Properties

Label 483.2.a.j.1.4
Level $483$
Weight $2$
Character 483.1
Self dual yes
Analytic conductor $3.857$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(1,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.15317.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 5x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.69353\) of defining polynomial
Character \(\chi\) \(=\) 483.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.69353 q^{2} -1.00000 q^{3} +5.25508 q^{4} +1.04900 q^{5} -2.69353 q^{6} -1.00000 q^{7} +8.76763 q^{8} +1.00000 q^{9} +2.82550 q^{10} +0.180969 q^{11} -5.25508 q^{12} -4.89961 q^{13} -2.69353 q^{14} -1.04900 q^{15} +13.1057 q^{16} +2.82550 q^{17} +2.69353 q^{18} -0.180969 q^{19} +5.51256 q^{20} +1.00000 q^{21} +0.487443 q^{22} +1.00000 q^{23} -8.76763 q^{24} -3.89961 q^{25} -13.1972 q^{26} -1.00000 q^{27} -5.25508 q^{28} -5.68466 q^{29} -2.82550 q^{30} -0.825498 q^{31} +17.7652 q^{32} -0.180969 q^{33} +7.61055 q^{34} -1.04900 q^{35} +5.25508 q^{36} +6.46356 q^{37} -0.487443 q^{38} +4.89961 q^{39} +9.19722 q^{40} -3.47003 q^{41} +2.69353 q^{42} +0.125506 q^{43} +0.951004 q^{44} +1.04900 q^{45} +2.69353 q^{46} -12.0316 q^{47} -13.1057 q^{48} +1.00000 q^{49} -10.5037 q^{50} -2.82550 q^{51} -25.7478 q^{52} +8.55269 q^{53} -2.69353 q^{54} +0.189835 q^{55} -8.76763 q^{56} +0.180969 q^{57} -15.3118 q^{58} -4.30647 q^{59} -5.51256 q^{60} +9.01625 q^{61} -2.22350 q^{62} -1.00000 q^{63} +21.6397 q^{64} -5.13967 q^{65} -0.487443 q^{66} -15.7074 q^{67} +14.8482 q^{68} -1.00000 q^{69} -2.82550 q^{70} -2.22350 q^{71} +8.76763 q^{72} +13.0717 q^{73} +17.4098 q^{74} +3.89961 q^{75} -0.951004 q^{76} -0.180969 q^{77} +13.1972 q^{78} -16.1948 q^{79} +13.7478 q^{80} +1.00000 q^{81} -9.34660 q^{82} +10.8757 q^{83} +5.25508 q^{84} +2.96394 q^{85} +0.338054 q^{86} +5.68466 q^{87} +1.58667 q^{88} -14.7466 q^{89} +2.82550 q^{90} +4.89961 q^{91} +5.25508 q^{92} +0.825498 q^{93} -32.4074 q^{94} -0.189835 q^{95} -17.7652 q^{96} +10.4636 q^{97} +2.69353 q^{98} +0.180969 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 4 q^{3} + 4 q^{4} + 5 q^{5} - 2 q^{6} - 4 q^{7} + 9 q^{8} + 4 q^{9} + 2 q^{10} + q^{11} - 4 q^{12} + 7 q^{13} - 2 q^{14} - 5 q^{15} + 8 q^{16} + 2 q^{17} + 2 q^{18} - q^{19} + 13 q^{20}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.69353 1.90461 0.952305 0.305148i \(-0.0987059\pi\)
0.952305 + 0.305148i \(0.0987059\pi\)
\(3\) −1.00000 −0.577350
\(4\) 5.25508 2.62754
\(5\) 1.04900 0.469125 0.234563 0.972101i \(-0.424634\pi\)
0.234563 + 0.972101i \(0.424634\pi\)
\(6\) −2.69353 −1.09963
\(7\) −1.00000 −0.377964
\(8\) 8.76763 3.09983
\(9\) 1.00000 0.333333
\(10\) 2.82550 0.893501
\(11\) 0.180969 0.0545641 0.0272820 0.999628i \(-0.491315\pi\)
0.0272820 + 0.999628i \(0.491315\pi\)
\(12\) −5.25508 −1.51701
\(13\) −4.89961 −1.35891 −0.679453 0.733719i \(-0.737783\pi\)
−0.679453 + 0.733719i \(0.737783\pi\)
\(14\) −2.69353 −0.719875
\(15\) −1.04900 −0.270850
\(16\) 13.1057 3.27642
\(17\) 2.82550 0.685284 0.342642 0.939466i \(-0.388678\pi\)
0.342642 + 0.939466i \(0.388678\pi\)
\(18\) 2.69353 0.634870
\(19\) −0.180969 −0.0415170 −0.0207585 0.999785i \(-0.506608\pi\)
−0.0207585 + 0.999785i \(0.506608\pi\)
\(20\) 5.51256 1.23265
\(21\) 1.00000 0.218218
\(22\) 0.487443 0.103923
\(23\) 1.00000 0.208514
\(24\) −8.76763 −1.78969
\(25\) −3.89961 −0.779921
\(26\) −13.1972 −2.58819
\(27\) −1.00000 −0.192450
\(28\) −5.25508 −0.993116
\(29\) −5.68466 −1.05561 −0.527807 0.849364i \(-0.676986\pi\)
−0.527807 + 0.849364i \(0.676986\pi\)
\(30\) −2.82550 −0.515863
\(31\) −0.825498 −0.148264 −0.0741319 0.997248i \(-0.523619\pi\)
−0.0741319 + 0.997248i \(0.523619\pi\)
\(32\) 17.7652 3.14048
\(33\) −0.180969 −0.0315026
\(34\) 7.61055 1.30520
\(35\) −1.04900 −0.177313
\(36\) 5.25508 0.875846
\(37\) 6.46356 1.06260 0.531301 0.847183i \(-0.321703\pi\)
0.531301 + 0.847183i \(0.321703\pi\)
\(38\) −0.487443 −0.0790738
\(39\) 4.89961 0.784565
\(40\) 9.19722 1.45421
\(41\) −3.47003 −0.541927 −0.270964 0.962590i \(-0.587342\pi\)
−0.270964 + 0.962590i \(0.587342\pi\)
\(42\) 2.69353 0.415620
\(43\) 0.125506 0.0191395 0.00956976 0.999954i \(-0.496954\pi\)
0.00956976 + 0.999954i \(0.496954\pi\)
\(44\) 0.951004 0.143369
\(45\) 1.04900 0.156375
\(46\) 2.69353 0.397139
\(47\) −12.0316 −1.75499 −0.877493 0.479589i \(-0.840786\pi\)
−0.877493 + 0.479589i \(0.840786\pi\)
\(48\) −13.1057 −1.89164
\(49\) 1.00000 0.142857
\(50\) −10.5037 −1.48545
\(51\) −2.82550 −0.395649
\(52\) −25.7478 −3.57058
\(53\) 8.55269 1.17480 0.587401 0.809296i \(-0.300151\pi\)
0.587401 + 0.809296i \(0.300151\pi\)
\(54\) −2.69353 −0.366542
\(55\) 0.189835 0.0255974
\(56\) −8.76763 −1.17162
\(57\) 0.180969 0.0239699
\(58\) −15.3118 −2.01053
\(59\) −4.30647 −0.560655 −0.280328 0.959904i \(-0.590443\pi\)
−0.280328 + 0.959904i \(0.590443\pi\)
\(60\) −5.51256 −0.711668
\(61\) 9.01625 1.15441 0.577206 0.816599i \(-0.304143\pi\)
0.577206 + 0.816599i \(0.304143\pi\)
\(62\) −2.22350 −0.282385
\(63\) −1.00000 −0.125988
\(64\) 21.6397 2.70497
\(65\) −5.13967 −0.637497
\(66\) −0.487443 −0.0600001
\(67\) −15.7074 −1.91896 −0.959480 0.281775i \(-0.909077\pi\)
