143 + 0.0448188i) q^{70} +(-5.73856 + 12.5657i) q^{71} +(-0.163771 - 0.675075i) q^{72} +(-1.45338 - 7.54085i) q^{73} +(1.40654 - 0.0670019i) q^{74} +(-0.922406 + 4.78589i) q^{75} +(-1.60071 + 11.1332i) q^{76} +(-0.0347399 - 3.68183i) q^{77} +(0.0594127 + 0.0381822i) q^{78} +(6.42067 + 8.16455i) q^{79} +(1.34897 + 0.128811i) q^{80} +(-0.995472 - 0.0950560i) q^{81} +(-1.23393 - 1.56907i) q^{82} +(-8.45954 - 5.43662i) q^{83} +(4.53678 + 2.56255i) q^{84} +(-0.00133712 + 0.00929985i) q^{85} +(-0.0228104 + 0.118352i) q^{86} +(-4.85673 + 0.231355i) q^{87} +(0.182954 + 0.949256i) q^{88} +(3.10545 + 12.8008i) q^{89} +(-0.0258084 + 0.0565124i) q^{90} +(-1.03519 + 0.261501i) q^{91} +(-7.60631 + 5.59892i) q^{92} +(-2.24256 - 3.88422i) q^{93} +(-0.141985 + 0.101107i) q^{94} +(1.46739 - 1.39915i) q^{95} +(-1.94418 - 0.672888i) q^{96} +(10.0402 - 6.45243i) q^{97} +(1.16868 - 0.367248i) q^{98} +(1.37750 + 0.198054i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 640 q - 4 q^{2} + 36 q^{4} + 24 q^{8} - 32 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 640 q - 4 q^{2} + 36 q^{4} + 24 q^{8} - 32 q^{9} + 4 q^{18} - 28 q^{23} + 56 q^{25} - 84 q^{26} - 176 q^{28} - 24 q^{29} + 12 q^{31} + 36 q^{32} - 76 q^{35} + 28 q^{36} + 44 q^{37} - 110 q^{42} - 88 q^{43} + 154 q^{44} + 8 q^{46} + 12 q^{47} - 8 q^{49} - 212 q^{50} + 44 q^{51} + 108 q^{52} - 110 q^{56} - 88 q^{57} + 2 q^{58} - 36 q^{59} - 168 q^{64} - 48 q^{70} + 16 q^{71} + 12 q^{72} - 48 q^{73} - 22 q^{74} + 48 q^{75} + 32 q^{78} - 44 q^{79} - 594 q^{80} + 32 q^{81} + 24 q^{82} + 352 q^{85} - 36 q^{87} - 330 q^{88} + 244 q^{92} - 24 q^{93} - 486 q^{94} - 154 q^{95} - 60 q^{96} - 24 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.174212 0.0166352i 0.123186 0.0117629i −0.0332808 0.999446i \(-0.510596\pi\)
0.156467 + 0.987683i \(0.449990\pi\)
\(3\) −0.690079 0.723734i −0.398417 0.417848i
\(4\) −1.93378 + 0.372706i −0.966892 + 0.186353i
\(5\) 0.315538 + 0.162671i 0.141113 + 0.0727487i 0.527337 0.849656i \(-0.323191\pi\)
−0.386224 + 0.922405i \(0.626221\pi\)
\(6\) −0.132259 0.114603i −0.0539946 0.0467866i
\(7\) 2.63128 0.276333i 0.994531 0.104444i
\(8\) −0.666518 + 0.195707i −0.235650 + 0.0691930i
\(9\) −0.0475819 + 0.998867i −0.0158606 + 0.332956i
\(10\) 0.0576764 + 0.0230902i 0.0182389 + 0.00730175i
\(11\) 0.132286 1.38536i 0.0398857 0.417702i −0.953374 0.301791i \(-0.902415\pi\)
0.993260 0.115910i \(-0.0369786\pi\)
\(12\) 1.60420 + 1.14235i 0.463094 + 0.329768i
\(13\) −0.399449 + 0.0574321i −0.110787 + 0.0159288i −0.197485 0.980306i \(-0.563278\pi\)
0.0866982 + 0.996235i \(0.472368\pi\)
\(14\) 0.453803 0.0919123i 0.121284 0.0245646i
\(15\) −0.100016 0.340622i −0.0258239 0.0879481i
\(16\) 3.54375 1.41870i 0.885937 0.354676i
\(17\) 0.00865619 + 0.0250104i 0.00209943 + 0.00606592i 0.946046 0.324033i \(-0.105039\pi\)
−0.943946 + 0.330099i \(0.892918\pi\)
\(18\) 0.00832702 + 0.174806i 0.00196270 + 0.0412021i
\(19\) 1.86799 5.39719i 0.428545 1.23820i −0.499689 0.866205i \(-0.666553\pi\)
0.928235 0.371995i \(-0.121326\pi\)
\(20\) −0.670811 0.196968i −0.149998 0.0440434i
\(21\) −2.01578 1.71366i −0.439880 0.373950i
\(22\) 0.243546i 0.0519243i
\(23\) 4.33054 2.06067i 0.902981 0.429680i
\(24\) 0.601590 + 0.347328i 0.122799 + 0.0708980i
\(25\) −2.82718 3.97022i −0.565436 0.794044i
\(26\) −0.0686332 + 0.0166502i −0.0134601 + 0.00326538i
\(27\) 0.755750 0.654861i 0.145444 0.126028i
\(28\) −4.98534 + 1.51506i −0.942141 + 0.286320i
\(29\) 3.18409 3.67464i 0.591271 0.682363i −0.378718 0.925512i \(-0.623635\pi\)
0.969989 + 0.243149i \(0.0781805\pi\)
\(30\) −0.0230902 0.0576764i −0.00421567 0.0105302i
\(31\) 4.35868 + 1.05741i 0.782843 + 0.189916i 0.607211 0.794540i \(-0.292288\pi\)
0.175631 + 0.984456i \(0.443803\pi\)
\(32\) 1.82863 0.942725i 0.323259 0.166652i
\(33\) −1.09392 + 0.860268i −0.190427 + 0.149754i
\(34\) 0.00192406 + 0.00421310i 0.000329974 + 0.000722541i
\(35\) 0.875221 + 0.340840i 0.147939 + 0.0576125i
\(36\) −0.280271 1.94933i −0.0467118 0.324888i
\(37\) 8.03721 + 0.382860i 1.32131 + 0.0629417i 0.696343 0.717710i \(-0.254809\pi\)
0.624967 + 0.780651i \(0.285112\pi\)
\(38\) 0.235641 0.971327i 0.0382261 0.157570i
\(39\) 0.317217 + 0.249462i 0.0507954 + 0.0399459i
\(40\) −0.242148 0.0466701i −0.0382869 0.00737919i
\(41\) −6.16670 9.59557i −0.963077 1.49858i −0.863997 0.503497i \(-0.832046\pi\)
−0.0990797 0.995079i \(-0.531590\pi\)
\(42\) −0.379680 0.265006i −0.0585858 0.0408913i
\(43\) −0.194037 + 0.660829i −0.0295903 + 0.100775i −0.972964 0.230956i \(-0.925815\pi\)
0.943374 + 0.331732i \(0.107633\pi\)
\(44\) 0.260520 + 2.72829i 0.0392749 + 0.411306i
\(45\) −0.177501 + 0.307440i −0.0264603 + 0.0458305i
\(46\) 0.720151 0.431033i 0.106180 0.0635523i
\(47\) −0.862571 + 0.498005i −0.125819 + 0.0726415i −0.561588 0.827417i \(-0.689810\pi\)
0.435770 + 0.900058i \(0.356476\pi\)
\(48\) −3.47223 1.58571i −0.501173 0.228878i
\(49\) 6.84728 1.45422i 0.978183 0.207746i
\(50\) −0.558573 0.644628i −0.0789942 0.0911641i
\(51\) 0.0121274 0.0235239i 0.00169818 0.00329401i
\(52\) 0.751043 0.259938i 0.104151 0.0360470i
\(53\) −8.03667 + 10.2195i −1.10392 + 1.40375i −0.198053 + 0.980191i \(0.563462\pi\)
−0.905869 + 0.423559i \(0.860781\pi\)
\(54\) 0.120767 0.126656i 0.0164342 0.0172357i
\(55\) 0.267099 0.415615i 0.0360157 0.0560415i
\(56\) −1.69971 + 0.699142i −0.227134 + 0.0934267i
\(57\) −5.19519 + 2.37256i −0.688119 + 0.314254i
\(58\) 0.493577 0.693132i 0.0648098 0.0910127i
\(59\) −2.21707 + 5.53797i −0.288638 + 0.720982i 0.711200 + 0.702989i \(0.248152\pi\)
−0.999838 + 0.0179927i \(0.994272\pi\)
\(60\) 0.320360 + 0.621412i 0.0413583 + 0.0802240i
\(61\) 2.73057 + 2.60359i 0.349614 + 0.333356i 0.844454 0.535628i \(-0.179925\pi\)
−0.494840 + 0.868984i \(0.664773\pi\)
\(62\) 0.776923 + 0.111705i 0.0986693 + 0.0141865i
\(63\) 0.150819 + 2.64145i 0.0190014 + 0.332791i
\(64\) −6.11955 + 3.93279i −0.764943 + 0.491599i
\(65\) −0.135384 0.0468568i −0.0167923 0.00581187i
\(66\) −0.176263 + 0.168066i −0.0216964 + 0.0206875i
\(67\) 3.39259 2.41585i 0.414470 0.295143i −0.353736 0.935345i \(-0.615089\pi\)
0.768206 + 0.640202i \(0.221149\pi\)
\(68\) −0.0260607 0.0451385i −0.00316033 0.00547385i
\(69\) −4.47980 1.71213i −0.539304 0.206117i
\(70\) 0.158143 + 0.0448188i 0.0189018 + 0.00535687i
\(71\) −5.73856 + 12.5657i −0.681041 + 1.49127i 0.180495 + 0.983576i \(0.442230\pi\)
−0.861536 + 0.507697i \(0.830497\pi\)
\(72\) −0.163771 0.675075i −0.0193006 0.0795583i
\(73\) −1.45338 7.54085i −0.170105 0.882590i −0.962232 0.272232i \(-0.912238\pi\)
0.792126 0.610357i \(-0.208974\pi\)
\(74\) 1.40654 0.0670019i 0.163507 0.00778882i
\(75\) −0.922406 + 4.78589i −0.106510 + 0.552628i
\(76\) −1.60071 + 11.1332i −0.183614 + 1.27707i
\(77\) −0.0347399 3.68183i −0.00395898 0.419583i
\(78\) 0.0594127 + 0.0381822i 0.00672716 + 0.00432328i
\(79\) 6.42067 + 8.16455i 0.722382 + 0.918583i 0.999102 0.0423671i \(-0.0134899\pi\)
−0.276720 + 0.960951i \(0.589247\pi\)
\(80\) 1.34897 + 0.128811i 0.150819 + 0.0144015i
\(81\) −0.995472 0.0950560i −0.110608 0.0105618i
\(82\) −1.23393 1.56907i −0.136265 0.173275i
\(83\) −8.45954 5.43662i −0.928556 0.596746i −0.0134276 0.999910i \(-0.504274\pi\)
−0.915128 + 0.403163i \(0.867911\pi\)
\(84\) 4.53678 + 2.56255i 0.495003 + 0.279597i
\(85\) −0.00133712 + 0.00929985i −0.000145031 + 0.00100871i
\(86\) −0.0228104 + 0.118352i −0.00245971 + 0.0127622i
\(87\) −4.85673 + 0.231355i −0.520696 + 0.0248038i
\(88\) 0.182954 + 0.949256i 0.0195030 + 0.101191i
\(89\) 3.10545 + 12.8008i 0.329177 + 1.35689i 0.860385 + 0.509645i \(0.170223\pi\)
−0.531207 + 0.847242i \(0.678262\pi\)
\(90\) −0.0258084 + 0.0565124i −0.00272044 + 0.00595693i
\(91\) −1.03519 + 0.261501i −0.108518 + 0.0274128i
\(92\) −7.60631 + 5.59892i −0.793013 + 0.583728i
\(93\) −2.24256 3.88422i −0.232542 0.402775i
\(94\) −0.141985 + 0.101107i −0.0146447 + 0.0104284i
\(95\) 1.46739 1.39915i 0.150551 0.143550i
\(96\) −1.94418 0.672888i −0.198427 0.0686763i
