Properties

Label 483.2.a.i.1.3
Level $483$
Weight $2$
Character 483.1
Self dual yes
Analytic conductor $3.857$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(1,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.24197.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} - x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.700017\) of defining polynomial
Character \(\chi\) \(=\) 483.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.700017 q^{2} -1.00000 q^{3} -1.50998 q^{4} -1.15706 q^{5} -0.700017 q^{6} +1.00000 q^{7} -2.45704 q^{8} +1.00000 q^{9} -0.809960 q^{10} +3.66704 q^{11} +1.50998 q^{12} +2.34710 q^{13} +0.700017 q^{14} +1.15706 q^{15} +1.29998 q^{16} +4.80996 q^{17} +0.700017 q^{18} +7.06707 q^{19} +1.74713 q^{20} -1.00000 q^{21} +2.56699 q^{22} -1.00000 q^{23} +2.45704 q^{24} -3.66122 q^{25} +1.64301 q^{26} -1.00000 q^{27} -1.50998 q^{28} -6.52411 q^{29} +0.809960 q^{30} +2.80996 q^{31} +5.82409 q^{32} -3.66704 q^{33} +3.36705 q^{34} -1.15706 q^{35} -1.50998 q^{36} +5.40993 q^{37} +4.94707 q^{38} -2.34710 q^{39} +2.84294 q^{40} +0.647082 q^{41} -0.700017 q^{42} -4.76709 q^{43} -5.53714 q^{44} -1.15706 q^{45} -0.700017 q^{46} +4.85708 q^{47} -1.29998 q^{48} +1.00000 q^{49} -2.56291 q^{50} -4.80996 q^{51} -3.54406 q^{52} +7.63405 q^{53} -0.700017 q^{54} -4.24297 q^{55} -2.45704 q^{56} -7.06707 q^{57} -4.56699 q^{58} -10.2142 q^{59} -1.74713 q^{60} +9.91001 q^{61} +1.96702 q^{62} +1.00000 q^{63} +1.47700 q^{64} -2.71573 q^{65} -2.56699 q^{66} +6.07114 q^{67} -7.26293 q^{68} +1.00000 q^{69} -0.809960 q^{70} -3.65290 q^{71} -2.45704 q^{72} +11.8183 q^{73} +3.78704 q^{74} +3.66122 q^{75} -10.6711 q^{76} +3.66704 q^{77} -1.64301 q^{78} -9.12408 q^{79} -1.50416 q^{80} +1.00000 q^{81} +0.452968 q^{82} -15.8582 q^{83} +1.50998 q^{84} -5.56541 q^{85} -3.33704 q^{86} +6.52411 q^{87} -9.01006 q^{88} +4.66122 q^{89} -0.809960 q^{90} +2.34710 q^{91} +1.50998 q^{92} -2.80996 q^{93} +3.40003 q^{94} -8.17701 q^{95} -5.82409 q^{96} -4.90419 q^{97} +0.700017 q^{98} +3.66704 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{4} + 5 q^{5} + 4 q^{7} - 3 q^{8} + 4 q^{9} + 4 q^{10} - 5 q^{11} - 4 q^{12} + 7 q^{13} - 5 q^{15} + 8 q^{16} + 12 q^{17} + 3 q^{19} - q^{20} - 4 q^{21} - q^{22} - 4 q^{23} + 3 q^{24}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.700017 0.494986 0.247493 0.968890i \(-0.420393\pi\)
0.247493 + 0.968890i \(0.420393\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.50998 −0.754988
\(5\) −1.15706 −0.517452 −0.258726 0.965951i \(-0.583303\pi\)
−0.258726 + 0.965951i \(0.583303\pi\)
\(6\) −0.700017 −0.285781
\(7\) 1.00000 0.377964
\(8\) −2.45704 −0.868696
\(9\) 1.00000 0.333333
\(10\) −0.809960 −0.256132
\(11\) 3.66704 1.10565 0.552826 0.833296i \(-0.313549\pi\)
0.552826 + 0.833296i \(0.313549\pi\)
\(12\) 1.50998 0.435893
\(13\) 2.34710 0.650968 0.325484 0.945548i \(-0.394473\pi\)
0.325484 + 0.945548i \(0.394473\pi\)
\(14\) 0.700017 0.187087
\(15\) 1.15706 0.298751
\(16\) 1.29998 0.324996
\(17\) 4.80996 1.16659 0.583293 0.812262i \(-0.301764\pi\)
0.583293 + 0.812262i \(0.301764\pi\)
\(18\) 0.700017 0.164995
\(19\) 7.06707 1.62130 0.810648 0.585533i \(-0.199115\pi\)
0.810648 + 0.585533i \(0.199115\pi\)
\(20\) 1.74713 0.390670
\(21\) −1.00000 −0.218218
\(22\) 2.56699 0.547283
\(23\) −1.00000 −0.208514
\(24\) 2.45704 0.501542
\(25\) −3.66122 −0.732243
\(26\) 1.64301 0.322220
\(27\) −1.00000 −0.192450
\(28\) −1.50998 −0.285359
\(29\) −6.52411 −1.21150 −0.605748 0.795656i \(-0.707126\pi\)
−0.605748 + 0.795656i \(0.707126\pi\)
\(30\) 0.809960 0.147878
\(31\) 2.80996 0.504684 0.252342 0.967638i \(-0.418799\pi\)
0.252342 + 0.967638i \(0.418799\pi\)
\(32\) 5.82409 1.02956
\(33\) −3.66704 −0.638349
\(34\) 3.36705 0.577445
\(35\) −1.15706 −0.195579
\(36\) −1.50998 −0.251663
\(37\) 5.40993 0.889387 0.444693 0.895683i \(-0.353313\pi\)
0.444693 + 0.895683i \(0.353313\pi\)
\(38\) 4.94707 0.802520
\(39\) −2.34710 −0.375837
\(40\) 2.84294 0.449509
\(41\) 0.647082 0.101057 0.0505286 0.998723i \(-0.483909\pi\)
0.0505286 + 0.998723i \(0.483909\pi\)
\(42\) −0.700017 −0.108015
\(43\) −4.76709 −0.726974 −0.363487 0.931599i \(-0.618414\pi\)
−0.363487 + 0.931599i \(0.618414\pi\)
\(44\) −5.53714 −0.834755
\(45\) −1.15706 −0.172484
\(46\) −0.700017 −0.103212
\(47\) 4.85708 0.708477 0.354239 0.935155i \(-0.384740\pi\)
0.354239 + 0.935155i \(0.384740\pi\)
\(48\) −1.29998 −0.187636
\(49\) 1.00000 0.142857
\(50\) −2.56291 −0.362450
\(51\) −4.80996 −0.673529
\(52\) −3.54406 −0.491473
\(53\) 7.63405 1.04862 0.524309 0.851528i \(-0.324324\pi\)
0.524309 + 0.851528i \(0.324324\pi\)
\(54\) −0.700017 −0.0952602
\(55\) −4.24297 −0.572123
\(56\) −2.45704 −0.328336
\(57\) −7.06707 −0.936056
\(58\) −4.56699 −0.599675
\(59\) −10.2142 −1.32978 −0.664890 0.746941i \(-0.731522\pi\)
−0.664890 + 0.746941i \(0.731522\pi\)
\(60\) −1.74713 −0.225554
\(61\) 9.91001 1.26885 0.634423 0.772986i \(-0.281238\pi\)
0.634423 + 0.772986i \(0.281238\pi\)
\(62\) 1.96702 0.249812
\(63\) 1.00000 0.125988
\(64\) 1.47700 0.184624
\(65\) −2.71573 −0.336845
\(66\) −2.56699 −0.315974
\(67\) 6.07114 0.741708 0.370854 0.928691i \(-0.379065\pi\)
