Properties

Label 483.2.bf.a.145.24
Level $483$
Weight $2$
Character 483.145
Analytic conductor $3.857$
Analytic rank $0$
Dimension $640$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(10,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(66))
 
chi = DirichletCharacter(H, H._module([0, 11, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.10");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.bf (of order \(66\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(640\)
Relative dimension: \(32\) over \(\Q(\zeta_{66})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

Embedding invariants

Embedding label 145.24
Character \(\chi\) \(=\) 483.145
Dual form 483.2.bf.a.10.24

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.541022 + 1.56318i) q^{2} +(0.458227 - 0.888835i) q^{3} +(-0.578722 + 0.455112i) q^{4} +(-1.66444 - 0.158934i) q^{5} +(1.63732 + 0.235411i) q^{6} +(1.09045 - 2.41059i) q^{7} +(1.75861 + 1.13019i) q^{8} +(-0.580057 - 0.814576i) q^{9} +O(q^{10})\) \(q+(0.541022 + 1.56318i) q^{2} +(0.458227 - 0.888835i) q^{3} +(-0.578722 + 0.455112i) q^{4} +(-1.66444 - 0.158934i) q^{5} +(1.63732 + 0.235411i) q^{6} +(1.09045 - 2.41059i) q^{7} +(1.75861 + 1.13019i) q^{8} +(-0.580057 - 0.814576i) q^{9} +(-0.652054 - 2.68780i) q^{10} +(1.58493 + 0.548550i) q^{11} +(0.139334 + 0.722933i) q^{12} +(0.290660 - 0.989898i) q^{13} +(4.35814 + 0.400382i) q^{14} +(-0.903956 + 1.40658i) q^{15} +(-1.16239 + 4.79145i) q^{16} +(7.44182 - 2.97926i) q^{17} +(0.959506 - 1.34744i) q^{18} +(-1.17674 - 0.471095i) q^{19} +(1.03558 - 0.665526i) q^{20} +(-1.64294 - 2.07382i) q^{21} +2.77431i q^{22} +(4.47959 - 1.71269i) q^{23} +(1.81039 - 1.04523i) q^{24} +(-2.16455 - 0.417183i) q^{25} +(1.70464 - 0.0812021i) q^{26} +(-0.989821 + 0.142315i) q^{27} +(0.466022 + 1.89133i) q^{28} +(-1.03896 + 7.22612i) q^{29} +(-2.68780 - 0.652054i) q^{30} +(-0.732534 - 0.0348949i) q^{31} +(-3.95679 + 0.377827i) q^{32} +(1.21383 - 1.15738i) q^{33} +(8.68331 + 10.0211i) q^{34} +(-2.19810 + 3.83896i) q^{35} +(0.706415 + 0.207422i) q^{36} +(2.16985 - 1.54514i) q^{37} +(0.0997651 - 2.09433i) q^{38} +(-0.746668 - 0.711946i) q^{39} +(-2.74747 - 2.16063i) q^{40} +(-2.27573 + 1.03929i) q^{41} +(2.35289 - 3.69020i) q^{42} +(-1.31574 - 2.04733i) q^{43} +(-1.16689 + 0.403863i) q^{44} +(0.836004 + 1.44800i) q^{45} +(5.10080 + 6.07580i) q^{46} +(-2.89094 - 1.66908i) q^{47} +(3.72617 + 3.22874i) q^{48} +(-4.62186 - 5.25723i) q^{49} +(-0.518938 - 3.60929i) q^{50} +(0.761972 - 7.97973i) q^{51} +(0.282303 + 0.705158i) q^{52} +(-7.76255 + 8.14113i) q^{53} +(-0.757979 - 1.47027i) q^{54} +(-2.55083 - 1.16493i) q^{55} +(4.64209 - 3.00687i) q^{56} +(-0.957939 + 0.830059i) q^{57} +(-11.8578 + 2.28541i) q^{58} +(4.72167 - 1.14547i) q^{59} +(-0.117014 - 1.22542i) q^{60} +(-8.22889 + 4.24229i) q^{61} +(-0.341770 - 1.16396i) q^{62} +(-2.59613 + 0.510027i) q^{63} +(1.36503 + 2.98900i) q^{64} +(-0.641114 + 1.60143i) q^{65} +(2.46590 + 1.27126i) q^{66} +(-0.325697 + 1.68987i) q^{67} +(-2.95085 + 5.11102i) q^{68} +(0.530365 - 4.76642i) q^{69} +(-7.19021 - 1.35907i) q^{70} +(-6.99726 + 8.07527i) q^{71} +(-0.0994682 - 2.08809i) q^{72} +(-8.07152 - 10.2638i) q^{73} +(3.58927 + 2.55591i) q^{74} +(-1.36266 + 1.73277i) q^{75} +(0.895406 - 0.262915i) q^{76} +(3.05061 - 3.22245i) q^{77} +(0.708937 - 1.55236i) q^{78} +(2.74844 + 2.88248i) q^{79} +(2.69626 - 7.79032i) q^{80} +(-0.327068 + 0.945001i) q^{81} +(-2.85581 - 2.99509i) q^{82} +(-1.39337 + 3.05106i) q^{83} +(1.89463 + 0.452442i) q^{84} +(-12.8600 + 3.77602i) q^{85} +(2.48851 - 3.16439i) q^{86} +(5.94675 + 4.23466i) q^{87} +(2.16731 + 2.75596i) q^{88} +(0.110733 + 2.32458i) q^{89} +(-1.81119 + 2.09023i) q^{90} +(-2.06929 - 1.78009i) q^{91} +(-1.81297 + 3.02989i) q^{92} +(-0.366683 + 0.635113i) q^{93} +(1.04502 - 5.42207i) q^{94} +(1.88373 + 0.971132i) q^{95} +(-1.47728 + 3.69006i) q^{96} +(1.44869 + 3.17218i) q^{97} +(5.71747 - 10.0691i) q^{98} +(-0.472514 - 1.60924i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 640 q - 4 q^{2} + 36 q^{4} + 24 q^{8} - 32 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 640 q - 4 q^{2} + 36 q^{4} + 24 q^{8} - 32 q^{9} + 4 q^{18} - 28 q^{23} + 56 q^{25} - 84 q^{26} - 176 q^{28} - 24 q^{29} + 12 q^{31} + 36 q^{32} - 76 q^{35} + 28 q^{36} + 44 q^{37} - 110 q^{42} - 88 q^{43} + 154 q^{44} + 8 q^{46} + 12 q^{47} - 8 q^{49} - 212 q^{50} + 44 q^{51} + 108 q^{52} - 110 q^{56} - 88 q^{57} + 2 q^{58} - 36 q^{59} - 168 q^{64} - 48 q^{70} + 16 q^{71} + 12 q^{72} - 48 q^{73} - 22 q^{74} + 48 q^{75} + 32 q^{78} - 44 q^{79} - 594 q^{80} + 32 q^{81} + 24 q^{82} + 352 q^{85} - 36 q^{87} - 330 q^{88} + 244 q^{92} - 24 q^{93} - 486 q^{94} - 154 q^{95} - 60 q^{96} - 24 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.541022 + 1.56318i 0.382560 + 1.10534i 0.957821 + 0.287365i \(0.0927794\pi\)
−0.575261 + 0.817970i \(0.695099\pi\)
\(3\) 0.458227 0.888835i 0.264557 0.513169i
\(4\) −0.578722 + 0.455112i −0.289361 + 0.227556i
\(5\) −1.66444 0.158934i −0.744359 0.0710777i −0.284017 0.958819i \(-0.591667\pi\)
−0.460342 + 0.887742i \(0.652273\pi\)
\(6\) 1.63732 + 0.235411i 0.668433 + 0.0961062i
\(7\) 1.09045 2.41059i 0.412150 0.911116i
\(8\) 1.75861 + 1.13019i 0.621762 + 0.399582i
\(9\) −0.580057 0.814576i −0.193352 0.271525i
\(10\) −0.652054 2.68780i −0.206198 0.849958i
\(11\) 1.58493 + 0.548550i 0.477875 + 0.165394i 0.555378 0.831598i \(-0.312574\pi\)
−0.0775033 + 0.996992i \(0.524695\pi\)
\(12\) 0.139334 + 0.722933i 0.0402222 + 0.208693i
\(13\) 0.290660 0.989898i 0.0806146 0.274548i −0.909315 0.416108i \(-0.863394\pi\)
0.989930 + 0.141560i \(0.0452119\pi\)
\(14\) 4.35814 + 0.400382i 1.16476 + 0.107007i
\(15\) −0.903956 + 1.40658i −0.233400 + 0.363178i
\(16\) −1.16239 + 4.79145i −0.290598 + 1.19786i
\(17\) 7.44182 2.97926i 1.80491 0.722576i 0.815253 0.579105i \(-0.196598\pi\)
0.989655 0.143471i \(-0.0458263\pi\)
\(18\) 0.959506 1.34744i 0.226158 0.317594i
\(19\) −1.17674 0.471095i −0.269962 0.108077i 0.232732 0.972541i \(-0.425234\pi\)
−0.502694 + 0.864464i \(0.667658\pi\)
\(20\) 1.03558 0.665526i 0.231563 0.148816i
\(21\) −1.64294 2.07382i −0.358520 0.452545i
\(22\) 2.77431i 0.591485i
\(23\) 4.47959 1.71269i 0.934058 0.357121i
\(24\) 1.81039 1.04523i 0.369545 0.213357i
\(25\) −2.16455 0.417183i −0.432911 0.0834367i
\(26\) 1.70464 0.0812021i 0.334308 0.0159250i
\(27\) −0.989821 + 0.142315i −0.190491 + 0.0273885i