\(97\) 10.0402 6.45243i 1.01943 0.655146i 0.0796102 0.996826i \(-0.474632\pi\)
0.939816 + 0.341681i \(0.110996\pi\)
\(98\) 1.16868 0.367248i 0.118055 0.0370976i
\(99\) 1.37750 + 0.198054i 0.138444 + 0.0199052i
\(100\) 6.94689 + 6.62384i 0.694689 + 0.662384i
\(101\) −4.62404 8.96939i −0.460109 0.892487i −0.998752 0.0499529i \(-0.984093\pi\)
0.538642 0.842535i \(-0.318937\pi\)
\(102\) 0.00172141 0.00429988i 0.000170445 0.000425752i
\(103\) −1.67950 + 2.35853i −0.165486 + 0.232393i −0.888989 0.457929i \(-0.848592\pi\)
0.723503 + 0.690321i \(0.242531\pi\)
\(104\) 0.255000 0.116455i 0.0250048 0.0114193i
\(105\) −0.357294 0.868633i −0.0348683 0.0847699i
\(106\) −1.23008 + 1.91404i −0.119476 + 0.185908i
\(107\) 2.21688 2.32499i 0.214313 0.224765i −0.607799 0.794091i \(-0.707947\pi\)
0.822112 + 0.569326i \(0.192796\pi\)
\(108\) −1.21739 + 1.54803i −0.117143 + 0.148959i
\(109\) 6.32903 2.19050i 0.606211 0.209812i −0.00668197 0.999978i \(-0.502127\pi\)
0.612893 + 0.790166i \(0.290006\pi\)
\(110\) 0.0396180 0.0768481i 0.00377742 0.00732718i
\(111\) −5.26922 6.08101i −0.500132 0.577184i
\(112\) 8.93256 4.71226i 0.844048 0.445267i
\(113\) −6.52412 2.97946i −0.613737 0.280284i 0.0841937 0.996449i \(-0.473169\pi\)
−0.697931 + 0.716165i \(0.745896\pi\)
\(114\) −0.865593 + 0.499751i −0.0810702 + 0.0468059i
\(115\) 1.70166 + 0.0542335i 0.158681 + 0.00505730i
\(116\) −4.78778 + 8.29269i −0.444535 + 0.769956i
\(117\) −0.0383605 0.401729i −0.00354643 0.0371399i
\(118\) −0.294114 + 1.00166i −0.0270754 + 0.0922102i
\(119\) 0.0296881 + 0.0634174i 0.00272150 + 0.00581347i
\(120\) 0.133324 + 0.207456i 0.0121708 + 0.0189381i
\(121\) 8.89949 + 1.71524i 0.809045 + 0.155931i
\(122\) 0.519008 + 0.408152i 0.0469888 + 0.0369524i
\(123\) −2.68913 + 11.0848i −0.242471 + 0.999479i
\(124\) −8.82286 0.420284i −0.792316 0.0377427i
\(125\) −0.498853 3.46960i −0.0446188 0.310330i
\(126\) 0.0702154 + 0.457662i 0.00625528 + 0.0407718i
\(127\) 7.92335 + 17.3497i 0.703084 + 1.53954i 0.836192 + 0.548437i \(0.184777\pi\)
−0.133108 + 0.991102i \(0.542496\pi\)
\(128\) −4.23502 + 3.33046i −0.374326 + 0.294374i
\(129\) 0.612165 0.315593i 0.0538981 0.0277864i
\(130\) −0.0243649 0.00591086i −0.00213694 0.000518417i
\(131\) −4.99796 12.4843i −0.436674 1.09076i −0.969621 0.244611i \(-0.921340\pi\)
0.532947 0.846148i \(-0.321084\pi\)
\(132\) 1.79478 2.07128i 0.156215 0.180282i
\(133\) 3.42377 14.7177i 0.296879 1.27619i
\(134\) 0.550839 0.477305i 0.0475853 0.0412329i
\(135\) 0.344995 0.0836948i 0.0296924 0.00720330i
\(136\) −0.0106642 0.0149758i −0.000914449 0.00128416i
\(137\) 12.0205 + 6.94002i 1.02698 + 0.592926i 0.916117 0.400910i \(-0.131306\pi\)
0.110860 + 0.993836i \(0.464639\pi\)
\(138\) −0.808914 0.223751i −0.0688593 0.0190470i
\(139\) 4.07816i 0.345905i −0.984930 0.172953i \(-0.944669\pi\)
0.984930 0.172953i \(-0.0553307\pi\)
\(140\) −1.81952 0.332910i −0.153778 0.0281361i
\(141\) 0.955665 + 0.280609i 0.0804815 + 0.0236315i
\(142\) −0.790690 + 2.28455i −0.0663532 + 0.191715i
\(143\) 0.0267227 + 0.560978i 0.00223466 + 0.0469114i
\(144\) 1.24848 + 3.60724i 0.104040 + 0.300603i
\(145\) 1.60246 0.641528i 0.133077 0.0532760i
\(146\) −0.378639 1.28953i −0.0313364 0.106722i
\(147\) −5.77763 3.95208i −0.476531 0.325962i
\(148\) −15.6849 + 2.25515i −1.28929 + 0.185372i
\(149\) −8.78795 6.25787i −0.719937 0.512665i 0.160377 0.987056i \(-0.448729\pi\)
−0.880314 + 0.474391i \(0.842668\pi\)
\(150\) −0.0810794 + 0.849102i −0.00662011 + 0.0693289i
\(151\) −6.03414 2.41570i −0.491051 0.196587i 0.112903 0.993606i \(-0.463985\pi\)
−0.603955 + 0.797019i \(0.706409\pi\)
\(152\) −0.188776 + 3.96290i −0.0153118 + 0.321434i
\(153\) −0.0253940 + 0.00745634i −0.00205298 + 0.000602809i
\(154\) −0.0673000 0.640839i −0.00542319 0.0516403i
\(155\) 1.20332 + 1.04268i 0.0966531 + 0.0837504i
\(156\) −0.706405 0.364177i −0.0565577 0.0291575i
\(157\) −8.21777 + 1.58384i −0.655849 + 0.126405i −0.506310 0.862351i \(-0.668991\pi\)
−0.149539 + 0.988756i \(0.547779\pi\)
\(158\) 1.25437 + 1.31555i 0.0997926 + 0.104659i
\(159\) 12.9421 1.23582i 1.02638 0.0980070i
\(160\) 0.730357 0.0577398
\(161\) 10.8254 6.61889i 0.853165 0.521641i
\(162\) −0.175004 −0.0137496
\(163\) −19.5241 + 1.86433i −1.52925 + 0.146025i −0.825490 0.564417i \(-0.809101\pi\)
−0.703756 + 0.710442i \(0.748495\pi\)
\(164\) 15.5014 + 16.2574i 1.21046 + 1.26949i
\(165\) −0.485114 + 0.0934981i −0.0377661 + 0.00727882i
\(166\) −1.56419 0.806396i −0.121405 0.0625884i
\(167\) −5.19297 4.49974i −0.401844 0.348200i 0.430371 0.902652i \(-0.358383\pi\)
−0.832216 + 0.554452i \(0.812928\pi\)
\(168\) 1.67893 + 0.747678i 0.129532 + 0.0576846i
\(169\) −12.3171 + 3.61664i −0.947473 + 0.278203i
\(170\) −7.82364e−5 0.00164238i −6.00046e−6 0.000125965i
\(171\) 5.30219 + 2.12268i 0.405469 + 0.162325i
\(172\) 0.128930 1.35022i 0.00983085 0.102953i
\(173\) −1.96423 1.39872i −0.149338 0.106343i 0.502946 0.864318i \(-0.332250\pi\)
−0.652284 + 0.757975i \(0.726189\pi\)
\(174\) −0.842250 + 0.121097i −0.0638508 + 0.00918036i
\(175\) −8.53622 9.66553i −0.645277 0.730645i
\(176\) −1.49663 5.09704i −0.112812 0.384204i
\(177\) 5.53797 2.21707i 0.416259 0.166645i
\(178\) 0.753950 + 2.17840i 0.0565109 + 0.163278i
\(179\) 0.247235 + 5.19011i 0.0184792 + 0.387927i 0.989094 + 0.147287i \(0.0470542\pi\)
−0.970615 + 0.240640i \(0.922643\pi\)
\(180\) 0.228663 0.660679i 0.0170436 0.0492441i
\(181\) −6.99474 2.05384i −0.519915 0.152661i 0.0112378 0.999937i \(-0.496423\pi\)
−0.531153 + 0.847276i \(0.678241\pi\)
\(182\) −0.175992 + 0.0627771i −0.0130454 + 0.00465335i
\(183\) 3.77289i 0.278900i
\(184\) −2.48310 + 2.22099i −0.183056 + 0.163734i
\(185\) 2.47377 + 1.42823i 0.181875 + 0.105005i
\(186\) −0.455294 0.639371i −0.0333838 0.0468809i
\(187\) 0.0357935 0.00868342i 0.00261748 0.000634994i
\(188\) 1.48242 1.28452i 0.108116 0.0936833i
\(189\) 1.80763 1.93196i 0.131486 0.140530i
\(190\) 0.232361 0.268158i 0.0168572 0.0194543i
\(191\) 8.51267 + 21.2636i 0.615955 + 1.53858i 0.827649 + 0.561245i \(0.189678\pi\)
−0.211694 + 0.977336i \(0.567898\pi\)
\(192\) 7.06927 + 1.71499i 0.510180 + 0.123768i
\(193\) 1.10181 0.568023i 0.0793101 0.0408872i −0.418115 0.908394i \(-0.637309\pi\)
0.497425 + 0.867507i \(0.334279\pi\)
\(194\) 1.64178 1.29111i 0.117873 0.0926962i
\(195\) 0.0595137 + 0.130317i 0.00426186 + 0.00933218i
\(196\) −12.6992 + 5.36418i −0.907083 + 0.383155i
\(197\) −0.838065 5.82887i −0.0597096 0.415290i −0.997651 0.0684967i \(-0.978180\pi\)
0.937942 0.346793i \(-0.112729\pi\)
\(198\) 0.243270 + 0.0115884i 0.0172885 + 0.000823552i
\(199\) 1.86921 7.70498i 0.132505 0.546191i −0.866398 0.499354i \(-0.833571\pi\)
0.998903 0.0468371i \(-0.0149142\pi\)
\(200\) 2.66137 + 2.09292i 0.188187 + 0.147992i
\(201\) −4.08958 0.788203i −0.288457 0.0555955i
\(202\) −0.954769 1.48565i −0.0671773 0.104530i
\(203\) 7.36281 10.5489i 0.516768 0.740386i
\(204\) −0.0146843 + 0.0500102i −0.00102811 + 0.00350141i
\(205\) −0.384905 4.03091i −0.0268830 0.281531i
\(206\) −0.253354 + 0.438822i −0.0176520 + 0.0305742i
\(207\) 1.85229 + 4.42369i 0.128743 + 0.307468i
\(208\) −1.33407 + 0.770224i −0.0925009 + 0.0534054i
\(209\) −7.22994 3.30180i −0.500106 0.228391i
\(210\) −0.0766946 0.145382i −0.00529243 0.0100323i
\(211\) 3.38436 + 3.90576i 0.232989 + 0.268883i 0.860190 0.509974i \(-0.170345\pi\)
−0.627201 + 0.778857i \(0.715800\pi\)
\(212\) 11.7323 22.7575i 0.805780 1.56299i
\(213\) 13.0543 4.51813i 0.894464 0.309577i
\(214\) 0.347529 0.441919i 0.0237566 0.0302089i
\(215\) −0.168724 + 0.176952i −0.0115069 + 0.0120681i
\(216\) −0.375559 + 0.584382i −0.0255536 + 0.0397621i
\(217\) 11.7611 + 1.57788i 0.798397 + 0.107114i
\(218\) 1.06615 0.486894i 0.0722088 0.0329767i
\(219\) −4.45462 + 6.25564i −0.301015 + 0.422717i
\(220\) −0.361610 + 0.903259i −0.0243798 + 0.0608977i
\(221\) −0.00489411 0.00949324i −0.000329213 0.000638584i
\(222\) −1.01912 0.971727i −0.0683987 0.0652180i