−0.959480 + 0.281775i \(0.909077\pi\)
\(68\) 14.8482 1.80061
\(69\) −1.00000 −0.120386
\(70\) −2.82550 −0.337712
\(71\) −2.22350 −0.263881 −0.131940 0.991258i \(-0.542121\pi\)
−0.131940 + 0.991258i \(0.542121\pi\)
\(72\) 8.76763 1.03328
\(73\) 13.0717 1.52993 0.764964 0.644073i \(-0.222757\pi\)
0.764964 + 0.644073i \(0.222757\pi\)
\(74\) 17.4098 2.02384
\(75\) 3.89961 0.450288
\(76\) −0.951004 −0.109088
\(77\) −0.180969 −0.0206233
\(78\) 13.1972 1.49429
\(79\) −16.1948 −1.82206 −0.911029 0.412341i \(-0.864711\pi\)
−0.911029 + 0.412341i \(0.864711\pi\)
\(80\) 13.7478 1.53705
\(81\) 1.00000 0.111111
\(82\) −9.34660 −1.03216
\(83\) 10.8757 1.19377 0.596883 0.802328i \(-0.296406\pi\)
0.596883 + 0.802328i \(0.296406\pi\)
\(84\) 5.25508 0.573376
\(85\) 2.96394 0.321484
\(86\) 0.338054 0.0364533
\(87\) 5.68466 0.609459
\(88\) 1.58667 0.169139
\(89\) −14.7466 −1.56314 −0.781568 0.623821i \(-0.785580\pi\)
−0.781568 + 0.623821i \(0.785580\pi\)
\(90\) 2.82550 0.297834
\(91\) 4.89961 0.513618
\(92\) 5.25508 0.547880
\(93\) 0.825498 0.0856001
\(94\) −32.4074 −3.34256
\(95\) −0.189835 −0.0194767
\(96\) −17.7652 −1.81316
\(97\) 10.4636 1.06241 0.531207 0.847242i \(-0.321739\pi\)
0.531207 + 0.847242i \(0.321739\pi\)
\(98\) 2.69353 0.272087
\(99\) 0.180969 0.0181880
\(100\) −20.4927 −2.04927
\(101\) 14.7316 1.46585 0.732923 0.680312i \(-0.238156\pi\)
0.732923 + 0.680312i \(0.238156\pi\)
\(102\) −7.61055 −0.753557
\(103\) 5.96362 0.587613 0.293806 0.955865i \(-0.405078\pi\)
0.293806 + 0.955865i \(0.405078\pi\)
\(104\) −42.9580 −4.21238
\(105\) 1.04900 0.102372
\(106\) 23.0369 2.23754
\(107\) −8.55060 −0.826618 −0.413309 0.910591i \(-0.635627\pi\)
−0.413309 + 0.910591i \(0.635627\pi\)
\(108\) −5.25508 −0.505670
\(109\) 9.00123 0.862162 0.431081 0.902313i \(-0.358132\pi\)
0.431081 + 0.902313i \(0.358132\pi\)
\(110\) 0.511326 0.0487530
\(111\) −6.46356 −0.613494
\(112\) −13.1057 −1.23837
\(113\) 9.81016 0.922863 0.461431 0.887176i \(-0.347336\pi\)
0.461431 + 0.887176i \(0.347336\pi\)
\(114\) 0.487443 0.0456533
\(115\) 1.04900 0.0978194
\(116\) −29.8733 −2.77367
\(117\) −4.89961 −0.452969
\(118\) −11.5996 −1.06783
\(119\) −2.82550 −0.259013
\(120\) −9.19722 −0.839587
\(121\) −10.9673 −0.997023
\(122\) 24.2855 2.19870
\(123\) 3.47003 0.312882
\(124\) −4.33805 −0.389569
\(125\) −9.33565 −0.835006
\(126\) −2.69353 −0.239958
\(127\) 13.6421 1.21054 0.605272 0.796019i \(-0.293065\pi\)
0.605272 + 0.796019i \(0.293065\pi\)
\(128\) 22.7567 2.01143
\(129\) −0.125506 −0.0110502
\(130\) −13.8438 −1.21418
\(131\) −9.72104 −0.849331 −0.424666 0.905350i \(-0.639608\pi\)
−0.424666 + 0.905350i \(0.639608\pi\)
\(132\) −0.951004 −0.0827743
\(133\) 0.180969 0.0156920
\(134\) −42.3082 −3.65487
\(135\) −1.04900 −0.0902832
\(136\) 24.7729 2.12426
\(137\) −5.96725 −0.509817 −0.254908 0.966965i \(-0.582045\pi\)
−0.254908 + 0.966965i \(0.582045\pi\)
\(138\) −2.69353 −0.229288
\(139\) 7.36317 0.624536 0.312268 0.949994i \(-0.398911\pi\)
0.312268 + 0.949994i \(0.398911\pi\)
\(140\) −5.51256 −0.465896
\(141\) 12.0316 1.01324
\(142\) −5.98905 −0.502590
\(143\) −0.886675 −0.0741475
\(144\) 13.1057 1.09214
\(145\) −5.96318 −0.495216
\(146\) 35.2090 2.91392
\(147\) −1.00000 −0.0824786
\(148\) 33.9665 2.79203
\(149\) 21.9288 1.79648 0.898238 0.439509i \(-0.144848\pi\)
0.898238 + 0.439509i \(0.144848\pi\)
\(150\) 10.5037 0.857623
\(151\) 16.7927 1.36657 0.683287 0.730150i \(-0.260550\pi\)
0.683287 + 0.730150i \(0.260550\pi\)
\(152\) −1.58667 −0.128696
\(153\) 2.82550 0.228428
\(154\) −0.487443 −0.0392793
\(155\) −0.865944 −0.0695543
\(156\) 25.7478 2.06148
\(157\) 16.7425 1.33620 0.668099 0.744072i \(-0.267108\pi\)
0.668099 + 0.744072i \(0.267108\pi\)
\(158\) −43.6211 −3.47031
\(159\) −8.55269 −0.678272
\(160\) 18.6357 1.47328
\(161\) −1.00000 −0.0788110
\(162\) 2.69353 0.211623
\(163\) 25.1308 1.96840 0.984198 0.177070i \(-0.0566621\pi\)
0.984198 + 0.177070i \(0.0566621\pi\)
\(164\) −18.2353 −1.42393
\(165\) −0.189835 −0.0147787
\(166\) 29.2940 2.27366
\(167\) 9.98018 0.772290 0.386145 0.922438i \(-0.373806\pi\)
0.386145 + 0.922438i \(0.373806\pi\)
\(168\) 8.76763 0.676438
\(169\) 11.0061 0.846627
\(170\) 7.98344 0.612302
\(171\) −0.180969 −0.0138390
\(172\) 0.659545 0.0502898
\(173\) −12.5065 −0.950853 −0.475427 0.879755i \(-0.657706\pi\)
−0.475427 + 0.879755i \(0.657706\pi\)
\(174\) 15.3118 1.16078
\(175\) 3.89961 0.294783
\(176\) 2.37172 0.178775
\(177\) 4.30647 0.323694
\(178\) −39.7203 −2.97716
\(179\) −19.3081 −1.44316 −0.721579 0.692332i \(-0.756583\pi\)
−0.721579 + 0.692332i \(0.756583\pi\)
\(180\) 5.51256 0.410882
\(181\) 17.7656 1.32050 0.660251 0.751045i \(-0.270450\pi\)
0.660251 + 0.751045i \(0.270450\pi\)
\(182\) 13.1972 0.978243
\(183\) −9.01625 −0.666500
\(184\) 8.76763 0.646359
\(185\) 6.78025 0.498494
\(186\) 2.22350 0.163035
\(187\) 0.511326 0.0373919
\(188\) −63.2269 −4.61129
\(189\) 1.00000 0.0727393
\(190\) −0.511326 −0.0370955
\(191\) −8.79275 −0.636221 −0.318110 0.948054i \(-0.603048\pi\)
−0.318110 + 0.948054i \(0.603048\pi\)
\(192\) −21.6397 −1.56171
\(193\) −6.79275 −0.488953 −0.244476 0.969655i \(-0.578616\pi\)