\(28\) 0.466022 + 1.89133i 0.0880700 + 0.357429i
\(29\) −1.03896 + 7.22612i −0.192930 + 1.34186i 0.631272 + 0.775561i \(0.282533\pi\)
−0.824202 + 0.566296i \(0.808376\pi\)
\(30\) −2.68780 0.652054i −0.490723 0.119048i
\(31\) −0.732534 0.0348949i −0.131567 0.00626731i −0.0183049 0.999832i \(-0.505827\pi\)
−0.113262 + 0.993565i \(0.536130\pi\)
\(32\) −3.95679 + 0.377827i −0.699468 + 0.0667911i
\(33\) 1.21383 1.15738i 0.211300 0.201474i
\(34\) 8.68331 + 10.0211i 1.48917 + 1.71860i
\(35\) −2.19810 + 3.83896i −0.371547 + 0.648903i
\(36\) 0.706415 + 0.207422i 0.117736 + 0.0345704i
\(37\) 2.16985 1.54514i 0.356721 0.254020i −0.387620 0.921819i \(-0.626703\pi\)
0.744342 + 0.667799i \(0.232763\pi\)
\(38\) 0.0997651 2.09433i 0.0161840 0.339745i
\(39\) −0.746668 0.711946i −0.119563 0.114003i
\(40\) −2.74747 2.16063i −0.434413 0.341626i
\(41\) −2.27573 + 1.03929i −0.355409 + 0.162310i −0.585115 0.810950i \(-0.698951\pi\)
0.229706 + 0.973260i \(0.426223\pi\)
\(42\) 2.35289 3.69020i 0.363058 0.569410i
\(43\) −1.31574 2.04733i −0.200649 0.312215i 0.726318 0.687359i \(-0.241230\pi\)
−0.926967 + 0.375143i \(0.877594\pi\)
\(44\) −1.16689 + 0.403863i −0.175915 + 0.0608847i
\(45\) 0.836004 + 1.44800i 0.124624 + 0.215855i
\(46\) 5.10080 + 6.07580i 0.752072 + 0.895827i
\(47\) −2.89094 1.66908i −0.421687 0.243461i 0.274112 0.961698i \(-0.411616\pi\)
−0.695799 + 0.718237i \(0.744949\pi\)
\(48\) 3.72617 + 3.22874i 0.537826 + 0.466029i
\(49\) −4.62186 5.25723i −0.660266 0.751032i
\(50\) −0.518938 3.60929i −0.0733889 0.510431i
\(51\) 0.761972 7.97973i 0.106697 1.11739i
\(52\) 0.282303 + 0.705158i 0.0391484 + 0.0977879i
\(53\) −7.76255 + 8.14113i −1.06627 + 1.11827i −0.0736139 + 0.997287i \(0.523453\pi\)
−0.992655 + 0.120983i \(0.961395\pi\)
\(54\) −0.757979 1.47027i −0.103148 0.200079i
\(55\) −2.55083 1.16493i −0.343954 0.157079i
\(56\) 4.64209 3.00687i 0.620325 0.401810i
\(57\) −0.957939 + 0.830059i −0.126882 + 0.109944i
\(58\) −11.8578 + 2.28541i −1.55701 + 0.300089i
\(59\) 4.72167 1.14547i 0.614710 0.149127i 0.0836976 0.996491i \(-0.473327\pi\)
0.531012 + 0.847364i \(0.321812\pi\)
\(60\) −0.117014 1.22542i −0.0151064 0.158201i
\(61\) −8.22889 + 4.24229i −1.05360 + 0.543169i −0.895872 0.444313i \(-0.853448\pi\)
−0.157730 + 0.987482i \(0.550417\pi\)
\(62\) −0.341770 1.16396i −0.0434049 0.147823i
\(63\) −2.59613 + 0.510027i −0.327081 + 0.0642574i
\(64\) 1.36503 + 2.98900i 0.170629 + 0.373624i
\(65\) −0.641114 + 1.60143i −0.0795204 + 0.198632i
\(66\) 2.46590 + 1.27126i 0.303532 + 0.156482i
\(67\) −0.325697 + 1.68987i −0.0397902 + 0.206451i −0.996383 0.0849771i \(-0.972918\pi\)
0.956593 + 0.291428i \(0.0941304\pi\)
\(68\) −2.95085 + 5.11102i −0.357843 + 0.619803i
\(69\) 0.530365 4.76642i 0.0638484 0.573809i
\(70\) −7.19021 1.35907i −0.859394 0.162440i
\(71\) −6.99726 + 8.07527i −0.830422 + 0.958358i −0.999629 0.0272225i \(-0.991334\pi\)
0.169207 + 0.985580i \(0.445879\pi\)
\(72\) −0.0994682 2.08809i −0.0117224 0.246084i
\(73\) −8.07152 10.2638i −0.944700 1.20128i −0.979409 0.201887i \(-0.935293\pi\)
0.0347087 0.999397i \(-0.488950\pi\)
\(74\) 3.58927 + 2.55591i 0.417245 + 0.297119i
\(75\) −1.36266 + 1.73277i −0.157347 + 0.200083i
\(76\) 0.895406 0.262915i 0.102710 0.0301584i
\(77\) 3.05061 3.22245i 0.347649 0.367232i
\(78\) 0.708937 1.55236i 0.0802713 0.175770i
\(79\) 2.74844 + 2.88248i 0.309224 + 0.324305i 0.859947 0.510383i \(-0.170496\pi\)
−0.550723 + 0.834688i \(0.685648\pi\)
\(80\) 2.69626 7.79032i 0.301451 0.870984i
\(81\) −0.327068 + 0.945001i −0.0363409 + 0.105000i
\(82\) −2.85581 2.99509i −0.315372 0.330753i
\(83\) −1.39337 + 3.05106i −0.152943 + 0.334898i −0.970558 0.240867i \(-0.922568\pi\)
0.817615 + 0.575765i \(0.195296\pi\)
\(84\) 1.89463 + 0.452442i 0.206721 + 0.0493655i
\(85\) −12.8600 + 3.77602i −1.39486 + 0.409567i
\(86\) 2.48851 3.16439i 0.268342 0.341225i
\(87\) 5.94675 + 4.23466i 0.637559 + 0.454004i
\(88\) 2.16731 + 2.75596i 0.231036 + 0.293786i
\(89\) 0.110733 + 2.32458i 0.0117377 + 0.246405i 0.997109 + 0.0759839i \(0.0242097\pi\)
−0.985371 + 0.170421i \(0.945487\pi\)
\(90\) −1.81119 + 2.09023i −0.190916 + 0.220329i
\(91\) −2.06929 1.78009i −0.216920 0.186604i
\(92\) −1.81297 + 3.02989i −0.189015 + 0.315887i
\(93\) −0.366683 + 0.635113i −0.0380232 + 0.0658581i
\(94\) 1.04502 5.42207i 0.107785 0.559244i
\(95\) 1.88373 + 0.971132i 0.193267 + 0.0996361i
\(96\) −1.47728 + 3.69006i −0.150774 + 0.376615i
\(97\) 1.44869 + 3.17218i 0.147092 + 0.322086i 0.968809 0.247810i \(-0.0797108\pi\)
−0.821717 + 0.569896i \(0.806983\pi\)
\(98\) 5.71747 10.0691i 0.577551 1.01713i
\(99\) −0.472514 1.60924i −0.0474895 0.161734i
\(100\) 1.44254 0.743681i 0.144254 0.0743681i
\(101\) −0.694753 7.27578i −0.0691305 0.723967i −0.961891 0.273435i \(-0.911840\pi\)
0.892760 0.450532i \(-0.148766\pi\)
\(102\) 12.8860 3.12611i 1.27590 0.309531i
\(103\) 12.2932 2.36931i 1.21128 0.233455i 0.456676 0.889633i \(-0.349040\pi\)
0.754606 + 0.656178i \(0.227828\pi\)
\(104\) 1.62993 1.41234i 0.159828 0.138491i
\(105\) 2.40498 + 3.71287i 0.234702 + 0.362339i
\(106\) −16.9258 7.72974i −1.64398 0.750778i
\(107\) 9.11471 + 17.6801i 0.881152 + 1.70920i 0.684891 + 0.728646i \(0.259850\pi\)
0.196261 + 0.980552i \(0.437120\pi\)
\(108\) 0.508062 0.532840i 0.0488883 0.0512726i
\(109\) 1.89387 + 4.73065i 0.181400 + 0.453114i 0.990999 0.133868i \(-0.0427399\pi\)
−0.809600 + 0.586983i \(0.800316\pi\)
\(110\) 0.440933 4.61766i 0.0420414 0.440277i
\(111\) −0.379095 2.63667i −0.0359821 0.250261i
\(112\) 10.2827 + 8.02686i 0.971622 + 0.758467i
\(113\) −10.4009 9.01245i −0.978437 0.847820i 0.00992388 0.999951i \(-0.496841\pi\)
−0.988360 + 0.152131i \(0.951387\pi\)
\(114\) −1.81580 1.04835i −0.170065 0.0981871i
\(115\) −7.72819 + 2.13871i −0.720658 + 0.199435i
\(116\) −2.68743 4.65476i −0.249521 0.432183i
\(117\) −0.974946 + 0.337432i −0.0901338 + 0.0311956i
\(118\) 4.34510 + 6.76111i 0.399999 + 0.622410i
\(119\) 0.933144 21.1879i 0.0855411 1.94229i
\(120\) −3.17941 + 1.45199i −0.290239 + 0.132548i
\(121\) −6.43549 5.06092i −0.585044 0.460084i
\(122\) −11.0835 10.5681i −1.00345 0.956788i
\(123\) −0.119041 + 2.49898i −0.0107336 + 0.225325i
\(124\) 0.439815 0.313191i 0.0394965 0.0281254i
\(125\) 11.5579 + 3.39369i 1.03377 + 0.303541i
\(126\) −2.20183 3.78228i −0.196154 0.336952i
\(127\) 4.50842 + 5.20299i 0.400058 + 0.461691i 0.919659 0.392718i \(-0.128465\pi\)