\(223\) 18.7943 + 2.70221i 1.25856 + 0.180954i 0.739132 0.673561i \(-0.235236\pi\)
0.519428 + 0.854514i \(0.326145\pi\)
\(224\) 4.55114 2.98589i 0.304086 0.199503i
\(225\) 4.10025 2.63507i 0.273350 0.175671i
\(226\) −1.18614 0.410527i −0.0789009 0.0273079i
\(227\) 7.20386 6.86887i 0.478137 0.455903i −0.412274 0.911060i \(-0.635265\pi\)
0.890411 + 0.455157i \(0.150417\pi\)
\(228\) 9.16210 6.52430i 0.606775 0.432083i
\(229\) −3.04725 5.27798i −0.201368 0.348779i 0.747602 0.664147i \(-0.231205\pi\)
−0.948969 + 0.315368i \(0.897872\pi\)
\(230\) 0.297352 0.0188594i 0.0196068 0.00124355i
\(231\) −2.64069 + 2.56589i −0.173745 + 0.168823i
\(232\) −1.40310 + 3.07236i −0.0921180 + 0.201710i
\(233\) 0.953925 + 3.93213i 0.0624937 + 0.257603i 0.994485 0.104878i \(-0.0334451\pi\)
−0.931991 + 0.362480i \(0.881930\pi\)
\(234\) −0.0133657 0.0693477i −0.000873742 0.00453340i
\(235\) −0.353185 + 0.0168243i −0.0230392 + 0.00109749i
\(236\) 2.22330 11.5356i 0.144724 0.750900i
\(237\) 1.47819 10.2810i 0.0960188 0.667825i
\(238\) 0.00622696 + 0.0105542i 0.000403634 + 0.000684126i
\(239\) 13.7866 + 8.86009i 0.891779 + 0.573111i 0.904341 0.426810i \(-0.140363\pi\)
−0.0125627 + 0.999921i \(0.503999\pi\)
\(240\) −0.837670 1.06518i −0.0540714 0.0687574i
\(241\) −26.5134 2.53172i −1.70788 0.163082i −0.805084 0.593161i \(-0.797880\pi\)
−0.902791 + 0.430079i \(0.858486\pi\)
\(242\) 1.57893 + 0.150769i 0.101497 + 0.00969182i
\(243\) 0.618159 + 0.786053i 0.0396549 + 0.0504253i
\(244\) −6.25071 4.01709i −0.400161 0.257168i
\(245\) 2.39714 + 0.654993i 0.153147 + 0.0418460i
\(246\) −0.284081 + 1.97583i −0.0181123 + 0.125974i
\(247\) −0.436193 + 2.26318i −0.0277543 + 0.144003i
\(248\) −3.11208 + 0.148247i −0.197617 + 0.00941367i
\(249\) 1.90309 + 9.87416i 0.120603 + 0.625749i
\(250\) −0.144623 0.596145i −0.00914678 0.0377035i
\(251\) −10.6288 + 23.2738i −0.670882 + 1.46903i 0.201141 + 0.979562i \(0.435535\pi\)
−0.872023 + 0.489465i \(0.837192\pi\)
\(252\) −1.27614 5.05178i −0.0803890 0.318232i
\(253\) −2.28191 6.27196i −0.143462 0.394315i
\(254\) 1.66895 + 2.89071i 0.104720 + 0.181380i
\(255\) 0.00765333 0.00544991i 0.000479270 0.000341287i
\(256\) 9.84696 9.38905i 0.615435 0.586816i
\(257\) −4.92668 1.70514i −0.307318 0.106364i 0.169056 0.985606i \(-0.445928\pi\)
−0.476374 + 0.879243i \(0.658049\pi\)
\(258\) 0.101396 0.0651634i 0.00631266 0.00405690i
\(259\) 21.2540 1.21354i 1.32066 0.0754056i
\(260\) 0.279267 + 0.0401525i 0.0173194 + 0.00249016i
\(261\) 3.51897 + 3.35533i 0.217819 + 0.207690i
\(262\) −1.07838 2.09177i −0.0666226 0.129230i
\(263\) −6.94283 + 17.3423i −0.428113 + 1.06937i 0.544874 + 0.838518i \(0.316577\pi\)
−0.972988 + 0.230857i \(0.925847\pi\)
\(264\) 0.560756 0.787472i 0.0345122 0.0484656i
\(265\) −4.19829 + 1.91729i −0.257899 + 0.117778i
\(266\) 0.351629 2.62095i 0.0215597 0.160701i
\(267\) 7.12140 11.0811i 0.435823 0.678153i
\(268\) −5.66013 + 5.93617i −0.345747 + 0.362609i
\(269\) 16.8494 21.4257i 1.02733 1.30635i 0.0763515 0.997081i \(-0.475673\pi\)
0.950974 0.309270i \(-0.100085\pi\)
\(270\) 0.0587098 0.0203196i 0.00357296 0.00123661i
\(271\) −6.71412 + 13.0236i −0.407854 + 0.791126i −0.999891 0.0147849i \(-0.995294\pi\)
0.592037 + 0.805911i \(0.298324\pi\)
\(272\) 0.0661577 + 0.0763500i 0.00401140 + 0.00462940i
\(273\) 0.903622 + 0.568747i 0.0546897 + 0.0344222i
\(274\) 2.20955 + 1.00907i 0.133484 + 0.0609601i
\(275\) −5.87418 + 3.39146i −0.354227 + 0.204513i
\(276\) 9.30109 + 1.64125i 0.559860 + 0.0987916i
\(277\) 4.60308 7.97277i 0.276572 0.479038i −0.693958 0.720015i \(-0.744135\pi\)
0.970531 + 0.240978i \(0.0774681\pi\)
\(278\) −0.0678410 0.710463i −0.00406883 0.0426107i
\(279\) −1.26360 + 4.30343i −0.0756499 + 0.257640i
\(280\) −0.650055 0.0558888i −0.0388482 0.00333999i
\(281\) −1.66565 2.59180i −0.0993642 0.154614i 0.788012 0.615660i \(-0.211111\pi\)
−0.887376 + 0.461046i \(0.847474\pi\)
\(282\) 0.171156 + 0.0329876i 0.0101922 + 0.00196438i
\(283\) 0.761883 + 0.599152i 0.0452893 + 0.0356159i 0.640547 0.767919i \(-0.278708\pi\)
−0.595258 + 0.803535i \(0.702950\pi\)
\(284\) 6.41382 26.4381i 0.380590 1.56881i
\(285\) −2.02523 0.0964734i −0.119964 0.00571459i
\(286\) 0.0139874 + 0.0972843i 0.000827091 + 0.00575254i
\(287\) −18.8779 23.5446i −1.11433 1.38979i
\(288\) 0.854647 + 1.87142i 0.0503606 + 0.110274i
\(289\) 13.3624 10.5083i 0.786021 0.618134i
\(290\) 0.268495 0.138419i 0.0157666 0.00812823i
\(291\) −11.5984 2.81373i −0.679908 0.164944i
\(292\) 5.62105 + 14.0407i 0.328947 + 0.821669i
\(293\) 17.4452 20.1329i 1.01916 1.17618i 0.0349127 0.999390i \(-0.488885\pi\)
0.984249 0.176785i \(-0.0565699\pi\)
\(294\) −1.07227 0.592386i −0.0625363 0.0345487i
\(295\) −1.60044 + 1.38679i −0.0931810 + 0.0807418i
\(296\) −5.43187 + 1.31776i −0.315721 + 0.0765931i
\(297\) −0.807243 1.13361i −0.0468410 0.0657790i
\(298\) −1.63506 0.944004i −0.0947167 0.0546847i
\(299\) −1.61148 + 1.07185i −0.0931945 + 0.0619865i
\(300\) 9.59868i 0.554180i
\(301\) −0.327957 + 1.79245i −0.0189031 + 0.103315i
\(302\) −1.09140 0.320464i −0.0628031 0.0184407i
\(303\) −3.30050 + 9.53616i −0.189609 + 0.547838i
\(304\) −1.03734 21.7764i −0.0594954 1.24896i
\(305\) 0.438069 + 1.26572i 0.0250838 + 0.0724748i
\(306\) −0.00429988 + 0.00172141i −0.000245808 + 9.84067e-5i
\(307\) 2.13817 + 7.28195i 0.122032 + 0.415603i 0.997737 0.0672445i \(-0.0214208\pi\)
−0.875704 + 0.482847i \(0.839603\pi\)
\(308\) 1.43942 + 7.10691i 0.0820186 + 0.404954i
\(309\) 2.86594 0.412059i 0.163037 0.0234412i
\(310\) 0.226978 + 0.161630i 0.0128915 + 0.00917997i
\(311\) −1.84399 + 19.3111i −0.104563 + 1.09503i 0.779097 + 0.626904i \(0.215678\pi\)
−0.883660 + 0.468130i \(0.844928\pi\)
\(312\) −0.260252 0.104189i −0.0147339 0.00589856i
\(313\) 0.0405241 0.850705i 0.00229056 0.0480847i −0.997433 0.0716105i \(-0.977186\pi\)
0.999723 + 0.0235258i \(0.00748918\pi\)
\(314\) −1.40528 + 0.412628i −0.0793046 + 0.0232859i
\(315\) −0.382098 + 0.858011i −0.0215288 + 0.0483435i
\(316\) −15.4592 13.3955i −0.869647 0.753553i
\(317\) 17.0734 + 8.80194i 0.958936 + 0.494366i 0.865308 0.501241i \(-0.167123\pi\)
0.0936288 + 0.995607i \(0.470153\pi\)
\(318\) 2.23411 0.430589i 0.125282 0.0241462i
\(319\) −4.66949 4.89722i −0.261441 0.274191i
\(320\) −2.57070 + 0.245472i −0.143707 + 0.0137223i
\(321\) −3.21250 −0.179304
\(322\) 1.77581 1.33317i 0.0989621 0.0742946i
\(323\) 0.151156 0.00841052
\(324\) 1.96046 0.187201i 0.108914 0.0104000i
\(325\) 1.35733 + 1.42353i 0.0752913 + 0.0789632i
\(326\) −3.37031 + 0.649574i −0.186664 + 0.0359766i
\(327\) −5.95287 3.06892i −0.329194 0.169711i
\(328\) 5.98814 + 5.18875i 0.330640 + 0.286501i
\(329\) −2.13205 + 1.54875i −0.117544 + 0.0853853i
\(330\) −0.0829571 + 0.0243584i −0.00456664 + 0.00134089i
\(331\) 0.277942 5.83472i 0.0152771 0.320705i −0.978274 0.207318i \(-0.933527\pi\)
0.993551 0.113388i \(-0.0361703\pi\)
\(332\) 18.3852 + 7.36032i 1.00902 + 0.403950i
\(333\) −0.764852 + 8.00989i −0.0419136 + 0.438939i
\(334\) −0.979530 0.697520i −0.0535975 0.0381666i
\(335\) 1.46348 0.210416i 0.0799584 0.0114963i
\(336\) −9.57460 3.21297i −0.522337 0.175282i
\(337\) 2.86359 + 9.75251i 0.155990 + 0.531253i 0.999987 0.00509479i \(-0.00162173\pi\)
−0.843997 + 0.536348i \(0.819804\pi\)
\(338\) −2.08563 + 0.834958i −0.113443 + 0.0454158i
\(339\) 2.34582 + 6.77779i 0.127407 + 0.368119i
\(340\) −0.000880418 0.0184823i −4.77474e−5 0.00100234i
\(341\) 2.04148 5.89847i 0.110552 0.319420i
\(342\) 0.959014 + 0.281592i 0.0518576 + 0.0152268i
\(343\) 17.6153 5.71860i 0.951135 0.308775i
\(344\) 0.478429i 0.0257951i
\(345\) −1.13503 1.26898i −0.0611081 0.0683195i
\(346\) −0.365460 0.210998i −0.0196472 0.0113433i
\(347\) −0.590479 0.829212i −0.0316986 0.0445144i 0.798423 0.602098i \(-0.205668\pi\)
−0.830121 + 0.557583i \(0.811729\pi\)
\(348\) 9.30565 2.25753i 0.498835 0.121016i
\(349\) −20.9565 + 18.1589i −1.12178 + 0.972025i −0.999790 0.0205063i \(-0.993472\pi\)
−0.121987 + 0.992532i \(0.538927\pi\)