0.370854 + 0.928691i \(0.379065\pi\)
\(68\) −7.26293 −0.880759
\(69\) 1.00000 0.120386
\(70\) −0.809960 −0.0968088
\(71\) −3.65290 −0.433520 −0.216760 0.976225i \(-0.569549\pi\)
−0.216760 + 0.976225i \(0.569549\pi\)
\(72\) −2.45704 −0.289565
\(73\) 11.8183 1.38322 0.691612 0.722269i \(-0.256901\pi\)
0.691612 + 0.722269i \(0.256901\pi\)
\(74\) 3.78704 0.440234
\(75\) 3.66122 0.422761
\(76\) −10.6711 −1.22406
\(77\) 3.66704 0.417897
\(78\) −1.64301 −0.186034
\(79\) −9.12408 −1.02654 −0.513269 0.858228i \(-0.671566\pi\)
−0.513269 + 0.858228i \(0.671566\pi\)
\(80\) −1.50416 −0.168170
\(81\) 1.00000 0.111111
\(82\) 0.452968 0.0500219
\(83\) −15.8582 −1.74066 −0.870331 0.492468i \(-0.836095\pi\)
−0.870331 + 0.492468i \(0.836095\pi\)
\(84\) 1.50998 0.164752
\(85\) −5.56541 −0.603653
\(86\) −3.33704 −0.359842
\(87\) 6.52411 0.699458
\(88\) −9.01006 −0.960476
\(89\) 4.66122 0.494088 0.247044 0.969004i \(-0.420541\pi\)
0.247044 + 0.969004i \(0.420541\pi\)
\(90\) −0.809960 −0.0853773
\(91\) 2.34710 0.246043
\(92\) 1.50998 0.157426
\(93\) −2.80996 −0.291379
\(94\) 3.40003 0.350687
\(95\) −8.17701 −0.838944
\(96\) −5.82409 −0.594419
\(97\) −4.90419 −0.497945 −0.248973 0.968511i \(-0.580093\pi\)
−0.248973 + 0.968511i \(0.580093\pi\)
\(98\) 0.700017 0.0707124
\(99\) 3.66704 0.368551
\(100\) 5.52835 0.552835
\(101\) −5.80589 −0.577707 −0.288854 0.957373i \(-0.593274\pi\)
−0.288854 + 0.957373i \(0.593274\pi\)
\(102\) −3.36705 −0.333388
\(103\) 17.1169 1.68658 0.843288 0.537463i \(-0.180617\pi\)
0.843288 + 0.537463i \(0.180617\pi\)
\(104\) −5.76692 −0.565493
\(105\) 1.15706 0.112917
\(106\) 5.34396 0.519052
\(107\) −8.34710 −0.806944 −0.403472 0.914992i \(-0.632197\pi\)
−0.403472 + 0.914992i \(0.632197\pi\)
\(108\) 1.50998 0.145298
\(109\) 16.3771 1.56864 0.784321 0.620355i \(-0.213011\pi\)
0.784321 + 0.620355i \(0.213011\pi\)
\(110\) −2.97015 −0.283193
\(111\) −5.40993 −0.513488
\(112\) 1.29998 0.122837
\(113\) −14.1770 −1.33366 −0.666831 0.745209i \(-0.732350\pi\)
−0.666831 + 0.745209i \(0.732350\pi\)
\(114\) −4.94707 −0.463335
\(115\) 1.15706 0.107896
\(116\) 9.85126 0.914666
\(117\) 2.34710 0.216989
\(118\) −7.15013 −0.658223
\(119\) 4.80996 0.440928
\(120\) −2.84294 −0.259524
\(121\) 2.44715 0.222468
\(122\) 6.93717 0.628062
\(123\) −0.647082 −0.0583454
\(124\) −4.24297 −0.381030
\(125\) 10.0215 0.896353
\(126\) 0.700017 0.0623624
\(127\) 13.1184 1.16407 0.582036 0.813163i \(-0.302256\pi\)
0.582036 + 0.813163i \(0.302256\pi\)
\(128\) −10.6143 −0.938177
\(129\) 4.76709 0.419718
\(130\) −1.90106 −0.166734
\(131\) −1.28696 −0.112442 −0.0562209 0.998418i \(-0.517905\pi\)
−0.0562209 + 0.998418i \(0.517905\pi\)
\(132\) 5.53714 0.481946
\(133\) 7.06707 0.612793
\(134\) 4.24990 0.367135
\(135\) 1.15706 0.0995837
\(136\) −11.8183 −1.01341
\(137\) −11.3152 −0.966725 −0.483362 0.875420i \(-0.660585\pi\)
−0.483362 + 0.875420i \(0.660585\pi\)
\(138\) 0.700017 0.0595894
\(139\) 8.93717 0.758041 0.379020 0.925388i \(-0.376261\pi\)
0.379020 + 0.925388i \(0.376261\pi\)
\(140\) 1.74713 0.147660
\(141\) −4.85708 −0.409040
\(142\) −2.55709 −0.214586
\(143\) 8.60689 0.719745
\(144\) 1.29998 0.108332
\(145\) 7.54878 0.626892
\(146\) 8.27299 0.684677
\(147\) −1.00000 −0.0824786
\(148\) −8.16886 −0.671476
\(149\) 1.67693 0.137379 0.0686897 0.997638i \(-0.478118\pi\)
0.0686897 + 0.997638i \(0.478118\pi\)
\(150\) 2.56291 0.209261
\(151\) −19.0110 −1.54709 −0.773547 0.633739i \(-0.781519\pi\)
−0.773547 + 0.633739i \(0.781519\pi\)
\(152\) −17.3641 −1.40841
\(153\) 4.80996 0.388862
\(154\) 2.56699 0.206854
\(155\) −3.25129 −0.261150
\(156\) 3.54406 0.283752
\(157\) 12.5712 1.00329 0.501647 0.865073i \(-0.332728\pi\)
0.501647 + 0.865073i \(0.332728\pi\)
\(158\) −6.38701 −0.508123
\(159\) −7.63405 −0.605420
\(160\) −6.73882 −0.532750
\(161\) −1.00000 −0.0788110
\(162\) 0.700017 0.0549985
\(163\) −15.6740 −1.22768 −0.613840 0.789431i \(-0.710376\pi\)
−0.613840 + 0.789431i \(0.710376\pi\)
\(164\) −0.977078 −0.0762970
\(165\) 4.24297 0.330315
\(166\) −11.1010 −0.861604
\(167\) 4.96120 0.383909 0.191955 0.981404i \(-0.438517\pi\)
0.191955 + 0.981404i \(0.438517\pi\)
\(168\) 2.45704 0.189565
\(169\) −7.49113 −0.576241
\(170\) −3.89588 −0.298800
\(171\) 7.06707 0.540432
\(172\) 7.19819 0.548857
\(173\) 12.9042 0.981087 0.490544 0.871417i \(-0.336798\pi\)
0.490544 + 0.871417i \(0.336798\pi\)
\(174\) 4.56699 0.346222
\(175\) −3.66122 −0.276762
\(176\) 4.76709 0.359333
\(177\) 10.2142 0.767749
\(178\) 3.26293 0.244567
\(179\) −0.262762 −0.0196398 −0.00981989 0.999952i \(-0.503126\pi\)
−0.00981989 + 0.999952i \(0.503126\pi\)
\(180\) 1.74713 0.130223
\(181\) −12.1440 −0.902659 −0.451329 0.892357i \(-0.649050\pi\)
−0.451329 + 0.892357i \(0.649050\pi\)
\(182\) 1.64301 0.121788
\(183\) −9.91001 −0.732569
\(184\) 2.45704 0.181136
\(185\) −6.25960 −0.460215
\(186\) −1.96702 −0.144229
\(187\) 17.6383 1.28984
\(188\) −7.33407 −0.534892
\(189\) −1.00000 −0.0727393
\(190\) −5.72404 −0.415266
\(191\) 2.68524 0.194297 0.0971487 0.995270i \(-0.469028\pi\)
0.0971487 + 0.995270i \(0.469028\pi\)
\(192\) −1.47700 −0.106593
\(193\) −18.7252 −1.34787 −0.673933 0.738793i \(-0.735396\pi\)