−0.519602 + 0.854409i \(0.673920\pi\)
\(128\) −9.68720 + 9.23673i −0.856236 + 0.816419i
\(129\) −2.42265 + 0.231335i −0.213302 + 0.0203679i
\(130\) −2.85018 0.135771i −0.249977 0.0119079i
\(131\) −17.0050 4.12536i −1.48573 0.360434i −0.590865 0.806770i \(-0.701213\pi\)
−0.894865 + 0.446336i \(0.852729\pi\)
\(132\) −0.175730 + 1.22223i −0.0152953 + 0.106381i
\(133\) −2.41878 + 2.32293i −0.209735 + 0.201423i
\(134\) −2.81779 + 0.405137i −0.243420 + 0.0349985i
\(135\) 1.67011 0.0795573i 0.143741 0.00684721i
\(136\) 16.4544 + 3.17132i 1.41095 + 0.271939i
\(137\) 15.1009 8.71851i 1.29016 0.744872i 0.311475 0.950254i \(-0.399177\pi\)
0.978682 + 0.205382i \(0.0658437\pi\)
\(138\) 7.73771 1.74968i 0.658677 0.148943i
\(139\) 9.31466i 0.790060i 0.918668 + 0.395030i \(0.129266\pi\)
−0.918668 + 0.395030i \(0.870734\pi\)
\(140\) −0.475067 3.22207i −0.0401505 0.272315i
\(141\) −2.80824 + 1.80475i −0.236497 + 0.151987i
\(142\) −16.4088 6.56908i −1.37699 0.551265i
\(143\) 1.00368 1.40948i 0.0839323 0.117866i
\(144\) 4.57725 1.83246i 0.381438 0.152705i
\(145\) 2.87776 11.8623i 0.238985 0.985110i
\(146\) 11.6773 18.1702i 0.966417 1.50377i
\(147\) −6.79067 + 1.69907i −0.560085 + 0.140137i
\(148\) −0.552527 + 1.88173i −0.0454174 + 0.154678i
\(149\) 0.156216 + 0.810527i 0.0127977 + 0.0664010i 0.987766 0.155943i \(-0.0498415\pi\)
−0.974968 + 0.222344i \(0.928629\pi\)
\(150\) −3.44586 1.19262i −0.281353 0.0973773i
\(151\) −2.08837 8.60839i −0.169949 0.700541i −0.991467 0.130358i \(-0.958387\pi\)
0.821518 0.570183i \(-0.193128\pi\)
\(152\) −1.53700 2.15841i −0.124667 0.175070i
\(153\) −6.74351 4.33379i −0.545181 0.350366i
\(154\) 6.68772 + 3.02523i 0.538911 + 0.243780i
\(155\) 1.21371 + 0.174505i 0.0974876 + 0.0140166i
\(156\) 0.756128 + 0.0722015i 0.0605387 + 0.00578075i
\(157\) −7.58667 + 5.96623i −0.605482 + 0.476157i −0.873214 0.487337i \(-0.837968\pi\)
0.267732 + 0.963494i \(0.413726\pi\)
\(158\) −3.01888 + 5.85580i −0.240169 + 0.465862i
\(159\) 3.67912 + 10.6301i 0.291773 + 0.843023i
\(160\) 6.64587 0.525402
\(161\) 0.756153 12.6660i 0.0595932 0.998223i
\(162\) −1.65416 −0.129963
\(163\) −5.37132 15.5194i −0.420714 1.21557i −0.933974 0.357341i \(-0.883684\pi\)
0.513260 0.858233i \(-0.328438\pi\)
\(164\) 0.844020 1.63717i 0.0659069 0.127841i
\(165\) −2.20429 + 1.73347i −0.171604 + 0.134951i
\(166\) −5.52321 0.527403i −0.428684 0.0409344i
\(167\) −12.2688 1.76399i −0.949388 0.136501i −0.349813 0.936820i \(-0.613755\pi\)
−0.599575 + 0.800318i \(0.704664\pi\)
\(168\) −0.545486 5.50388i −0.0420851 0.424633i
\(169\) 10.0409 + 6.45288i 0.772376 + 0.496376i
\(170\) −12.8601 18.0595i −0.986326 1.38510i
\(171\) 0.298833 + 1.23181i 0.0228523 + 0.0941985i
\(172\) 1.69321 + 0.586027i 0.129106 + 0.0446841i
\(173\) 1.42074 + 7.37152i 0.108017 + 0.560446i 0.995103 + 0.0988420i \(0.0315138\pi\)
−0.887086 + 0.461604i \(0.847274\pi\)
\(174\) −3.40222 + 11.5869i −0.257922 + 0.878400i
\(175\) −3.36598 + 4.76293i −0.254444 + 0.360044i
\(176\) −4.47066 + 6.95648i −0.336989 + 0.524365i
\(177\) 1.14547 4.72167i 0.0860985 0.354903i
\(178\) −3.57383 + 1.43074i −0.267870 + 0.107239i
\(179\) −0.756218 + 1.06196i −0.0565224 + 0.0793746i −0.841870 0.539681i \(-0.818545\pi\)
0.785347 + 0.619055i \(0.212484\pi\)
\(180\) −1.14282 0.457515i −0.0851805 0.0341011i
\(181\) 19.1508 12.3075i 1.42347 0.914809i 0.423510 0.905891i \(-0.360798\pi\)
0.999960 0.00891722i \(-0.00283848\pi\)
\(182\) 1.66307 4.19773i 0.123275 0.311157i
\(183\) 9.25806i 0.684375i
\(184\) 9.81350 + 2.05083i 0.723461 + 0.151189i
\(185\) −3.85716 + 2.22693i −0.283584 + 0.163727i
\(186\) −1.19118 0.229581i −0.0873415 0.0168337i
\(187\) 13.4290 0.639704i 0.982029 0.0467798i
\(188\) 2.43267 0.349765i 0.177421 0.0255092i
\(189\) −0.736284 + 2.54124i −0.0535568 + 0.184848i
\(190\) −0.498914 + 3.47002i −0.0361950 + 0.251742i
\(191\) −5.52447 1.34022i −0.399736 0.0969750i 0.0308508 0.999524i \(-0.490178\pi\)
−0.430587 + 0.902549i \(0.641693\pi\)
\(192\) 3.28222 + 0.156351i 0.236874 + 0.0112837i
\(193\) −15.2544 + 1.45662i −1.09803 + 0.104850i −0.628310 0.777963i \(-0.716253\pi\)
−0.469725 + 0.882813i \(0.655647\pi\)
\(194\) −4.17492 + 3.98078i −0.299742 + 0.285803i
\(195\) 1.12963 + 1.30366i 0.0808944 + 0.0933571i
\(196\) 5.06740 + 0.939009i 0.361957 + 0.0670721i
\(197\) 18.1149 + 5.31902i 1.29063 + 0.378964i 0.853811 0.520583i \(-0.174285\pi\)
0.436823 + 0.899547i \(0.356104\pi\)
\(198\) 2.25989 1.60926i 0.160603 0.114365i
\(199\) −0.839882 + 17.6313i −0.0595376 + 1.24985i 0.749465 + 0.662044i \(0.230311\pi\)
−0.809003 + 0.587805i \(0.799992\pi\)
\(200\) −3.33511 3.18002i −0.235828 0.224861i
\(201\) 1.35278 + 1.06384i 0.0954176 + 0.0750372i
\(202\) 10.9975 5.02238i 0.773780 0.353374i
\(203\) 16.2863 + 10.3842i 1.14307 + 0.728827i
\(204\) 3.19070 + 4.96483i 0.223394 + 0.347608i
\(205\) 3.95298 1.36814i 0.276088 0.0955551i
\(206\) 10.3545 + 17.9346i 0.721435 + 1.24956i
\(207\) −3.99353 2.65550i −0.277570 0.184570i
\(208\) 4.40518 + 2.54333i 0.305444 + 0.176348i
\(209\) −1.60663 1.39215i −0.111133 0.0962972i
\(210\) −4.50273 + 5.76815i −0.310718 + 0.398040i
\(211\) −0.0671972 0.467367i −0.00462605 0.0321749i 0.987378 0.158383i \(-0.0506282\pi\)
−0.992004 + 0.126209i \(0.959719\pi\)
\(212\) 0.787233 8.24428i 0.0540674 0.566220i
\(213\) 3.97125 + 9.91971i 0.272106 + 0.679688i
\(214\) −22.7059 + 23.8132i −1.55214 + 1.62784i
\(215\) 1.86458 + 3.61677i 0.127163 + 0.246662i
\(216\) −1.90155 0.868409i −0.129384 0.0590878i
\(217\) −0.882906 + 1.72779i −0.0599356 + 0.117290i
\(218\) −6.37024 + 5.51984i −0.431447 + 0.373851i
\(219\) −12.8214 + 2.47112i −0.866389 + 0.166983i
\(220\) 2.00640 0.486746i 0.135271 0.0328164i
\(221\) −0.786117 8.23259i −0.0528800 0.553784i
\(222\) 3.91649 2.01909i 0.262857 0.135512i
\(223\) 7.11824 + 24.2425i 0.476672 + 1.62340i 0.749973 + 0.661469i \(0.230066\pi\)
−0.273301 + 0.961929i \(0.588115\pi\)
\(224\) −3.40387 + 9.95018i −0.227431 + 0.664824i
\(225\) 0.915736 + 2.00518i 0.0610491 + 0.133679i
\(226\) 8.46096 21.1345i 0.562815 1.40584i
\(227\) 8.71898 + 4.49495i 0.578699 + 0.298340i 0.722616 0.691250i \(-0.242940\pi\)
−0.143917 + 0.989590i \(0.545970\pi\)
\(228\) 0.176611 0.916343i 0.0116963 0.0606863i
\(229\) 5.52994 9.57814i 0.365429 0.632941i −0.623416 0.781890i \(-0.714256\pi\)
0.988845 + 0.148949i \(0.0475890\pi\)
\(230\) −7.52431 10.9235i −0.496138 0.720273i
\(231\) −1.46636 4.18810i −0.0964793 0.275557i