−0.244476 + 0.969655i \(0.578616\pi\)
\(194\) 28.1839 2.02348
\(195\) 5.13967 0.368059
\(196\) 5.25508 0.375363
\(197\) 14.6534 1.04401 0.522006 0.852942i \(-0.325184\pi\)
0.522006 + 0.852942i \(0.325184\pi\)
\(198\) 0.487443 0.0346411
\(199\) −4.45469 −0.315785 −0.157892 0.987456i \(-0.550470\pi\)
−0.157892 + 0.987456i \(0.550470\pi\)
\(200\) −34.1903 −2.41762
\(201\) 15.7074 1.10791
\(202\) 39.6799 2.79187
\(203\) 5.68466 0.398985
\(204\) −14.8482 −1.03958
\(205\) −3.64004 −0.254232
\(206\) 16.0632 1.11917
\(207\) 1.00000 0.0695048
\(208\) −64.2127 −4.45235
\(209\) −0.0327496 −0.00226534
\(210\) 2.82550 0.194978
\(211\) −4.59793 −0.316535 −0.158267 0.987396i \(-0.550591\pi\)
−0.158267 + 0.987396i \(0.550591\pi\)
\(212\) 44.9450 3.08684
\(213\) 2.22350 0.152352
\(214\) −23.0313 −1.57438
\(215\) 0.131656 0.00897884
\(216\) −8.76763 −0.596562
\(217\) 0.825498 0.0560384
\(218\) 24.2450 1.64208
\(219\) −13.0717 −0.883304
\(220\) 0.997599 0.0672581
\(221\) −13.8438 −0.931237
\(222\) −17.4098 −1.16847
\(223\) 13.0442 0.873504 0.436752 0.899582i \(-0.356129\pi\)
0.436752 + 0.899582i \(0.356129\pi\)
\(224\) −17.7652 −1.18699
\(225\) −3.89961 −0.259974
\(226\) 26.4239 1.75769
\(227\) −0.320321 −0.0212604 −0.0106302 0.999943i \(-0.503384\pi\)
−0.0106302 + 0.999943i \(0.503384\pi\)
\(228\) 0.951004 0.0629818
\(229\) 8.88459 0.587110 0.293555 0.955942i \(-0.405162\pi\)
0.293555 + 0.955942i \(0.405162\pi\)
\(230\) 2.82550 0.186308
\(231\) 0.180969 0.0119069
\(232\) −49.8410 −3.27222
\(233\) −0.418313 −0.0274046 −0.0137023 0.999906i \(-0.504362\pi\)
−0.0137023 + 0.999906i \(0.504362\pi\)
\(234\) −13.1972 −0.862729
\(235\) −12.6211 −0.823309
\(236\) −22.6309 −1.47314
\(237\) 16.1948 1.05197
\(238\) −7.61055 −0.493319
\(239\) −15.0571 −0.973965 −0.486982 0.873412i \(-0.661902\pi\)
−0.486982 + 0.873412i \(0.661902\pi\)
\(240\) −13.7478 −0.887418
\(241\) 5.31701 0.342498 0.171249 0.985228i \(-0.445220\pi\)
0.171249 + 0.985228i \(0.445220\pi\)
\(242\) −29.5406 −1.89894
\(243\) −1.00000 −0.0641500
\(244\) 47.3811 3.03326
\(245\) 1.04900 0.0670179
\(246\) 9.34660 0.595918
\(247\) 0.886675 0.0564178
\(248\) −7.23766 −0.459592
\(249\) −10.8757 −0.689221
\(250\) −25.1458 −1.59036
\(251\) −7.19107 −0.453896 −0.226948 0.973907i \(-0.572875\pi\)
−0.226948 + 0.973907i \(0.572875\pi\)
\(252\) −5.25508 −0.331039
\(253\) 0.180969 0.0113774
\(254\) 36.7454 2.30561
\(255\) −2.96394 −0.185609
\(256\) 18.0162 1.12602
\(257\) −8.77255 −0.547217 −0.273608 0.961841i \(-0.588217\pi\)
−0.273608 + 0.961841i \(0.588217\pi\)
\(258\) −0.338054 −0.0210463
\(259\) −6.46356 −0.401626
\(260\) −27.0094 −1.67505
\(261\) −5.68466 −0.351872
\(262\) −26.1839 −1.61764
\(263\) 16.0304 0.988477 0.494239 0.869326i \(-0.335447\pi\)
0.494239 + 0.869326i \(0.335447\pi\)
\(264\) −1.58667 −0.0976525
\(265\) 8.97173 0.551129
\(266\) 0.487443 0.0298871
\(267\) 14.7466 0.902476
\(268\) −82.5435 −5.04214
\(269\) 6.27373 0.382516 0.191258 0.981540i \(-0.438743\pi\)
0.191258 + 0.981540i \(0.438743\pi\)
\(270\) −2.82550 −0.171954
\(271\) −17.1397 −1.04116 −0.520580 0.853813i \(-0.674284\pi\)
−0.520580 + 0.853813i \(0.674284\pi\)
\(272\) 37.0301 2.24528
\(273\) −4.89961 −0.296538
\(274\) −16.0729 −0.971002
\(275\) −0.705706 −0.0425557
\(276\) −5.25508 −0.316319
\(277\) −23.9563 −1.43939 −0.719697 0.694288i \(-0.755719\pi\)
−0.719697 + 0.694288i \(0.755719\pi\)
\(278\) 19.8329 1.18950
\(279\) −0.825498 −0.0494212
\(280\) −9.19722 −0.549639
\(281\) −7.27132 −0.433771 −0.216885 0.976197i \(-0.569590\pi\)
−0.216885 + 0.976197i \(0.569590\pi\)
\(282\) 32.4074 1.92983
\(283\) 26.5365 1.57743 0.788716 0.614758i \(-0.210746\pi\)
0.788716 + 0.614758i \(0.210746\pi\)
\(284\) −11.6847 −0.693357
\(285\) 0.189835 0.0112449
\(286\) −2.38828 −0.141222
\(287\) 3.47003 0.204829
\(288\) 17.7652 1.04683
\(289\) −9.01656 −0.530386
\(290\) −16.0620 −0.943192
\(291\) −10.4636 −0.613385
\(292\) 68.6928 4.01994
\(293\) −32.7086 −1.91086 −0.955428 0.295223i \(-0.904606\pi\)
−0.955428 + 0.295223i \(0.904606\pi\)
\(294\) −2.69353 −0.157090
\(295\) −4.51748 −0.263018
\(296\) 56.6701 3.29388
\(297\) −0.180969 −0.0105009
\(298\) 59.0657 3.42159
\(299\) −4.89961 −0.283352
\(300\) 20.4927 1.18315
\(301\) −0.125506 −0.00723406
\(302\) 45.2317 2.60279
\(303\) −14.7316 −0.846307
\(304\) −2.37172 −0.136027
\(305\) 9.45801 0.541564
\(306\) 7.61055 0.435066
\(307\) −20.4281 −1.16589 −0.582946 0.812511i \(-0.698100\pi\)
−0.582946 + 0.812511i \(0.698100\pi\)
\(308\) −0.951004 −0.0541885
\(309\) −5.96362 −0.339258
\(310\) −2.33244 −0.132474
\(311\) 15.9515 0.904526 0.452263 0.891884i \(-0.350617\pi\)
0.452263 + 0.891884i \(0.350617\pi\)
\(312\) 42.9580 2.43202
\(313\) −2.91328 −0.164668 −0.0823340 0.996605i \(-0.526237\pi\)
−0.0823340 + 0.996605i \(0.526237\pi\)
\(314\) 45.0964 2.54494
\(315\) −1.04900 −0.0591042
\(316\) −85.1050 −4.78753
\(317\) 0.295090 0.0165739 0.00828695 0.999966i \(-0.497362\pi\)
0.00828695 + 0.999966i \(0.497362\pi\)
\(318\) −23.0369 −1.29184
\(319\) −1.02874 −0.0575986
\(320\) 22.7000 1.26897
\(321\) 8.55060 0.477248
\(322\) −2.69353 −0.150104
\(323\) −0.511326 −0.0284510