\(350\) −1.64789 1.54184i −0.0880837 0.0824150i
\(351\) −0.264273 + 0.304988i −0.0141059 + 0.0162790i
\(352\) −1.06411 2.65802i −0.0567173 0.141673i
\(353\) 15.0459 + 3.65010i 0.800813 + 0.194275i 0.615224 0.788352i \(-0.289066\pi\)
0.185589 + 0.982627i \(0.440581\pi\)
\(354\) 0.927896 0.478364i 0.0493171 0.0254247i
\(355\) −3.85481 + 3.03145i −0.204592 + 0.160893i
\(356\) −10.7762 23.5967i −0.571139 1.25062i
\(357\) 0.0254102 0.0652493i 0.00134485 0.00345336i
\(358\) 0.129410 + 0.900063i 0.00683951 + 0.0475698i
\(359\) −12.8383 0.611566i −0.677582 0.0322772i −0.294030 0.955796i \(-0.594996\pi\)
−0.383552 + 0.923519i \(0.625299\pi\)
\(360\) 0.0581391 0.239653i 0.00306420 0.0126308i
\(361\) −10.7053 8.41872i −0.563435 0.443090i
\(362\) −1.25273 0.241444i −0.0658421 0.0126900i
\(363\) −4.89998 7.62451i −0.257182 0.400183i
\(364\) 1.90438 0.891509i 0.0998164 0.0467278i
\(365\) 0.768082 2.61585i 0.0402033 0.136920i
\(366\) −0.0627628 0.657281i −0.00328066 0.0343566i
\(367\) −11.2369 + 19.4629i −0.586563 + 1.01596i 0.408115 + 0.912930i \(0.366186\pi\)
−0.994679 + 0.103027i \(0.967147\pi\)
\(368\) 12.4229 13.4463i 0.647587 0.700935i
\(369\) 9.87813 5.70314i 0.514235 0.296894i
\(370\) 0.454717 + 0.207662i 0.0236396 + 0.0107959i
\(371\) −18.3228 + 29.1111i −0.951270 + 1.51137i
\(372\) 5.78429 + 6.67543i 0.299902 + 0.346105i
\(373\) 8.75038 16.9734i 0.453078 0.878848i −0.546077 0.837735i \(-0.683879\pi\)
0.999155 0.0411129i \(-0.0130903\pi\)
\(374\) 0.00609119 0.00210818i 0.000314968 0.000109012i
\(375\) −2.16682 + 2.75533i −0.111894 + 0.142285i
\(376\) 0.477455 0.500741i 0.0246229 0.0258237i
\(377\) −1.06084 + 1.65070i −0.0546360 + 0.0850153i
\(378\) 0.282771 0.366640i 0.0145442 0.0188579i
\(379\) −2.99429 + 1.36745i −0.153807 + 0.0702411i −0.490831 0.871255i \(-0.663307\pi\)
0.337024 + 0.941496i \(0.390579\pi\)
\(380\) −2.31614 + 3.25256i −0.118815 + 0.166853i
\(381\) 7.08884 17.7071i 0.363172 0.907161i
\(382\) 1.83673 + 3.56276i 0.0939752 + 0.182287i
\(383\) 16.1984 + 15.4452i 0.827700 + 0.789210i 0.979974 0.199128i \(-0.0638109\pi\)
−0.152273 + 0.988338i \(0.548659\pi\)
\(384\) 5.33286 + 0.766750i 0.272141 + 0.0391280i
\(385\) 0.587965 1.16741i 0.0299655 0.0594966i
\(386\) 0.182499 0.117285i 0.00928896 0.00596965i
\(387\) −0.650848 0.225261i −0.0330845 0.0114506i
\(388\) −17.0107 + 16.2197i −0.863587 + 0.823428i
\(389\) −31.9603 + 22.7588i −1.62045 + 1.15392i −0.750355 + 0.661035i \(0.770118\pi\)
−0.870095 + 0.492883i \(0.835943\pi\)
\(390\) 0.0125358 + 0.0217127i 0.000634776 + 0.00109946i
\(391\) 0.0890243 + 0.0904711i 0.00450215 + 0.00457532i
\(392\) −4.27923 + 2.30933i −0.216134 + 0.116639i
\(393\) −5.58633 + 12.2324i −0.281793 + 0.617041i
\(394\) −0.242965 1.00151i −0.0122404 0.0504556i
\(395\) 0.697830 + 3.62068i 0.0351116 + 0.182176i
\(396\) −2.73760 + 0.130408i −0.137569 + 0.00655324i
\(397\) −5.43117 + 28.1796i −0.272583 + 1.41429i 0.544978 + 0.838451i \(0.316538\pi\)
−0.817560 + 0.575843i \(0.804674\pi\)
\(398\) 0.197464 1.37339i 0.00989796 0.0688418i
\(399\) −13.0144 + 7.67848i −0.651534 + 0.384405i
\(400\) −15.6514 10.0585i −0.782569 0.502927i
\(401\) −16.5015 20.9834i −0.824046 1.04786i −0.998007 0.0631073i \(-0.979899\pi\)
0.173961 0.984753i \(-0.444343\pi\)
\(402\) −0.725565 0.0692830i −0.0361879 0.00345552i
\(403\) −1.80180 0.172051i −0.0897541 0.00857048i
\(404\) 12.2848 + 15.6215i 0.611194 + 0.777196i
\(405\) −0.298646 0.191928i −0.0148399 0.00953700i
\(406\) 1.10720 1.96022i 0.0549496 0.0972839i
\(407\) 1.59361 11.0838i 0.0789922 0.549403i
\(408\) −0.00347934 + 0.0180525i −0.000172253 + 0.000893734i
\(409\) −35.0130 + 1.66787i −1.73128 + 0.0824710i −0.889382 0.457165i \(-0.848865\pi\)
−0.841898 + 0.539636i \(0.818562\pi\)
\(410\) −0.134110 0.695828i −0.00662322 0.0343645i
\(411\) −3.27234 13.4888i −0.161413 0.665353i
\(412\) 2.36875 5.18685i 0.116700 0.255538i
\(413\) −4.30340 + 15.1846i −0.211757 + 0.747185i
\(414\) 0.396278 + 0.739845i 0.0194760 + 0.0363614i
\(415\) −1.78493 3.09158i −0.0876186 0.151760i
\(416\) −0.676302 + 0.481593i −0.0331584 + 0.0236120i
\(417\) −2.95150 + 2.81425i −0.144536 + 0.137815i
\(418\) −1.31447 0.454941i −0.0642926 0.0222519i
\(419\) 24.4069 15.6853i 1.19235 0.766279i 0.214736 0.976672i \(-0.431111\pi\)
0.977617 + 0.210393i \(0.0674744\pi\)
\(420\) 1.01467 + 1.54658i 0.0495111 + 0.0754656i
\(421\) 13.4758 + 1.93753i 0.656770 + 0.0944292i 0.462639 0.886547i \(-0.346902\pi\)
0.194130 + 0.980976i \(0.437812\pi\)
\(422\) 0.654567 + 0.624128i 0.0318638 + 0.0303821i
\(423\) −0.456399 0.885290i −0.0221909 0.0430443i
\(424\) 3.35656 8.38428i 0.163009 0.407177i
\(425\) 0.0748243 0.105076i 0.00362951 0.00509693i
\(426\) 2.19904 1.00427i 0.106544 0.0486570i
\(427\) 7.90436 + 6.09624i 0.382519 + 0.295018i
\(428\) −3.42042 + 5.32228i −0.165332 + 0.257262i
\(429\) 0.387558 0.406459i 0.0187115 0.0196240i
\(430\) −0.0264500 + 0.0336339i −0.00127553 + 0.00162197i
\(431\) −18.7789 + 6.49944i −0.904547 + 0.313067i −0.739451 0.673211i \(-0.764915\pi\)
−0.165096 + 0.986277i \(0.552794\pi\)
\(432\) 1.74913 3.39284i 0.0841552 0.163238i
\(433\) 8.75389 + 10.1025i 0.420685 + 0.485497i 0.926046 0.377412i \(-0.123186\pi\)
−0.505360 + 0.862908i \(0.668640\pi\)
\(434\) 2.07517 + 0.0792367i 0.0996114 + 0.00380348i
\(435\) −1.57012 0.717049i −0.0752814 0.0343799i
\(436\) −11.4226 + 6.59482i −0.547041 + 0.315835i
\(437\) −3.03246 27.2221i −0.145062 1.30221i
\(438\) −0.671983 + 1.16391i −0.0321086 + 0.0556137i
\(439\) 2.14202 + 22.4322i 0.102233 + 1.07063i 0.890403 + 0.455173i \(0.150423\pi\)
−0.788170 + 0.615457i \(0.788971\pi\)
\(440\) −0.0966876 + 0.329288i −0.00460940 + 0.0156982i
\(441\) 1.12677 + 6.90872i 0.0536556 + 0.328987i
\(442\) −0.00101053 0.00157242i −4.80661e−5 7.47923e-5i
\(443\) 30.8675 + 5.94922i 1.46656 + 0.282656i 0.859146 0.511731i \(-0.170995\pi\)
0.607412 + 0.794387i \(0.292208\pi\)
\(444\) 12.4560 + 9.79548i 0.591134 + 0.464873i
\(445\) −1.10244 + 4.54432i −0.0522607 + 0.215421i
\(446\) 3.31914 + 0.158110i 0.157166 + 0.00748672i
\(447\) 1.53535 + 10.6786i 0.0726194 + 0.505079i
\(448\) −15.0155 + 12.0393i −0.709415 + 0.568804i
\(449\) 6.69449 + 14.6589i 0.315932 + 0.691795i 0.999266 0.0383110i \(-0.0121978\pi\)
−0.683333 + 0.730106i \(0.739470\pi\)
\(450\) 0.670476 0.527268i 0.0316065 0.0248556i
\(451\) −14.1091 + 7.27374i −0.664371 + 0.342507i
\(452\) 13.7267 + 3.33006i 0.645650 + 0.156633i
\(453\) 2.41570 + 6.03414i 0.113500 + 0.283508i
\(454\) 1.14073 1.31647i 0.0535371 0.0617851i
\(455\) −0.369181 0.0858824i −0.0173075 0.00402623i
\(456\) 2.99836 2.59809i 0.140411 0.121667i
\(457\) 8.43922 2.04733i 0.394770 0.0957702i −0.0334598 0.999440i \(-0.510653\pi\)
0.428230 + 0.903670i \(0.359137\pi\)
\(458\) −0.618666 0.868794i −0.0289083 0.0405961i
\(459\) 0.0229202 + 0.0132330i 0.00106983 + 0.000617664i
\(460\) −3.31086 + 0.529345i −0.154370 + 0.0246808i
\(461\) 28.5449i 1.32947i 0.747080 + 0.664735i \(0.231455\pi\)
−0.747080 + 0.664735i \(0.768545\pi\)
\(462\) −0.417355 + 0.490937i −0.0194171 + 0.0228404i
\(463\) −6.42146 1.88551i −0.298431 0.0876271i 0.129090 0.991633i \(-0.458795\pi\)
−0.427520 + 0.904006i \(0.640613\pi\)
\(464\) 6.07040 17.5393i 0.281811 0.814240i
\(465\) −0.0757610 1.59042i −0.00351333 0.0737539i
\(466\) 0.231596 + 0.669154i 0.0107285 + 0.0309980i
\(467\) 4.77253 1.91063i 0.220846 0.0884135i −0.258601 0.965984i \(-0.583261\pi\)
0.479447 + 0.877571i \(0.340837\pi\)
\(468\) 0.223908 + 0.762561i 0.0103502 + 0.0352494i
\(469\) 8.25927 7.29426i 0.381378 0.336818i
\(470\) −0.0612490 + 0.00880628i −0.00282521 + 0.000406203i
\(471\) 6.81719 + 4.85450i 0.314120 + 0.223684i
\(472\) 0.393894 4.12505i 0.0181305 0.189871i
\(473\) 0.889818 + 0.356229i 0.0409139 + 0.0163794i
\(474\) 0.0864908 1.81567i 0.00397266 0.0833963i
\(475\) −26.7092 + 7.84252i −1.22550 + 0.359840i
\(476\) −0.0810464 0.111571i −0.00371476 0.00511384i
\(477\) −9.82548 8.51383i −0.449878 0.389821i