−0.673933 + 0.738793i \(0.735396\pi\)
\(194\) −3.43301 −0.246476
\(195\) 2.71573 0.194477
\(196\) −1.50998 −0.107855
\(197\) 19.3953 1.38186 0.690930 0.722922i \(-0.257201\pi\)
0.690930 + 0.722922i \(0.257201\pi\)
\(198\) 2.56699 0.182428
\(199\) 1.10005 0.0779805 0.0389902 0.999240i \(-0.487586\pi\)
0.0389902 + 0.999240i \(0.487586\pi\)
\(200\) 8.99576 0.636096
\(201\) −6.07114 −0.428225
\(202\) −4.06422 −0.285957
\(203\) −6.52411 −0.457903
\(204\) 7.26293 0.508507
\(205\) −0.748712 −0.0522923
\(206\) 11.9821 0.834832
\(207\) −1.00000 −0.0695048
\(208\) 3.05119 0.211562
\(209\) 25.9152 1.79259
\(210\) 0.809960 0.0558926
\(211\) 25.5235 1.75711 0.878554 0.477643i \(-0.158509\pi\)
0.878554 + 0.477643i \(0.158509\pi\)
\(212\) −11.5272 −0.791694
\(213\) 3.65290 0.250293
\(214\) −5.84311 −0.399427
\(215\) 5.51580 0.376174
\(216\) 2.45704 0.167181
\(217\) 2.80996 0.190753
\(218\) 11.4642 0.776457
\(219\) −11.8183 −0.798605
\(220\) 6.40679 0.431946
\(221\) 11.2894 0.759411
\(222\) −3.78704 −0.254169
\(223\) −17.1772 −1.15027 −0.575134 0.818059i \(-0.695050\pi\)
−0.575134 + 0.818059i \(0.695050\pi\)
\(224\) 5.82409 0.389139
\(225\) −3.66122 −0.244081
\(226\) −9.92414 −0.660144
\(227\) −26.0334 −1.72790 −0.863950 0.503577i \(-0.832017\pi\)
−0.863950 + 0.503577i \(0.832017\pi\)
\(228\) 10.6711 0.706711
\(229\) −7.01430 −0.463518 −0.231759 0.972773i \(-0.574448\pi\)
−0.231759 + 0.972773i \(0.574448\pi\)
\(230\) 0.809960 0.0534072
\(231\) −3.66704 −0.241273
\(232\) 16.0300 1.05242
\(233\) 0.671109 0.0439658 0.0219829 0.999758i \(-0.493002\pi\)
0.0219829 + 0.999758i \(0.493002\pi\)
\(234\) 1.64301 0.107407
\(235\) −5.61992 −0.366603
\(236\) 15.4233 1.00397
\(237\) 9.12408 0.592673
\(238\) 3.36705 0.218254
\(239\) −26.5571 −1.71784 −0.858918 0.512114i \(-0.828863\pi\)
−0.858918 + 0.512114i \(0.828863\pi\)
\(240\) 1.50416 0.0970929
\(241\) −4.97284 −0.320329 −0.160164 0.987090i \(-0.551202\pi\)
−0.160164 + 0.987090i \(0.551202\pi\)
\(242\) 1.71304 0.110119
\(243\) −1.00000 −0.0641500
\(244\) −14.9639 −0.957965
\(245\) −1.15706 −0.0739218
\(246\) −0.452968 −0.0288802
\(247\) 16.5871 1.05541
\(248\) −6.90419 −0.438417
\(249\) 15.8582 1.00497
\(250\) 7.01524 0.443683
\(251\) −14.4281 −0.910696 −0.455348 0.890314i \(-0.650485\pi\)
−0.455348 + 0.890314i \(0.650485\pi\)
\(252\) −1.50998 −0.0951196
\(253\) −3.66704 −0.230545
\(254\) 9.18311 0.576200
\(255\) 5.56541 0.348519
\(256\) −10.3842 −0.649010
\(257\) 5.44889 0.339893 0.169946 0.985453i \(-0.445641\pi\)
0.169946 + 0.985453i \(0.445641\pi\)
\(258\) 3.33704 0.207755
\(259\) 5.40993 0.336157
\(260\) 4.10069 0.254314
\(261\) −6.52411 −0.403832
\(262\) −0.900890 −0.0556572
\(263\) 15.8128 0.975060 0.487530 0.873106i \(-0.337898\pi\)
0.487530 + 0.873106i \(0.337898\pi\)
\(264\) 9.01006 0.554531
\(265\) −8.83305 −0.542610
\(266\) 4.94707 0.303324
\(267\) −4.66122 −0.285262
\(268\) −9.16728 −0.559981
\(269\) 11.9011 0.725620 0.362810 0.931863i \(-0.381817\pi\)
0.362810 + 0.931863i \(0.381817\pi\)
\(270\) 0.809960 0.0492926
\(271\) −16.6664 −1.01241 −0.506206 0.862413i \(-0.668952\pi\)
−0.506206 + 0.862413i \(0.668952\pi\)
\(272\) 6.25287 0.379136
\(273\) −2.34710 −0.142053
\(274\) −7.92084 −0.478516
\(275\) −13.4258 −0.809607
\(276\) −1.50998 −0.0908899
\(277\) 20.1299 1.20949 0.604744 0.796420i \(-0.293275\pi\)
0.604744 + 0.796420i \(0.293275\pi\)
\(278\) 6.25617 0.375220
\(279\) 2.80996 0.168228
\(280\) 2.84294 0.169898
\(281\) 19.4022 1.15744 0.578720 0.815526i \(-0.303552\pi\)
0.578720 + 0.815526i \(0.303552\pi\)
\(282\) −3.40003 −0.202469
\(283\) −10.8313 −0.643854 −0.321927 0.946764i \(-0.604331\pi\)
−0.321927 + 0.946764i \(0.604331\pi\)
\(284\) 5.51580 0.327302
\(285\) 8.17701 0.484364
\(286\) 6.02497 0.356264
\(287\) 0.647082 0.0381960
\(288\) 5.82409 0.343188
\(289\) 6.13572 0.360925
\(290\) 5.28427 0.310303
\(291\) 4.90419 0.287489
\(292\) −17.8453 −1.04432
\(293\) 8.89430 0.519610 0.259805 0.965661i \(-0.416342\pi\)
0.259805 + 0.965661i \(0.416342\pi\)
\(294\) −0.700017 −0.0408258
\(295\) 11.8185 0.688098
\(296\) −13.2924 −0.772606
\(297\) −3.66704 −0.212783
\(298\) 1.17388 0.0680009
\(299\) −2.34710 −0.135736
\(300\) −5.52835 −0.319179
\(301\) −4.76709 −0.274770
\(302\) −13.3080 −0.765790
\(303\) 5.80589 0.333539
\(304\) 9.18707 0.526915
\(305\) −11.4665 −0.656568
\(306\) 3.36705 0.192482
\(307\) 19.7442 1.12686 0.563429 0.826164i \(-0.309482\pi\)
0.563429 + 0.826164i \(0.309482\pi\)
\(308\) −5.53714 −0.315508
\(309\) −17.1169 −0.973745
\(310\) −2.27596 −0.129266
\(311\) −28.5898 −1.62118 −0.810589 0.585615i \(-0.800853\pi\)
−0.810589 + 0.585615i \(0.800853\pi\)
\(312\) 5.76692 0.326488
\(313\) 12.6570 0.715415 0.357707 0.933834i \(-0.383559\pi\)
0.357707 + 0.933834i \(0.383559\pi\)
\(314\) 8.80007 0.496616
\(315\) −1.15706 −0.0651929
\(316\) 13.7771 0.775025
\(317\) 4.83130 0.271353 0.135676 0.990753i \(-0.456679\pi\)
0.135676 + 0.990753i \(0.456679\pi\)
\(318\) −5.34396 −0.299675
\(319\) −23.9241 −1.33949
\(320\) −1.70897 −0.0955343
\(321\) 8.34710 0.465890
\(322\) −0.700017 −0.0390104
\(323\) 33.9923 1.89138
\(324\) −1.50998 −0.0838876
