Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [483,2,Mod(26,483)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(483, base_ring=CyclotomicField(66))
chi = DirichletCharacter(H, H._module([33, 55, 48]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("483.26");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.bb (of order \(66\), degree \(20\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.85677441763\) |
Analytic rank: | \(0\) |
Dimension: | \(1200\) |
Relative dimension: | \(60\) over \(\Q(\zeta_{66})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{66}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
26.1 | −1.01420 | + | 2.53335i | −1.73203 | − | 0.00746686i | −3.94179 | − | 3.75849i | 0.322502 | + | 0.931809i | 1.77555 | − | 4.38028i | 2.53241 | − | 0.766108i | 8.55491 | − | 3.90689i | 2.99989 | + | 0.0258657i | −2.68768 | − | 0.128030i |
26.2 | −0.981829 | + | 2.45249i | 0.192945 | + | 1.72127i | −3.60325 | − | 3.43569i | 0.892911 | + | 2.57990i | −4.41084 | − | 1.21680i | −1.97669 | − | 1.75861i | 7.15778 | − | 3.26885i | −2.92554 | + | 0.664220i | −7.20385 | − | 0.343162i |
26.3 | −0.980902 | + | 2.45017i | 1.36067 | − | 1.07171i | −3.59372 | − | 3.42660i | 1.30920 | + | 3.78269i | 1.29119 | + | 4.38513i | 1.14218 | + | 2.38651i | 7.11941 | − | 3.25132i | 0.702868 | − | 2.91650i | −10.5524 | − | 0.502675i |
26.4 | −0.971305 | + | 2.42620i | 1.35467 | + | 1.07929i | −3.49556 | − | 3.33301i | −0.822695 | − | 2.37702i | −3.93437 | + | 2.23840i | 2.00942 | − | 1.72112i | 6.72732 | − | 3.07226i | 0.670288 | + | 2.92416i | 6.56622 | + | 0.312788i |
26.5 | −0.954248 | + | 2.38360i | 0.773902 | − | 1.54954i | −3.32348 | − | 3.16893i | −0.808015 | − | 2.33461i | 2.95498 | + | 3.32332i | −2.64462 | − | 0.0772305i | 6.05389 | − | 2.76472i | −1.80215 | − | 2.39839i | 6.33581 | + | 0.301812i |
26.6 | −0.918036 | + | 2.29314i | −0.970596 | + | 1.43455i | −2.96825 | − | 2.83022i | −0.975897 | − | 2.81967i | −2.39859 | − | 3.54269i | −0.366602 | + | 2.62023i | 4.72132 | − | 2.15615i | −1.11589 | − | 2.78474i | 7.36181 | + | 0.350686i |
26.7 | −0.901659 | + | 2.25223i | −1.16696 | − | 1.27992i | −2.81210 | − | 2.68133i | 0.232309 | + | 0.671212i | 3.93489 | − | 1.47421i | −2.47888 | + | 0.924746i | 4.16099 | − | 1.90026i | −0.276410 | + | 2.98724i | −1.72119 | − | 0.0819904i |
26.8 | −0.821614 | + | 2.05229i | 1.54581 | − | 0.781324i | −2.08939 | − | 1.99223i | −0.851870 | − | 2.46132i | 0.333444 | + | 3.81440i | 2.30607 | + | 1.29693i | 1.78355 | − | 0.814520i | 1.77907 | − | 2.41556i | 5.75125 | + | 0.273966i |
26.9 | −0.813318 | + | 2.03157i | −0.0960674 | − | 1.72938i | −2.01832 | − | 1.92447i | 0.284667 | + | 0.822493i | 3.59150 | + | 1.21137i | 1.39865 | − | 2.24583i | 1.57009 | − | 0.717034i | −2.98154 | + | 0.332275i | −1.90248 | − | 0.0906261i |
26.10 | −0.725531 | + | 1.81229i | −1.09457 | + | 1.34236i | −1.31052 | − | 1.24958i | −0.346765 | − | 1.00191i | −1.63860 | − | 2.95759i | 0.180768 | − | 2.63957i | −0.335997 | + | 0.153445i | −0.603850 | − | 2.93860i | 2.06734 | + | 0.0984795i |
26.11 | −0.703607 | + | 1.75752i | 1.73195 | − | 0.0186537i | −1.14636 | − | 1.09305i | 0.971199 | + | 2.80609i | −1.18583 | + | 3.05707i | 0.190502 | − | 2.63888i | −0.716451 | + | 0.327192i | 2.99930 | − | 0.0646145i | −5.61512 | − | 0.267481i |