\(324\) 5.25508 0.291949
\(325\) 19.1065 1.05984
\(326\) 67.6904 3.74903
\(327\) −9.00123 −0.497769
\(328\) −30.4239 −1.67988
\(329\) 12.0316 0.663322
\(330\) −0.511326 −0.0281476
\(331\) 10.8907 0.598609 0.299305 0.954158i \(-0.403245\pi\)
0.299305 + 0.954158i \(0.403245\pi\)
\(332\) 57.1528 3.13667
\(333\) 6.46356 0.354201
\(334\) 26.8819 1.47091
\(335\) −16.4770 −0.900233
\(336\) 13.1057 0.714974
\(337\) 1.29884 0.0707522 0.0353761 0.999374i \(-0.488737\pi\)
0.0353761 + 0.999374i \(0.488737\pi\)
\(338\) 29.6453 1.61249
\(339\) −9.81016 −0.532815
\(340\) 15.5757 0.844712
\(341\) −0.149389 −0.00808987
\(342\) −0.487443 −0.0263579
\(343\) −1.00000 −0.0539949
\(344\) 1.10039 0.0593292
\(345\) −1.04900 −0.0564761
\(346\) −33.6866 −1.81100
\(347\) 18.2928 0.982009 0.491005 0.871157i \(-0.336630\pi\)
0.491005 + 0.871157i \(0.336630\pi\)
\(348\) 29.8733 1.60138
\(349\) −22.9333 −1.22759 −0.613795 0.789466i \(-0.710358\pi\)
−0.613795 + 0.789466i \(0.710358\pi\)
\(350\) 10.5037 0.561446
\(351\) 4.89961 0.261522
\(352\) 3.21495 0.171357
\(353\) 15.5867 0.829595 0.414797 0.909914i \(-0.363853\pi\)
0.414797 + 0.909914i \(0.363853\pi\)
\(354\) 11.5996 0.616512
\(355\) −2.33244 −0.123793
\(356\) −77.4945 −4.10720
\(357\) 2.82550 0.149541
\(358\) −52.0070 −2.74865
\(359\) −21.6094 −1.14050 −0.570250 0.821471i \(-0.693154\pi\)
−0.570250 + 0.821471i \(0.693154\pi\)
\(360\) 9.19722 0.484736
\(361\) −18.9673 −0.998276
\(362\) 47.8520 2.51504
\(363\) 10.9673 0.575631
\(364\) 25.7478 1.34955
\(365\) 13.7122 0.717728
\(366\) −24.2855 −1.26942
\(367\) −4.46399 −0.233019 −0.116509 0.993190i \(-0.537170\pi\)
−0.116509 + 0.993190i \(0.537170\pi\)
\(368\) 13.1057 0.683181
\(369\) −3.47003 −0.180642
\(370\) 18.2628 0.949436
\(371\) −8.55269 −0.444033
\(372\) 4.33805 0.224918
\(373\) −30.7527 −1.59232 −0.796158 0.605089i \(-0.793138\pi\)
−0.796158 + 0.605089i \(0.793138\pi\)
\(374\) 1.37727 0.0712169
\(375\) 9.33565 0.482091
\(376\) −105.488 −5.44015
\(377\) 27.8526 1.43448
\(378\) 2.69353 0.138540
\(379\) 22.7013 1.16609 0.583045 0.812440i \(-0.301861\pi\)
0.583045 + 0.812440i \(0.301861\pi\)
\(380\) −0.997599 −0.0511758
\(381\) −13.6421 −0.698907
\(382\) −23.6835 −1.21175
\(383\) −18.3478 −0.937531 −0.468765 0.883323i \(-0.655301\pi\)
−0.468765 + 0.883323i \(0.655301\pi\)
\(384\) −22.7567 −1.16130
\(385\) −0.189835 −0.00967490
\(386\) −18.2964 −0.931264
\(387\) 0.125506 0.00637984
\(388\) 54.9868 2.79153
\(389\) −22.0620 −1.11859 −0.559294 0.828970i \(-0.688928\pi\)
−0.559294 + 0.828970i \(0.688928\pi\)
\(390\) 13.8438 0.701009
\(391\) 2.82550 0.142892
\(392\) 8.76763 0.442832
\(393\) 9.72104 0.490362
\(394\) 39.4693 1.98843
\(395\) −16.9883 −0.854774
\(396\) 0.951004 0.0477897
\(397\) 23.3045 1.16962 0.584808 0.811171i \(-0.301170\pi\)
0.584808 + 0.811171i \(0.301170\pi\)
\(398\) −11.9988 −0.601447
\(399\) −0.180969 −0.00905976
\(400\) −51.1070 −2.55535
\(401\) 14.2087 0.709547 0.354773 0.934952i \(-0.384558\pi\)
0.354773 + 0.934952i \(0.384558\pi\)
\(402\) 42.3082 2.11014
\(403\) 4.04461 0.201477
\(404\) 77.4156 3.85157
\(405\) 1.04900 0.0521250
\(406\) 15.3118 0.759910
\(407\) 1.16970 0.0579799
\(408\) −24.7729 −1.22644
\(409\) −33.2758 −1.64538 −0.822692 0.568488i \(-0.807529\pi\)
−0.822692 + 0.568488i \(0.807529\pi\)
\(410\) −9.80455 −0.484212
\(411\) 5.96725 0.294343
\(412\) 31.3393 1.54398
\(413\) 4.30647 0.211908
\(414\) 2.69353 0.132380
\(415\) 11.4086 0.560026
\(416\) −87.0427 −4.26762
\(417\) −7.36317 −0.360576
\(418\) −0.0882119 −0.00431459
\(419\) 1.93819 0.0946867 0.0473434 0.998879i \(-0.484925\pi\)
0.0473434 + 0.998879i \(0.484925\pi\)
\(420\) 5.51256 0.268985
\(421\) −3.10852 −0.151500 −0.0757501 0.997127i \(-0.524135\pi\)
−0.0757501 + 0.997127i \(0.524135\pi\)
\(422\) −12.3846 −0.602875
\(423\) −12.0316 −0.584995
\(424\) 74.9868 3.64168
\(425\) −11.0183 −0.534468
\(426\) 5.98905 0.290170
\(427\) −9.01625 −0.436327
\(428\) −44.9341 −2.17197
\(429\) 0.886675 0.0428091
\(430\) 0.354618 0.0171012
\(431\) −27.2204 −1.31116 −0.655579 0.755126i \(-0.727576\pi\)
−0.655579 + 0.755126i \(0.727576\pi\)
\(432\) −13.1057 −0.630548
\(433\) −12.2146 −0.586998 −0.293499 0.955959i \(-0.594820\pi\)
−0.293499 + 0.955959i \(0.594820\pi\)
\(434\) 2.22350 0.106731
\(435\) 5.96318 0.285913
\(436\) 47.3022 2.26536
\(437\) −0.180969 −0.00865690
\(438\) −35.2090 −1.68235
\(439\) 28.7859 1.37387 0.686937 0.726717i \(-0.258955\pi\)
0.686937 + 0.726717i \(0.258955\pi\)
\(440\) 1.66441 0.0793475
\(441\) 1.00000 0.0476190
\(442\) −37.2887 −1.77364
\(443\) −32.1005 −1.52514 −0.762569 0.646907i \(-0.776062\pi\)
−0.762569 + 0.646907i \(0.776062\pi\)
\(444\) −33.9665 −1.61198
\(445\) −15.4691 −0.733306
\(446\) 35.1349 1.66368
\(447\) −21.9288 −1.03720
\(448\) −21.6397 −1.02238
\(449\) −25.6596 −1.21095 −0.605476 0.795864i \(-0.707017\pi\)
−0.605476 + 0.795864i \(0.707017\pi\)
\(450\) −10.5037 −0.495149
\(451\) −0.627966 −0.0295697
\(452\) 51.5532 2.42486
\(453\) −16.7927 −0.788992
\(454\) −0.862792 −0.0404928
\(455\) 5.13967 0.240951
\(456\) 1.58667 0.0743024
\(457\) 16.8061 0.786157 0.393078 0.919505i \(-0.371410\pi\)
0.393078 + 0.919505i \(0.371410\pi\)