\(325\) −8.59323 −0.476667
\(326\) −10.9720 −0.607685
\(327\) −16.3771 −0.905656
\(328\) −1.58991 −0.0877879
\(329\) 4.85708 0.267779
\(330\) 2.97015 0.163502
\(331\) −6.84544 −0.376259 −0.188130 0.982144i \(-0.560242\pi\)
−0.188130 + 0.982144i \(0.560242\pi\)
\(332\) 23.9455 1.31418
\(333\) 5.40993 0.296462
\(334\) 3.47292 0.190030
\(335\) −7.02467 −0.383799
\(336\) −1.29998 −0.0709199
\(337\) −8.17527 −0.445335 −0.222668 0.974894i \(-0.571476\pi\)
−0.222668 + 0.974894i \(0.571476\pi\)
\(338\) −5.24391 −0.285231
\(339\) 14.1770 0.769990
\(340\) 8.40363 0.455751
\(341\) 10.3042 0.558005
\(342\) 4.94707 0.267507
\(343\) 1.00000 0.0539949
\(344\) 11.7129 0.631519
\(345\) −1.15706 −0.0622939
\(346\) 9.03315 0.485625
\(347\) 21.2699 1.14183 0.570913 0.821011i \(-0.306589\pi\)
0.570913 + 0.821011i \(0.306589\pi\)
\(348\) −9.85126 −0.528083
\(349\) 1.96527 0.105199 0.0525993 0.998616i \(-0.483249\pi\)
0.0525993 + 0.998616i \(0.483249\pi\)
\(350\) −2.56291 −0.136993
\(351\) −2.34710 −0.125279
\(352\) 21.3572 1.13834
\(353\) 10.3124 0.548872 0.274436 0.961605i \(-0.411509\pi\)
0.274436 + 0.961605i \(0.411509\pi\)
\(354\) 7.15013 0.380025
\(355\) 4.22662 0.224326
\(356\) −7.03833 −0.373031
\(357\) −4.80996 −0.254570
\(358\) −0.183938 −0.00972142
\(359\) −26.3856 −1.39258 −0.696289 0.717761i \(-0.745167\pi\)
−0.696289 + 0.717761i \(0.745167\pi\)
\(360\) 2.84294 0.149836
\(361\) 30.9435 1.62860
\(362\) −8.50102 −0.446804
\(363\) −2.44715 −0.128442
\(364\) −3.54406 −0.185759
\(365\) −13.6744 −0.715753
\(366\) −6.93717 −0.362612
\(367\) −33.5667 −1.75217 −0.876083 0.482160i \(-0.839852\pi\)
−0.876083 + 0.482160i \(0.839852\pi\)
\(368\) −1.29998 −0.0677663
\(369\) 0.647082 0.0336857
\(370\) −4.38183 −0.227800
\(371\) 7.63405 0.396340
\(372\) 4.24297 0.219988
\(373\) −17.0698 −0.883838 −0.441919 0.897055i \(-0.645702\pi\)
−0.441919 + 0.897055i \(0.645702\pi\)
\(374\) 12.3471 0.638453
\(375\) −10.0215 −0.517510
\(376\) −11.9340 −0.615451
\(377\) −15.3127 −0.788646
\(378\) −0.700017 −0.0360050
\(379\) −15.7541 −0.809232 −0.404616 0.914487i \(-0.632595\pi\)
−0.404616 + 0.914487i \(0.632595\pi\)
\(380\) 12.3471 0.633393
\(381\) −13.1184 −0.672077
\(382\) 1.87971 0.0961746
\(383\) 3.85818 0.197144 0.0985719 0.995130i \(-0.468573\pi\)
0.0985719 + 0.995130i \(0.468573\pi\)
\(384\) 10.6143 0.541657
\(385\) −4.24297 −0.216242
\(386\) −13.1079 −0.667175
\(387\) −4.76709 −0.242325
\(388\) 7.40521 0.375943
\(389\) 35.0666 1.77795 0.888973 0.457959i \(-0.151419\pi\)
0.888973 + 0.457959i \(0.151419\pi\)
\(390\) 1.90106 0.0962637
\(391\) −4.80996 −0.243250
\(392\) −2.45704 −0.124099
\(393\) 1.28696 0.0649183
\(394\) 13.5770 0.684002
\(395\) 10.5571 0.531185
\(396\) −5.53714 −0.278252
\(397\) −15.3422 −0.770004 −0.385002 0.922916i \(-0.625799\pi\)
−0.385002 + 0.922916i \(0.625799\pi\)
\(398\) 0.770053 0.0385993
\(399\) −7.06707 −0.353796
\(400\) −4.75952 −0.237976
\(401\) −9.24705 −0.461776 −0.230888 0.972980i \(-0.574163\pi\)
−0.230888 + 0.972980i \(0.574163\pi\)
\(402\) −4.24990 −0.211966
\(403\) 6.59525 0.328533
\(404\) 8.76675 0.436162
\(405\) −1.15706 −0.0574947
\(406\) −4.56699 −0.226656
\(407\) 19.8384 0.983353
\(408\) 11.8183 0.585092
\(409\) −16.6498 −0.823278 −0.411639 0.911347i \(-0.635044\pi\)
−0.411639 + 0.911347i \(0.635044\pi\)
\(410\) −0.524110 −0.0258840
\(411\) 11.3152 0.558139
\(412\) −25.8461 −1.27334
\(413\) −10.2142 −0.502610
\(414\) −0.700017 −0.0344039
\(415\) 18.3488 0.900709
\(416\) 13.6697 0.670213
\(417\) −8.93717 −0.437655
\(418\) 18.1411 0.887308
\(419\) −6.86306 −0.335282 −0.167641 0.985848i \(-0.553615\pi\)
−0.167641 + 0.985848i \(0.553615\pi\)
\(420\) −1.74713 −0.0852513
\(421\) −13.1754 −0.642131 −0.321066 0.947057i \(-0.604041\pi\)
−0.321066 + 0.947057i \(0.604041\pi\)
\(422\) 17.8669 0.869745
\(423\) 4.85708 0.236159
\(424\) −18.7572 −0.910930
\(425\) −17.6103 −0.854225
\(426\) 2.55709 0.123891
\(427\) 9.91001 0.479579
\(428\) 12.6039 0.609234
\(429\) −8.60689 −0.415545
\(430\) 3.86115 0.186201
\(431\) −26.0837 −1.25641 −0.628204 0.778048i \(-0.716210\pi\)
−0.628204 + 0.778048i \(0.716210\pi\)
\(432\) −1.29998 −0.0625455
\(433\) −39.8676 −1.91591 −0.957957 0.286911i \(-0.907372\pi\)
−0.957957 + 0.286911i \(0.907372\pi\)
\(434\) 1.96702 0.0944199
\(435\) −7.54878 −0.361936
\(436\) −24.7291 −1.18431
\(437\) −7.06707 −0.338064
\(438\) −8.27299 −0.395299
\(439\) −17.9160 −0.855084 −0.427542 0.903996i \(-0.640620\pi\)
−0.427542 + 0.903996i \(0.640620\pi\)
\(440\) 10.4252 0.497000
\(441\) 1.00000 0.0476190
\(442\) 7.90280 0.375898
\(443\) −3.02810 −0.143869 −0.0719347 0.997409i \(-0.522917\pi\)
−0.0719347 + 0.997409i \(0.522917\pi\)
\(444\) 8.16886 0.387677
\(445\) −5.39330 −0.255667
\(446\) −12.0243 −0.569368
\(447\) −1.67693 −0.0793160
\(448\) 1.47700 0.0697815
\(449\) −30.0253 −1.41698 −0.708491 0.705720i \(-0.750624\pi\)
−0.708491 + 0.705720i \(0.750624\pi\)
\(450\) −2.56291 −0.120817
\(451\) 2.37287 0.111734
\(452\) 21.4070 1.00690
\(453\) 19.0110 0.893215
\(454\) −18.2238 −0.855287
\(455\) −2.71573 −0.127315
\(456\) 17.3641 0.813148
\(457\) 12.2169 0.571483 0.285742 0.958307i \(-0.407760\pi\)
