Defining parameters
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.bf (of order \(66\) and degree \(20\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 161 \) |
Character field: | \(\Q(\zeta_{66})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(128\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(483, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1360 | 640 | 720 |
Cusp forms | 1200 | 640 | 560 |
Eisenstein series | 160 | 0 | 160 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(483, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
483.2.bf.a | $640$ | $3.857$ | None | \(-4\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(483, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(483, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(161, [\chi])\)\(^{\oplus 2}\)