\(232\) −9.99400 + 11.5337i −0.656139 + 0.757224i
\(233\) 0.721910 + 15.1547i 0.0472939 + 0.992821i 0.890430 + 0.455120i \(0.150404\pi\)
−0.843136 + 0.537700i \(0.819293\pi\)
\(234\) −1.05493 1.34146i −0.0689632 0.0876939i
\(235\) 4.54651 + 3.23755i 0.296582 + 0.211195i
\(236\) −2.21122 + 2.81180i −0.143938 + 0.183032i
\(237\) 3.82146 1.12208i 0.248231 0.0728871i
\(238\) 33.6253 10.0044i 2.17961 0.648491i
\(239\) −2.94569 + 6.45016i −0.190541 + 0.417226i −0.980658 0.195730i \(-0.937292\pi\)
0.790117 + 0.612956i \(0.210020\pi\)
\(240\) −5.68882 5.96626i −0.367212 0.385120i
\(241\) 1.76037 5.08627i 0.113396 0.327635i −0.873996 0.485934i \(-0.838480\pi\)
0.987391 + 0.158298i \(0.0506008\pi\)
\(242\) 4.42939 12.7979i 0.284732 0.822680i
\(243\) 0.690079 + 0.723734i 0.0442686 + 0.0464276i
\(244\) 2.83152 6.20017i 0.181270 0.396925i
\(245\) 6.85724 + 9.48489i 0.438093 + 0.605968i
\(246\) −3.97075 + 1.16592i −0.253166 + 0.0743363i
\(247\) −0.808367 + 1.02792i −0.0514352 + 0.0654051i
\(248\) −1.24880 0.889269i −0.0792991 0.0564686i
\(249\) 2.07341 + 2.63656i 0.131397 + 0.167085i
\(250\) 0.948100 + 19.9031i 0.0599631 + 1.25878i
\(251\) −9.02650 + 10.4171i −0.569748 + 0.657524i −0.965369 0.260890i \(-0.915984\pi\)
0.395621 + 0.918414i \(0.370529\pi\)
\(252\) 1.27032 1.47669i 0.0800224 0.0930229i
\(253\) 8.03933 0.257220i 0.505428 0.0161713i
\(254\) −5.69406 + 9.86241i −0.357277 + 0.618823i
\(255\) −2.53651 + 13.1607i −0.158842 + 0.824152i
\(256\) −13.8383 7.13416i −0.864896 0.445885i
\(257\) −6.56991 + 16.4108i −0.409820 + 1.02368i 0.569614 + 0.821912i \(0.307093\pi\)
−0.979433 + 0.201767i \(0.935331\pi\)
\(258\) −1.67232 3.66188i −0.104114 0.227979i
\(259\) −1.35860 6.91551i −0.0844193 0.429709i
\(260\) −0.357801 1.21856i −0.0221899 0.0755718i
\(261\) 6.48888 3.34525i 0.401652 0.207066i
\(262\) −2.75138 28.8137i −0.169981 1.78012i
\(263\) −27.1412 + 6.58439i −1.67360 + 0.406011i −0.956679 0.291145i \(-0.905964\pi\)
−0.716920 + 0.697156i \(0.754449\pi\)
\(264\) 3.44271 0.663528i 0.211884 0.0408373i
\(265\) 14.2142 12.3167i 0.873170 0.756606i
\(266\) −4.93977 2.52424i −0.302877 0.154771i
\(267\) 2.11691 + 0.966760i 0.129553 + 0.0591648i
\(268\) −0.580594 1.12620i −0.0354654 0.0687934i
\(269\) −8.25231 + 8.65478i −0.503152 + 0.527691i −0.925502 0.378742i \(-0.876357\pi\)
0.422350 + 0.906433i \(0.361205\pi\)
\(270\) 1.02793 + 2.56765i 0.0625579 + 0.156262i
\(271\) −2.02665 + 21.2240i −0.123110 + 1.28927i 0.697004 + 0.717067i \(0.254516\pi\)
−0.820114 + 0.572200i \(0.806090\pi\)
\(272\) 5.62463 + 39.1202i 0.341043 + 2.37201i
\(273\) −2.53041 + 1.02357i −0.153147 + 0.0619492i
\(274\) 21.7985 + 18.8885i 1.31690 + 1.14110i
\(275\) −3.20182 1.84857i −0.193077 0.111473i
\(276\) 1.86232 + 2.99980i 0.112098 + 0.180567i
\(277\) −1.02861 1.78161i −0.0618035 0.107047i 0.833468 0.552568i \(-0.186352\pi\)
−0.895272 + 0.445521i \(0.853019\pi\)
\(278\) −14.5605 + 5.03944i −0.873281 + 0.302245i
\(279\) 0.396487 + 0.616946i 0.0237371 + 0.0369356i
\(280\) −8.20435 + 4.26696i −0.490304 + 0.254999i
\(281\) 29.9135 13.6611i 1.78449 0.814950i 0.811415 0.584470i \(-0.198697\pi\)
0.973077 0.230481i \(-0.0740298\pi\)
\(282\) −4.34047 3.41338i −0.258471 0.203264i
\(283\) −20.3366 19.3909i −1.20888 1.15267i −0.983978 0.178287i \(-0.942944\pi\)
−0.224905 0.974381i \(-0.572207\pi\)
\(284\) 0.374317 7.85787i 0.0222116 0.466279i
\(285\) 1.72635 1.22933i 0.102260 0.0728193i
\(286\) 2.74628 + 0.806381i 0.162391 + 0.0476823i
\(287\) 0.0237425 + 6.61912i 0.00140148 + 0.390715i
\(288\) 2.60293 + 3.00394i 0.153379 + 0.177009i
\(289\) 34.2013 32.6109i 2.01184 1.91829i
\(290\) 20.0998 1.91930i 1.18030 0.112705i
\(291\) 3.48337 + 0.165934i 0.204199 + 0.00972720i
\(292\) 9.34233 + 2.26643i 0.546719 + 0.132633i
\(293\) −2.26382 + 15.7452i −0.132254 + 0.919847i 0.810353 + 0.585942i \(0.199275\pi\)
−0.942607 + 0.333905i \(0.891634\pi\)
\(294\) −6.32986 9.69580i −0.369165 0.565471i
\(295\) −8.04098 + 1.15612i −0.468164 + 0.0673118i
\(296\) 5.56222 0.264961i 0.323298 0.0154006i
\(297\) −1.64687 0.317407i −0.0955608 0.0184178i
\(298\) −1.18248 + 0.682708i −0.0684995 + 0.0395482i
\(299\) −0.393351 4.93214i −0.0227481 0.285233i
\(300\) 1.62295i 0.0937013i
\(301\) −6.37002 + 0.939204i −0.367162 + 0.0541348i
\(302\) 12.3266 7.92183i 0.709317 0.455850i
\(303\) −6.78533 2.71643i −0.389807 0.156055i
\(304\) 3.62506 5.09069i 0.207911 0.291971i
\(305\) 14.3707 5.75316i 0.822865 0.329425i
\(306\) 3.12611 12.8860i 0.178708 0.736644i
\(307\) 1.88005 2.92541i 0.107300 0.166962i −0.783451 0.621453i \(-0.786543\pi\)
0.890751 + 0.454491i \(0.150179\pi\)
\(308\) −0.298878 + 3.25327i −0.0170301 + 0.185372i
\(309\) 3.52713 12.0123i 0.200651 0.683355i
\(310\) 0.383861 + 1.99166i 0.0218019 + 0.113119i
\(311\) −20.8479 7.21552i −1.18218 0.409155i −0.335898 0.941898i \(-0.609040\pi\)
−0.846277 + 0.532743i \(0.821161\pi\)
\(312\) −0.508462 2.09591i −0.0287860 0.118658i
\(313\) −8.98388 12.6161i −0.507799 0.713104i 0.478497 0.878089i \(-0.341182\pi\)
−0.986296 + 0.164986i \(0.947242\pi\)
\(314\) −13.4308 8.63148i −0.757946 0.487103i
\(315\) 4.40215 0.436294i 0.248033 0.0245824i
\(316\) −2.90244 0.417308i −0.163275 0.0234754i
\(317\) 13.8681 + 1.32424i 0.778908 + 0.0743767i 0.476934 0.878939i \(-0.341748\pi\)
0.301974 + 0.953316i \(0.402354\pi\)
\(318\) −14.6263 + 11.5022i −0.820202 + 0.645014i
\(319\) −5.61057 + 10.8830i −0.314131 + 0.609330i
\(320\) −1.79695 5.19194i −0.100453 0.290239i
\(321\) 19.8913 1.11022
\(322\) 20.2084 5.67060i 1.12617 0.316010i
\(323\) −10.1606 −0.565351
\(324\) −0.240800 0.695745i −0.0133778 0.0386525i
\(325\) −1.04212 + 2.02143i −0.0578063 + 0.112129i
\(326\) 21.3536 16.7927i 1.18267 0.930061i
\(327\) 5.07259 + 0.484374i 0.280515 + 0.0267859i
\(328\) −5.17671 0.744298i −0.285836 0.0410970i
\(329\) −7.17588 + 5.14881i −0.395619 + 0.283863i
\(330\) −3.90230 2.50785i −0.214814 0.138053i
\(331\) 7.65915 + 10.7558i 0.420985 + 0.591191i 0.969543 0.244922i \(-0.0787623\pi\)
−0.548558 + 0.836113i \(0.684823\pi\)
\(332\) −0.582200 2.39986i −0.0319524 0.131709i
\(333\) −2.51727 0.871237i −0.137946 0.0477435i
\(334\) −3.88026 20.1327i −0.212318 1.10161i
\(335\) 0.810681 2.76092i 0.0442922 0.150845i
\(336\) 11.8464 5.46149i 0.646272 0.297949i
\(337\) 7.20577 11.2124i 0.392523 0.610778i −0.587604 0.809149i \(-0.699929\pi\)
0.980127 + 0.198370i \(0.0635649\pi\)