\(458\) 23.9309 1.11822
\(459\) −2.82550 −0.131883
\(460\) 5.51256 0.257024
\(461\) 8.73248 0.406712 0.203356 0.979105i \(-0.434815\pi\)
0.203356 + 0.979105i \(0.434815\pi\)
\(462\) 0.487443 0.0226779
\(463\) 18.2312 0.847275 0.423638 0.905832i \(-0.360753\pi\)
0.423638 + 0.905832i \(0.360753\pi\)
\(464\) −74.5014 −3.45864
\(465\) 0.865944 0.0401572
\(466\) −1.12674 −0.0521951
\(467\) 13.8127 0.639175 0.319587 0.947557i \(-0.396456\pi\)
0.319587 + 0.947557i \(0.396456\pi\)
\(468\) −25.7478 −1.19019
\(469\) 15.7074 0.725299
\(470\) −33.9952 −1.56808
\(471\) −16.7425 −0.771455
\(472\) −37.7576 −1.73793
\(473\) 0.0227127 0.00104433
\(474\) 43.6211 2.00359
\(475\) 0.705706 0.0323800
\(476\) −14.8482 −0.680567
\(477\) 8.55269 0.391601
\(478\) −40.5568 −1.85502
\(479\) −19.4814 −0.890128 −0.445064 0.895499i \(-0.646819\pi\)
−0.445064 + 0.895499i \(0.646819\pi\)
\(480\) −18.6357 −0.850598
\(481\) −31.6689 −1.44398
\(482\) 14.3215 0.652326
\(483\) 1.00000 0.0455016
\(484\) −57.6338 −2.61972
\(485\) 10.9762 0.498405
\(486\) −2.69353 −0.122181
\(487\) 27.5268 1.24736 0.623680 0.781680i \(-0.285637\pi\)
0.623680 + 0.781680i \(0.285637\pi\)
\(488\) 79.0512 3.57848
\(489\) −25.1308 −1.13645
\(490\) 2.82550 0.127643
\(491\) 15.3547 0.692950 0.346475 0.938059i \(-0.387379\pi\)
0.346475 + 0.938059i \(0.387379\pi\)
\(492\) 18.2353 0.822109
\(493\) −16.0620 −0.723396
\(494\) 2.38828 0.107454
\(495\) 0.189835 0.00853246
\(496\) −10.8187 −0.485775
\(497\) 2.22350 0.0997375
\(498\) −29.2940 −1.31270
\(499\) −8.11621 −0.363331 −0.181666 0.983360i \(-0.558149\pi\)
−0.181666 + 0.983360i \(0.558149\pi\)
\(500\) −49.0596 −2.19401
\(501\) −9.98018 −0.445882
\(502\) −19.3693 −0.864495
\(503\) −19.1576 −0.854194 −0.427097 0.904206i \(-0.640464\pi\)
−0.427097 + 0.904206i \(0.640464\pi\)
\(504\) −8.76763 −0.390541
\(505\) 15.4534 0.687666
\(506\) 0.487443 0.0216695
\(507\) −11.0061 −0.488800
\(508\) 71.6904 3.18075
\(509\) −3.87856 −0.171914 −0.0859571 0.996299i \(-0.527395\pi\)
−0.0859571 + 0.996299i \(0.527395\pi\)
\(510\) −7.98344 −0.353513
\(511\) −13.0717 −0.578258
\(512\) 3.01385 0.133194
\(513\) 0.180969 0.00798996
\(514\) −23.6291 −1.04223
\(515\) 6.25581 0.275664
\(516\) −0.659545 −0.0290349
\(517\) −2.17734 −0.0957592
\(518\) −17.4098 −0.764941
\(519\) 12.5065 0.548976
\(520\) −45.0627 −1.97613
\(521\) 35.3522 1.54881 0.774404 0.632691i \(-0.218050\pi\)
0.774404 + 0.632691i \(0.218050\pi\)
\(522\) −15.3118 −0.670178
\(523\) −39.3231 −1.71948 −0.859740 0.510733i \(-0.829374\pi\)
−0.859740 + 0.510733i \(0.829374\pi\)
\(524\) −51.0848 −2.23165
\(525\) −3.89961 −0.170193
\(526\) 43.1783 1.88266
\(527\) −2.33244 −0.101603
\(528\) −2.37172 −0.103216
\(529\) 1.00000 0.0434783
\(530\) 24.1656 1.04969
\(531\) −4.30647 −0.186885
\(532\) 0.951004 0.0412312
\(533\) 17.0018 0.736428
\(534\) 39.7203 1.71887
\(535\) −8.96955 −0.387787
\(536\) −137.716 −5.94845
\(537\) 19.3081 0.833208
\(538\) 16.8984 0.728543
\(539\) 0.180969 0.00779487
\(540\) −5.51256 −0.237223
\(541\) −2.43081 −0.104509 −0.0522544 0.998634i \(-0.516641\pi\)
−0.0522544 + 0.998634i \(0.516641\pi\)
\(542\) −46.1661 −1.98301
\(543\) −17.7656 −0.762393
\(544\) 50.1956 2.15212
\(545\) 9.44226 0.404462
\(546\) −13.1972 −0.564789
\(547\) −20.0320 −0.856507 −0.428254 0.903659i \(-0.640871\pi\)
−0.428254 + 0.903659i \(0.640871\pi\)
\(548\) −31.3584 −1.33956
\(549\) 9.01625 0.384804
\(550\) −1.90084 −0.0810520
\(551\) 1.02874 0.0438260
\(552\) −8.76763 −0.373175
\(553\) 16.1948 0.688674
\(554\) −64.5269 −2.74149
\(555\) −6.78025 −0.287806
\(556\) 38.6940 1.64099
\(557\) 34.5733 1.46492 0.732459 0.680811i \(-0.238372\pi\)
0.732459 + 0.680811i \(0.238372\pi\)
\(558\) −2.22350 −0.0941282
\(559\) −0.614931 −0.0260088
\(560\) −13.7478 −0.580951
\(561\) −0.511326 −0.0215882
\(562\) −19.5855 −0.826164
\(563\) 11.6307 0.490177 0.245089 0.969501i \(-0.421183\pi\)
0.245089 + 0.969501i \(0.421183\pi\)
\(564\) 63.2269 2.66233
\(565\) 10.2908 0.432938
\(566\) 71.4767 3.00439
\(567\) −1.00000 −0.0419961
\(568\) −19.4948 −0.817985
\(569\) 20.0340 0.839871 0.419935 0.907554i \(-0.362053\pi\)
0.419935 + 0.907554i \(0.362053\pi\)
\(570\) 0.511326 0.0214171
\(571\) −30.6328 −1.28194 −0.640972 0.767564i \(-0.721469\pi\)
−0.640972 + 0.767564i \(0.721469\pi\)
\(572\) −4.65955 −0.194825
\(573\) 8.79275 0.367322
\(574\) 9.34660 0.390120
\(575\) −3.89961 −0.162625
\(576\) 21.6397 0.901655
\(577\) 6.02586 0.250860 0.125430 0.992102i \(-0.459969\pi\)
0.125430 + 0.992102i \(0.459969\pi\)
\(578\) −24.2863 −1.01018
\(579\) 6.79275 0.282297
\(580\) −31.3370 −1.30120
\(581\) −10.8757 −0.451201
\(582\) −28.1839 −1.16826
\(583\) 1.54777 0.0641020
\(584\) 114.608 4.74251
\(585\) −5.13967 −0.212499
\(586\) −88.1014 −3.63944
\(587\) −0.00886676 −0.000365971 0 −0.000182985 1.00000i \(-0.500058\pi\)
−0.000182985 1.00000i \(0.500058\pi\)
\(588\) −5.25508 −0.216716
\(589\) 0.149389 0.00615547
\(590\) −12.1679 −0.500946
\(591\) −14.6534 −0.602760
\(592\) 84.7094 3.48154
\(593\) −46.0454 −1.89086 −0.945429 0.325827i \(-0.894357\pi\)
−0.945429 + 0.325827i \(0.894357\pi\)
\(594\) −0.487443 −0.0200000
