Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [483,2,Mod(11,483)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(483, base_ring=CyclotomicField(66))
chi = DirichletCharacter(H, H._module([33, 44, 27]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("483.11");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.bc (of order \(66\), degree \(20\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.85677441763\) |
Analytic rank: | \(0\) |
Dimension: | \(1200\) |
Relative dimension: | \(60\) over \(\Q(\zeta_{66})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{66}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −1.22080 | + | 2.36802i | 1.28284 | − | 1.16376i | −2.95705 | − | 4.15260i | −2.00169 | − | 1.90861i | 1.18972 | + | 4.45849i | 1.48870 | + | 2.18719i | 8.16926 | − | 1.17456i | 0.291334 | − | 2.98582i | 6.96327 | − | 2.41001i |
11.2 | −1.21990 | + | 2.36628i | 0.543753 | + | 1.64449i | −2.95102 | − | 4.14413i | 1.29182 | + | 1.23174i | −4.55465 | − | 0.719442i | −2.63893 | − | 0.189827i | 8.13588 | − | 1.16976i | −2.40867 | + | 1.78839i | −4.49055 | + | 1.55419i |
11.3 | −1.20831 | + | 2.34379i | −1.45411 | + | 0.941049i | −2.87322 | − | 4.03487i | 0.0368505 | + | 0.0351369i | −0.448612 | − | 4.54519i | 0.406340 | + | 2.61436i | 7.70844 | − | 1.10831i | 1.22885 | − | 2.73677i | −0.126880 | + | 0.0439136i |
11.4 | −1.14211 | + | 2.21537i | 1.18000 | + | 1.26791i | −2.44337 | − | 3.43123i | −2.09226 | − | 1.99497i | −4.15658 | + | 1.16606i | 2.18985 | − | 1.48478i | 5.45789 | − | 0.784726i | −0.215184 | + | 2.99227i | 6.80917 | − | 2.35668i |
11.5 | −1.13087 | + | 2.19357i | −1.61171 | + | 0.634352i | −2.37279 | − | 3.33212i | −2.21831 | − | 2.11515i | 0.431125 | − | 4.25276i | 0.0462933 | − | 2.64535i | 5.10697 | − | 0.734272i | 2.19519 | − | 2.04478i | 7.14835 | − | 2.47407i |
11.6 | −1.11786 | + | 2.16834i | 1.70544 | − | 0.302424i | −2.29198 | − | 3.21863i | 1.96583 | + | 1.87442i | −1.25068 | + | 4.03605i | 1.12495 | − | 2.39468i | 4.71179 | − | 0.677453i | 2.81708 | − | 1.03153i | −6.26189 | + | 2.16726i |
11.7 | −1.07488 | + | 2.08498i | 0.382326 | − | 1.68933i | −2.03164 | − | 2.85304i | 2.47963 | + | 2.36432i | 3.11125 | + | 2.61296i | −0.426197 | + | 2.61120i | 3.48857 | − | 0.501581i | −2.70765 | − | 1.29175i | −7.59486 | + | 2.62861i |
11.8 | −1.02175 | + | 1.98192i | −1.59600 | − | 0.672881i | −1.72392 | − | 2.42090i | 1.12079 | + | 1.06868i | 2.96432 | − | 2.47564i | −2.59123 | + | 0.534343i | 2.14526 | − | 0.308441i | 2.09446 | + | 2.14784i | −3.26320 | + | 1.12941i |
11.9 | −0.970052 | + | 1.88164i | −0.673848 | + | 1.59560i | −1.43945 | − | 2.02142i | 2.06335 | + | 1.96740i | −2.34867 | − | 2.81575i | 2.64569 | − | 0.0181926i | 1.00908 | − | 0.145084i | −2.09186 | − | 2.15038i | −5.70349 | + | 1.97400i |
11.10 | −0.918620 | + | 1.78187i | −1.09876 | − | 1.33893i | −1.17110 | − | 1.64458i | −2.94599 | − | 2.80900i | 3.39514 | − | 0.727879i | −1.97640 | + | 1.75893i | 0.0375805 | − | 0.00540327i | −0.585467 | + | 2.94232i | 7.71152 | − | 2.66898i |
11.11 | −0.877897 | + | 1.70288i | −0.523928 | − | 1.65091i | −0.968993 | − | 1.36076i | −0.190109 | − | 0.181269i | 3.27126 | + | 0.557140i | 2.56678 | − | 0.641583i | −0.624824 | + | 0.0898362i | −2.45100 | + | 1.72991i | 0.475576 | − | 0.164598i |