\(478\) 2.54917 + 1.31419i 0.116596 + 0.0601095i
\(479\) −26.5471 + 5.11653i −1.21297 + 0.233780i −0.755322 0.655354i \(-0.772519\pi\)
−0.457646 + 0.889134i \(0.651307\pi\)
\(480\) −0.504004 0.528584i −0.0230045 0.0241264i
\(481\) −3.23244 + 0.308661i −0.147387 + 0.0140737i
\(482\) −4.66105 −0.212305
\(483\) −12.2607 3.26719i −0.557882 0.148662i
\(484\) −17.8490 −0.811317
\(485\) 4.21768 0.402740i 0.191515 0.0182875i
\(486\) 0.120767 + 0.126656i 0.00547808 + 0.00574525i
\(487\) 30.4566 5.87003i 1.38012 0.265996i 0.555422 0.831569i \(-0.312557\pi\)
0.824699 + 0.565572i \(0.191345\pi\)
\(488\) −2.32952 1.20095i −0.105452 0.0543644i
\(489\) 14.8224 + 12.8437i 0.670294 + 0.580813i
\(490\) 0.428505 + 0.0742305i 0.0193579 + 0.00335339i
\(491\) 5.84011 1.71481i 0.263560 0.0773883i −0.147283 0.989094i \(-0.547053\pi\)
0.410843 + 0.911706i \(0.365234\pi\)
\(492\) 1.06884 22.4378i 0.0481872 1.01157i
\(493\) 0.119466 + 0.0478271i 0.00538049 + 0.00215402i
\(494\) −0.0383414 + 0.401529i −0.00172506 + 0.0180656i
\(495\) 0.402435 + 0.286573i 0.0180881 + 0.0128805i
\(496\) 16.9462 2.43650i 0.760908 0.109402i
\(497\) −11.6274 + 34.6496i −0.521562 + 1.55425i
\(498\) 0.495798 + 1.68853i 0.0222172 + 0.0756650i
\(499\) 1.33725 0.535353i 0.0598634 0.0239657i −0.341538 0.939868i \(-0.610948\pi\)
0.401401 + 0.915902i \(0.368523\pi\)
\(500\) 2.25782 + 6.52353i 0.100973 + 0.291741i
\(501\) 0.326949 + 6.86351i 0.0146070 + 0.306639i
\(502\) −1.46449 + 4.23137i −0.0653634 + 0.188855i
\(503\) 0.188809 + 0.0554393i 0.00841857 + 0.00247192i 0.285939 0.958248i \(-0.407694\pi\)
−0.277521 + 0.960720i \(0.589513\pi\)
\(504\) −0.617474 1.73106i −0.0275045 0.0771074i
\(505\) 3.58238i 0.159414i
\(506\) −0.501870 1.05469i −0.0223108 0.0468866i
\(507\) 11.1173 + 6.41857i 0.493736 + 0.285059i
\(508\) −21.7884 30.5975i −0.966704 1.35755i
\(509\) −1.37745 + 0.334167i −0.0610546 + 0.0148117i −0.266170 0.963926i \(-0.585758\pi\)
0.205115 + 0.978738i \(0.434243\pi\)
\(510\) 0.00124264 0.00107675i 5.50249e−5 4.76794e-5i
\(511\) −5.90804 19.4405i −0.261356 0.859996i
\(512\) 8.61565 9.94299i 0.380762 0.439422i
\(513\) −2.12268 5.30219i −0.0937185 0.234098i
\(514\) −0.886649 0.215099i −0.0391084 0.00948760i
\(515\) −0.913611 + 0.470999i −0.0402585 + 0.0207547i
\(516\) −1.06617 + 0.838447i −0.0469356 + 0.0369106i
\(517\) 0.575811 + 1.26085i 0.0253241 + 0.0554521i
\(518\) 3.68250 0.564976i 0.161800 0.0248236i
\(519\) 0.343172 + 2.38681i 0.0150636 + 0.104769i
\(520\) 0.0994060 + 0.00473529i 0.00435924 + 0.000207656i
\(521\) 3.12645 12.8874i 0.136972 0.564607i −0.861418 0.507896i \(-0.830423\pi\)
0.998391 0.0567113i \(-0.0180615\pi\)
\(522\) 0.668861 + 0.525998i 0.0292753 + 0.0230223i
\(523\) −13.6478 2.63039i −0.596776 0.115019i −0.118086 0.993003i \(-0.537676\pi\)
−0.478690 + 0.877984i \(0.658888\pi\)
\(524\) 14.3180 + 22.2792i 0.625483 + 0.973271i
\(525\) −1.10461 + 12.8479i −0.0482090 + 0.560729i
\(526\) −0.921028 + 3.13673i −0.0401587 + 0.136768i
\(527\) 0.0112834 + 0.118166i 0.000491515 + 0.00514737i
\(528\) −2.65611 + 4.60052i −0.115592 + 0.200212i
\(529\) 14.5072 17.8477i 0.630750 0.775986i
\(530\) −0.699495 + 0.403854i −0.0303841 + 0.0175423i
\(531\) −5.42620 2.47806i −0.235477 0.107539i
\(532\) −1.13545 + 29.7369i −0.0492281 + 1.28926i
\(533\) 3.01438 + 3.47877i 0.130567 + 0.150682i
\(534\) 1.05629 2.04892i 0.0457103 0.0886656i
\(535\) 1.07772 0.373002i 0.0465938 0.0161263i
\(536\) −1.78842 + 2.27416i −0.0772479 + 0.0982287i
\(537\) 3.58564 3.76052i 0.154732 0.162278i
\(538\) 2.57894 4.01290i 0.111186 0.173009i
\(539\) −1.10882 9.67832i −0.0477603 0.416875i
\(540\) −0.635952 + 0.290429i −0.0273670 + 0.0124981i
\(541\) −26.5195 + 37.2414i −1.14016 + 1.60113i −0.419663 + 0.907680i \(0.637852\pi\)
−0.720500 + 0.693455i \(0.756088\pi\)
\(542\) −0.953027 + 2.38055i −0.0409360 + 0.102253i
\(543\) 3.34049 + 6.47965i 0.143354 + 0.278068i
\(544\) 0.0394069 + 0.0375744i 0.00168956 + 0.00161099i
\(545\) 2.35338 + 0.338365i 0.100808 + 0.0144940i
\(546\) 0.166882 + 0.0840504i 0.00714191 + 0.00359703i
\(547\) 16.1502 10.3791i 0.690534 0.443779i −0.147742 0.989026i \(-0.547200\pi\)
0.838276 + 0.545247i \(0.183564\pi\)
\(548\) −25.8316 8.94040i −1.10347 0.381915i
\(549\) −2.73057 + 2.60359i −0.116538 + 0.111119i
\(550\) −0.966933 + 0.688550i −0.0412302 + 0.0293599i
\(551\) −13.8849 24.0493i −0.591515 1.02453i
\(552\) 3.32094 + 0.264439i 0.141349 + 0.0112553i
\(553\) 19.1507 + 19.7090i 0.814372 + 0.838111i
\(554\) 0.669281 1.46552i 0.0284350 0.0622641i
\(555\) −0.673436 2.77594i −0.0285857 0.117832i
\(556\) 1.51996 + 7.88629i 0.0644605 + 0.334453i
\(557\) 26.1949 1.24782i 1.10992 0.0528718i 0.515395 0.856952i \(-0.327645\pi\)
0.594520 + 0.804081i \(0.297342\pi\)
\(558\) −0.148546 + 0.770728i −0.00628844 + 0.0326275i
\(559\) 0.0395550 0.275111i 0.00167300 0.0116360i
\(560\) 3.58511 0.0338273i 0.151499 0.00142946i
\(561\) −0.0309848 0.0199128i −0.00130818 0.000840717i
\(562\) −0.333290 0.423813i −0.0140590 0.0178775i
\(563\) −21.5565 2.05840i −0.908498 0.0867511i −0.369666 0.929165i \(-0.620528\pi\)
−0.538832 + 0.842413i \(0.681134\pi\)
\(564\) −1.95264 0.186454i −0.0822208 0.00785113i
\(565\) −1.57393 2.00142i −0.0662159 0.0842004i
\(566\) 0.142696 + 0.0917051i 0.00599795 + 0.00385465i
\(567\) −2.64563 + 0.0249629i −0.111106 + 0.00104834i
\(568\) 1.36565 9.49833i 0.0573015 0.398541i
\(569\) 1.06050 5.50237i 0.0444583 0.230671i −0.952902 0.303277i \(-0.901919\pi\)
0.997361 + 0.0726055i \(0.0231314\pi\)
\(570\) −0.354423 + 0.0168832i −0.0148451 + 0.000707161i
\(571\) 0.157157 + 0.815408i 0.00657682 + 0.0341238i 0.985069 0.172161i \(-0.0550749\pi\)
−0.978492 + 0.206285i \(0.933863\pi\)
\(572\) −0.260756 1.07485i −0.0109028 0.0449418i
\(573\) 9.51479 20.8345i 0.397486 0.870373i
\(574\) −3.68042 3.78770i −0.153618 0.158096i
\(575\) −20.4246 11.3673i −0.851764 0.474050i
\(576\) −3.63716 6.29974i −0.151548 0.262489i
\(577\) −13.2014 + 9.40067i −0.549581 + 0.391355i −0.820846 0.571150i \(-0.806498\pi\)
0.271265 + 0.962505i \(0.412558\pi\)
\(578\) 2.15307 2.05295i 0.0895558 0.0853913i
\(579\) −1.17143 0.405437i −0.0486832 0.0168494i
\(580\) −2.85971 + 1.83782i −0.118743 + 0.0763114i
\(581\) −23.7618 11.9676i −0.985804 0.496501i
\(582\) −2.06738 0.297244i −0.0856955 0.0123212i
\(583\) 13.0945 + 12.4856i 0.542318 + 0.517100i
\(584\) 2.44450 + 4.74167i 0.101154 + 0.196212i
\(585\) 0.0532456 0.133001i 0.00220143 0.00549891i
\(586\) 2.70425 3.79759i 0.111711 0.156877i
\(587\) −24.1477 + 11.0279i −0.996680 + 0.455169i −0.845867 0.533394i \(-0.820916\pi\)
−0.150813 + 0.988562i \(0.548189\pi\)
\(588\) 12.6457 + 5.48911i 0.521498 + 0.226367i
\(589\) 13.8490 21.5494i 0.570637 0.887928i
\(590\) −0.255745 + 0.268218i −0.0105289 + 0.0110423i
\(591\) −3.64022 + 4.62891i −0.149739 + 0.190408i
\(592\) 29.0250 10.0457i 1.19292 0.412874i
\(593\) 3.69107 7.15967i 0.151574 0.294012i −0.800807 0.598922i \(-0.795596\pi\)
0.952381 + 0.304910i \(0.0986263\pi\)
\(594\) −0.159489 0.184060i −0.00654391 0.00755208i
\(595\) −0.000948471 0.0248400i −3.88835e−5 0.00101834i
\(596\) 19.3264 + 8.82605i 0.791638 + 0.361529i
\(597\) −6.86625 + 3.96423i −0.281017 + 0.162245i
\(598\) −0.262909 + 0.213535i −0.0107511 + 0.00873211i
\(599\) −9.23270 + 15.9915i −0.377238 + 0.653395i −0.990659 0.136360i \(-0.956459\pi\)
0.613421 + 0.789756i \(0.289793\pi\)
\(600\) −0.321835 3.37040i −0.0131388 0.137596i
\(601\) −9.67651 + 32.9552i −0.394713 + 1.34427i 0.487378 + 0.873191i \(0.337953\pi\)
−0.882091 + 0.471078i \(0.843865\pi\)
\(602\) −0.0273161 + 0.317720i −0.00111332 + 0.0129493i
\(603\) 2.25169 + 3.50369i 0.0916958 + 0.142681i
\(604\) 12.5691 + 2.42249i 0.511428 + 0.0985697i
\(605\) 2.52911 + 1.98891i 0.102823 + 0.0808608i
\(606\) −0.416349 + 1.71621i −0.0169130 + 0.0697164i
\(607\) 9.38356 + 0.446994i 0.380867 + 0.0181429i 0.237143 0.971475i \(-0.423789\pi\)
0.143724 + 0.989618i \(0.454092\pi\)
\(608\) −1.67221 11.6305i −0.0678170 0.471678i