0.285742 + 0.958307i \(0.407760\pi\)
\(458\) −4.91013 −0.229435
\(459\) −4.80996 −0.224510
\(460\) −1.74713 −0.0814604
\(461\) 33.7511 1.57194 0.785972 0.618261i \(-0.212163\pi\)
0.785972 + 0.618261i \(0.212163\pi\)
\(462\) −2.56699 −0.119427
\(463\) −21.9187 −1.01865 −0.509324 0.860575i \(-0.670104\pi\)
−0.509324 + 0.860575i \(0.670104\pi\)
\(464\) −8.48124 −0.393731
\(465\) 3.25129 0.150775
\(466\) 0.469788 0.0217625
\(467\) −15.6499 −0.724193 −0.362096 0.932141i \(-0.617939\pi\)
−0.362096 + 0.932141i \(0.617939\pi\)
\(468\) −3.54406 −0.163824
\(469\) 6.07114 0.280339
\(470\) −3.93404 −0.181464
\(471\) −12.5712 −0.579251
\(472\) 25.0968 1.15517
\(473\) −17.4811 −0.803780
\(474\) 6.38701 0.293365
\(475\) −25.8741 −1.18718
\(476\) −7.26293 −0.332896
\(477\) 7.63405 0.349539
\(478\) −18.5904 −0.850305
\(479\) 6.20999 0.283742 0.141871 0.989885i \(-0.454688\pi\)
0.141871 + 0.989885i \(0.454688\pi\)
\(480\) 6.73882 0.307584
\(481\) 12.6976 0.578962
\(482\) −3.48107 −0.158558
\(483\) 1.00000 0.0455016
\(484\) −3.69514 −0.167961
\(485\) 5.67444 0.257663
\(486\) −0.700017 −0.0317534
\(487\) −7.82642 −0.354649 −0.177325 0.984152i \(-0.556744\pi\)
−0.177325 + 0.984152i \(0.556744\pi\)
\(488\) −24.3493 −1.10224
\(489\) 15.6740 0.708801
\(490\) −0.809960 −0.0365903
\(491\) −32.0550 −1.44662 −0.723311 0.690523i \(-0.757380\pi\)
−0.723311 + 0.690523i \(0.757380\pi\)
\(492\) 0.977078 0.0440501
\(493\) −31.3807 −1.41332
\(494\) 11.6112 0.522415
\(495\) −4.24297 −0.190708
\(496\) 3.65290 0.164020
\(497\) −3.65290 −0.163855
\(498\) 11.1010 0.497447
\(499\) 42.3592 1.89626 0.948129 0.317885i \(-0.102973\pi\)
0.948129 + 0.317885i \(0.102973\pi\)
\(500\) −15.1323 −0.676736
\(501\) −4.96120 −0.221650
\(502\) −10.0999 −0.450782
\(503\) 11.6053 0.517455 0.258728 0.965950i \(-0.416697\pi\)
0.258728 + 0.965950i \(0.416697\pi\)
\(504\) −2.45704 −0.109445
\(505\) 6.71775 0.298936
\(506\) −2.56699 −0.114116
\(507\) 7.49113 0.332693
\(508\) −19.8085 −0.878861
\(509\) −12.1512 −0.538594 −0.269297 0.963057i \(-0.586791\pi\)
−0.269297 + 0.963057i \(0.586791\pi\)
\(510\) 3.89588 0.172512
\(511\) 11.8183 0.522810
\(512\) 13.9595 0.616926
\(513\) −7.06707 −0.312019
\(514\) 3.81432 0.168242
\(515\) −19.8052 −0.872722
\(516\) −7.19819 −0.316883
\(517\) 17.8111 0.783330
\(518\) 3.78704 0.166393
\(519\) −12.9042 −0.566431
\(520\) 6.67266 0.292616
\(521\) −15.3884 −0.674178 −0.337089 0.941473i \(-0.609442\pi\)
−0.337089 + 0.941473i \(0.609442\pi\)
\(522\) −4.56699 −0.199892
\(523\) −14.3536 −0.627637 −0.313818 0.949483i \(-0.601608\pi\)
−0.313818 + 0.949483i \(0.601608\pi\)
\(524\) 1.94327 0.0848923
\(525\) 3.66122 0.159789
\(526\) 11.0692 0.482641
\(527\) 13.5158 0.588757
\(528\) −4.76709 −0.207461
\(529\) 1.00000 0.0434783
\(530\) −6.18328 −0.268585
\(531\) −10.2142 −0.443260
\(532\) −10.6711 −0.462651
\(533\) 1.51876 0.0657850
\(534\) −3.26293 −0.141201
\(535\) 9.65808 0.417555
\(536\) −14.9171 −0.644319
\(537\) 0.262762 0.0113390
\(538\) 8.33094 0.359172
\(539\) 3.66704 0.157950
\(540\) −1.74713 −0.0751846
\(541\) 31.1451 1.33903 0.669517 0.742797i \(-0.266501\pi\)
0.669517 + 0.742797i \(0.266501\pi\)
\(542\) −11.6668 −0.501130
\(543\) 12.1440 0.521150
\(544\) 28.0137 1.20108
\(545\) −18.9493 −0.811698
\(546\) −1.64301 −0.0703142
\(547\) 12.6630 0.541429 0.270715 0.962660i \(-0.412740\pi\)
0.270715 + 0.962660i \(0.412740\pi\)
\(548\) 17.0857 0.729866
\(549\) 9.91001 0.422949
\(550\) −9.39829 −0.400744
\(551\) −46.1063 −1.96420
\(552\) −2.45704 −0.104579
\(553\) −9.12408 −0.387995
\(554\) 14.0913 0.598680
\(555\) 6.25960 0.265705
\(556\) −13.4949 −0.572312
\(557\) −30.7740 −1.30394 −0.651968 0.758246i \(-0.726057\pi\)
−0.651968 + 0.758246i \(0.726057\pi\)
\(558\) 1.96702 0.0832705
\(559\) −11.1888 −0.473237
\(560\) −1.50416 −0.0635622
\(561\) −17.6383 −0.744689
\(562\) 13.5819 0.572918
\(563\) 35.4352 1.49342 0.746708 0.665152i \(-0.231633\pi\)
0.746708 + 0.665152i \(0.231633\pi\)
\(564\) 7.33407 0.308820
\(565\) 16.4036 0.690106
\(566\) −7.58209 −0.318699
\(567\) 1.00000 0.0419961
\(568\) 8.97533 0.376597
\(569\) 2.15939 0.0905262 0.0452631 0.998975i \(-0.485587\pi\)
0.0452631 + 0.998975i \(0.485587\pi\)
\(570\) 5.72404 0.239754
\(571\) −26.4182 −1.10557 −0.552784 0.833324i \(-0.686435\pi\)
−0.552784 + 0.833324i \(0.686435\pi\)
\(572\) −12.9962 −0.543399
\(573\) −2.68524 −0.112178
\(574\) 0.452968 0.0189065
\(575\) 3.66122 0.152683
\(576\) 1.47700 0.0615415
\(577\) −12.9885 −0.540719 −0.270360 0.962759i \(-0.587143\pi\)
−0.270360 + 0.962759i \(0.587143\pi\)
\(578\) 4.29510 0.178653
\(579\) 18.7252 0.778191
\(580\) −11.3985 −0.473296
\(581\) −15.8582 −0.657908
\(582\) 3.43301 0.142303
\(583\) 27.9943 1.15941
\(584\) −29.0380 −1.20160
\(585\) −2.71573 −0.112282
\(586\) 6.22615 0.257200
\(587\) 42.1437 1.73946 0.869729 0.493529i \(-0.164293\pi\)
0.869729 + 0.493529i \(0.164293\pi\)
\(588\) 1.50998 0.0622704
\(589\) 19.8582 0.818242
\(590\) 8.27312 0.340599
\(591\) −19.3953 −0.797817
\(592\) 7.03282 0.289047
\(593\) 10.2777 0.422055 0.211027 0.977480i \(-0.432319\pi\)
0.211027 + 0.977480i \(0.432319\pi\)
\(594\) −2.56699 −0.105325
\(595\) −5.56541 −0.228159