26.12 | −0.703178 | + | 1.75645i | −1.58538 | + | 0.697538i | −1.14320 | − | 1.09004i | 1.14174 | + | 3.29884i | −0.110386 | − | 3.27514i | −2.47316 | + | 0.939942i | −0.723536 | + | 0.330428i | 2.02688 | − | 2.21173i | −6.59711 | − | 0.314259i |
26.13 | −0.666844 | + | 1.66570i | −1.67749 | − | 0.431318i | −0.882393 | − | 0.841360i | −0.572245 | − | 1.65339i | 1.83707 | − | 2.50656i | 0.792612 | + | 2.52424i | −1.27429 | + | 0.581949i | 2.62793 | + | 1.44706i | 3.13565 | + | 0.149369i |
26.14 | −0.660745 | + | 1.65046i | 0.966959 | + | 1.43701i | −0.839971 | − | 0.800910i | 0.513695 | + | 1.48422i | −3.01064 | + | 0.646433i | 2.47761 | + | 0.928150i | −1.35743 | + | 0.619916i | −1.12998 | + | 2.77905i | −2.78908 | − | 0.132860i |
26.15 | −0.633650 | + | 1.58278i | 1.63108 | + | 0.582744i | −0.656216 | − | 0.625700i | 0.289228 | + | 0.835670i | −1.95589 | + | 2.21238i | −2.05798 | + | 1.66274i | −1.69552 | + | 0.774317i | 2.32082 | + | 1.90100i | −1.50595 | − | 0.0717373i |
26.16 | −0.620544 | + | 1.55004i | 0.712920 | + | 1.57853i | −0.570095 | − | 0.543585i | −1.09580 | − | 3.16611i | −2.88918 | + | 0.125512i | −2.61610 | − | 0.394990i | −1.84117 | + | 0.840836i | −1.98349 | + | 2.25072i | 5.58761 | + | 0.266171i |
26.17 | −0.556499 | + | 1.39007i | −0.00816795 | − | 1.73203i | −0.175125 | − | 0.166982i | −0.460513 | − | 1.33056i | 2.41218 | + | 0.952519i | 1.82653 | + | 1.91411i | −2.39445 | + | 1.09351i | −2.99987 | + | 0.0282943i | 2.10585 | + | 0.100314i |
26.18 | −0.540355 | + | 1.34974i | 1.46964 | − | 0.916597i | −0.0823512 | − | 0.0785217i | −0.663517 | − | 1.91711i | 0.443041 | + | 2.47893i | −2.13757 | − | 1.55910i | −2.49452 | + | 1.13921i | 1.31970 | − | 2.69414i | 2.94614 | + | 0.140342i |
26.19 | −0.397865 | + | 0.993819i | −1.24011 | − | 1.20919i | 0.618088 | + | 0.589346i | 1.43145 | + | 4.13589i | 1.69511 | − | 0.751347i | 2.25080 | + | 1.39065i | −2.77914 | + | 1.26919i | 0.0757244 | + | 2.99904i | −4.67985 | − | 0.222929i |
26.20 | −0.375451 | + | 0.937831i | −1.72861 | + | 0.109178i | 0.708904 | + | 0.675938i | 0.119266 | + | 0.344595i | 0.546616 | − | 1.66213i | −1.73289 | − | 1.99928i | −2.73788 | + | 1.25035i | 2.97616 | − | 0.377452i | −0.367951 | − | 0.0175277i |
See next 80 embeddings (of 1200 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.d | odd | 6 | 1 | inner |
21.g | even | 6 | 1 | inner |
23.c | even | 11 | 1 | inner |
69.h | odd | 22 | 1 | inner |
161.n | odd | 66 | 1 | inner |
483.bb | even | 66 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 483.2.bb.a | ✓ | 1200 |
3.b | odd | 2 | 1 | inner | 483.2.bb.a | ✓ | 1200 |
7.d | odd | 6 | 1 | inner | 483.2.bb.a | ✓ | 1200 |
21.g | even | 6 | 1 | inner | 483.2.bb.a | ✓ | 1200 |
23.c | even | 11 | 1 | inner | 483.2.bb.a | ✓ | 1200 |
69.h | odd | 22 | 1 | inner | 483.2.bb.a | ✓ | 1200 |
161.n | odd | 66 | 1 | inner | 483.2.bb.a | ✓ | 1200 |
483.bb | even | 66 | 1 | inner | 483.2.bb.a | ✓ | 1200 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
483.2.bb.a | ✓ | 1200 | 1.a | even | 1 | 1 | trivial |
483.2.bb.a | ✓ | 1200 | 3.b | odd | 2 | 1 | inner |
483.2.bb.a | ✓ | 1200 | 7.d | odd | 6 | 1 | inner |
483.2.bb.a | ✓ | 1200 | 21.g | even | 6 | 1 | inner |
483.2.bb.a | ✓ | 1200 | 23.c | even | 11 | 1 | inner |
483.2.bb.a | ✓ | 1200 | 69.h | odd | 22 | 1 | inner |
483.2.bb.a | ✓ | 1200 | 161.n | odd | 66 | 1 | inner |
483.2.bb.a | ✓ | 1200 | 483.bb | even | 66 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(483, [\chi])\).