\(609\) −12.7155 + 1.95084i −0.515258 + 0.0790519i
\(610\) 0.0973722 + 0.213215i 0.00394248 + 0.00863283i
\(611\) 0.315951 0.248467i 0.0127820 0.0100519i
\(612\) 0.0463274 0.0238834i 0.00187268 0.000965431i
\(613\) −46.5424 11.2911i −1.87983 0.456041i −0.880007 0.474961i \(-0.842462\pi\)
−0.999821 + 0.0189197i \(0.993977\pi\)
\(614\) 0.493631 + 1.23303i 0.0199213 + 0.0497611i
\(615\) −2.65169 + 3.06022i −0.106927 + 0.123400i
\(616\) 0.743715 + 2.44720i 0.0299651 + 0.0986007i
\(617\) −9.80953 + 8.50000i −0.394917 + 0.342197i −0.829572 0.558400i \(-0.811416\pi\)
0.434655 + 0.900597i \(0.356870\pi\)
\(618\) 0.492424 0.119461i 0.0198082 0.00480542i
\(619\) −20.8333 29.2563i −0.837363 1.17591i −0.982456 0.186493i \(-0.940288\pi\)
0.145094 0.989418i \(-0.453652\pi\)
\(620\) −2.71558 1.56784i −0.109060 0.0629660i
\(621\) 1.92335 4.39326i 0.0771815 0.176295i
\(622\) 3.39490i 0.136123i
\(623\) 11.7086 + 32.8245i 0.469096 + 1.31509i
\(624\) 1.47805 + 0.433994i 0.0591693 + 0.0173737i
\(625\) −7.56361 + 21.8536i −0.302544 + 0.874144i
\(626\) −0.00709187 0.148877i −0.000283448 0.00595031i
\(627\) 2.59960 + 7.51106i 0.103818 + 0.299963i
\(628\) 15.3011 6.12563i 0.610580 0.244439i
\(629\) 0.0599961 + 0.204328i 0.00239220 + 0.00814709i
\(630\) −0.0522928 + 0.155832i −0.00208339 + 0.00620849i
\(631\) 28.8192 4.14357i 1.14727 0.164953i 0.457657 0.889129i \(-0.348689\pi\)
0.689615 + 0.724176i \(0.257780\pi\)
\(632\) −5.87735 4.18524i −0.233789 0.166480i
\(633\) 0.491255 5.14466i 0.0195256 0.204482i
\(634\) 3.12080 + 1.24938i 0.123943 + 0.0496192i
\(635\) −0.322180 + 6.76340i −0.0127853 + 0.268397i
\(636\) −24.5666 + 7.21342i −0.974131 + 0.286031i
\(637\) −2.65162 + 0.974141i −0.105061 + 0.0385969i
\(638\) −0.894944 0.775474i −0.0354312 0.0307013i
\(639\) −12.2784 6.32996i −0.485726 0.250409i
\(640\) −1.87808 + 0.361970i −0.0742376 + 0.0143081i
\(641\) −17.0165 17.8464i −0.672113 0.704892i 0.296061 0.955169i \(-0.404327\pi\)
−0.968174 + 0.250277i \(0.919478\pi\)
\(642\) −0.559654 + 0.0534404i −0.0220878 + 0.00210913i
\(643\) 17.1267 0.675411 0.337705 0.941252i \(-0.390349\pi\)
0.337705 + 0.941252i \(0.390349\pi\)
\(644\) −18.4672 + 16.8342i −0.727709 + 0.663361i
\(645\) 0.244499 0.00962715
\(646\) 0.0263330 0.00251450i 0.00103606 9.89317e-5i
\(647\) 19.5858 + 20.5410i 0.769998 + 0.807551i 0.985629 0.168924i \(-0.0540292\pi\)
−0.215631 + 0.976475i \(0.569181\pi\)
\(648\) 0.682103 0.131465i 0.0267955 0.00516441i
\(649\) 7.37879 + 3.80403i 0.289643 + 0.149321i
\(650\) 0.260144 + 0.225416i 0.0102037 + 0.00884154i
\(651\) −6.97413 9.60078i −0.273338 0.376284i
\(652\) 37.0606 10.8820i 1.45140 0.426170i
\(653\) 0.0418723 0.879007i 0.00163859 0.0343982i −0.997900 0.0647740i \(-0.979367\pi\)
0.999539 + 0.0303758i \(0.00967039\pi\)
\(654\) −1.08811 0.435613i −0.0425485 0.0170338i
\(655\) 0.453790 4.75230i 0.0177310 0.185688i
\(656\) −35.4665 25.2556i −1.38473 0.986064i
\(657\) 7.60146 1.09293i 0.296561 0.0426391i
\(658\) −0.345664 + 0.305277i −0.0134754 + 0.0119009i
\(659\) 0.237664 + 0.809410i 0.00925808 + 0.0315301i 0.963992 0.265929i \(-0.0856788\pi\)
−0.954734 + 0.297460i \(0.903861\pi\)
\(660\) 0.903259 0.361610i 0.0351593 0.0140757i
\(661\) −3.02714 8.74635i −0.117742 0.340193i 0.870695 0.491823i \(-0.163669\pi\)
−0.988437 + 0.151629i \(0.951548\pi\)
\(662\) −0.0486410 1.02110i −0.00189049 0.0396862i
\(663\) −0.00349326 + 0.0100931i −0.000135667 + 0.000391984i
\(664\) 6.70242 + 1.96801i 0.260104 + 0.0763735i
\(665\) 3.47448 4.08705i 0.134734 0.158489i
\(666\) 1.40814i 0.0545643i
\(667\) 6.21662 22.4746i 0.240708 0.870218i
\(668\) 11.7192 + 6.76607i 0.453428 + 0.261787i
\(669\) −11.0139 15.4668i −0.425821 0.597982i
\(670\) 0.251455 0.0610022i 0.00971454 0.00235672i
\(671\) 3.96813 3.43841i 0.153188 0.132738i
\(672\) −5.30163 1.23332i −0.204515 0.0475762i
\(673\) 29.9798 34.5985i 1.15564 1.33368i 0.222172 0.975008i \(-0.428686\pi\)
0.933465 0.358668i \(-0.116769\pi\)
\(674\) 0.661106 + 1.65136i 0.0254649 + 0.0636081i
\(675\) −4.73658 1.14908i −0.182311 0.0442282i
\(676\) 22.4708 11.5845i 0.864260 0.445557i
\(677\) 32.8654 25.8456i 1.26312 0.993328i 0.263531 0.964651i \(-0.415113\pi\)
0.999589 0.0286771i \(-0.00912945\pi\)
\(678\) 0.521418 + 1.14175i 0.0200249 + 0.0438485i
\(679\) 24.6355 19.7526i 0.945425 0.758035i
\(680\) −0.000928836 0.00646020i −3.56192e−5 0.000247737i
\(681\) −9.94246 0.473618i −0.380996 0.0181491i
\(682\) 0.257527 1.06154i 0.00986123 0.0406485i
\(683\) −8.79054 6.91295i −0.336360 0.264517i 0.435664 0.900109i \(-0.356513\pi\)
−0.772025 + 0.635592i \(0.780756\pi\)
\(684\) −11.0444 2.12864i −0.422295 0.0813906i
\(685\) 2.66397 + 4.14522i 0.101785 + 0.158381i
\(686\) 2.97365 1.28928i 0.113535 0.0492249i
\(687\) −1.71702 + 5.84762i −0.0655083 + 0.223101i
\(688\) 0.249902 + 2.61709i 0.00952742 + 0.0997757i
\(689\) 2.62331 4.54371i 0.0999403 0.173102i
\(690\) −0.218845 0.202189i −0.00833130 0.00769720i
\(691\) 30.7110 17.7310i 1.16830 0.674519i 0.215021 0.976609i \(-0.431018\pi\)
0.953279 + 0.302091i \(0.0976846\pi\)
\(692\) 4.31972 + 1.97275i 0.164211 + 0.0749926i
\(693\) 3.67931 + 0.140488i 0.139765 + 0.00533669i
\(694\) −0.116662 0.134636i −0.00442844 0.00511070i
\(695\) 0.663399 1.28681i 0.0251642 0.0488117i
\(696\) 3.19182 1.10470i 0.120986 0.0418735i
\(697\) 0.186609 0.237293i 0.00706832 0.00898810i
\(698\) −3.34879 + 3.51211i −0.126754 + 0.132935i
\(699\) 2.18753 3.40387i 0.0827402 0.128746i
\(700\) 20.1096 + 15.5095i 0.760072 + 0.586206i
\(701\) 27.8454 12.7166i 1.05171 0.480299i 0.186888 0.982381i \(-0.440160\pi\)
0.864820 + 0.502083i \(0.167433\pi\)
\(702\) −0.0409659 + 0.0575286i −0.00154616 + 0.00217128i
\(703\) 17.0798 42.6632i 0.644175 1.60907i
\(704\) 4.63881 + 8.99803i 0.174832 + 0.339126i
\(705\) 0.255902 + 0.244002i 0.00963782 + 0.00918964i
\(706\) 2.68189 + 0.385598i 0.100934 + 0.0145122i
\(707\) −14.6457 22.3232i −0.550808 0.839550i
\(708\) −9.88292 + 6.35137i −0.371423 + 0.238699i
\(709\) −15.8222 5.47611i −0.594215 0.205660i 0.0133753 0.999911i \(-0.495742\pi\)
−0.607590 + 0.794251i \(0.707864\pi\)
\(710\) −0.621123 + 0.592240i −0.0233103 + 0.0222264i
\(711\) −8.46081 + 6.02491i −0.317305 + 0.225952i
\(712\) −4.57506 7.92423i −0.171457 0.296973i
\(713\) 21.0544 4.40269i 0.788495 0.164882i
\(714\) 0.00334132 0.0117899i 0.000125046 0.000441225i
\(715\) −0.0828230 + 0.181357i −0.00309740 + 0.00678237i
\(716\) −2.41249 9.94440i −0.0901588 0.371640i
\(717\) −3.10147 16.0920i −0.115827 0.600966i
\(718\) −2.24676 + 0.107026i −0.0838484 + 0.00399419i
\(719\) 5.43518 28.2004i 0.202698 1.05170i −0.727908 0.685674i \(-0.759507\pi\)
0.930606 0.366022i \(-0.119280\pi\)
\(720\) −0.192852 + 1.34131i −0.00718715 + 0.0499877i
\(721\) −3.76750 + 6.67006i −0.140309 + 0.248406i
\(722\) −2.00503 1.28855i −0.0746194 0.0479550i
\(723\) 16.4640 + 20.9357i 0.612303 + 0.778607i
\(724\) 14.2918 + 1.36470i 0.531151 + 0.0507187i
\(725\) −23.5911 2.25268i −0.876152 0.0836624i
\(726\) −0.980468 1.24677i −0.0363886 0.0462718i
\(727\) 13.6678 + 8.78376i 0.506910 + 0.325772i 0.768975 0.639279i \(-0.220767\pi\)
−0.262065 + 0.965050i \(0.584403\pi\)
\(728\) 0.638796 0.376890i 0.0236754 0.0139685i
\(729\) 0.142315 0.989821i 0.00527092 0.0366601i
\(730\) 0.0902936 0.468488i 0.00334192 0.0173395i
\(731\) −0.0182072 0.000867317i −0.000673418 3.20789e-5i
\(732\) 1.40618 + 7.29596i 0.0519740 + 0.269666i
\(733\) −7.71624 31.8068i −0.285006 1.17481i −0.916695 0.399588i \(-0.869153\pi\)
0.631689 0.775222i \(-0.282362\pi\)
\(734\) −1.63383 + 3.57760i −0.0603059 + 0.132052i
\(735\) −1.18017 2.18689i −0.0435313 0.0806645i
\(736\) 5.97632 7.85073i 0.220290 0.289382i
\(737\) −2.89803 5.01954i −0.106750 0.184897i
\(738\) 1.62601 1.15788i 0.0598543 0.0426220i
\(739\) −7.21704 + 6.88144i −0.265483 + 0.253138i −0.811114 0.584888i \(-0.801139\pi\)
0.545631 + 0.838026i \(0.316290\pi\)
\(740\) −5.31604 1.83990i −0.195421 0.0676360i