\(596\) −2.53212 −0.103720
\(597\) −1.10005 −0.0450220
\(598\) −1.64301 −0.0671876
\(599\) −6.73566 −0.275212 −0.137606 0.990487i \(-0.543941\pi\)
−0.137606 + 0.990487i \(0.543941\pi\)
\(600\) −8.99576 −0.367250
\(601\) −45.6995 −1.86412 −0.932062 0.362300i \(-0.881992\pi\)
−0.932062 + 0.362300i \(0.881992\pi\)
\(602\) −3.33704 −0.136008
\(603\) 6.07114 0.247236
\(604\) 28.7062 1.16804
\(605\) −2.83149 −0.115117
\(606\) 4.06422 0.165098
\(607\) 46.6518 1.89354 0.946769 0.321914i \(-0.104326\pi\)
0.946769 + 0.321914i \(0.104326\pi\)
\(608\) 41.1593 1.66923
\(609\) 6.52411 0.264370
\(610\) −8.02671 −0.324992
\(611\) 11.4000 0.461196
\(612\) −7.26293 −0.293586
\(613\) 40.2204 1.62448 0.812242 0.583320i \(-0.198247\pi\)
0.812242 + 0.583320i \(0.198247\pi\)
\(614\) 13.8212 0.557780
\(615\) 0.748712 0.0301910
\(616\) −9.01006 −0.363026
\(617\) 11.1211 0.447719 0.223860 0.974621i \(-0.428134\pi\)
0.223860 + 0.974621i \(0.428134\pi\)
\(618\) −11.9821 −0.481990
\(619\) −45.1974 −1.81664 −0.908319 0.418278i \(-0.862634\pi\)
−0.908319 + 0.418278i \(0.862634\pi\)
\(620\) 4.90937 0.197165
\(621\) 1.00000 0.0401286
\(622\) −20.0133 −0.802461
\(623\) 4.66122 0.186748
\(624\) −3.05119 −0.122145
\(625\) 6.71058 0.268423
\(626\) 8.86009 0.354121
\(627\) −25.9152 −1.03495
\(628\) −18.9823 −0.757475
\(629\) 26.0215 1.03755
\(630\) −0.809960 −0.0322696
\(631\) −22.9463 −0.913478 −0.456739 0.889601i \(-0.650983\pi\)
−0.456739 + 0.889601i \(0.650983\pi\)
\(632\) 22.4182 0.891750
\(633\) −25.5235 −1.01447
\(634\) 3.38199 0.134316
\(635\) −15.1788 −0.602352
\(636\) 11.5272 0.457085
\(637\) 2.34710 0.0929954
\(638\) −16.7473 −0.663032
\(639\) −3.65290 −0.144507
\(640\) 12.2813 0.485462
\(641\) −12.5876 −0.497179 −0.248590 0.968609i \(-0.579967\pi\)
−0.248590 + 0.968609i \(0.579967\pi\)
\(642\) 5.84311 0.230609
\(643\) 0.547672 0.0215981 0.0107990 0.999942i \(-0.496562\pi\)
0.0107990 + 0.999942i \(0.496562\pi\)
\(644\) 1.50998 0.0595014
\(645\) −5.51580 −0.217184
\(646\) 23.7952 0.936209
\(647\) −16.7393 −0.658089 −0.329045 0.944314i \(-0.606727\pi\)
−0.329045 + 0.944314i \(0.606727\pi\)
\(648\) −2.45704 −0.0965217
\(649\) −37.4560 −1.47027
\(650\) −6.01541 −0.235944
\(651\) −2.80996 −0.110131
\(652\) 23.6673 0.926884
\(653\) 2.63120 0.102967 0.0514834 0.998674i \(-0.483605\pi\)
0.0514834 + 0.998674i \(0.483605\pi\)
\(654\) −11.4642 −0.448288
\(655\) 1.48908 0.0581833
\(656\) 0.841196 0.0328432
\(657\) 11.8183 0.461075
\(658\) 3.40003 0.132547
\(659\) −28.7983 −1.12182 −0.560912 0.827876i \(-0.689549\pi\)
−0.560912 + 0.827876i \(0.689549\pi\)
\(660\) −6.40679 −0.249384
\(661\) 2.76143 0.107407 0.0537036 0.998557i \(-0.482897\pi\)
0.0537036 + 0.998557i \(0.482897\pi\)
\(662\) −4.79192 −0.186243
\(663\) −11.2894 −0.438446
\(664\) 38.9642 1.51210
\(665\) −8.17701 −0.317091
\(666\) 3.78704 0.146745
\(667\) 6.52411 0.252615
\(668\) −7.49130 −0.289847
\(669\) 17.1772 0.664108
\(670\) −4.91738 −0.189975
\(671\) 36.3404 1.40290
\(672\) −5.82409 −0.224669
\(673\) 32.8777 1.26734 0.633670 0.773603i \(-0.281548\pi\)
0.633670 + 0.773603i \(0.281548\pi\)
\(674\) −5.72282 −0.220435
\(675\) 3.66122 0.140920
\(676\) 11.3114 0.435055
\(677\) 34.5014 1.32599 0.662997 0.748622i \(-0.269284\pi\)
0.662997 + 0.748622i \(0.269284\pi\)
\(678\) 9.92414 0.381134
\(679\) −4.90419 −0.188206
\(680\) 13.6744 0.524391
\(681\) 26.0334 0.997604
\(682\) 7.21313 0.276205
\(683\) 34.9805 1.33849 0.669246 0.743041i \(-0.266617\pi\)
0.669246 + 0.743041i \(0.266617\pi\)
\(684\) −10.6711 −0.408020
\(685\) 13.0924 0.500234
\(686\) 0.700017 0.0267268
\(687\) 7.01430 0.267612
\(688\) −6.19713 −0.236263
\(689\) 17.9179 0.682617
\(690\) −0.809960 −0.0308347
\(691\) 34.0895 1.29683 0.648413 0.761289i \(-0.275433\pi\)
0.648413 + 0.761289i \(0.275433\pi\)
\(692\) −19.4850 −0.740710
\(693\) 3.66704 0.139299
\(694\) 14.8893 0.565188
\(695\) −10.3408 −0.392250
\(696\) −16.0300 −0.607616
\(697\) 3.11244 0.117892
\(698\) 1.37572 0.0520719
\(699\) −0.671109 −0.0253837
\(700\) 5.52835 0.208952
\(701\) −43.6564 −1.64888 −0.824439 0.565950i \(-0.808509\pi\)
−0.824439 + 0.565950i \(0.808509\pi\)
\(702\) −1.64301 −0.0620113
\(703\) 38.2323 1.44196
\(704\) 5.41619 0.204131
\(705\) 5.61992 0.211658
\(706\) 7.21883 0.271684
\(707\) −5.80589 −0.218353
\(708\) −15.4233 −0.579641
\(709\) 11.8247 0.444087 0.222044 0.975037i \(-0.428727\pi\)
0.222044 + 0.975037i \(0.428727\pi\)
\(710\) 2.95870 0.111038
\(711\) −9.12408 −0.342180
\(712\) −11.4528 −0.429212
\(713\) −2.80996 −0.105234
\(714\) −3.36705 −0.126009
\(715\) −9.95868 −0.372433
\(716\) 0.396765 0.0148278
\(717\) 26.5571 0.991793
\(718\) −18.4704 −0.689307
\(719\) 33.8406 1.26204 0.631021 0.775766i \(-0.282636\pi\)
0.631021 + 0.775766i \(0.282636\pi\)
\(720\) −1.50416 −0.0560566
\(721\) 17.1169 0.637466
\(722\) 21.6609 0.806136
\(723\) 4.97284 0.184942
\(724\) 18.3372 0.681497
\(725\) 23.8862 0.887110
\(726\) −1.71304 −0.0635770
\(727\) 43.3730 1.60862 0.804308 0.594212i \(-0.202536\pi\)
0.804308 + 0.594212i \(0.202536\pi\)
\(728\) −5.76692 −0.213736
\(729\) 1.00000 0.0370370
\(730\) −9.57233 −0.354288
\(731\) −22.9295 −0.848078