\(338\) −4.65468 + 19.1869i −0.253181 + 1.04363i
\(339\) −12.7766 + 5.11496i −0.693928 + 0.277807i
\(340\) 5.72382 8.03799i 0.310418 0.435921i
\(341\) −1.14187 0.457138i −0.0618360 0.0247554i
\(342\) −1.76386 + 1.13356i −0.0953785 + 0.0612961i
\(343\) −17.7129 + 5.40867i −0.956406 + 0.292041i
\(344\) 5.08749i 0.274299i
\(345\) −1.64031 + 7.84910i −0.0883111 + 0.422582i
\(346\) −10.7544 + 6.20903i −0.578158 + 0.333800i
\(347\) −19.9576 3.84652i −1.07138 0.206492i −0.377083 0.926179i \(-0.623073\pi\)
−0.694298 + 0.719688i \(0.744285\pi\)
\(348\) −5.36876 + 0.255746i −0.287796 + 0.0137094i
\(349\) −2.64543 + 0.380356i −0.141607 + 0.0203600i −0.212754 0.977106i \(-0.568243\pi\)
0.0711469 + 0.997466i \(0.477334\pi\)
\(350\) −9.26639 2.68479i −0.495309 0.143508i
\(351\) −0.146825 + 1.02119i −0.00783691 + 0.0545069i
\(352\) −6.47849 1.57166i −0.345305 0.0837700i
\(353\) 10.6579 + 0.507698i 0.567263 + 0.0270221i 0.329255 0.944241i \(-0.393203\pi\)
0.238008 + 0.971263i \(0.423506\pi\)
\(354\) 8.00055 0.763960i 0.425224 0.0406040i
\(355\) 12.9299 12.3287i 0.686250 0.654338i
\(356\) −1.12203 1.29489i −0.0594674 0.0686290i
\(357\) −18.4049 10.5383i −0.974093 0.557744i
\(358\) −2.06916 0.607561i −0.109359 0.0321106i
\(359\) 22.1516 15.7741i 1.16911 0.832523i 0.180586 0.983559i \(-0.442201\pi\)
0.988528 + 0.151037i \(0.0482611\pi\)
\(360\) −0.166312 + 3.49131i −0.00876539 + 0.184008i
\(361\) −12.5882 12.0028i −0.662535 0.631726i
\(362\) 29.5999 + 23.2776i 1.55573 + 1.22344i
\(363\) −7.44724 + 3.40104i −0.390879 + 0.178508i
\(364\) 2.00768 + 0.0884211i 0.105231 + 0.00463452i
\(365\) 11.8033 + 18.3663i 0.617812 + 0.961333i
\(366\) −14.4720 + 5.00881i −0.756464 + 0.261815i
\(367\) −6.04504 10.4703i −0.315548 0.546546i 0.664005 0.747728i \(-0.268855\pi\)
−0.979554 + 0.201182i \(0.935522\pi\)
\(368\) 2.99923 + 23.4545i 0.156346 + 1.22265i
\(369\) 2.16663 + 1.25090i 0.112790 + 0.0651195i
\(370\) −5.56790 4.82461i −0.289461 0.250820i
\(371\) 11.1603 + 27.5898i 0.579412 + 1.43239i
\(372\) −0.0768402 0.534435i −0.00398398 0.0277092i
\(373\) 1.48021 15.5015i 0.0766426 0.802638i −0.872671 0.488308i \(-0.837614\pi\)
0.949314 0.314330i \(-0.101780\pi\)
\(374\) 8.26538 + 20.6459i 0.427393 + 1.06758i
\(375\) 8.31255 8.71795i 0.429258 0.450193i
\(376\) −3.19765 6.20257i −0.164906 0.319873i
\(377\) 6.85114 + 3.12881i 0.352851 + 0.161142i
\(378\) −4.37076 + 0.223921i −0.224808 + 0.0115172i
\(379\) 7.45363 6.45861i 0.382867 0.331756i −0.442070 0.896980i \(-0.645756\pi\)
0.824937 + 0.565224i \(0.191210\pi\)
\(380\) −1.53213 + 0.295294i −0.0785967 + 0.0151483i
\(381\) 6.69048 1.62309i 0.342764 0.0831536i
\(382\) −0.893851 9.36083i −0.0457334 0.478942i
\(383\) 15.8228 8.15723i 0.808508 0.416815i −0.00383652 0.999993i \(-0.501221\pi\)
0.812345 + 0.583178i \(0.198191\pi\)
\(384\) 3.77100 + 12.8428i 0.192438 + 0.655384i
\(385\) −5.58970 + 4.87872i −0.284878 + 0.248642i
\(386\) −10.5299 23.0573i −0.535958 1.17358i
\(387\) −0.904503 + 2.25934i −0.0459785 + 0.114849i
\(388\) −2.28208 1.17650i −0.115855 0.0597276i
\(389\) 4.23855 21.9917i 0.214903 1.11502i −0.700858 0.713301i \(-0.747199\pi\)
0.915761 0.401723i \(-0.131588\pi\)
\(390\) −1.42670 + 2.47112i −0.0722439 + 0.125130i
\(391\) 28.2337 26.0914i 1.42784 1.31950i
\(392\) −2.18638 14.4690i −0.110429 0.730794i
\(393\) −11.4589 + 13.2243i −0.578025 + 0.667076i
\(394\) 1.48598 + 31.1946i 0.0748626 + 1.57156i
\(395\) −4.11648 5.23454i −0.207123 0.263378i
\(396\) 1.00584 + 0.716254i 0.0505452 + 0.0359931i
\(397\) 12.1051 15.3929i 0.607540 0.772550i −0.380826 0.924647i \(-0.624360\pi\)
0.988366 + 0.152097i \(0.0486026\pi\)
\(398\) −28.0153 + 8.22603i −1.40428 + 0.412334i
\(399\) 0.956349 + 3.21433i 0.0478773 + 0.160918i
\(400\) 4.51497 9.88641i 0.225749 0.494321i
\(401\) −15.2063 15.9480i −0.759368 0.796403i 0.224656 0.974438i \(-0.427874\pi\)
−0.984024 + 0.178036i \(0.943026\pi\)
\(402\) −0.931085 + 2.69019i −0.0464383 + 0.134175i
\(403\) −0.247461 + 0.714991i −0.0123269 + 0.0356163i
\(404\) 3.71336 + 3.89446i 0.184747 + 0.193757i
\(405\) 0.694577 1.52091i 0.0345138 0.0755747i
\(406\) −7.42114 + 31.0764i −0.368305 + 1.54230i
\(407\) 4.28665 1.25867i 0.212481 0.0623902i
\(408\) 10.3586 13.1721i 0.512828 0.652114i
\(409\) −4.22315 3.00729i −0.208821 0.148701i 0.470862 0.882207i \(-0.343943\pi\)
−0.679683 + 0.733506i \(0.737883\pi\)
\(410\) 4.27730 + 5.43903i 0.211241 + 0.268615i
\(411\) −0.829686 17.4173i −0.0409254 0.859130i
\(412\) −6.03602 + 6.96594i −0.297374 + 0.343187i
\(413\) 2.38748 12.6311i 0.117480 0.621535i
\(414\) 1.99044 7.67930i 0.0978250 0.377417i
\(415\) 2.80410 4.85685i 0.137648 0.238413i
\(416\) −0.776070 + 4.02663i −0.0380500 + 0.197422i
\(417\) 8.27920 + 4.26823i 0.405434 + 0.209016i
\(418\) 1.30696 3.26464i 0.0639257 0.159679i
\(419\) −12.4815 27.3306i −0.609759 1.33519i −0.922739 0.385426i \(-0.874054\pi\)
0.312979 0.949760i \(-0.398673\pi\)
\(420\) −3.08158 1.05418i −0.150366 0.0514389i
\(421\) −7.54695 25.7025i −0.367816 1.25267i −0.910774 0.412905i \(-0.864514\pi\)
0.542958 0.839760i \(-0.317304\pi\)
\(422\) 0.694224 0.357897i 0.0337943 0.0174222i
\(423\) 0.317313 + 3.32305i 0.0154283 + 0.161572i
\(424\) −22.8523 + 5.54391i −1.10981 + 0.269236i
\(425\) −17.3511 + 3.34415i −0.841653 + 0.162215i
\(426\) −13.3578 + 11.5746i −0.647186 + 0.560790i
\(427\) 1.25325 + 24.4624i 0.0606490 + 1.18382i
\(428\) −13.3213 6.08363i −0.643909 0.294063i
\(429\) −0.792879 1.53797i −0.0382805 0.0742539i
\(430\) −4.64489 + 4.87142i −0.223997 + 0.234921i
\(431\) −0.242257 0.605130i −0.0116691 0.0291481i 0.922419 0.386191i \(-0.126209\pi\)
−0.934088 + 0.357043i \(0.883785\pi\)
\(432\) 0.468667 4.90810i 0.0225488 0.236141i
\(433\) −2.02608 14.0917i −0.0973673 0.677204i −0.978789 0.204873i \(-0.934322\pi\)
0.881421 0.472331i \(-0.156587\pi\)
\(434\) −3.17851 0.445370i −0.152574 0.0213785i
\(435\) −9.22496 7.99347i −0.442303 0.383258i
\(436\) −3.24900 1.87581i −0.155599 0.0898350i
\(437\) −6.07814 0.0949214i −0.290757 0.00454071i
\(438\) −10.7995 18.7052i −0.516018 0.893770i
\(439\) 35.4079 12.2548i 1.68993 0.584889i 0.698506 0.715604i \(-0.253848\pi\)
0.991420 + 0.130715i \(0.0417273\pi\)
\(440\) −3.16933 4.93157i −0.151092 0.235104i
\(441\) −1.60147 + 6.81434i −0.0762604 + 0.324493i
\(442\) 12.4437 5.68286i 0.591888 0.270306i
\(443\) 21.1510 + 16.6333i 1.00492 + 0.790274i 0.977839 0.209359i \(-0.0671378\pi\)
0.0270765 + 0.999633i \(0.491380\pi\)