\(741\) 1.93895 1.24609i 0.0712291 0.0457762i
\(742\) −2.70777 + 5.37628i −0.0994053 + 0.197370i
\(743\) 37.5023 + 5.39202i 1.37583 + 0.197814i 0.790241 0.612796i \(-0.209955\pi\)
0.585586 + 0.810610i \(0.300864\pi\)
\(744\) 2.25487 + 2.15002i 0.0826677 + 0.0788235i
\(745\) −1.75496 3.40414i −0.0642967 0.124718i
\(746\) 1.24206 3.10252i 0.0454751 0.113591i
\(747\) 5.83298 8.19128i 0.213418 0.299703i
\(748\) −0.0659806 + 0.0301323i −0.00241249 + 0.00110175i
\(749\) 5.19075 6.73030i 0.189666 0.245920i
\(750\) −0.331649 + 0.516056i −0.0121101 + 0.0188437i
\(751\) 8.92724 9.36262i 0.325760 0.341647i −0.540406 0.841405i \(-0.681729\pi\)
0.866165 + 0.499758i \(0.166578\pi\)
\(752\) −2.35021 + 2.98854i −0.0857034 + 0.108981i
\(753\) 24.1787 8.36833i 0.881121 0.304959i
\(754\) −0.157351 + 0.305218i −0.00573038 + 0.0111154i
\(755\) −1.51103 1.74383i −0.0549922 0.0634643i
\(756\) −2.77551 + 4.40971i −0.100944 + 0.160380i
\(757\) 3.16540 + 1.44559i 0.115048 + 0.0525409i 0.472108 0.881541i \(-0.343493\pi\)
−0.357059 + 0.934082i \(0.616221\pi\)
\(758\) −0.498893 + 0.288036i −0.0181206 + 0.0104619i
\(759\) −2.96454 + 5.97964i −0.107606 + 0.217047i
\(760\) −0.704215 + 1.21974i −0.0255446 + 0.0442445i
\(761\) 2.00454 + 20.9925i 0.0726644 + 0.760976i 0.956220 + 0.292650i \(0.0945369\pi\)
−0.883555 + 0.468327i \(0.844857\pi\)
\(762\) 0.940398 3.20270i 0.0340670 0.116022i
\(763\) 16.0481 7.51274i 0.580982 0.271979i
\(764\) −24.3868 37.9465i −0.882282 1.37286i
\(765\) −0.00922569 0.00177811i −0.000333556 6.42876e-5i
\(766\) 3.07888 + 2.42126i 0.111245 + 0.0874837i
\(767\) 0.567548 2.33947i 0.0204930 0.0844732i
\(768\) −13.5904 0.647388i −0.490400 0.0233606i
\(769\) 6.10635 + 42.4706i 0.220201 + 1.53153i 0.737277 + 0.675590i \(0.236111\pi\)
−0.517077 + 0.855939i \(0.672980\pi\)
\(770\) 0.0830103 0.213157i 0.00299148 0.00768164i
\(771\) 2.16573 + 4.74228i 0.0779968 + 0.170789i
\(772\) −1.91896 + 1.50909i −0.0690649 + 0.0543132i
\(773\) 9.34038 4.81530i 0.335950 0.173194i −0.281994 0.959416i \(-0.590996\pi\)
0.617944 + 0.786222i \(0.287966\pi\)
\(774\) −0.117132 0.0284160i −0.00421024 0.00102139i
\(775\) −8.12466 20.2944i −0.291846 0.728997i
\(776\) −5.42917 + 6.26560i −0.194896 + 0.224922i
\(777\) −15.5452 14.5448i −0.557681 0.521791i
\(778\) −5.18925 + 4.49651i −0.186044 + 0.161208i
\(779\) −63.3084 + 15.3585i −2.26826 + 0.550274i
\(780\) −0.163657 0.229824i −0.00585985 0.00822900i
\(781\) 16.6489 + 9.61223i 0.595744 + 0.343953i
\(782\) 0.0170141 + 0.0142802i 0.000608422 + 0.000510658i
\(783\) 4.86224i 0.173762i
\(784\) 22.2019 14.8676i 0.792926 0.530987i
\(785\) −2.85066 0.837030i −0.101745 0.0298749i
\(786\) −0.769716 + 2.22395i −0.0274548 + 0.0793256i
\(787\) 1.85190 + 38.8761i 0.0660130 + 1.38578i 0.752477 + 0.658619i \(0.228859\pi\)
−0.686464 + 0.727164i \(0.740838\pi\)
\(788\) 3.79309 + 10.9594i 0.135123 + 0.390413i
\(789\) 17.3423 6.94283i 0.617404 0.247171i
\(790\) 0.181801 + 0.619156i 0.00646818 + 0.0220286i
\(791\) −17.9901 6.03698i −0.639655 0.214650i
\(792\) −0.956887 + 0.137580i −0.0340015 + 0.00488868i
\(793\) −1.24025 0.883181i −0.0440427 0.0313627i
\(794\) −0.477400 + 4.99956i −0.0169423 + 0.177428i
\(795\) 4.28476 + 1.71536i 0.151965 + 0.0608375i
\(796\) −0.742949 + 15.5964i −0.0263331 + 0.552801i
\(797\) 48.7824 14.3238i 1.72796 0.507375i 0.741440 0.671019i \(-0.234143\pi\)
0.986519 + 0.163644i \(0.0523248\pi\)
\(798\) −2.13952 + 1.55418i −0.0757382 + 0.0550172i
\(799\) −0.0199219 0.0172624i −0.000704786 0.000610700i
\(800\) −8.91270 4.59482i −0.315112 0.162451i
\(801\) −12.9341 + 2.49285i −0.457004 + 0.0880804i
\(802\) −3.22382 3.38104i −0.113837 0.119389i
\(803\) −10.6391 + 1.01591i −0.375444 + 0.0358506i
\(804\) 8.20214 0.289267
\(805\) 4.49254 0.327523i 0.158341 0.0115437i
\(806\) −0.316757 −0.0111573
\(807\) −27.1340 + 2.59098i −0.955161 + 0.0912068i
\(808\) 4.83738 + 5.07330i 0.170178 + 0.178478i
\(809\) 29.3675 5.66012i 1.03251 0.198999i 0.355269 0.934764i \(-0.384389\pi\)
0.677237 + 0.735765i \(0.263177\pi\)
\(810\) −0.0552204 0.0284681i −0.00194025 0.00100027i
\(811\) 30.5449 + 26.4673i 1.07258 + 0.929393i 0.997699 0.0678002i \(-0.0215980\pi\)
0.0748773 + 0.997193i \(0.476143\pi\)
\(812\) −10.3065 + 23.1434i −0.361686 + 0.812174i
\(813\) 14.0589 4.12806i 0.493066 0.144777i
\(814\) 0.0932440 1.95743i 0.00326820 0.0686080i
\(815\) −6.46387 2.58774i −0.226419 0.0906447i
\(816\) 0.00960309 0.100568i 0.000336175 0.00352059i
\(817\) 3.20416 + 2.28167i 0.112099 + 0.0798256i
\(818\) −6.07192 + 0.873010i −0.212300 + 0.0305241i
\(819\) −0.211948 1.04646i −0.00740608 0.0365664i
\(820\) 2.24667 + 7.65146i 0.0784571 + 0.267200i
\(821\) 22.8349 9.14171i 0.796943 0.319048i 0.0627853 0.998027i \(-0.480002\pi\)
0.734157 + 0.678979i \(0.237577\pi\)
\(822\) −0.794468 2.29547i −0.0277103 0.0800636i
\(823\) −1.51446 31.7924i −0.0527906 1.10821i −0.857480 0.514517i \(-0.827971\pi\)
0.804690 0.593696i \(-0.202332\pi\)
\(824\) 0.657836 1.90069i 0.0229168 0.0662137i
\(825\) 6.50817 + 1.91097i 0.226585 + 0.0665315i
\(826\) −0.497104 + 2.71692i −0.0172965 + 0.0945337i
\(827\) 4.85826i 0.168938i 0.996426 + 0.0844691i \(0.0269194\pi\)
−0.996426 + 0.0844691i \(0.973081\pi\)
\(828\) −5.23066 7.86411i −0.181778 0.273297i
\(829\) 15.0448 + 8.68614i 0.522529 + 0.301682i 0.737969 0.674835i \(-0.235785\pi\)
−0.215440 + 0.976517i \(0.569119\pi\)
\(830\) −0.362384 0.508897i −0.0125785 0.0176641i
\(831\) −8.94666 + 2.17044i −0.310356 + 0.0752916i
\(832\) 2.21858 1.92241i 0.0769153 0.0666475i
\(833\) 0.0956420 + 0.158665i 0.00331380 + 0.00549743i
\(834\) −0.467370 + 0.539374i −0.0161837 + 0.0186770i
\(835\) −0.906603 2.26459i −0.0313743 0.0783692i
\(836\) 15.2118 + 3.69033i 0.526110 + 0.127633i
\(837\) 3.98653 2.05520i 0.137795 0.0710380i
\(838\) 3.99103 3.13858i 0.137868 0.108420i
\(839\) −8.81245 19.2966i −0.304240 0.666192i 0.694330 0.719657i \(-0.255701\pi\)
−0.998570 + 0.0534647i \(0.982974\pi\)
\(840\) 0.408141 + 0.509034i 0.0140822 + 0.0175634i
\(841\) 0.762611 + 5.30407i 0.0262969 + 0.182899i
\(842\) 2.37987 + 0.113367i 0.0820157 + 0.00390689i
\(843\) −0.726344 + 2.99403i −0.0250166 + 0.103120i
\(844\) −8.00032 6.29152i −0.275382 0.216563i
\(845\) −4.47485 0.862457i −0.153940 0.0296694i
\(846\) −0.0942368 0.146635i −0.00323993 0.00504143i
\(847\) 23.8910 + 2.05404i 0.820906 + 0.0705778i
\(848\) −13.9816 + 47.6168i −0.480129 + 1.63517i
\(849\) −0.0921332 0.964863i −0.00316200 0.0331140i
\(850\) 0.0112873 0.0195502i 0.000387151 0.000670565i
\(851\) 35.5945 14.9041i 1.22016 0.510906i
\(852\) −23.5602 + 13.6025i −0.807160 + 0.466014i
\(853\) −23.3411 10.6595i −0.799185 0.364976i −0.0264065 0.999651i \(-0.508406\pi\)
−0.772779 + 0.634676i \(0.781134\pi\)
\(854\) 1.47844 + 0.930545i 0.0505913 + 0.0318426i
\(855\) 1.32775 + 1.53230i 0.0454079 + 0.0524035i
\(856\) −1.02257 + 1.98351i −0.0349507 + 0.0677949i
\(857\) −47.0004 + 16.2670i −1.60550 + 0.555671i −0.975324 0.220778i \(-0.929140\pi\)
−0.630180 + 0.776449i \(0.717019\pi\)
\(858\) 0.0607556 0.0772570i 0.00207416 0.00263751i
\(859\) −23.5433 + 24.6915i −0.803287 + 0.842463i −0.990163 0.139921i \(-0.955315\pi\)
0.186876 + 0.982384i \(0.440164\pi\)
\(860\) 0.260324 0.405072i 0.00887698 0.0138129i
\(861\) −4.01278 + 29.9102i −0.136755 + 1.01934i
\(862\) −3.16338 + 1.44467i −0.107745 + 0.0492055i
\(863\) −25.4260 + 35.7058i −0.865511 + 1.21544i 0.109656 + 0.993970i \(0.465025\pi\)
−0.975167 + 0.221471i \(0.928914\pi\)
\(864\) 0.764634 1.90996i 0.0260134 0.0649782i
\(865\) −0.392258 0.760874i −0.0133372 0.0258705i
\(866\) 1.69309 + 1.61435i 0.0575334 + 0.0548580i
\(867\) −16.8263 2.41925i −0.571450 0.0821621i
\(868\) −23.3316 + 1.33216i −0.791925 + 0.0452165i
\(869\) 12.1602 7.81489i 0.412507 0.265102i
\(870\) −0.285461 0.0987990i −0.00967803 0.00334960i
\(871\) −1.21642 + 1.15985i −0.0412167 + 0.0393001i
\(872\) −3.78971 + 2.69864i −0.128336 + 0.0913875i
\(873\) 5.96740 + 10.3358i 0.201966 + 0.349815i