\(732\) 14.9639 0.553081
\(733\) −35.3627 −1.30615 −0.653075 0.757293i \(-0.726521\pi\)
−0.653075 + 0.757293i \(0.726521\pi\)
\(734\) −23.4972 −0.867299
\(735\) 1.15706 0.0426787
\(736\) −5.82409 −0.214679
\(737\) 22.2631 0.820072
\(738\) 0.452968 0.0166740
\(739\) −20.9639 −0.771169 −0.385584 0.922673i \(-0.626000\pi\)
−0.385584 + 0.922673i \(0.626000\pi\)
\(740\) 9.45185 0.347457
\(741\) −16.5871 −0.609343
\(742\) 5.34396 0.196183
\(743\) −3.66859 −0.134587 −0.0672937 0.997733i \(-0.521436\pi\)
−0.0672937 + 0.997733i \(0.521436\pi\)
\(744\) 6.90419 0.253120
\(745\) −1.94031 −0.0710873
\(746\) −11.9491 −0.437488
\(747\) −15.8582 −0.580221
\(748\) −26.6334 −0.973814
\(749\) −8.34710 −0.304996
\(750\) −7.01524 −0.256160
\(751\) 26.4450 0.964990 0.482495 0.875899i \(-0.339731\pi\)
0.482495 + 0.875899i \(0.339731\pi\)
\(752\) 6.31412 0.230252
\(753\) 14.4281 0.525790
\(754\) −10.7192 −0.390369
\(755\) 21.9968 0.800547
\(756\) 1.50998 0.0549173
\(757\) 31.6239 1.14939 0.574695 0.818368i \(-0.305121\pi\)
0.574695 + 0.818368i \(0.305121\pi\)
\(758\) −11.0281 −0.400559
\(759\) 3.66704 0.133105
\(760\) 20.0913 0.728787
\(761\) 13.8173 0.500878 0.250439 0.968132i \(-0.419425\pi\)
0.250439 + 0.968132i \(0.419425\pi\)
\(762\) −9.18311 −0.332669
\(763\) 16.3771 0.592891
\(764\) −4.05465 −0.146692
\(765\) −5.56541 −0.201218
\(766\) 2.70079 0.0975835
\(767\) −23.9738 −0.865644
\(768\) 10.3842 0.374706
\(769\) 24.1624 0.871319 0.435659 0.900112i \(-0.356515\pi\)
0.435659 + 0.900112i \(0.356515\pi\)
\(770\) −2.97015 −0.107037
\(771\) −5.44889 −0.196237
\(772\) 28.2745 1.01762
\(773\) 24.9557 0.897595 0.448798 0.893633i \(-0.351852\pi\)
0.448798 + 0.893633i \(0.351852\pi\)
\(774\) −3.33704 −0.119947
\(775\) −10.2879 −0.369551
\(776\) 12.0498 0.432563
\(777\) −5.40993 −0.194080
\(778\) 24.5472 0.880060
\(779\) 4.57297 0.163844
\(780\) −4.10069 −0.146828
\(781\) −13.3953 −0.479322
\(782\) −3.36705 −0.120406
\(783\) 6.52411 0.233153
\(784\) 1.29998 0.0464280
\(785\) −14.5456 −0.519156
\(786\) 0.900890 0.0321337
\(787\) 27.6309 0.984935 0.492468 0.870331i \(-0.336095\pi\)
0.492468 + 0.870331i \(0.336095\pi\)
\(788\) −29.2865 −1.04329
\(789\) −15.8128 −0.562951
\(790\) 7.39014 0.262929
\(791\) −14.1770 −0.504077
\(792\) −9.01006 −0.320159
\(793\) 23.2598 0.825979
\(794\) −10.7398 −0.381142
\(795\) 8.83305 0.313276
\(796\) −1.66105 −0.0588743
\(797\) −47.8222 −1.69395 −0.846975 0.531632i \(-0.821579\pi\)
−0.846975 + 0.531632i \(0.821579\pi\)
\(798\) −4.94707 −0.175124
\(799\) 23.3623 0.826500
\(800\) −21.3233 −0.753891
\(801\) 4.66122 0.164696
\(802\) −6.47309 −0.228573
\(803\) 43.3380 1.52937
\(804\) 9.16728 0.323305
\(805\) 1.15706 0.0407810
\(806\) 4.61679 0.162619
\(807\) −11.9011 −0.418937
\(808\) 14.2653 0.501852
\(809\) −53.9350 −1.89625 −0.948127 0.317891i \(-0.897025\pi\)
−0.948127 + 0.317891i \(0.897025\pi\)
\(810\) −0.809960 −0.0284591
\(811\) 29.8321 1.04755 0.523774 0.851857i \(-0.324524\pi\)
0.523774 + 0.851857i \(0.324524\pi\)
\(812\) 9.85126 0.345711
\(813\) 16.6664 0.584516
\(814\) 13.8872 0.486746
\(815\) 18.1357 0.635266
\(816\) −6.25287 −0.218894
\(817\) −33.6893 −1.17864
\(818\) −11.6551 −0.407511
\(819\) 2.34710 0.0820143
\(820\) 1.13054 0.0394801
\(821\) 38.4517 1.34198 0.670988 0.741469i \(-0.265870\pi\)
0.670988 + 0.741469i \(0.265870\pi\)
\(822\) 7.92084 0.276271
\(823\) 22.4705 0.783274 0.391637 0.920120i \(-0.371909\pi\)
0.391637 + 0.920120i \(0.371909\pi\)
\(824\) −42.0569 −1.46512
\(825\) 13.4258 0.467427
\(826\) −7.15013 −0.248785
\(827\) 15.5282 0.539968 0.269984 0.962865i \(-0.412982\pi\)
0.269984 + 0.962865i \(0.412982\pi\)
\(828\) 1.50998 0.0524753
\(829\) −35.6581 −1.23846 −0.619228 0.785211i \(-0.712554\pi\)
−0.619228 + 0.785211i \(0.712554\pi\)
\(830\) 12.8445 0.445839
\(831\) −20.1299 −0.698298
\(832\) 3.46665 0.120185
\(833\) 4.80996 0.166655
\(834\) −6.25617 −0.216633
\(835\) −5.74040 −0.198655
\(836\) −39.1313 −1.35339
\(837\) −2.80996 −0.0971264
\(838\) −4.80426 −0.165960
\(839\) 16.9411 0.584873 0.292436 0.956285i \(-0.405534\pi\)
0.292436 + 0.956285i \(0.405534\pi\)
\(840\) −2.84294 −0.0980908
\(841\) 13.5640 0.467725
\(842\) −9.22302 −0.317846
\(843\) −19.4022 −0.668249
\(844\) −38.5398 −1.32660
\(845\) 8.66768 0.298177
\(846\) 3.40003 0.116896
\(847\) 2.44715 0.0840850
\(848\) 9.92414 0.340796
\(849\) 10.8313 0.371729
\(850\) −12.3275 −0.422830
\(851\) −5.40993 −0.185450
\(852\) −5.51580 −0.188968
\(853\) −2.83149 −0.0969485 −0.0484742 0.998824i \(-0.515436\pi\)
−0.0484742 + 0.998824i \(0.515436\pi\)
\(854\) 6.93717 0.237385
\(855\) −8.17701 −0.279648
\(856\) 20.5092 0.700989
\(857\) −3.73125 −0.127457 −0.0637286 0.997967i \(-0.520299\pi\)
−0.0637286 + 0.997967i \(0.520299\pi\)
\(858\) −6.02497 −0.205689
\(859\) 3.83133 0.130723 0.0653616 0.997862i \(-0.479180\pi\)
0.0653616 + 0.997862i \(0.479180\pi\)
\(860\) −8.32872 −0.284007
\(861\) −0.647082 −0.0220525
\(862\) −18.2590 −0.621905
\(863\) −21.3080 −0.725333 −0.362667 0.931919i \(-0.618134\pi\)
−0.362667 + 0.931919i \(0.618134\pi\)
\(864\) −5.82409 −0.198140
\(865\) −14.9309 −0.507666
\(866\) −27.9080 −0.948352
\(867\) −6.13572 −0.208380
