Properties

Label 483.2.bb
Level 483483
Weight 22
Character orbit 483.bb
Rep. character χ483(26,)\chi_{483}(26,\cdot)
Character field Q(ζ66)\Q(\zeta_{66})
Dimension 12001200
Newform subspaces 11
Sturm bound 128128
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 483=3723 483 = 3 \cdot 7 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 483.bb (of order 6666 and degree 2020)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 483 483
Character field: Q(ζ66)\Q(\zeta_{66})
Newform subspaces: 1 1
Sturm bound: 128128
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(483,[χ])M_{2}(483, [\chi]).

Total New Old
Modular forms 1360 1360 0
Cusp forms 1200 1200 0
Eisenstein series 160 160 0

Trace form

1200q27q374q436q713q954q1015q1264q15+38q16+43q1854q1970q21160q2266q24+34q2576q2823q3054q31++196q99+O(q100) 1200 q - 27 q^{3} - 74 q^{4} - 36 q^{7} - 13 q^{9} - 54 q^{10} - 15 q^{12} - 64 q^{15} + 38 q^{16} + 43 q^{18} - 54 q^{19} - 70 q^{21} - 160 q^{22} - 66 q^{24} + 34 q^{25} - 76 q^{28} - 23 q^{30} - 54 q^{31}+ \cdots + 196 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(483,[χ])S_{2}^{\mathrm{new}}(483, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
483.2.bb.a 483.bb 483.ab 12001200 3.8573.857 None 483.2.bb.a 00 27-27 00 36-36 SU(2)[C66]\mathrm{SU}(2)[C_{66}]