\(444\) 1.41937 + 1.35337i 0.0673603 + 0.0642279i
\(445\) 0.185147 3.88671i 0.00877681 0.184248i
\(446\) −34.0443 + 24.2428i −1.61204 + 1.14793i
\(447\) 0.792008 + 0.232555i 0.0374607 + 0.0109995i
\(448\) 8.69372 0.0311840i 0.410740 0.00147331i
\(449\) −13.1581 15.1852i −0.620967 0.716634i 0.354923 0.934895i \(-0.384507\pi\)
−0.975890 + 0.218261i \(0.929961\pi\)
\(450\) −2.63903 + 2.51631i −0.124405 + 0.118620i
\(451\) −4.17697 + 0.398852i −0.196686 + 0.0187812i
\(452\) 10.1209 + 0.482119i 0.476048 + 0.0226770i
\(453\) −8.60839 2.08837i −0.404457 0.0981203i
\(454\) −2.30925 + 16.0612i −0.108379 + 0.753789i
\(455\) 3.16128 + 3.29173i 0.148203 + 0.154319i
\(456\) −2.62276 + 0.377096i −0.122822 + 0.0176592i
\(457\) −5.87094 + 0.279667i −0.274631 + 0.0130823i −0.184446 0.982843i \(-0.559049\pi\)
−0.0901853 + 0.995925i \(0.528746\pi\)
\(458\) 17.9642 + 3.46231i 0.839411 + 0.161783i
\(459\) −6.94208 + 4.00801i −0.324029 + 0.187078i
\(460\) 3.49913 4.75491i 0.163148 0.221699i
\(461\) 5.85368i 0.272633i 0.990665 + 0.136317i \(0.0435264\pi\)
−0.990665 + 0.136317i \(0.956474\pi\)
\(462\) 5.75342 4.55804i 0.267673 0.212059i
\(463\) 18.3327 11.7817i 0.851994 0.547543i −0.0402023 0.999192i \(-0.512800\pi\)
0.892196 + 0.451648i \(0.149164\pi\)
\(464\) −33.4159 13.3777i −1.55129 0.621045i
\(465\) 0.711261 0.998827i 0.0329839 0.0463195i
\(466\) −23.2990 + 9.32753i −1.07931 + 0.432089i
\(467\) 7.64783 31.5248i 0.353899 1.45879i −0.465233 0.885188i \(-0.654030\pi\)
0.819133 0.573604i \(-0.194455\pi\)
\(468\) 0.410653 0.638989i 0.0189825 0.0295373i
\(469\) 3.71843 + 2.62784i 0.171701 + 0.121342i
\(470\) −2.60112 + 8.85860i −0.119981 + 0.408617i
\(471\) 1.82658 + 9.47719i 0.0841643 + 0.436686i
\(472\) 9.59817 + 3.32196i 0.441792 + 0.152906i
\(473\) −0.962294 3.96663i −0.0442463 0.182386i
\(474\) 3.82151 + 5.36657i 0.175528 + 0.246495i
\(475\) 2.35058 + 1.51063i 0.107852 + 0.0693123i
\(476\) 9.10283 + 12.6866i 0.417227 + 0.581488i
\(477\) 11.1343 + 1.60087i 0.509804 + 0.0732988i
\(478\) −11.6765 1.11497i −0.534069 0.0509974i
\(479\) −12.0180 + 9.45109i −0.549118 + 0.431831i −0.853784 0.520628i \(-0.825698\pi\)
0.304665 + 0.952460i \(0.401455\pi\)
\(480\) 3.04531 5.90709i 0.138999 0.269620i
\(481\) −0.898845 2.59704i −0.0409838 0.118415i
\(482\) 8.90316 0.405528
\(483\) −10.9115 6.47600i −0.496492 0.294668i
\(484\) 6.02764 0.273984
\(485\) −1.90708 5.51014i −0.0865960 0.250203i
\(486\) −0.757979 + 1.47027i −0.0343826 + 0.0666930i
\(487\) −20.3263 + 15.9848i −0.921072 + 0.724339i −0.961489 0.274844i \(-0.911374\pi\)
0.0404172 + 0.999183i \(0.487131\pi\)
\(488\) −19.2660 1.83968i −0.872130 0.0832783i
\(489\) −16.2555 2.33718i −0.735098 0.105691i
\(490\) −11.1167 + 15.8506i −0.502201 + 0.716059i
\(491\) 36.0907 + 23.1941i 1.62875 + 1.04674i 0.949945 + 0.312418i \(0.101139\pi\)
0.678807 + 0.734317i \(0.262497\pi\)
\(492\) −1.06842 1.50039i −0.0481682 0.0676428i
\(493\) 13.7967 + 56.8708i 0.621373 + 2.56133i
\(494\) −2.04417 0.707495i −0.0919717 0.0318317i
\(495\) 0.530707 + 2.75357i 0.0238535 + 0.123764i
\(496\) 1.01869 3.46934i 0.0457405 0.155778i
\(497\) 11.8360 + 25.6731i 0.530917 + 1.15160i
\(498\) −2.99966 + 4.66755i −0.134418 + 0.209158i
\(499\) −5.64613 + 23.2736i −0.252755 + 1.04187i 0.694015 + 0.719961i \(0.255840\pi\)
−0.946770 + 0.321911i \(0.895675\pi\)
\(500\) −8.23330 + 3.29611i −0.368204 + 0.147407i
\(501\) −7.18978 + 10.0966i −0.321216 + 0.451084i
\(502\) −21.1674 8.47415i −0.944747 0.378220i
\(503\) −22.9470 + 14.7472i −1.02316 + 0.657544i −0.940766 0.339056i \(-0.889892\pi\)
−0.0823921 + 0.996600i \(0.526256\pi\)
\(504\) −5.14200 2.03718i −0.229043 0.0907430i
\(505\) 12.2205i 0.543805i
\(506\) 4.75154 + 12.4278i 0.211232 + 0.552481i
\(507\) 10.3365 5.96781i 0.459062 0.265040i
\(508\) −4.97707 0.959251i −0.220822 0.0425599i
\(509\) −41.9531 + 1.99847i −1.85954 + 0.0885808i −0.947160 0.320762i \(-0.896061\pi\)
−0.912381 + 0.409343i \(0.865758\pi\)
\(510\) −21.9448 + 3.15518i −0.971731 + 0.139714i
\(511\) −33.5433 + 8.26502i −1.48387 + 0.365623i
\(512\) −0.144643 + 1.00601i −0.00639238 + 0.0444600i
\(513\) 1.23181 + 0.298833i 0.0543855 + 0.0131938i
\(514\) −29.2076 1.39133i −1.28829 0.0613688i
\(515\) −20.8378 + 1.98977i −0.918222 + 0.0876796i
\(516\) 1.29676 1.23646i 0.0570866 0.0544319i
\(517\) −3.66636 4.23120i −0.161246 0.186088i
\(518\) 10.0752 5.86518i 0.442677 0.257701i
\(519\) 7.20309 + 2.11502i 0.316181 + 0.0928390i
\(520\) −2.93738 + 2.09170i −0.128813 + 0.0917272i
\(521\) −0.490716 + 10.3014i −0.0214986 + 0.451312i 0.962295 + 0.272008i \(0.0876877\pi\)
−0.983794 + 0.179304i \(0.942615\pi\)
\(522\) 8.73986 + 8.33344i 0.382533 + 0.364745i
\(523\) 21.6035 + 16.9892i 0.944656 + 0.742885i 0.966444 0.256877i \(-0.0826936\pi\)
−0.0217885 + 0.999763i \(0.506936\pi\)
\(524\) 11.7186 5.35173i 0.511931 0.233791i
\(525\) 2.69108 + 5.17431i 0.117448 + 0.225825i
\(526\) −24.9766 38.8643i −1.08903 1.69456i
\(527\) −5.55535 + 1.92273i −0.241995 + 0.0837553i
\(528\) 4.13459 + 7.16133i 0.179935 + 0.311657i
\(529\) 17.1334 15.3443i 0.744930 0.667143i
\(530\) 26.9433 + 15.5557i 1.17034 + 0.675699i
\(531\) −3.67191 3.18173i −0.159347 0.138075i
\(532\) 0.342612 2.44515i 0.0148541 0.106011i
\(533\) 0.367327 + 2.55482i 0.0159107 + 0.110661i
\(534\) −0.365926 + 3.83215i −0.0158352 + 0.165833i
\(535\) −12.3609 30.8760i −0.534408 1.33489i
\(536\) −2.48265 + 2.60373i −0.107234 + 0.112464i
\(537\) 0.597388 + 1.15877i 0.0257792 + 0.0500047i
\(538\) −17.9937 8.21743i −0.775762 0.354278i
\(539\) −4.44147 10.8677i −0.191308 0.468103i
\(540\) −0.930324 + 0.806131i −0.0400348 + 0.0346903i
\(541\) 29.9458 5.77159i 1.28747 0.248140i 0.500828 0.865547i \(-0.333029\pi\)
0.786644 + 0.617407i \(0.211817\pi\)
\(542\) −34.2734 + 8.31464i −1.47217 + 0.357144i
\(543\) −2.16392 22.6616i −0.0928625 0.972501i
\(544\) −28.3201 + 14.6000i −1.21421 + 0.625970i
\(545\) −2.40036 8.17487i −0.102820 0.350173i
\(546\) −2.96903 3.40171i −0.127063 0.145580i
\(547\) −3.21785 7.04610i −0.137585 0.301270i 0.828280 0.560314i \(-0.189320\pi\)
−0.965865 + 0.259045i \(0.916592\pi\)
\(548\) −4.77132 + 11.9182i −0.203821 + 0.509120i
\(549\) 8.22889 + 4.24229i 0.351200 + 0.181056i
\(550\) 1.15740 6.00514i 0.0493515 0.256060i
\(551\) 4.62677 8.01381i 0.197107 0.341400i
\(552\) 6.31965 7.78285i 0.268982 0.331260i
\(553\) 9.94551 3.48217i 0.422926 0.148077i