\(595\) −2.96394 −0.121510
\(596\) 115.237 4.72031
\(597\) 4.45469 0.182318
\(598\) −13.1972 −0.539674
\(599\) −24.6357 −1.00659 −0.503293 0.864116i \(-0.667878\pi\)
−0.503293 + 0.864116i \(0.667878\pi\)
\(600\) 34.1903 1.39581
\(601\) −32.4037 −1.32177 −0.660887 0.750486i \(-0.729820\pi\)
−0.660887 + 0.750486i \(0.729820\pi\)
\(602\) −0.338054 −0.0137781
\(603\) −15.7074 −0.639654
\(604\) 88.2472 3.59073
\(605\) −11.5046 −0.467729
\(606\) −39.6799 −1.61188
\(607\) 10.5554 0.428431 0.214215 0.976786i \(-0.431281\pi\)
0.214215 + 0.976786i \(0.431281\pi\)
\(608\) −3.21495 −0.130383
\(609\) −5.68466 −0.230354
\(610\) 25.4754 1.03147
\(611\) 58.9500 2.38486
\(612\) 14.8482 0.600203
\(613\) 4.26511 0.172266 0.0861332 0.996284i \(-0.472549\pi\)
0.0861332 + 0.996284i \(0.472549\pi\)
\(614\) −55.0236 −2.22057
\(615\) 3.64004 0.146781
\(616\) −1.58667 −0.0639286
\(617\) −9.32470 −0.375398 −0.187699 0.982227i \(-0.560103\pi\)
−0.187699 + 0.982227i \(0.560103\pi\)
\(618\) −16.0632 −0.646155
\(619\) 3.64538 0.146520 0.0732601 0.997313i \(-0.476660\pi\)
0.0732601 + 0.997313i \(0.476660\pi\)
\(620\) −4.55060 −0.182757
\(621\) −1.00000 −0.0401286
\(622\) 42.9658 1.72277
\(623\) 14.7466 0.590810
\(624\) 64.2127 2.57057
\(625\) 9.70497 0.388199
\(626\) −7.84698 −0.313628
\(627\) 0.0327496 0.00130789
\(628\) 87.9833 3.51091
\(629\) 18.2628 0.728185
\(630\) −2.82550 −0.112571
\(631\) 15.3155 0.609699 0.304849 0.952401i \(-0.401394\pi\)
0.304849 + 0.952401i \(0.401394\pi\)
\(632\) −141.990 −5.64807
\(633\) 4.59793 0.182751
\(634\) 0.794832 0.0315668
\(635\) 14.3105 0.567896
\(636\) −44.9450 −1.78219
\(637\) −4.89961 −0.194129
\(638\) −2.77095 −0.109703
\(639\) −2.22350 −0.0879602
\(640\) 23.8717 0.943611
\(641\) 17.8252 0.704052 0.352026 0.935990i \(-0.385493\pi\)
0.352026 + 0.935990i \(0.385493\pi\)
\(642\) 23.0313 0.908971
\(643\) −10.2196 −0.403022 −0.201511 0.979486i \(-0.564585\pi\)
−0.201511 + 0.979486i \(0.564585\pi\)
\(644\) −5.25508 −0.207079
\(645\) −0.131656 −0.00518393
\(646\) −1.37727 −0.0541880
\(647\) −1.71217 −0.0673124 −0.0336562 0.999433i \(-0.510715\pi\)
−0.0336562 + 0.999433i \(0.510715\pi\)
\(648\) 8.76763 0.344425
\(649\) −0.779336 −0.0305916
\(650\) 51.4640 2.01858
\(651\) −0.825498 −0.0323538
\(652\) 132.064 5.17204
\(653\) −2.80044 −0.109590 −0.0547949 0.998498i \(-0.517451\pi\)
−0.0547949 + 0.998498i \(0.517451\pi\)
\(654\) −24.2450 −0.948056
\(655\) −10.1973 −0.398443
\(656\) −45.4771 −1.77558
\(657\) 13.0717 0.509976
\(658\) 32.4074 1.26337
\(659\) 25.7153 1.00173 0.500863 0.865526i \(-0.333016\pi\)
0.500863 + 0.865526i \(0.333016\pi\)
\(660\) −0.997599 −0.0388315
\(661\) 10.5129 0.408903 0.204452 0.978877i \(-0.434459\pi\)
0.204452 + 0.978877i \(0.434459\pi\)
\(662\) 29.3345 1.14012
\(663\) 13.8438 0.537650
\(664\) 95.3544 3.70047
\(665\) 0.189835 0.00736150
\(666\) 17.4098 0.674615
\(667\) −5.68466 −0.220111
\(668\) 52.4466 2.02922
\(669\) −13.0442 −0.504318
\(670\) −44.3811 −1.71459
\(671\) 1.63166 0.0629894
\(672\) 17.7652 0.685309
\(673\) 23.1235 0.891345 0.445672 0.895196i \(-0.352965\pi\)
0.445672 + 0.895196i \(0.352965\pi\)
\(674\) 3.49845 0.134755
\(675\) 3.89961 0.150096
\(676\) 57.8382 2.22455
\(677\) −44.2843 −1.70198 −0.850992 0.525178i \(-0.823999\pi\)
−0.850992 + 0.525178i \(0.823999\pi\)
\(678\) −26.4239 −1.01480
\(679\) −10.4636 −0.401555
\(680\) 25.9867 0.996545
\(681\) 0.320321 0.0122747
\(682\) −0.402383 −0.0154081
\(683\) 25.9663 0.993574 0.496787 0.867872i \(-0.334513\pi\)
0.496787 + 0.867872i \(0.334513\pi\)
\(684\) −0.951004 −0.0363625
\(685\) −6.25962 −0.239168
\(686\) −2.69353 −0.102839
\(687\) −8.88459 −0.338968
\(688\) 1.64485 0.0627092
\(689\) −41.9048 −1.59645
\(690\) −2.82550 −0.107565
\(691\) −11.2697 −0.428719 −0.214359 0.976755i \(-0.568766\pi\)
−0.214359 + 0.976755i \(0.568766\pi\)
\(692\) −65.7228 −2.49840
\(693\) −0.180969 −0.00687443
\(694\) 49.2721 1.87034
\(695\) 7.72393 0.292986
\(696\) 49.8410 1.88922
\(697\) −9.80455 −0.371374
\(698\) −61.7713 −2.33808
\(699\) 0.418313 0.0158221
\(700\) 20.4927 0.774553
\(701\) 41.4152 1.56423 0.782115 0.623134i \(-0.214141\pi\)
0.782115 + 0.623134i \(0.214141\pi\)
\(702\) 13.1972 0.498097
\(703\) −1.16970 −0.0441161
\(704\) 3.91611 0.147594
\(705\) 12.6211 0.475337
\(706\) 41.9831 1.58005
\(707\) −14.7316 −0.554038
\(708\) 22.6309 0.850520
\(709\) 27.9629 1.05017 0.525084 0.851050i \(-0.324034\pi\)
0.525084 + 0.851050i \(0.324034\pi\)
\(710\) −6.28249 −0.235778
\(711\) −16.1948 −0.607353
\(712\) −129.293 −4.84545
\(713\) −0.825498 −0.0309151
\(714\) 7.61055 0.284818
\(715\) −0.930118 −0.0347845
\(716\) −101.466 −3.79195
\(717\) 15.0571 0.562319
\(718\) −58.2054 −2.17221
\(719\) −39.1607 −1.46045 −0.730224 0.683207i \(-0.760585\pi\)
−0.730224 + 0.683207i \(0.760585\pi\)
\(720\) 13.7478 0.512351
\(721\) −5.96362 −0.222097
\(722\) −51.0888 −1.90133
\(723\) −5.31701 −0.197742
\(724\) 93.3594 3.46967
\(725\) 22.1679 0.823296
\(726\) 29.5406 1.09635
\(727\) −39.7139 −1.47291 −0.736453 0.676488i \(-0.763501\pi\)
−0.736453 + 0.676488i \(0.763501\pi\)
\(728\) 42.9580 1.59213
\(729\) 1.00000 0.0370370
\(730\) 36.9341 1.36699