\(868\) −4.24297 −0.144016
\(869\) −33.4583 −1.13500
\(870\) −5.28427 −0.179154
\(871\) 14.2496 0.482828
\(872\) −40.2393 −1.36267
\(873\) −4.90419 −0.165982
\(874\) −4.94707 −0.167337
\(875\) 10.0215 0.338790
\(876\) 17.8453 0.602937
\(877\) −34.4456 −1.16314 −0.581572 0.813495i \(-0.697562\pi\)
−0.581572 + 0.813495i \(0.697562\pi\)
\(878\) −12.5415 −0.423255
\(879\) −8.89430 −0.299997
\(880\) −5.51580 −0.185937
\(881\) 5.70600 0.192240 0.0961201 0.995370i \(-0.469357\pi\)
0.0961201 + 0.995370i \(0.469357\pi\)
\(882\) 0.700017 0.0235708
\(883\) 5.89756 0.198469 0.0992344 0.995064i \(-0.468361\pi\)
0.0992344 + 0.995064i \(0.468361\pi\)
\(884\) −17.0468 −0.573346
\(885\) −11.8185 −0.397273
\(886\) −2.11972 −0.0712134
\(887\) −41.8153 −1.40402 −0.702010 0.712167i \(-0.747714\pi\)
−0.702010 + 0.712167i \(0.747714\pi\)
\(888\) 13.2924 0.446064
\(889\) 13.1184 0.439978
\(890\) −3.77540 −0.126552
\(891\) 3.66704 0.122850
\(892\) 25.9371 0.868440
\(893\) 34.3253 1.14865
\(894\) −1.17388 −0.0392604
\(895\) 0.304031 0.0101626
\(896\) −10.6143 −0.354598
\(897\) 2.34710 0.0783673
\(898\) −21.0182 −0.701387
\(899\) −18.3325 −0.611423
\(900\) 5.52835 0.184278
\(901\) 36.7195 1.22330
\(902\) 1.66105 0.0553069
\(903\) 4.76709 0.158639
\(904\) 34.8335 1.15855
\(905\) 14.0514 0.467083
\(906\) 13.3080 0.442129
\(907\) −39.9593 −1.32683 −0.663414 0.748253i \(-0.730893\pi\)
−0.663414 + 0.748253i \(0.730893\pi\)
\(908\) 39.3099 1.30454
\(909\) −5.80589 −0.192569
\(910\) −1.90106 −0.0630194
\(911\) −25.1107 −0.831954 −0.415977 0.909375i \(-0.636560\pi\)
−0.415977 + 0.909375i \(0.636560\pi\)
\(912\) −9.18707 −0.304214
\(913\) −58.1525 −1.92457
\(914\) 8.55205 0.282877
\(915\) 11.4665 0.379070
\(916\) 10.5914 0.349951
\(917\) −1.28696 −0.0424990
\(918\) −3.36705 −0.111129
\(919\) 37.6701 1.24262 0.621310 0.783565i \(-0.286601\pi\)
0.621310 + 0.783565i \(0.286601\pi\)
\(920\) −2.84294 −0.0937290
\(921\) −19.7442 −0.650592
\(922\) 23.6263 0.778091
\(923\) −8.57372 −0.282207
\(924\) 5.53714 0.182158
\(925\) −19.8069 −0.651247
\(926\) −15.3434 −0.504217
\(927\) 17.1169 0.562192
\(928\) −37.9970 −1.24731
\(929\) −15.5425 −0.509933 −0.254967 0.966950i \(-0.582064\pi\)
−0.254967 + 0.966950i \(0.582064\pi\)
\(930\) 2.27596 0.0746315
\(931\) 7.06707 0.231614
\(932\) −1.01336 −0.0331937
\(933\) 28.5898 0.935988
\(934\) −10.9552 −0.358466
\(935\) −20.4085 −0.667431
\(936\) −5.76692 −0.188498
\(937\) 18.2576 0.596449 0.298224 0.954496i \(-0.403606\pi\)
0.298224 + 0.954496i \(0.403606\pi\)
\(938\) 4.24990 0.138764
\(939\) −12.6570 −0.413045
\(940\) 8.48595 0.276781
\(941\) −0.0776022 −0.00252976 −0.00126488 0.999999i \(-0.500403\pi\)
−0.00126488 + 0.999999i \(0.500403\pi\)
\(942\) −8.80007 −0.286722
\(943\) −0.647082 −0.0210719
\(944\) −13.2783 −0.432173
\(945\) 1.15706 0.0376391
\(946\) −12.2370 −0.397860
\(947\) 10.0364 0.326140 0.163070 0.986615i \(-0.447860\pi\)
0.163070 + 0.986615i \(0.447860\pi\)
\(948\) −13.7771 −0.447461
\(949\) 27.7387 0.900435
\(950\) −18.1123 −0.587640
\(951\) −4.83130 −0.156666
\(952\) −11.8183 −0.383032
\(953\) 51.2265 1.65939 0.829695 0.558218i \(-0.188515\pi\)
0.829695 + 0.558218i \(0.188515\pi\)
\(954\) 5.34396 0.173017
\(955\) −3.10698 −0.100540
\(956\) 40.1006 1.29695
\(957\) 23.9241 0.773358
\(958\) 4.34710 0.140448
\(959\) −11.3152 −0.365388
\(960\) 1.70897 0.0551568
\(961\) −23.1041 −0.745294
\(962\) 8.88855 0.286578
\(963\) −8.34710 −0.268981
\(964\) 7.50887 0.241844
\(965\) 21.6661 0.697456
\(966\) 0.700017 0.0225227
\(967\) 12.2315 0.393339 0.196670 0.980470i \(-0.436987\pi\)
0.196670 + 0.980470i \(0.436987\pi\)
\(968\) −6.01275 −0.193257
\(969\) −33.9923 −1.09199
\(970\) 3.97220 0.127540
\(971\) 33.5753 1.07748 0.538741 0.842471i \(-0.318900\pi\)
0.538741 + 0.842471i \(0.318900\pi\)
\(972\) 1.50998 0.0484325
\(973\) 8.93717 0.286513
\(974\) −5.47863 −0.175546
\(975\) 8.59323 0.275204
\(976\) 12.8828 0.412370
\(977\) 23.7149 0.758707 0.379353 0.925252i \(-0.376146\pi\)
0.379353 + 0.925252i \(0.376146\pi\)
\(978\) 10.9720 0.350847
\(979\) 17.0928 0.546290
\(980\) 1.74713 0.0558101
\(981\) 16.3771 0.522881
\(982\) −22.4390 −0.716058
\(983\) −1.47810 −0.0471441 −0.0235721 0.999722i \(-0.507504\pi\)
−0.0235721 + 0.999722i \(0.507504\pi\)
\(984\) 1.58991 0.0506844
\(985\) −22.4415 −0.715046
\(986\) −21.9670 −0.699572
\(987\) −4.85708 −0.154602
\(988\) −25.0461 −0.796824
\(989\) 4.76709 0.151584
\(990\) −2.97015 −0.0943976
\(991\) 20.5203 0.651850 0.325925 0.945396i \(-0.394324\pi\)
0.325925 + 0.945396i \(0.394324\pi\)
\(992\) 16.3655 0.519604
\(993\) 6.84544 0.217233
\(994\) −2.55709 −0.0811060
\(995\) −1.27282 −0.0403512
\(996\) −23.9455 −0.758742
\(997\) −22.7211 −0.719583 −0.359791 0.933033i \(-0.617152\pi\)
−0.359791 + 0.933033i \(0.617152\pi\)
\(998\) 29.6521 0.938622
\(999\) −5.40993 −0.171163
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.a.i.1.3 4
3.2 odd 2 1449.2.a.p.1.2 4
4.3 odd 2 7728.2.a.cd.1.1 4
7.6 odd 2 3381.2.a.w.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.a.i.1.3 4 1.1 even 1 trivial
1449.2.a.p.1.2 4 3.2 odd 2
3381.2.a.w.1.3 4 7.6 odd 2
7728.2.a.cd.1.1 4 4.3 odd 2