\(554\) 2.22848 2.57180i 0.0946790 0.109265i
\(555\) 0.211923 + 4.44882i 0.00899564 + 0.188842i
\(556\) −4.23922 5.39060i −0.179783 0.228612i
\(557\) −17.5127 12.4707i −0.742036 0.528401i 0.145377 0.989376i \(-0.453560\pi\)
−0.887413 + 0.460975i \(0.847500\pi\)
\(558\) −0.749890 + 0.953562i −0.0317454 + 0.0403675i
\(559\) −2.40908 + 0.707371i −0.101893 + 0.0299186i
\(560\) −15.8391 14.9945i −0.669325 0.633632i
\(561\) 5.58495 12.2293i 0.235797 0.516323i
\(562\) 37.5386 + 39.3693i 1.58347 + 1.66070i
\(563\) 8.62880 24.9313i 0.363661 1.05073i −0.603675 0.797230i \(-0.706298\pi\)
0.967336 0.253498i \(-0.0815811\pi\)
\(564\) 0.803830 2.32251i 0.0338473 0.0977955i
\(565\) 15.8793 + 16.6537i 0.668047 + 0.700627i
\(566\) 19.3089 42.2806i 0.811614 1.77719i
\(567\) 1.92136 + 1.81890i 0.0806894 + 0.0763865i
\(568\) −21.4320 + 6.29301i −0.899268 + 0.264049i
\(569\) −1.31918 + 1.67748i −0.0553030 + 0.0703235i −0.812918 0.582378i \(-0.802122\pi\)
0.757615 + 0.652702i \(0.226365\pi\)
\(570\) 2.85566 + 2.03351i 0.119611 + 0.0851743i
\(571\) 4.66326 + 5.92982i 0.195151 + 0.248155i 0.873774 0.486332i \(-0.161665\pi\)
−0.678623 + 0.734487i \(0.737423\pi\)
\(572\) 0.0606159 + 1.27248i 0.00253448 + 0.0532052i
\(573\) −3.72269 + 4.29622i −0.155518 + 0.179477i
\(574\) −10.3340 + 3.61821i −0.431335 + 0.151021i
\(575\) −10.4108 + 1.83840i −0.434161 + 0.0766666i
\(576\) 1.64297 2.84571i 0.0684571 0.118571i
\(577\) 6.00074 31.1348i 0.249814 1.29616i −0.612777 0.790256i \(-0.709947\pi\)
0.862591 0.505902i \(-0.168840\pi\)
\(578\) 69.4803 + 35.8196i 2.89000 + 1.48990i
\(579\) −5.69527 + 14.2261i −0.236687 + 0.591216i
\(580\) 3.73325 + 8.17467i 0.155015 + 0.339435i
\(581\) 5.83546 + 6.68587i 0.242096 + 0.277377i
\(582\) 1.62520 + 5.53492i 0.0673666 + 0.229430i
\(583\) −16.7689 + 8.64498i −0.694498 + 0.358038i
\(584\) −2.59464 27.1723i −0.107367 1.12440i
\(585\) 1.67637 0.406682i 0.0693092 0.0168142i
\(586\) −25.8374 + 4.97976i −1.06733 + 0.205712i
\(587\) −11.7116 + 10.1482i −0.483391 + 0.418860i −0.862164 0.506629i \(-0.830891\pi\)
0.378773 + 0.925489i \(0.376346\pi\)
\(588\) 3.15664 4.07380i 0.130178 0.168001i
\(589\) 0.845563 + 0.386156i 0.0348408 + 0.0159113i
\(590\) −6.15757 11.9440i −0.253503 0.491728i
\(591\) 13.0285 13.6639i 0.535919 0.562056i
\(592\) 4.88126 + 12.1928i 0.200618 + 0.501121i
\(593\) −0.739350 + 7.74283i −0.0303615 + 0.317960i 0.967514 + 0.252816i \(0.0813567\pi\)
−0.997876 + 0.0651439i \(0.979249\pi\)
\(594\) −0.394825 2.74607i −0.0161999 0.112673i
\(595\) −4.92064 + 35.1176i −0.201727 + 1.43968i
\(596\) −0.459287 0.397974i −0.0188131 0.0163017i
\(597\) 15.2865 + 8.82564i 0.625633 + 0.361209i
\(598\) 7.49702 3.28328i 0.306576 0.134263i
\(599\) −6.72183 11.6426i −0.274647 0.475702i 0.695399 0.718623i \(-0.255227\pi\)
−0.970046 + 0.242922i \(0.921894\pi\)
\(600\) −4.35475 + 1.50719i −0.177782 + 0.0615309i
\(601\) −23.6182 36.7507i −0.963408 1.49909i −0.863657 0.504080i \(-0.831832\pi\)
−0.0997516 0.995012i \(-0.531805\pi\)
\(602\) −4.91446 9.44936i −0.200299 0.385127i
\(603\) 1.56545 0.714919i 0.0637502 0.0291137i
\(604\) 5.12637 + 4.03142i 0.208589 + 0.164036i
\(605\) 9.90711 + 9.44641i 0.402781 + 0.384051i
\(606\) 0.575267 12.0763i 0.0233686 0.490568i
\(607\) 4.49082 3.19790i 0.182277 0.129799i −0.485276 0.874361i \(-0.661281\pi\)
0.667553 + 0.744562i \(0.267342\pi\)
\(608\) 4.83410 + 1.41942i 0.196048 + 0.0575650i
\(609\) 16.6926 9.71750i 0.676420 0.393773i
\(610\) 16.7681 + 19.3514i 0.678921 + 0.783516i
\(611\) −2.49250 + 2.37660i −0.100836 + 0.0961468i
\(612\) 5.87498 0.560993i 0.237482 0.0226768i
\(613\) 30.7180 + 1.46328i 1.24069 + 0.0591013i 0.657638 0.753334i \(-0.271556\pi\)
0.583051 + 0.812435i \(0.301859\pi\)
\(614\) 5.59010 + 1.35614i 0.225598 + 0.0547295i
\(615\) 0.595310 4.14047i 0.0240052 0.166960i
\(616\) 9.00680 2.21926i 0.362894 0.0894167i
\(617\) 26.5946 3.82372i 1.07066 0.153937i 0.415623 0.909537i \(-0.363564\pi\)
0.655033 + 0.755600i \(0.272655\pi\)
\(618\) 20.6856 0.985378i 0.832098 0.0396377i
\(619\) 10.7496 + 2.07182i 0.432063 + 0.0832734i 0.400646 0.916233i \(-0.368786\pi\)
0.0314174 + 0.999506i \(0.489998\pi\)
\(620\) −0.781821 + 0.451385i −0.0313987 + 0.0181280i
\(621\) −4.19025 + 2.33277i −0.168149 + 0.0936108i
\(622\) 36.4928i 1.46323i
\(623\) 5.72435 + 2.26789i 0.229341 + 0.0908613i
\(624\) 4.27918 2.75006i 0.171304 0.110090i
\(625\) −8.46553 3.38909i −0.338621 0.135563i
\(626\) 14.8607 20.8690i 0.593955 0.834093i
\(627\) −1.97360 + 0.790108i −0.0788178 + 0.0315539i
\(628\) 1.67527 6.90557i 0.0668507 0.275562i
\(629\) 11.5443 17.9632i 0.460300 0.716241i
\(630\) 3.06367 + 6.64531i 0.122059 + 0.264755i
\(631\) −5.35476 + 18.2366i −0.213170 + 0.725989i 0.781594 + 0.623787i \(0.214407\pi\)
−0.994764 + 0.102201i \(0.967411\pi\)
\(632\) 1.57568 + 8.17542i 0.0626773 + 0.325201i
\(633\) −0.446204 0.154433i −0.0177350 0.00613815i
\(634\) 5.43290 + 22.3947i 0.215768 + 0.889408i
\(635\) −6.67705 9.37660i −0.264970 0.372099i
\(636\) −6.96708 4.47747i −0.276263 0.177543i
\(637\) −6.54751 + 3.04710i −0.259422 + 0.120731i
\(638\) −20.0475 2.88239i −0.793688 0.114115i
\(639\) 10.6367 + 1.01568i 0.420782 + 0.0401799i
\(640\) 17.5918 13.8343i 0.695376 0.546850i
\(641\) 14.4800 28.0873i 0.571926 1.10938i −0.408549 0.912736i \(-0.633965\pi\)
0.980475 0.196645i \(-0.0630046\pi\)
\(642\) 10.7616 + 31.0937i 0.424727 + 1.22717i
\(643\) 35.3207 1.39291 0.696456 0.717599i \(-0.254759\pi\)
0.696456 + 0.717599i \(0.254759\pi\)
\(644\) 5.32686 + 7.67424i 0.209908 + 0.302408i
\(645\) 4.06911 0.160221
\(646\) −5.49711 15.8828i −0.216281 0.624902i
\(647\) −14.9225 + 28.9456i −0.586664 + 1.13797i 0.389518 + 0.921019i \(0.372641\pi\)
−0.976183 + 0.216951i \(0.930389\pi\)
\(648\) −1.64321 + 1.29224i −0.0645515 + 0.0507639i
\(649\) 8.11187 + 0.774590i 0.318419 + 0.0304053i
\(650\) −3.72366 0.535382i −0.146054 0.0209994i
\(651\) 1.13115 + 1.57648i 0.0443332 + 0.0617870i
\(652\) 10.1716 + 6.53687i 0.398349 + 0.256004i
\(653\) −10.0483 14.1109i −0.393221 0.552202i 0.569746 0.821821i \(-0.307042\pi\)
−0.962967 + 0.269619i \(0.913102\pi\)
\(654\) 1.98722 + 8.19143i 0.0777064 + 0.320310i
\(655\) 27.6480 + 9.56907i 1.08030 + 0.373895i
\(656\) −2.33441 12.1121i −0.0911435 0.472898i
\(657\) −3.67868 + 12.5284i −0.143519 + 0.488781i
\(658\) −11.9308 8.43157i −0.465112 0.328697i
\(659\) 18.4212 28.6639i 0.717588 1.11659i −0.270503 0.962719i \(-0.587190\pi\)