\(731\) 0.354618 0.0131160
\(732\) −47.3811 −1.75126
\(733\) −19.6633 −0.726280 −0.363140 0.931735i \(-0.618295\pi\)
−0.363140 + 0.931735i \(0.618295\pi\)
\(734\) −12.0239 −0.443810
\(735\) −1.04900 −0.0386928
\(736\) 17.7652 0.654835
\(737\) −2.84254 −0.104706
\(738\) −9.34660 −0.344053
\(739\) −7.05398 −0.259485 −0.129742 0.991548i \(-0.541415\pi\)
−0.129742 + 0.991548i \(0.541415\pi\)
\(740\) 35.6307 1.30981
\(741\) −0.886675 −0.0325728
\(742\) −23.0369 −0.845710
\(743\) −33.3545 −1.22366 −0.611829 0.790990i \(-0.709566\pi\)
−0.611829 + 0.790990i \(0.709566\pi\)
\(744\) 7.23766 0.265346
\(745\) 23.0032 0.842772
\(746\) −82.8333 −3.03274
\(747\) 10.8757 0.397922
\(748\) 2.68706 0.0982486
\(749\) 8.55060 0.312432
\(750\) 25.1458 0.918195
\(751\) 5.86039 0.213849 0.106924 0.994267i \(-0.465900\pi\)
0.106924 + 0.994267i \(0.465900\pi\)
\(752\) −157.682 −5.75008
\(753\) 7.19107 0.262057
\(754\) 75.0217 2.73213
\(755\) 17.6155 0.641095
\(756\) 5.25508 0.191125
\(757\) −4.25464 −0.154638 −0.0773188 0.997006i \(-0.524636\pi\)
−0.0773188 + 0.997006i \(0.524636\pi\)
\(758\) 61.1466 2.22095
\(759\) −0.180969 −0.00656874
\(760\) −1.66441 −0.0603744
\(761\) 16.2300 0.588338 0.294169 0.955753i \(-0.404957\pi\)
0.294169 + 0.955753i \(0.404957\pi\)
\(762\) −36.7454 −1.33115
\(763\) −9.00123 −0.325866
\(764\) −46.2066 −1.67170
\(765\) 2.96394 0.107161
\(766\) −49.4204 −1.78563
\(767\) 21.1000 0.761878
\(768\) −18.0162 −0.650105
\(769\) −34.4633 −1.24278 −0.621388 0.783503i \(-0.713431\pi\)
−0.621388 + 0.783503i \(0.713431\pi\)
\(770\) −0.511326 −0.0184269
\(771\) 8.77255 0.315936
\(772\) −35.6964 −1.28474
\(773\) 40.0968 1.44218 0.721091 0.692840i \(-0.243641\pi\)
0.721091 + 0.692840i \(0.243641\pi\)
\(774\) 0.338054 0.0121511
\(775\) 3.21912 0.115634
\(776\) 91.7407 3.29330
\(777\) 6.46356 0.231879
\(778\) −59.4245 −2.13047
\(779\) 0.627966 0.0224992
\(780\) 27.0094 0.967090
\(781\) −0.402383 −0.0143984
\(782\) 7.61055 0.272153
\(783\) 5.68466 0.203153
\(784\) 13.1057 0.468060
\(785\) 17.5628 0.626845
\(786\) 26.1839 0.933947
\(787\) −10.7641 −0.383697 −0.191849 0.981425i \(-0.561448\pi\)
−0.191849 + 0.981425i \(0.561448\pi\)
\(788\) 77.0047 2.74318
\(789\) −16.0304 −0.570698
\(790\) −45.7584 −1.62801
\(791\) −9.81016 −0.348809
\(792\) 1.58667 0.0563797
\(793\) −44.1761 −1.56874
\(794\) 62.7711 2.22766
\(795\) −8.97173 −0.318195
\(796\) −23.4098 −0.829737
\(797\) 28.7263 1.01754 0.508769 0.860903i \(-0.330101\pi\)
0.508769 + 0.860903i \(0.330101\pi\)
\(798\) −0.487443 −0.0172553
\(799\) −33.9952 −1.20266
\(800\) −69.2774 −2.44933
\(801\) −14.7466 −0.521045
\(802\) 38.2714 1.35141
\(803\) 2.36557 0.0834791
\(804\) 82.5435 2.91108
\(805\) −1.04900 −0.0369723
\(806\) 10.8943 0.383734
\(807\) −6.27373 −0.220846
\(808\) 129.161 4.54387
\(809\) −7.02676 −0.247048 −0.123524 0.992342i \(-0.539420\pi\)
−0.123524 + 0.992342i \(0.539420\pi\)
\(810\) 2.82550 0.0992779
\(811\) 29.3729 1.03142 0.515712 0.856762i \(-0.327528\pi\)
0.515712 + 0.856762i \(0.327528\pi\)
\(812\) 29.8733 1.04835
\(813\) 17.1397 0.601114
\(814\) 3.15062 0.110429
\(815\) 26.3621 0.923425
\(816\) −37.0301 −1.29631
\(817\) −0.0227127 −0.000794616 0
\(818\) −89.6293 −3.13381
\(819\) 4.89961 0.171206
\(820\) −19.1287 −0.668004
\(821\) −20.8592 −0.727990 −0.363995 0.931401i \(-0.618587\pi\)
−0.363995 + 0.931401i \(0.618587\pi\)
\(822\) 16.0729 0.560608
\(823\) 8.32421 0.290164 0.145082 0.989420i \(-0.453655\pi\)
0.145082 + 0.989420i \(0.453655\pi\)
\(824\) 52.2868 1.82150
\(825\) 0.705706 0.0245695
\(826\) 11.5996 0.403602
\(827\) 26.0102 0.904462 0.452231 0.891901i \(-0.350628\pi\)
0.452231 + 0.891901i \(0.350628\pi\)
\(828\) 5.25508 0.182627
\(829\) 20.5616 0.714132 0.357066 0.934079i \(-0.383777\pi\)
0.357066 + 0.934079i \(0.383777\pi\)
\(830\) 30.7293 1.06663
\(831\) 23.9563 0.831035
\(832\) −106.026 −3.67580
\(833\) 2.82550 0.0978977
\(834\) −19.8329 −0.686756
\(835\) 10.4692 0.362301
\(836\) −0.172102 −0.00595226
\(837\) 0.825498 0.0285334
\(838\) 5.22056 0.180341
\(839\) 11.8568 0.409341 0.204670 0.978831i \(-0.434388\pi\)
0.204670 + 0.978831i \(0.434388\pi\)
\(840\) 9.19722 0.317334
\(841\) 3.31534 0.114322
\(842\) −8.37289 −0.288549
\(843\) 7.27132 0.250438
\(844\) −24.1625 −0.831708
\(845\) 11.5454 0.397174
\(846\) −32.4074 −1.11419
\(847\) 10.9673 0.376839
\(848\) 112.089 3.84915
\(849\) −26.5365 −0.910730
\(850\) −29.6782 −1.01795
\(851\) 6.46356 0.221568
\(852\) 11.6847 0.400310
\(853\) 30.2041 1.03417 0.517085 0.855934i \(-0.327017\pi\)
0.517085 + 0.855934i \(0.327017\pi\)
\(854\) −24.2855 −0.831032
\(855\) −0.189835 −0.00649223
\(856\) −74.9686 −2.56237
\(857\) −50.5499 −1.72675 −0.863375 0.504562i \(-0.831654\pi\)
−0.863375 + 0.504562i \(0.831654\pi\)
\(858\) 2.38828 0.0815346
\(859\) 10.0834 0.344040 0.172020 0.985093i \(-0.444971\pi\)
0.172020 + 0.985093i \(0.444971\pi\)
\(860\) 0.691860 0.0235922
\(861\) −3.47003 −0.118258
\(862\) −73.3187 −2.49725
\(863\) 39.8098 1.35514 0.677571 0.735458i \(-0.263033\pi\)
0.677571 + 0.735458i \(0.263033\pi\)
\(864\) −17.7652 −0.604386
\(865\) −13.1193 −0.446069
\(866\) −32.9004 −1.11800
