Properties

Label 483.2.bb
Level $483$
Weight $2$
Character orbit 483.bb
Rep. character $\chi_{483}(26,\cdot)$
Character field $\Q(\zeta_{66})$
Dimension $1200$
Newform subspaces $1$
Sturm bound $128$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.bb (of order \(66\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 483 \)
Character field: \(\Q(\zeta_{66})\)
Newform subspaces: \( 1 \)
Sturm bound: \(128\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(483, [\chi])\).

Total New Old
Modular forms 1360 1360 0
Cusp forms 1200 1200 0
Eisenstein series 160 160 0

Trace form

\( 1200q - 27q^{3} - 74q^{4} - 36q^{7} - 13q^{9} + O(q^{10}) \) \( 1200q - 27q^{3} - 74q^{4} - 36q^{7} - 13q^{9} - 54q^{10} - 15q^{12} - 64q^{15} + 38q^{16} + 43q^{18} - 54q^{19} - 70q^{21} - 160q^{22} - 66q^{24} + 34q^{25} - 76q^{28} - 23q^{30} - 54q^{31} - 3q^{33} - 28q^{36} + 26q^{37} + 5q^{39} - 30q^{40} - 68q^{42} - 176q^{43} - 96q^{45} - 22q^{46} - 128q^{49} - 23q^{51} - 102q^{52} + 21q^{54} - 36q^{57} + 58q^{58} - 43q^{60} - 126q^{61} + 41q^{63} + 40q^{64} - 132q^{66} - 10q^{67} + 20q^{70} + 59q^{72} - 30q^{73} - 81q^{75} + 164q^{78} - 14q^{79} - 97q^{81} - 66q^{82} + 24q^{84} - 56q^{85} - 399q^{87} - 74q^{88} - 156q^{91} + 8q^{93} - 126q^{94} - 117q^{96} + 196q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(483, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
483.2.bb.a \(1200\) \(3.857\) None \(0\) \(-27\) \(0\) \(-36\)