0.988091 0.153870i \(-0.0491736\pi\)
\(660\) 0.486746 2.00640i 0.0189466 0.0780988i
\(661\) −19.9080 + 7.96994i −0.774330 + 0.309995i −0.724965 0.688786i \(-0.758144\pi\)
−0.0493649 + 0.998781i \(0.515720\pi\)
\(662\) −12.6694 + 17.7917i −0.492412 + 0.691496i
\(663\) −7.67764 3.07366i −0.298175 0.119371i
\(664\) −5.89868 + 3.79085i −0.228913 + 0.147114i
\(665\) 4.39511 3.48194i 0.170435 0.135024i
\(666\) 4.40631i 0.170741i
\(667\) 7.72200 + 34.1494i 0.298997 + 1.32227i
\(668\) 7.90303 4.56282i 0.305778 0.176541i
\(669\) 24.8093 + 4.78161i 0.959185 + 0.184868i
\(670\) 4.75442 0.226481i 0.183679 0.00874972i
\(671\) −15.3693 + 2.20977i −0.593326 + 0.0853074i
\(672\) 7.28432 + 7.58492i 0.280999 + 0.292595i
\(673\) 2.63259 18.3100i 0.101479 0.705800i −0.874035 0.485863i \(-0.838506\pi\)
0.975514 0.219938i \(-0.0705854\pi\)
\(674\) 21.4255 + 5.19777i 0.825279 + 0.200211i
\(675\) 2.20189 + 0.104889i 0.0847509 + 0.00403718i
\(676\) −8.74766 + 0.835301i −0.336449 + 0.0321269i
\(677\) −5.05310 + 4.81812i −0.194206 + 0.185175i −0.780943 0.624603i \(-0.785261\pi\)
0.586736 + 0.809778i \(0.300412\pi\)
\(678\) −14.9080 17.2048i −0.572539 0.660745i
\(679\) 9.22653 0.0330952i 0.354082 0.00127008i
\(680\) −26.8832 7.89363i −1.03093 0.302707i
\(681\) 7.99053 5.69003i 0.306198 0.218043i
\(682\) 0.0968093 2.03228i 0.00370702 0.0778199i
\(683\) 19.1914 + 18.2990i 0.734339 + 0.700191i 0.961848 0.273585i \(-0.0882096\pi\)
−0.227509 + 0.973776i \(0.573058\pi\)
\(684\) −0.733550 0.576870i −0.0280480 0.0220572i
\(685\) −26.5202 + 12.1114i −1.01328 + 0.462751i
\(686\) −18.0378 24.7622i −0.688686 0.945426i
\(687\) −5.97942 9.30417i −0.228129 0.354976i
\(688\) 11.3391 3.92450i 0.432299 0.149620i
\(689\) 5.80262 + 10.0504i 0.221062 + 0.382891i
\(690\) −13.1570 + 1.68244i −0.500879 + 0.0640495i
\(691\) −24.8113 14.3248i −0.943865 0.544941i −0.0526950 0.998611i \(-0.516781\pi\)
−0.891170 + 0.453670i \(0.850114\pi\)
\(692\) −4.17708 3.61946i −0.158789 0.137591i
\(693\) −4.39446 0.615747i −0.166932 0.0233903i
\(694\) −4.78471 33.2784i −0.181625 1.26323i
\(695\) 1.48042 15.5037i 0.0561556 0.588088i
\(696\) 5.67204 + 14.1681i 0.214998 + 0.537039i
\(697\) −13.8392 + 14.5142i −0.524199 + 0.549764i
\(698\) −2.02580 3.92950i −0.0766777 0.148734i
\(699\) 13.8009 + 6.30265i 0.521997 + 0.238388i
\(700\) −0.219697 4.28831i −0.00830376 0.162083i
\(701\) −8.72681 + 7.56183i −0.329607 + 0.285606i −0.803904 0.594759i \(-0.797248\pi\)
0.474297 + 0.880365i \(0.342702\pi\)
\(702\) −1.67574 + 0.322971i −0.0632465 + 0.0121898i
\(703\) −3.28126 + 0.796024i −0.123755 + 0.0300226i
\(704\) 0.523863 + 5.48614i 0.0197438 + 0.206767i
\(705\) 4.96098 2.55756i 0.186841 0.0963235i
\(706\) 4.97253 + 16.9349i 0.187144 + 0.637353i
\(707\) −18.2965 6.25908i −0.688110 0.235397i
\(708\) 1.48598 + 3.25385i 0.0558467 + 0.122287i
\(709\) −5.16334 + 12.8974i −0.193913 + 0.484372i −0.993178 0.116607i \(-0.962798\pi\)
0.799265 + 0.600979i \(0.205222\pi\)
\(710\) 26.2673 + 13.5417i 0.985795 + 0.508212i
\(711\) 0.753749 3.91082i 0.0282678 0.146667i
\(712\) −2.43248 + 4.21317i −0.0911609 + 0.157895i
\(713\) −3.34121 + 1.09829i −0.125129 + 0.0411313i
\(714\) 6.51572 34.4717i 0.243845 1.29007i
\(715\) −1.89458 + 2.18647i −0.0708534 + 0.0817692i
\(716\) −0.0456706 0.958743i −0.00170679 0.0358299i
\(717\) 4.38334 + 5.57387i 0.163699 + 0.208160i
\(718\) 36.6422 + 26.0928i 1.36747 + 0.973774i
\(719\) 22.2058 28.2370i 0.828137 1.05306i −0.169580 0.985516i \(-0.554241\pi\)
0.997716 0.0675448i \(-0.0215166\pi\)
\(720\) −7.90979 + 2.32252i −0.294780 + 0.0865553i
\(721\) 7.69359 32.2174i 0.286524 1.19984i
\(722\) 11.9521 26.1713i 0.444809 0.973997i
\(723\) −3.71420 3.89535i −0.138133 0.144869i
\(724\) −5.48172 + 15.8384i −0.203727 + 0.588629i
\(725\) 5.26350 15.2079i 0.195482 0.564807i
\(726\) −9.34556 9.80134i −0.346846 0.363762i
\(727\) −17.5699 + 38.4727i −0.651632 + 1.42687i 0.238487 + 0.971146i \(0.423348\pi\)
−0.890119 + 0.455728i \(0.849379\pi\)
\(728\) −1.62722 5.46917i −0.0603089 0.202701i
\(729\) 0.959493 0.281733i 0.0355368 0.0104345i
\(730\) −22.3239 + 28.3872i −0.826246 + 1.05066i
\(731\) −15.8910 11.3160i −0.587751 0.418536i
\(732\) −4.21345 5.35784i −0.155734 0.198031i
\(733\) −0.676863 14.2091i −0.0250005 0.524826i −0.976282 0.216502i \(-0.930535\pi\)
0.951282 0.308323i \(-0.0997679\pi\)
\(734\) 13.0965 15.1142i 0.483400 0.557874i
\(735\) 11.5727 1.74873i 0.426865 0.0645027i
\(736\) −17.0777 + 8.46926i −0.629491 + 0.312181i
\(737\) −1.44319 + 2.49967i −0.0531605 + 0.0920766i
\(738\) −0.783195 + 4.06360i −0.0288298 + 0.149583i
\(739\) −7.90814 4.07693i −0.290906 0.149972i 0.306596 0.951840i \(-0.400810\pi\)
−0.597502 + 0.801867i \(0.703840\pi\)
\(740\) 1.21872 3.04421i 0.0448010 0.111907i
\(741\) 0.543239 + 1.18953i 0.0199564 + 0.0436983i
\(742\) −37.0898 + 32.3722i −1.36161 + 1.18842i
\(743\) 5.98303 + 20.3763i 0.219496 + 0.747535i 0.993447 + 0.114290i \(0.0364594\pi\)
−0.773951 + 0.633245i \(0.781722\pi\)
\(744\) −1.36265 + 0.702494i −0.0499571 + 0.0257547i
\(745\) −0.131192 1.37390i −0.00480649 0.0503358i
\(746\) 25.0325 6.07282i 0.916505 0.222342i
\(747\) 3.29356 0.634782i 0.120505 0.0232254i
\(748\) −7.48055 + 6.48193i −0.273516 + 0.237003i
\(749\) 52.5584 2.69265i 1.92044 0.0983874i
\(750\) 18.1250 + 8.27741i 0.661832 + 0.302248i
\(751\) −8.35745 16.2112i −0.304968 0.591555i 0.685695 0.727889i \(-0.259498\pi\)
−0.990663 + 0.136334i \(0.956468\pi\)
\(752\) 11.3577 11.9116i 0.414174 0.434373i
\(753\) 5.12294 + 12.7965i 0.186690 + 0.466330i
\(754\) −1.18428 + 12.4023i −0.0431288 + 0.451666i
\(755\) 2.10780 + 14.6600i 0.0767105 + 0.533533i
\(756\) −0.730444 1.80576i −0.0265660 0.0656749i
\(757\) 6.63826 + 5.75208i 0.241272 + 0.209063i 0.767100 0.641528i \(-0.221699\pi\)
−0.525828 + 0.850591i \(0.676245\pi\)
\(758\) 14.1285 + 8.15712i 0.513172 + 0.296280i
\(759\) 3.45521 7.26351i 0.125416 0.263649i
\(760\) 2.21519 + 3.83682i 0.0803533 + 0.139176i
\(761\) 9.60526 3.32441i 0.348191 0.120510i −0.147374 0.989081i \(-0.547082\pi\)
0.495565 + 0.868571i \(0.334961\pi\)
\(762\) 6.15689 + 9.58030i 0.223040 + 0.347058i
\(763\) 13.4688 + 0.593185i 0.487603 + 0.0214747i
\(764\) 3.80708 1.73864i 0.137735 0.0629016i
\(765\) 10.5354 + 8.28510i 0.380907 + 0.299548i
\(766\) 21.3117 + 20.3207i 0.770023 + 0.734216i
\(767\) 0.238509 5.00692i 0.00861205 0.180789i
\(768\) −12.6822 + 9.03095i −0.457629 + 0.325876i