11.12 | −0.839802 | + | 1.62899i | 0.824775 | − | 1.52307i | −0.788222 | − | 1.10690i | −0.179075 | − | 0.170747i | 1.78842 | + | 2.62263i | −1.48519 | − | 2.18957i | −1.16305 | + | 0.167222i | −1.63949 | − | 2.51238i | 0.428532 | − | 0.148317i |
11.13 | −0.839508 | + | 1.62842i | 1.58694 | + | 0.693981i | −0.786858 | − | 1.10499i | −1.28009 | − | 1.22056i | −2.46234 | + | 2.00161i | −1.82028 | + | 1.92005i | −1.16691 | + | 0.167776i | 2.03678 | + | 2.20262i | 3.06224 | − | 1.05985i |
11.14 | −0.823961 | + | 1.59826i | 1.52148 | + | 0.827710i | −0.715414 | − | 1.00466i | 1.91038 | + | 1.82155i | −2.57654 | + | 1.74972i | 1.62874 | + | 2.08499i | −1.36452 | + | 0.196188i | 1.62979 | + | 2.51868i | −4.48539 | + | 1.55241i |
11.15 | −0.745161 | + | 1.44541i | −1.73201 | − | 0.0112995i | −0.373834 | − | 0.524976i | 1.43978 | + | 1.37282i | 1.30696 | − | 2.49505i | 0.470528 | − | 2.60358i | −2.18189 | + | 0.313709i | 2.99974 | + | 0.0391417i | −3.05716 | + | 1.05809i |
11.16 | −0.742085 | + | 1.43944i | −0.310505 | + | 1.70399i | −0.361196 | − | 0.507229i | −1.42767 | − | 1.36128i | −2.22238 | − | 1.71146i | −2.18159 | − | 1.49689i | −2.20781 | + | 0.317435i | −2.80717 | − | 1.05820i | 3.01893 | − | 1.04486i |
11.17 | −0.583726 | + | 1.13227i | 1.30843 | − | 1.13490i | 0.218812 | + | 0.307278i | −1.12328 | − | 1.07105i | 0.521253 | + | 2.14397i | 2.07224 | + | 1.64494i | −2.99748 | + | 0.430973i | 0.423986 | − | 2.96989i | 1.86841 | − | 0.646663i |
11.18 | −0.571670 | + | 1.10889i | −1.29954 | + | 1.14507i | 0.257294 | + | 0.361318i | −1.77881 | − | 1.69609i | −0.526840 | − | 2.09565i | 0.0113481 | + | 2.64573i | −3.01749 | + | 0.433850i | 0.377631 | − | 2.97614i | 2.89767 | − | 1.00289i |
11.19 | −0.528482 | + | 1.02511i | −1.73132 | − | 0.0502508i | 0.388554 | + | 0.545647i | −0.207815 | − | 0.198151i | 0.966484 | − | 1.74824i | 2.41072 | + | 1.09014i | −3.04785 | + | 0.438215i | 2.99495 | + | 0.174001i | 0.312954 | − | 0.108314i |
11.20 | −0.522802 | + | 1.01409i | −1.07403 | + | 1.35885i | 0.405048 | + | 0.568811i | 2.77635 | + | 2.64725i | −0.816498 | − | 1.79957i | −2.48243 | + | 0.915168i | −3.04721 | + | 0.438123i | −0.692939 | − | 2.91888i | −4.13604 | + | 1.43150i |
See next 80 embeddings (of 1200 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
21.h | odd | 6 | 1 | inner |
23.d | odd | 22 | 1 | inner |
69.g | even | 22 | 1 | inner |
161.p | odd | 66 | 1 | inner |
483.bc | even | 66 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 483.2.bc.a | ✓ | 1200 |
3.b | odd | 2 | 1 | inner | 483.2.bc.a | ✓ | 1200 |
7.c | even | 3 | 1 | inner | 483.2.bc.a | ✓ | 1200 |
21.h | odd | 6 | 1 | inner | 483.2.bc.a | ✓ | 1200 |
23.d | odd | 22 | 1 | inner | 483.2.bc.a | ✓ | 1200 |
69.g | even | 22 | 1 | inner | 483.2.bc.a | ✓ | 1200 |
161.p | odd | 66 | 1 | inner | 483.2.bc.a | ✓ | 1200 |
483.bc | even | 66 | 1 | inner | 483.2.bc.a | ✓ | 1200 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
483.2.bc.a | ✓ | 1200 | 1.a | even | 1 | 1 | trivial |
483.2.bc.a | ✓ | 1200 | 3.b | odd | 2 | 1 | inner |
483.2.bc.a | ✓ | 1200 | 7.c | even | 3 | 1 | inner |
483.2.bc.a | ✓ | 1200 | 21.h | odd | 6 | 1 | inner |
483.2.bc.a | ✓ | 1200 | 23.d | odd | 22 | 1 | inner |
483.2.bc.a | ✓ | 1200 | 69.g | even | 22 | 1 | inner |
483.2.bc.a | ✓ | 1200 | 161.p | odd | 66 | 1 | inner |
483.2.bc.a | ✓ | 1200 | 483.bc | even | 66 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(483, [\chi])\).