\(874\) −0.981133 4.69195i −0.0331873 0.158708i
\(875\) −2.27139 8.99164i −0.0767869 0.303973i
\(876\) 6.28276 13.7573i 0.212275 0.464817i
\(877\) −7.28575 30.0323i −0.246022 1.01412i −0.952052 0.305936i \(-0.901031\pi\)
0.706030 0.708182i \(-0.250485\pi\)
\(878\) 0.746327 + 3.87231i 0.0251873 + 0.130684i
\(879\) −26.6095 + 1.26756i −0.897515 + 0.0427539i
\(880\) 0.356899 1.85177i 0.0120311 0.0624231i
\(881\) −4.04952 + 28.1650i −0.136432 + 0.948903i 0.800486 + 0.599352i \(0.204575\pi\)
−0.936917 + 0.349551i \(0.886334\pi\)
\(882\) 0.311224 + 1.18483i 0.0104794 + 0.0398954i
\(883\) 5.24737 + 3.37228i 0.176588 + 0.113486i 0.625949 0.779864i \(-0.284712\pi\)
−0.449361 + 0.893350i \(0.648348\pi\)
\(884\) 0.0130023 + 0.0165338i 0.000437316 + 0.000556092i
\(885\) 2.10809 + 0.201298i 0.0708627 + 0.00676657i
\(886\) 5.47644 + 0.522936i 0.183985 + 0.0175684i
\(887\) −7.19317 9.14686i −0.241523 0.307122i 0.650146 0.759809i \(-0.274708\pi\)
−0.891669 + 0.452688i \(0.850465\pi\)
\(888\) 4.70213 + 3.02187i 0.157793 + 0.101407i
\(889\) 25.6429 + 43.4625i 0.860034 + 1.45769i
\(890\) −0.116462 + 0.810012i −0.00390382 + 0.0271517i
\(891\) −0.263374 + 1.36651i −0.00882335 + 0.0457799i
\(892\) −37.3513 + 1.77926i −1.25061 + 0.0595740i
\(893\) 1.07656 + 5.58572i 0.0360257 + 0.186919i
\(894\) 0.445115 + 1.83479i 0.0148869 + 0.0613645i
\(895\) −0.766268 + 1.67789i −0.0256135 + 0.0560858i
\(896\) −10.2232 + 9.93364i −0.341533 + 0.331860i
\(897\) 1.88778 + 0.426626i 0.0630312 + 0.0142446i
\(898\) 1.41011 + 2.44238i 0.0470560 + 0.0815033i
\(899\) 17.7640 12.6497i 0.592463 0.421891i
\(900\) −6.94689 + 6.62384i −0.231563 + 0.220795i
\(901\) −0.325160 0.112539i −0.0108326 0.00374921i
\(902\) −2.33697 + 1.50188i −0.0778125 + 0.0500070i
\(903\) 1.52357 0.999576i 0.0507012 0.0332638i
\(904\) 4.93154 + 0.709049i 0.164021 + 0.0235826i
\(905\) −1.87301 1.78591i −0.0622608 0.0593656i
\(906\) 0.521222 + 1.01103i 0.0173165 + 0.0335892i
\(907\) −7.45534 + 18.6225i −0.247551 + 0.618351i −0.999148 0.0412707i \(-0.986859\pi\)
0.751597 + 0.659622i \(0.229284\pi\)
\(908\) −11.3706 + 15.9678i −0.377348 + 0.529911i
\(909\) 9.17925 4.19202i 0.304456 0.139041i
\(910\) −0.0657443 0.00882030i −0.00217940 0.000292390i
\(911\) 5.63754 8.77218i 0.186780 0.290635i −0.735217 0.677831i \(-0.762920\pi\)
0.921997 + 0.387196i \(0.126556\pi\)
\(912\) −15.0445 + 15.7782i −0.498172 + 0.522468i
\(913\) −8.65076 + 11.0003i −0.286298 + 0.364058i
\(914\) 1.43615 0.497057i 0.0475037 0.0164412i
\(915\) 0.613741 1.19049i 0.0202896 0.0393564i
\(916\) 7.85985 + 9.07076i 0.259697 + 0.299706i
\(917\) −16.6009 31.4686i −0.548209 1.03919i
\(918\) 0.00421310 + 0.00192406i 0.000139053 + 6.35035e-5i
\(919\) 2.57305 1.48555i 0.0848770 0.0490038i −0.456961 0.889487i \(-0.651062\pi\)
0.541838 + 0.840483i \(0.317729\pi\)
\(920\) −1.14480 + 0.296880i −0.0377430 + 0.00978785i
\(921\) 3.79469 6.57259i 0.125039 0.216574i
\(922\) 0.474850 + 4.97285i 0.0156383 + 0.163772i
\(923\) 1.57059 5.34893i 0.0516965 0.176062i
\(924\) 4.15020 5.94609i 0.136532 0.195612i
\(925\) −21.2026 32.9919i −0.697138 1.08477i
\(926\) −1.15006 0.221656i −0.0377933 0.00728405i
\(927\) −2.27594 1.78982i −0.0747518 0.0587855i
\(928\) 2.35836 9.72127i 0.0774168 0.319116i
\(929\) 14.9448 + 0.711908i 0.490322 + 0.0233569i 0.291288 0.956636i \(-0.405916\pi\)
0.199035 + 0.979992i \(0.436219\pi\)
\(930\) −0.0396553 0.275809i −0.00130035 0.00904413i
\(931\) 4.94191 39.6725i 0.161965 1.30021i
\(932\) −3.31022 7.24836i −0.108430 0.237428i
\(933\) 15.2486 11.9916i 0.499217 0.392589i
\(934\) 0.799646 0.412246i 0.0261652 0.0134891i
\(935\) 0.0127068 + 0.00308263i 0.000415555 + 0.000100813i
\(936\) 0.104189 + 0.260252i 0.00340553 + 0.00850661i
\(937\) 0.0223279 0.0257677i 0.000729419 0.000841795i −0.755385 0.655282i \(-0.772550\pi\)
0.756114 + 0.654440i \(0.227095\pi\)
\(938\) 1.31752 1.40814i 0.0430185 0.0459774i
\(939\) −0.643649 + 0.557725i −0.0210047 + 0.0182007i
\(940\) 0.676713 0.164169i 0.0220719 0.00535460i
\(941\) −31.8249 44.6919i −1.03746 1.45691i −0.883265 0.468873i \(-0.844660\pi\)
−0.154198 0.988040i \(-0.549279\pi\)
\(942\) 1.26839 + 0.732304i 0.0413263 + 0.0238598i
\(943\) −46.4785 28.8465i −1.51355 0.939371i
\(944\) 22.7705i 0.741117i
\(945\) 0.884650 0.315558i 0.0287777 0.0102651i
\(946\) 0.160942 + 0.0472570i 0.00523269 + 0.00153646i
\(947\) −12.2305 + 35.3378i −0.397439 + 1.14833i 0.551856 + 0.833940i \(0.313920\pi\)
−0.949295 + 0.314386i \(0.898201\pi\)
\(948\) 0.973308 + 20.4323i 0.0316116 + 0.663609i
\(949\) 1.01364 + 2.92871i 0.0329041 + 0.0950701i
\(950\) −4.52258 + 1.81057i −0.146732 + 0.0587426i
\(951\) −5.41172 18.4306i −0.175487 0.597654i
\(952\) −0.0321989 0.0364587i −0.00104357 0.00118163i
\(953\) −19.6040 + 2.81863i −0.635035 + 0.0913043i −0.452312 0.891860i \(-0.649400\pi\)
−0.182724 + 0.983164i \(0.558491\pi\)
\(954\) −1.85334 1.31976i −0.0600041 0.0427287i
\(955\) −0.772907 + 8.09425i −0.0250107 + 0.261924i
\(956\) −29.9625 11.9952i −0.969055 0.387951i
\(957\) −0.321968 + 6.75893i −0.0104077 + 0.218485i
\(958\) −4.53970 + 1.33298i −0.146671 + 0.0430665i
\(959\) 33.5470 + 14.9395i 1.08329 + 0.482421i
\(960\) 1.95164 + 1.69111i 0.0629890 + 0.0545803i
\(961\) −9.67388 4.98723i −0.312061 0.160878i
\(962\) −0.557994 + 0.107545i −0.0179905 + 0.00346738i
\(963\) 2.21688 + 2.32499i 0.0714378 + 0.0749218i
\(964\) 52.2147 4.98590i 1.68172 0.160585i
\(965\) 0.440064 0.0141662
\(966\) −2.19031 0.365223i −0.0704721 0.0117508i
\(967\) 15.1317 0.486602 0.243301 0.969951i \(-0.421770\pi\)
0.243301 + 0.969951i \(0.421770\pi\)
\(968\) −6.26735 + 0.598460i −0.201440 + 0.0192352i
\(969\) −0.104309 0.109396i −0.00335090 0.00351432i
\(970\) 0.728070 0.140324i 0.0233769 0.00450553i
\(971\) 28.9635 + 14.9317i 0.929484 + 0.479183i 0.855341 0.518065i \(-0.173347\pi\)
0.0741432 + 0.997248i \(0.476378\pi\)
\(972\) −1.48835 1.28967i −0.0477390 0.0413660i
\(973\) −1.12693 10.7308i −0.0361278 0.344013i
\(974\) 5.20824 1.52928i 0.166883 0.0490012i
\(975\) 0.0935900 1.96470i 0.00299728 0.0629206i
\(976\) 13.3702 + 5.35261i 0.427969 + 0.171333i
\(977\) −2.11154 + 22.1130i −0.0675541 + 0.707458i 0.896728 + 0.442582i \(0.145937\pi\)
−0.964282 + 0.264877i \(0.914669\pi\)
\(978\) 2.79590 + 1.99095i 0.0894030 + 0.0636636i
\(979\) 18.1446 2.60880i 0.579904 0.0833776i
\(980\) −4.87967 0.373187i −0.155875 0.0119210i
\(981\) 1.88687 + 6.42609i 0.0602431 + 0.205169i
\(982\) 0.988888 0.395891i 0.0315567 0.0126334i
\(983\) −0.395581 1.14296i −0.0126171 0.0364546i 0.938516 0.345234i \(-0.112201\pi\)
−0.951134 + 0.308780i \(0.900079\pi\)
\(984\) −0.377012 7.91447i −0.0120187 0.252304i
\(985\) 0.683747 1.97556i 0.0217860 0.0629465i
\(986\) 0.0216080 + 0.00634468i 0.000688139 + 0.000202056i
\(987\) 2.59217 + 0.474278i 0.0825095 + 0.0150964i
\(988\) 4.53908i 0.144407i
\(989\) 0.521468 + 3.26160i 0.0165817 + 0.103713i
\(990\) 0.0748760 + 0.0432297i 0.00237972 + 0.00137393i
\(991\) −2.51326 3.52938i −0.0798363 0.112114i 0.772727 0.634739i \(-0.218892\pi\)
−0.852563 + 0.522625i \(0.824953\pi\)
\(992\) 8.96727 2.17544i 0.284711 0.0690701i
\(993\) −4.41459 + 3.82526i −0.140093 + 0.121391i
\(994\) −1.44923 + 6.22978i −0.0459668 + 0.197597i
\(995\) 1.84318 2.12715i 0.0584328 0.0674351i
\(996\) −7.36032 18.3852i −0.233221 0.582557i
\(997\) 27.2764 + 6.61718i 0.863852 + 0.209568i 0.643119 0.765766i \(-0.277640\pi\)
0.220733 + 0.975334i \(0.429155\pi\)
\(998\) 0.224058 0.115510i 0.00709243 0.00365640i
\(999\) 6.32484 4.97391i 0.200109 0.157367i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.bf.a.178.17 yes 640
7.5 odd 6 inner 483.2.bf.a.40.16 yes 640
23.19 odd 22 inner 483.2.bf.a.157.16 yes 640
161.19 even 66 inner 483.2.bf.a.19.17 640
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.bf.a.19.17 640 161.19 even 66 inner
483.2.bf.a.40.16 yes 640 7.5 odd 6 inner
483.2.bf.a.157.16 yes 640 23.19 odd 22 inner
483.2.bf.a.178.17 yes 640 1.1 even 1 trivial