\(867\) 9.01656 0.306219
\(868\) 4.33805 0.147243
\(869\) −2.93075 −0.0994190
\(870\) 16.0620 0.544552
\(871\) 76.9599 2.60769
\(872\) 78.9195 2.67255
\(873\) 10.4636 0.354138
\(874\) −0.487443 −0.0164880
\(875\) 9.33565 0.315603
\(876\) −68.6928 −2.32092
\(877\) −30.8941 −1.04322 −0.521609 0.853184i \(-0.674668\pi\)
−0.521609 + 0.853184i \(0.674668\pi\)
\(878\) 77.5354 2.61669
\(879\) 32.7086 1.10323
\(880\) 2.48792 0.0838679
\(881\) 15.2972 0.515375 0.257688 0.966228i \(-0.417039\pi\)
0.257688 + 0.966228i \(0.417039\pi\)
\(882\) 2.69353 0.0906957
\(883\) 3.35890 0.113036 0.0565180 0.998402i \(-0.482000\pi\)
0.0565180 + 0.998402i \(0.482000\pi\)
\(884\) −72.7504 −2.44686
\(885\) 4.51748 0.151853
\(886\) −86.4634 −2.90479
\(887\) −51.2123 −1.71954 −0.859770 0.510681i \(-0.829393\pi\)
−0.859770 + 0.510681i \(0.829393\pi\)
\(888\) −56.6701 −1.90173
\(889\) −13.6421 −0.457542
\(890\) −41.6664 −1.39666
\(891\) 0.180969 0.00606267
\(892\) 68.5483 2.29517
\(893\) 2.17734 0.0728618
\(894\) −59.0657 −1.97545
\(895\) −20.2542 −0.677022
\(896\) −22.7567 −0.760247
\(897\) 4.89961 0.163593
\(898\) −69.1148 −2.30639
\(899\) 4.69267 0.156509
\(900\) −20.4927 −0.683091
\(901\) 24.1656 0.805073
\(902\) −1.69144 −0.0563188
\(903\) 0.125506 0.00417659
\(904\) 86.0119 2.86071
\(905\) 18.6360 0.619481
\(906\) −45.2317 −1.50272
\(907\) 27.1380 0.901103 0.450552 0.892750i \(-0.351227\pi\)
0.450552 + 0.892750i \(0.351227\pi\)
\(908\) −1.68331 −0.0558626
\(909\) 14.7316 0.488615
\(910\) 13.8438 0.458918
\(911\) −0.642982 −0.0213029 −0.0106515 0.999943i \(-0.503391\pi\)
−0.0106515 + 0.999943i \(0.503391\pi\)
\(912\) 2.37172 0.0785354
\(913\) 1.96816 0.0651367
\(914\) 45.2677 1.49732
\(915\) −9.45801 −0.312672
\(916\) 46.6892 1.54266
\(917\) 9.72104 0.321017
\(918\) −7.61055 −0.251186
\(919\) 51.8741 1.71117 0.855585 0.517662i \(-0.173198\pi\)
0.855585 + 0.517662i \(0.173198\pi\)
\(920\) 9.19722 0.303223
\(921\) 20.4281 0.673129
\(922\) 23.5212 0.774628
\(923\) 10.8943 0.358589
\(924\) 0.951004 0.0312857
\(925\) −25.2053 −0.828747
\(926\) 49.1062 1.61373
\(927\) 5.96362 0.195871
\(928\) −100.989 −3.31514
\(929\) −2.08704 −0.0684736 −0.0342368 0.999414i \(-0.510900\pi\)
−0.0342368 + 0.999414i \(0.510900\pi\)
\(930\) 2.33244 0.0764838
\(931\) −0.180969 −0.00593100
\(932\) −2.19827 −0.0720067
\(933\) −15.9515 −0.522229
\(934\) 37.2048 1.21738
\(935\) 0.536379 0.0175415
\(936\) −42.9580 −1.40413
\(937\) −35.6141 −1.16346 −0.581731 0.813382i \(-0.697624\pi\)
−0.581731 + 0.813382i \(0.697624\pi\)
\(938\) 42.3082 1.38141
\(939\) 2.91328 0.0950711
\(940\) −66.3248 −2.16328
\(941\) −19.5524 −0.637389 −0.318695 0.947857i \(-0.603244\pi\)
−0.318695 + 0.947857i \(0.603244\pi\)
\(942\) −45.0964 −1.46932
\(943\) −3.47003 −0.113000
\(944\) −56.4393 −1.83694
\(945\) 1.04900 0.0341238
\(946\) 0.0611772 0.00198904
\(947\) −14.2793 −0.464016 −0.232008 0.972714i \(-0.574530\pi\)
−0.232008 + 0.972714i \(0.574530\pi\)
\(948\) 85.1050 2.76408
\(949\) −64.0462 −2.07903
\(950\) 1.90084 0.0616713
\(951\) −0.295090 −0.00956894
\(952\) −24.7729 −0.802895
\(953\) 36.6697 1.18785 0.593924 0.804521i \(-0.297578\pi\)
0.593924 + 0.804521i \(0.297578\pi\)
\(954\) 23.0369 0.745846
\(955\) −9.22356 −0.298467
\(956\) −79.1264 −2.55913
\(957\) 1.02874 0.0332546
\(958\) −52.4737 −1.69535
\(959\) 5.96725 0.192693
\(960\) −22.7000 −0.732639
\(961\) −30.3186 −0.978018
\(962\) −85.3010 −2.75021
\(963\) −8.55060 −0.275539
\(964\) 27.9413 0.899928
\(965\) −7.12557 −0.229380
\(966\) 2.69353 0.0866628
\(967\) 3.23340 0.103979 0.0519895 0.998648i \(-0.483444\pi\)
0.0519895 + 0.998648i \(0.483444\pi\)
\(968\) −96.1568 −3.09060
\(969\) 0.511326 0.0164262
\(970\) 29.5648 0.949267
\(971\) 35.0009 1.12323 0.561617 0.827398i \(-0.310180\pi\)
0.561617 + 0.827398i \(0.310180\pi\)
\(972\) −5.25508 −0.168557
\(973\) −7.36317 −0.236052
\(974\) 74.1442 2.37573
\(975\) −19.1065 −0.611899
\(976\) 118.164 3.78234
\(977\) 11.1142 0.355576 0.177788 0.984069i \(-0.443106\pi\)
0.177788 + 0.984069i \(0.443106\pi\)
\(978\) −67.6904 −2.16450
\(979\) −2.66867 −0.0852910
\(980\) 5.51256 0.176092
\(981\) 9.00123 0.287387
\(982\) 41.3584 1.31980
\(983\) 12.0343 0.383834 0.191917 0.981411i \(-0.438529\pi\)
0.191917 + 0.981411i \(0.438529\pi\)
\(984\) 30.4239 0.969879
\(985\) 15.3714 0.489772
\(986\) −43.2634 −1.37779
\(987\) −12.0316 −0.382969
\(988\) 4.65955 0.148240
\(989\) 0.125506 0.00399087
\(990\) 0.511326 0.0162510
\(991\) 59.7732 1.89876 0.949380 0.314130i \(-0.101713\pi\)
0.949380 + 0.314130i \(0.101713\pi\)
\(992\) −14.6652 −0.465619
\(993\) −10.8907 −0.345607
\(994\) 5.98905 0.189961
\(995\) −4.67296 −0.148143
\(996\) −57.1528 −1.81096
\(997\) 24.4287 0.773666 0.386833 0.922150i \(-0.373569\pi\)
0.386833 + 0.922150i \(0.373569\pi\)
\(998\) −21.8612 −0.692004
\(999\) −6.46356 −0.204498
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.a.j.1.4 4
3.2 odd 2 1449.2.a.o.1.1 4
4.3 odd 2 7728.2.a.ce.1.2 4
7.6 odd 2 3381.2.a.x.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.a.j.1.4 4 1.1 even 1 trivial
1449.2.a.o.1.1 4 3.2 odd 2
3381.2.a.x.1.4 4 7.6 odd 2
7728.2.a.ce.1.2 4 4.3 odd 2